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We study point defect geometries in inverted opal photonic crystals that can be easily fabricated by means
of colloidal self-assembly. Two broad classes of defects are considered: substitutional and interstitial. Substi-
tutional point defects are found to introduce a usable defect band into the photonic band gap. This can be done
by using a silica sphere of radius between 0.33a and 0.35a swherea is the lattice constantd. The state is triply
degenerate. Reflectance and local density of states calculations are performed to verify the existence and
frequency of this defect. The point defect can be made by precoating shrunk silica spheres with a thin layer of
silicon. Such a defect can be used as a microcavity for localizing light at a point, with a quality factorQ that
is limited primarily by the proximity of the defect to the surface of the photonic crystal and other such defects.
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I. INTRODUCTION

Recently, there has been much interest in fabricating pho-
tonic crystals by means of colloidal self-assemblyf1–8g.
Such a method is attractive because it offers a simpler and
cheaper way of making three-dimensionallys3Dd periodic
photonic crystals, compared with conventional semiconduc-
tor nanofabrication techniques. Work has been done to show
that self-organizing systems that self-assemble into large-
scale photonic crystals can have photonic band gapssPBGsd
or pseudogaps in the near-visible frequency regimef9–21g.
Natural assembly of colloidal microspheres yields irregular,
polycrystalline photonic crystals with many structural de-
fects that can destroy the PBG. However, it turns out that
strong capillary forces at a meniscus between a substrate and
a colloidal sol can induce crystallization of spheres into a 3D
array of controllable thickness. Sweeping this meniscus
slowly across a vertically placed substrate by solvent evapo-
ration leads to the deposition of thin planar opals. This tech-
nique has been used by Vlasovet al. f2g to produce inverted
opal photonic crystals with band gaps at around 1.3mm.

Deliberately designed defects are desirable features in
photonic crystalsf22,23g. A point defect, for example, with a
mode localized within a complete PBG would give rise to a
microcavity, while a line defect can be used as a waveguide
f1,24g. Microcavities and waveguides can be used as build-
ing blocks for optical devices and all-optical integrated cir-
cuits. There is, therefore, a need to design defects that can
exist in the gap and be easily introduced into the bulk struc-
ture. Since colloidal self-assembly appears to be a promising
and economical way of fabricating photonic crystals, we
would like to identify a class of point defects that can be
made using this method. This was the motivation for the
work described in this paper. Computational calculations for
such systems are of great importance because they can serve
as a prelaboratory where different ideas of possible defect
geometries are tested and refined. One can have faith in rela-
tively accurate correspondence between calculation and ex-
periment, since Maxwell’s equations are essentially exact in
the linear regime of low photon-photon coupling, the regime
in which such crystals are used.

II. POINT DEFECT GEOMETRIES

We consider an inverted opal structure, which is a face-
centered cubic lattice of air spheres in a silicon background.
Such a structure can be thought of as theinverseof the more
familiar fcc crystal of silicon spheres in air. Experimentally,
synthetic opals can be made by colloidal crystallization of a
fcc lattice of silica spheres, backfilling interstitial spaces with
silicon, and then wet-etching out the silica spheres, leaving
air spheres behind. However, the infiltration of the back-
ground with silicon is usually imperfect, leaving some air
gaps in between the silica spheres. We take this imperfection
into account in our simulations by building up the structure
using air spheres with a 0.06a swherea is the lattice constant
of the fcc lattice; in all that follows, length scales will be
given in units ofad coating of silicon, which leaves air gaps
in the diagonal spaces between spheres. In the structure un-
der study, the air spheres have a radius of 0.354a, so the
silicon coating is about 17% of the radius of the air spheres.
The air spheres are overlapping because the critical radius
for the overlap of spheres in fcc crystals isa/ s2Î2d
=0.354a. We terminate the surface using a plane that cuts the
spheres in half, because this appears to be more similar to
what is produced in experiments by Vlasovet al.

In general, one can create a defect by adding or removing
dielectric. The former method produces adielectric defect
while the latter gives anair defect f25g. Both are effective
ways of introducing defects to a photonic crystal system,
though there are connectivity issues that make the two meth-
ods different, depending on whether the crystal itself is di-
electric or air connectedsor bothd. It should also be noted
that the orientation of the crystal can affect the reflectance
measurements. It turns out that, for inverted opals, samples
of higher quality can be obtained with surfaces normal to the
f111g direction than to thef100g direction. For this reason,
most of our work involves studying crystals withf111g sur-
face orientation. Furthermore, in experimental measure-
ments, the wafer was placed on top of a silicon substrate. It
was thought that the presence of the substrate could have a
nontrivial effect on reflectance measurements. However, hav-
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ing performed calculations with and without the substrate,
we find no significant differences.

