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Optical nonlinear response of a single nonlinear dielectric layer sandwiched
between two linear dielectric structures
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We consider the general problem of electromagnetic wave propagation through a one-dimensional system
consisting of a nonlinear medium sandwiched between two linear structures. Special emphasis is given to
systems where the latter comprise Bragg reflectors. We obtain an exact expression for the nonlinear response
of such dielectric superlattices when the nonlinear impurity is very thin, or in thed-function limit. We find that
both the switching-up and switching-down intensities of the bistable response can be made very low, when the
frequency of the incident wave matches that of the impurity mode of the structure. Numerical results for a
nonlinear layer of finite width display qualitatively similar behavior, thus confirming the usefulness of the
simplerd-function model. In addition, an analytical solution for the resonance states of an infinitely extended
finite-width superlattice with a finite-width nonlinear impurity is presented.@S0163-1829~97!02848-8#
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I. INTRODUCTION

Dielectric materials with an intensity-dependent dielect
constant are well known for their complex response to rad
tion. Exciting features such as bistability, multistability, o
tical limiting, etc. have been predicted theoretically1,2 and
observed experimentally.3–5 Promising future applications
include optical switches and transistors, pulse shapers
well as memory elements. Already quite simple structu
like the traditional Fabry-Perot etalons3 or multilayered
structures of alternating nonlinear dielectric materials6 ex-
hibit such a behavior. The common characteristic of all n
linear optical devices is the feedback mechanism, neces
to enhance the nonlinear effects. Crudely speaking, there
ist two types of realizations: In the case of a ‘‘localized
feedback structure a homogeneous nonlinear medium
placed between two reflectors~mirrors3,7 or Bragg-
reflectors8!, while ‘‘distributed’’ feedback mechanisms ar
realized through a periodic modulation of the linear part
the nonlinear materials’ refractive index.1 Similar studies
have been done for the electronic response in a o
dimensional nonlinear lattice,9–11 as well as for a linear lat-
tice with nonlinear impurities.12

The linear ~or low-intensity! properties of the feedbac
mechanism are important for the nonlinear response of
560163-1829/97/56~23!/15090~10!/$10.00
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device. For instance, a distributed feedback structure br
about a photonic band gap,13,14 where certain modes are for
bidden while others propagate freely. For frequencies ins
the transmission band, bistability results from a modulat
of transmission by an intensity dependent phase shift.
frequencies inside the stop gap of the linear system, bista
ity and resonance transmission is achieved via gap sol
formation.15,16 However, nonlinear media are usually qui
lossy and, thus, it is important to find ways of keeping t
amount of nonlinear material small while still retaining si
able nonlinear effects. Furthermore, the successful use of
tical switches depends crucially on a low threshold, i.e., l
‘‘switching’’ intensities. The above considerations lead
the question of whether a single nonlinear layer, suita
supplied with a feedback mechanism, may be sufficient
optical switching devices. In this paper we present the res
of our investigation of this and several related problems.

The paper is divided into two parts: The first part de
with the general case of a ‘‘localized’’ feedback structu
when the nonlinear layer is very thin, or in thed-function
approximation. We will give arguments as to why a syste
consisting of a nonlinear layer sandwiched between Br
reflectors may be considered the most efficient ‘‘localize
feedback structure, as well as which parameters of the
tem determine the bistability threshold. We also demonst
15 090 © 1997 The American Physical Society
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56 15 091OPTICAL NONLINEAR RESPONSE OF A SINGLE . . .
the usefulness of thed-function approximation by comparin
with numerical results for a nonlinear layer of finite-widt
However, a finite nonlinear layer always exhibits multistab
ity. This is illustrated in the second part of this paper, wh
we present an analytical solution for the resonance state
an infinite superlattice with a finite-width nonlinear impuri
layer. These are modulated band-gap impurity modes
correspond to the the transmission resonances in the m
stable input vs output diagram. Finally, a comparison
tween the analytical solution for the infinite superlattice w
numerical results for a finite superlattice shows very go
agreement.

II. VERY THIN NONLINEAR LAYER

Many features of wave propagation through on
dimensional nonlinear structures can most conveniently
investigated and understood within a nonlinear Kron
Penneyd-function model.17 Although discrepancies with th
more realistic finite width models do exist, it has been de
onstrated that thed-function model captures most of the e
sential features of nonlinear response to radiation.18 In this
section we will consider a very thin nonlinear layer cente
at the origin. The nonlinearity is expressed in first order
an intensity dependent term in the dielectric functione(x):

e~x!'e0„11luE~x!u2
…d~x!. ~1!

Heree0 is defined as the limitn2d→e0 for n→`, d→0, of
a finite width layer of extentd and index of refractionn, and
e0l is the corresponding nonlinear Kerr coefficient.

We will first discuss the problem of a single nonlineard
function. More insight is obtained from a general discuss
of a d-function nonlinear layer sandwiched between two l
ear structures. It will be shown that the equation relat
input and output intensities has the same form as for a si
nonlineard function except for a parameter renormalizatio
Also, a very useful phase diagram for the onset of bistabi
in terms of the linear properties of the system will be d
rived. From this it follows that the most interesting physi
appears when the linear structures on the two sides of
nonlinear layer are identical Bragg reflectors. Assuming
latter to consist of very thin layers, we arrive at a remarka
simple but very rich result for the input-output intensity r
lation.

A. Single nonlinear d function

We first consider electromagnetic wave propagat
through a singled function with an intensity dependent d
electric strength as given by Eq.~1!. This is schematically
depicted in Fig. 1. Our interest lies in the steady state
sponse of the system. Let a plane waveE0e2 ikx with wave
numberk5v/c be incident from the right. This gives rise t
a reflected wave,Ere

ikx, as well as to a transmitted wav
Ete

2 ikx. Solving the Maxwell equation with a single nonlin
eard-function layer atx50 will yield a relationship between
the incident and transmitted intensity,Y5uE0u2 and
X5uEtu2, respectively:

Y5X@11t~11lX!2#, ~2!
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where t[e0
2k2/4 is related to the transmission coefficie

uT0u2 of the corresponding linear (l50! system,
t5(12uT0u2)/uT0u2. The system will exhibit bistability if
we can have more than one output for a given input. T
will be true if Y is a nonmonotonic function ofX. We find a
physical solution fordY/dX50 only for l,0 andt.3:

X65
26A123/t

3ulu
. ~3!

The nonlinear response of such a system with negativl
is shown in the input vs output diagram in Fig. 2~a! for
various values oft and l. The absence of bistability for a
positive Kerr coefficient is one of the artifacts of th
d-function approximation. We will see later that this restri
tion is lifted, once the nonlineard function is placed between
two linear systems with nonzero reflection coefficients.

FIG. 1. Geometry considered in this section. A plane wave
amplitudeE0 strikes a nonlineard function, giving rise to a re-
flected and a transmitted wave.

FIG. 2. Transmitted intensity vs incident intensity for~a! a non-
linear d function and ~b! a nonlinear dielectric slab of width
d50.6l f . In both cases, the dashed line corresponds tol521 and
linear transmissionuT0u250.25, the solid line tol521 and linear
transmissionuT0u250.125, and the dot-dashed line tol511 and
linear transmissionuT0u250.125. Note that the bistability onset hap
pens for the same system parameters. However, for large inten
the finite layer system withl.0 will always display multistable
behavior @inset graph in~b!, for the same parameters:l511,
uT0u250.125]. The dotted line is the total transmission relati
Y5X.
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15 092 56LIDORIKIS, BUSCH, LI, CHAN, AND SOUKOULIS
The switching-up and switching-down intensities a
given byY65Y(X7), respectively. Fort53 andl,0 we
have the onset of bistability atY15Y258/(9ulu). As t gets
larger, Y2→1/ulu while Y1;t/ulu. Note that for
Y5X51/ulu we have resonance transmission. Thus for la
t ~or equivelantly for low linear transmission! the switching-
down intensity and the resonance intensity are the sa
Clearly, the largerulu is, the smaller the switching intensitie
are. Note further, that the resonance transmission intens
Y5X51/ulu correspond toe(0)50, i.e., the index mis-
match between thed function and the background effective
disappears, leading to total transmission. On the other h
for a finite-width linear layer with dielectric constante5n2,
the condition for resonance transmission is 2d5ml f , where
d is the width of the layer andml f is an integer multiple of
the wavelength inside the dielectric mater
(l f52pc/nv).6 If we incorporate a nonlinear coefficient i
the dielectric constant@e(x)5n2

„11luE(x)u2…#, then for
suitable choices of the parameters we can have bistab
~and even multistability! for both negative and positive Ker
medium. For example, if 2d,l f andl.0, then effectively
the dielectric constant will get larger, yielding a smaller a
erage effective wavelengtĥl f&. For some intensity we
should expect the resonance condition to be ‘‘effectivel
satisfied, and, as a consequence, get a transmission
nance. Higher-order resonances are also expected giving
to multistability. For a negative Kerr coefficient and 2d,l f
we should not expect bistability, as correctly pointed out
Chen and Mills,2 unless we allow the unphysical situation
which the intensities become large enough to ma
^n eff

2 &<1. Only then we would get bistability, and this wou
be the exact correspondence to thed-function case. For a
positive Kerr coefficient, however, bistability should alwa
be expected~although some times only at unrealistically hig
intensities!, a feature that is absent in thed-function model.