Figure 1 shows the two different defect geometries that
we considered. An interstitial defect is designed to fit into the
spaces between the larger spheres. A substitutional defect
replaces an existing sphere.

In the interstitial case, it is necessary that these interstitial
spheres be sufficiently small; otherwise, their presence in the
colloidal self-assembly process would disrupt the structure of
the rest of the crystal. The upper bound on the radius of the
small sphere iss1/2ds1−1/Î2da<0.146a. Single interstitial
air and dielectric defects can be implemented by having
small silica or silicon spheres, and were tried in our calcula-
tions. We also considered clumps of seven or eight such air
and dielectric defects. The presence of interstitial air defects
changes the connectivity of the system, since new air chan-
nels have been created joining nonadjacent large air spheres.
Interstitial dielectric spheres, however, only affect the system
insofar as they fill in the “holes” that were not completely
backfilled with silicon. In any case, our results for these in-
terstitial defect geometries revealed no particularly useful
change in the band structure of these systems that could lead
to the existence of a defect band in the gap. The change
tended to either pull down some states from the upper bands
into the gap, but only for certain wave vectors, or destroy the
photonic band gap altogether. In the remainder of this paper,
we will restrict our attention to substitutional defects.

In the substitutional case, the outer radius must lie be-
tween 0.146a and 0.354a: if less than the former, then the
sphere will slide into an interstitial space; if greater than the
latter, it will disrupt the packing of the structure. A relatively
easy modification would be to reduce the size of the silica
spheres used to create the structure. Note, however, that if
the radius of the silica spheres is decreased below 0.354a,
the defect sphere will no longer be touching adjacent, normal
spheres. This means that after backfilling, the defect sphere
will be completely enclosed by silicon, and the silica mate-
rial inside will not be etched away by the wet-etching pro-
cess. We have effectively created a defect sphere with silica
se=2.1025d inside instead of air, amounting to a dielectric
substitutional defect. We study this class of defects for dif-

ferent radii of silica spheres, and identify some useful prop-
erties.

III. CHARACTERISTICS OF THE DEFECT STATE

To determine the properties of a photonic crystal struc-
ture, it is important to be able to calculate its band structure
and reflectance spectrum, since the first tells us about the
modes the structure supports, and the second allows us to
make direct comparison with experimental results. We calcu-
late band structure using theMIT PHOTONIC BANDS program,
which uses a variational method to solve the Maxwell eigen-
value equationf24g. For reflectance, we perform a time do-
main simulation of the fields using a finite difference tech-
nique. Note that in both our frequency and time domain
calculations, we did not allow frequency to go above 1.0sin
units of c/ad because we did not wish to concern ourselves
with diffraction. By working with frequencies below 1.0, a
normally incident light wave would produce a transmitted
wave that is also normal. For frequencies above 1.0, several
diffracted beams are possible, corresponding to different
wave vectors, which are conserved by the scattering of the
photonic crystal only up to a reciprocal lattice vector. Thus,
we have reduced the problem to a one-dimensional one.
Such a simplification is acceptable, given that the experimen-
tal measurements of Vlasovet al. were mostly at 1.0 or be-
low.

Figure 2 shows the band structure of a system with a
shrunk silica sphere of radius 0.35a. The bands for the bulk
structure were calculated using a basis set ranging from
s8,8,8d to s256,256,256d, ands16,16,16d was found to be ef-

FIG. 1. sColord Two different styles of point defectssadapted
from f26gd.