In Fig. 2~b! we show the transmission diagram for
finite-width dielectric slab ford50.6l f and various values
of linear transmission coefficient and nonlinear Kerr coe
cient. Although this is not the exact analog of Fig. 2~a!, it is
remarkable that both models show a similar dependence
their linear transmission properties. We also find that
larger intensities the negative nonlinear medium does
exhibit multistability, while a positive nonlinear medium wi
always exhibit multistability, as can be seen in the in
graph in Fig. 2~b!.

The unphysical condition for resonance transmission
the single nonlineard-function case can be lifted if we sand
wich thed function between two linear systems. Bistabili
will then occur as a result of the intensity dependent ph
shift that thed function will introduce between the two linea
systems, which will alter their transmission characterist
As we will see in the next section, this arrangement is a
optimal for obtaining lower switching intensities.

B. Nonlinear d function sandwiched
between two linear systems

Let us now consider a more general geometry as show
Fig. 3, where a nonlineard function is sandwiched betwee
two linear systems, characterized by the reflection and tra
mission amplitudes,r i and t i ( i 51,2), respectively. Gener
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ally, for a linear system, with incident and reflected pla
waves from it’s leftAeikx andBe2 ikx, respectively, and in-
cident and reflected plane waves from its rightDe2 ikx and
Ceikx, respectively, the relation between the field amplitud
is described by the transmission matrix:

S C

D D 5S 1/t* 2r /t

2~r /t !* 1/t D S A

BD . ~4!

Just as before, we assume this composed object to be illu
nated from the right by a plane wave with amplitudeE0. The
corresponding reflected and transmitted wave amplitudes
denoted byEr and Et , respectively. Then, the relation be
tween the output intensityX5uEtu2 and the input intensity
Y5uE0u2 can be obtained straightforwardly by proper
matching the values of the fields at the origin:

Y5X@g1t8~11l8X!2#. ~5!

Note that Eq.~5! has exactly the same structure as Eq.~2!.
Thus, we have shown that the introduction of the line
structures leads to a renormalization of the quantities in
~2!: 1→g, t→t8, andl→l8. The quantitiesg, t8, andl8
are given by the following expressions:

g5
1/~ uTu2uT0u2!2 Re2@1/~T* T0!#

u1/T021/Tu2
, ~6!

t85
$1/uT0u22 Re@1/~T* T0!#%2

u1/T021/Tu2
, ~7!

l85lu1/t12r 1* /t1* u2u1/T021/Tu/At8, ~8!

whereT is the linear transmission amplitude for the syste
without thed function at the origin (e0[0):

1

T
5

1

t1t2
1

r 1* r 2

t1* t2

. ~9!

Similarly, T0 is the linear transmission amplitude for the
case with thed function at the origin (l[0),

1

T0
5

1

T
2 i

ke0

2 S 1

t1
2

r 1*

t1*
D S 1

t2
1

r 2

t2
D . ~10!

The conditions for bistability from Eq.~5! now read as

FIG. 3. The general geometry considered in this section. A n
lineard function is sandwiched between two general linear syste
characterized by the reflection and transmission amplitudesr i and
t i , i 51,2. A plane wave of amplitudeE0 incident upon the system
from the right results in a transmission amplitudeEt and a reflection
amplitudeEr .
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g

t8
,

1

3
, ~11!

l8,0, ~12!

thus, allowing bistability for positive Kerr coefficients a
well. We want to stress that the conditions for bistabil
depend on the transmission amplitudes of the linear syst
with and withoutd function only. They can conveniently b
rewritten in terms of the quantitiesR and u which are de-
fined via 1/T05Reiu/T:

sin2u

~R2cosu!2
<

1

3
, ~13!

sign~l!S 12
cosu

R D,0. ~14!

Figure 4 shows the phase diagram for the onset of bi
bility derived from Eqs.~13! and~14!. Obviously, the inser-
tion of the linear part of the nonlineard function has to
sufficiently alter the total transmission amplitude 1/T in or-
der for bistability to occur. This alteration may be achiev
by a change in the total transmission, i.e., by changingR,
and/or by introducing a phase shiftu.