FIG. 2. sColord Band structure of photonic crystal with point
defect mode. Defect calculation performed with 33333 supercell,
with a s48,48,48d basis set, for shrunk silica sphere radius of 0.35a.
The 33333 supercell calculation for the defect-produced band
structure with multiple folding of bands, and as such the band dia-
gram for that calculation is not edifying to show. The most impor-
tant result from that calculation, namely, the defect state frequency,
was extracted, and this piece of information was incorporated into
the above nonsupercell band structure.
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fectively converged. The defect band was calculated by in-
troducing the defect into the system and performing the cal-
culation with a 33333 supercell and a basis set of
s48,48,48d. A supercell calculation was required in this case
because the presence of the defectreducedthe periodicity of
the structure, and resulted in anincreaseof the size of the
repeating cell. Ideally, we would use an isolated defect in an
otherwise periodic crystal, but it turns out that having a pe-
riodic system simplifies the calculations enormously, as it
allows us to impose periodic boundary conditions and apply
Bloch’s theorem. The choice of the size of the supercell in-
volves striking a balance between preventing excessive cou-
pling between defects in adjacent supercellssthis is equiva-
lent to requiring a high-Q cavityd, and computation time. The
first consideration leads us to increase the size of the super-
cell while the second leads us to decrease it. It was found
that 33333 gave good results for band structure calcula-
tions without incurring unacceptably long computation
times. We see from the figure that the presence of the defect
pulled down some of the upper bands to the middle of the
gap while maintaining the overall integrity of the PBG. This
geometry has the desirable features that we look for.

We also performed band structure calculations for shrunk
silica spheres of different radii. We examined a series of
defect radii from 0.15a to 0.35a. Each one of these defect
radii produces a change in the band structure of the system.
The defect pulls down some states from above the gap. The
larger the radius, the further into the gap the states are pulled.
Since we are interested in the local confinement of light, and
such confinement requires the existence of defect bands
within an otherwise forbidden region, we are looking for
radii that pull down states such that they are in or near the
middle of the gap with forbidden regions on either side. It
turns out that such a defect state can be produced with defect
radii between 0.33a and 0.35a. Obviously, the smaller the
radius, the greater the overall increase in dielectric constant.

In general, the frequency of the defect mode decreases as the
average dielectric constant of the defect is increased; this is
the qualitative dependence of defect frequency on dielectric
constant. We show 0.35a, which is the defect mode that is
most easily distinguished from the surrounding background
of states. We did a careful counting of the number of defect
bands pulled down by the defect into the gap, and it turns out
to be three. Thus, the defect state is triply degenerate.sSuch
a result is certainly consistent given the cubic symmetry of
the lattice.d The symmetry of the defect structure allows for a
threefold degenerate irreducible representation, which in turn
leads to a threefold degenerate state.

As an aside, it is useful to observe that the adequacy of a
particular size of supercell for the calculation at hand can be
determined from the flatness of the defect band. A point de-
fect has complete directional symmetry and its mode must
therefore be independent of wave vector. This corresponds to
a flat band inv-k space. If the supercell is insufficiently
large, the defects would be interactingsin a tight-binding
sensed, and such interaction would produce a network of in-
terlinked defects, favoring theh100j, or cubic, directions. In
other words, the band would not be flat. We were able to
have confidence in the frequency of the defect band to the
extent that the bands obtained in our 33333 supercell cal-
culations were acceptably flat.

Figure 3 gives the reflectance spectrum for the system
with and without the defect. The computational cell chosen
was a long one, with dimensions 563973411 grid points,
corresponding to about 40 grid points per lattice constanta.
The photonic crystal slab was in the middle, and flux planes
were placed on either side of it at distances of 1.5a and 4a.
The slab was nine spheres thick, seated on a silicon substrate,
and the surface was normal to thef111g direction. This was
also a supercell calculation, though in this case, we used a
232 supercell because we wanted to produce a wider band
and stronger coupling of the incident radiation with the de-

FIG. 3. sColord Reflectance
spectrum of photonic crystal, with
and without point defect. The di-
pole source is polarized in the
f110g direction. The computa-
tional cell used had dimensions of
563973411 grid points, corre-
sponding to 40 grid points per lat-
tice constant. The photonic crystal
slab was seated on a silicon sub-
strate. A 232 supercell was used,
and the simulation was run for
79195 time steps.sInset shows
magnified version of reflectance
dip due to defect.d
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fect mode. In these computational experiments, a dipole
source was used instead of a Gaussian plane wave, as the
former contains many different wave vectors while the latter
contains only onesthat which corresponds to normal inci-
denced, and we want the incident radiation to couple into the
defect mode, irrespective of its symmetry. The simulation
was run for a total of 79195 time steps. This was chosen to
be sufficiently large to ensure that the Gaussian pulse had
sufficient time to propagate through the entire system. The
reflectance was calculated by the following equation, which
comes from dividing the magnitude of the reflected flux
suEslab−Evacu2d by the magnitude of the incident fluxsuEvacu2d:

R=
uEx

slab− Ex
vacu2 + uEy

slab− Ey
vacu2 + uEz

slab− Ez
vacu2

uEx
vacu2 + uEy

vacu2 + uEz
vacu2

.

Note that all fields are functions of frequency, for a given
point in space, as we take the Fourier transform of the time
series of fields in real time. A discrete Fourier transform was
performed on the entire time series, and no averaging was
required. We take the absolute values because the fields are
complex quantities in general. We run the simulation once
with the slab in place, and then again with vacuum only, and
the difference in fields between the first run and the second
run, when expressed as a fraction of the intensities in the
vacuum case, gives the reflectance. For normally incident
radiation, one only needs to record the fields at one monitor
point situated between the source plane and the slab, but for
a dipole source, integration over a flux plane is required
since the fields are different in different directions. That is
what we did to obtain Fig. 3.

One can see good agreement between the black curvesno
defectd and the red curvesdefectd at almost all frequencies.
To find the effect of the point defect, we focus our attention
on the region of the photonic band gap. This is a region
where we expect near 100% reflectance, since there are no
propagating modes within the slab for that range of frequen-
cies, and the slab is thick enough to prevent tunneling of
evanescent waves. It is encouraging to see the reflectance dip
caused by the point defect, which has been highlighted along
with the band gap region. The position of the dip agrees with
the frequency of the defect state predicted by the band struc-
ture calculations. We stress that the band structure and reflec-
tance spectrum are two different calculations, and that the
agreement between the two on the frequency of the defect
mode is a strong indication of the reliability of our results.

The introduction of a defect causes a redistribution of the
local density of statessLDOSd of the system, with the total
number of states being conserved. The defect takes a few
states from outside the gap and puts them inside the gap.
This change is localized in space but not in frequency. Inte-
grating the LDOS over all volumesincluding the defectd
gives the global density of states. If the total number of states
in the system isN, then the effect of the defect is to put a
state of weight,1 in the gap and reduce the DOS outside
the gap by,1/N. Transmission as a function of frequency is
proportional to the global density of states. In a structure of
infinite extent,N→` and the change in DOS outside the gap
tends to zero. However, in such a limit, the defect state be-

comes unobservable because 1!N. Thus, a compromise is
needed to keep the disturbance to states outside the gap small
while allowing the localized state to have an observable ef-
fect on the spectrum inside the gap. This is also the reason
why it is impossible to observe the defect mode in a reflec-
tance spectrum without collateral change to the spectrum
outside the gapsthough the relative magnitudes of these
changes are in the ratio 1:1/Nd.

We recognize also that there are a few reflectance dips
within the photonic band gap that appear to be states inside
the gap. On closer examination, however, one can see that
the black and red curves overlap completely for these
“states.” What this means is that the dips are present irre-
spective of the existence of the defect. We understand these
to be resonant transmission peaks caused by the finite size of
the photonic crystal slab that we used in our calculations.
Therefore, they arenot localized states.

We also point out that while a dipole source contains
many wave vectors, in practice, because of the long compu-
tational cell and the distance between the source and the slab,
the light that reaches the slab is not too far from being nor-
mally incident. As a result, the light hits the slab with a wave
vector close to theG-L direction s111d. The band structure
calculationsFig. 2d exhibits a partial gap in theG-L direction
between 0.45 and 0.55, and we see this showing up in the
reflectance spectrum in the form of a region of high reflec-
tance between 0.48 and 0.55. The range of frequencies does
not correspond exactly because the incidence is only ap-
proximately normal. Similarly, we see a region of highsbut
not unityd reflectance between 0.7 and 0.77, corresponding to
the partialG-L gap in that range.

To obtain even more definite evidence of the existence
and frequency of the defect state, we performed calculations
of the local density of states of the photonic crystal system,
and these results are presented in Fig. 4. The local density of
states of a system is defined by

Dsv,r d = o
nk

uEnksr du2dsv − vnkd

such that

Dsvd =E Dsv,r dd3r = o
nk
E uEnksr du2dsv − vnkdd3r

= o
nk

dsv − vnkd

where Dsvd is the global density of states, andEnksr d is
assumed to be normalized to unity over all space. We see that
integrating the local density of states over all space gives the
global density of states, as required.

Such a calculation can be done numerically by integrating
over “shells” of constant energy ink spacef27,28g:

Dsv,r d = 2
V

s2pd3 E dSv

vg

where vg= u=kvskdu, the magnitude of the group velocity,
and the integral is performed over a surface of constant en-
ergy vskd. The extra factor of 2 accounts for the two trans-
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verse polarizations of light. The local density of states can be
thought of as the probability of finding a photon with fre-
quencyv at point r , irrespective of wave vector or band
numbersthese are summed overd. We choose to calculate the
local density of states for a point near the center of the defect
sphere, with the physical understanding that if a defect mode
exists, it should have a mode profile that has a high concen-
tration of photons within the defect sphere. We therefore ex-
pect a peak at around 0.86c/a in the LDOS spectrum. Nu-
merically, we follow the Gilat-Raubenheimer methodf29,30g
of dividing up the irreducible Brillouin zone into a cubic
mesh and approximating the constant energy surface with
parallel planes. We use eight evenly spacedk points in the
irreducible Brillouin zone. Another way of doing it would be
to use a specialk-point schemef31g.

Our local density of states calculation exhibits a very dis-
tinct peak at about 0.86c/a, showing clearly the existence of
the defect mode. The LDOS is low for frequencies on either
side of the peak because of the photonic band gap. However,
it is not zero because our LDOS calculation was performed
on a slab rather than an infinite structure. The band structure
calculation was done on an infinite crystal and so it had a
real gap. A slab, on the other hand, only has a pseudogap,
and so we see some states inside the pseudogap region.sIn-
cidentally, we chose to do the calculation for a slab because
that is what can be made and observed experimentally.d
Therefore, we do not expect zero LDOS in the “gap” region.
The frequency of the peak agrees well with our band struc-
ture predictions and reflectance calculations. There are inter-
esting peaks on either side of the main defect peak. They
show that the defect produces resonant structure beyond the
gap. These resonant structures are more noticeable with a
finite slab than an infinite one in which the resonances wash
out.

IV. CONCLUSION

In this work, we studied possible point defect geometries
in inverted opal photonic crystals that can be easily fabri-
cated by means of colloidal self-assembly. Two broad classes
of defects were considered: interstitial and substitutional.
Calculations for isolated as well as clumps of interstitial de-
fects did not reveal promising changes to the band structure
that could introduce a defect band into the photonic band
gap. On the other hand, substitutional defects, wherein the
air sphere is replaced by a smaller silica sphere surrounded
by silicon, were found to be much more promising. By per-
forming high-resolution band structure calculations, we were
able to determine that a silica sphere of radius between 0.33a
and 0.35a could introduce a clear and usable defect mode
into the gap. The state is found to be triply degenerate. We
are encouraged by the results of our band structure, reflec-
tance, and local density of states calculations, all of which
agree on the frequency of the defect mode. Since these are
three different calculations, we have confidence that the de-
fect mode exists.

The proposed defect can be made by replacing some of
the 0.354a silica spheres with 0.35a spheres in the colloidal
self-assembly process. Backfilling the assembled structure
with silicon should result in a thicker coating of silicon for
the shrunk spheres than for the normal ones, yielding the
geometry we put forward in this paper. One possible problem
with this approach, however, is that the smaller silica sphere
is unlikely to be “floating” between other spheres and might
quite possibly be touching one of the larger spheres around
it. This could prevent complete coating of the silica sphere
during the backfill. If there is a silica-silica point of contact
between the shrunk sphere and an adjacent sphere, then the
wet-etching process could remove the silica from the defect
sphere as well. One way of overcoming this problem would

FIG. 4. Local density of states
of photonic crystal, with point de-
fect. We followed the Gilat-
Raubenheimer method, using
eight evenly spacedk points in the
irreducible Brillouin zone.
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be to precoat the shrunk silica spheres with silicon. The ideal
situation would be to have the 0.35a silica spheres coated
with a layer of silicon that is 0.004a thick, resulting in a total
radius of 0.354a for the “hybrid” sphere. We can vary the
density of such hybrid spheres in order to tune theQ value of
the cavities. The higher the concentration, the smaller the
effective supercell, and the stronger the coupling of radiation
with the mode.
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