One can get more explicit and transparent results w
the linear systems each consist of a periodic arrangeme
N linear d functions with a spacinga equal to the distance
between the nonlineard function and the two linear system
We first consider the linear problem ofN equally spacedd
functions of dielectric strengthe0. Between any twod func-
tions in the linear structure the solution consists of two pla
waves traveling in opposite directions. Using the bound
conditions we can eliminate the waves in the intermed
space and obtain a difference equation in terms of the fiel
the d-function sites,17

FIG. 4. The phase diagram for the onset of bistability for ad
function sandwiched between two linear systems, as derived f
Eqs. ~13! and ~14!. u and R are defined through 1/T05Reiu/T
whereT0 is the total linear transmission amplitude of the two line
structures with thed function in the middle (l[0) andT is the
total transmission amplitude without thed function (e0[0). Eq.
~13! sets the values ofR andu for which we can observe bistability
outside the gray areas, while Eq.~14! ~dashed line! sets the sign of
the nonlinear coefficientl for which we will observe bistability.
s
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En111En215~2 cosk2e0k sink!En , ~15!

where we have assumed the space between twod functions
to be vacuum and their separation to bea51. Upon express-
ing all lengths in units of the lattice period (a51) and using
the Bloch’s theoremE(x11)5eiqE(x) we arrive at the
band-structure equation that defines the Bloch wave vectoq,

cosq5cosk2 1
2 e0k sink. ~16!

The transmission bands are found by settingucosqu<1.
We can easily generalize the above method to the pre

problem of 2N11 d functions utilizing the transfer matrix o
each layer,

S E2N21

E2N
D 5MNS 2cosq8 21

1 0 DMNS EN

EN11
D , ~17!

where

M5S 2 cosq 21

1 0 D ~18!

and 2 cosq852 cosk2e08(11luE(0)u2)k sink, comes from the
nonlineard function atx50. E2N andE2(N11) are given by
the output field,

E2N5Ete
2 iNk, E2~N11!5Ete

2 i ~N11!k. ~19!

EN andEN11 are related to the incoming and reflected fiel
by

EN5E0e2 iNk1Ere
iNk, ~20!

EN115E0e2 i ~N11!k1Ere
i ~N11!k. ~21!

The intensity at the nonlinear siteuE(0)u2 can be expressed
in terms of the transmitted intensityuE2Nu25X as
uE(0)u25CX, where

C517e0k sink
sinNq sin~N11!q

sin2q
. ~22!

In Eq. ~22! q should be replaced byi uqu for ucosqu.1, and
the lower sign inC is used when cosq,21. After some
algebra we arrive at the final result,

Y5X@11t8~11l8X!2#, ~23!

where

t85ta2
sin2~2N11!q

sin2q
, l85l

e08

e0
a21

C2 sinq

sin~2N11!q
,

and

a5S 11
~e082e0!Csinq

e0sin~2N11!qD .

Of course, this result can also be obtained from Eqs.~6!–~8!
by specifying the respective expressions for the reflect
and transmission amplitudes,r i andt i ( i 51,2). Since Eq.~2!
and Eq.~23! have the same form, all the analysis done
Sec. II A applies. However, due to the renormalization of t
parameterst andl, interesting features arise:t8 is related to

m
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the total linear (l50! transmission coefficient of the syste
t85(12uT TOTALu2)/uT TOTALu2, and the conditiont8.3 im-
plies uT TOTALu2,0.25. Also, the constraintl,0 is now re-
laxed since it requires onlyl8,0.

In Fig. 5~a! we plot the switching up and down intensitie
for the casee085e0 and for frequencies close to the first ba
gap. We note that the sign ofl required to obtain bistability,
between successive lobes of the linear (l50! transmission
curve, is alternating froml,0 to l.0. We can understand
this by means of the field configuration that characteri
these lobes for the linear lattice. Every lobe corresponds
transmission resonance for which the intensity envelop
uE(x)u2}sin2(mx/L) whereL is the length of the structure
0<x<L, and m51,2,3,. . . 2N11 starting from the uppe
band edge and moving to lower frequencies.19 When m is
odd, the intensity at the middle of the structure will have
maximum, while whenm is even, it will have a minimum. If
we now turn on the nonlinearity (lÞ0) in thed function in
the middle of the structure, it will introduce an appreciab
phase shift only when the incident wave is tuned close to
‘‘odd’’ lobe’s frequency. This phase shift will change th
intensity envelope, and thus the resonance frequencies
sulting in an effective frequency ‘‘shift’’ for the ‘‘odd’’
lobes. For some intensity, the incident wave’s frequency w
match to the ‘‘shifted’’ lobe’s frequency, and a transmissi
resonance will be obtained. This is where the bistable beh
ior originates from. The condition ont8 sets the allowed
frequencies for observing bistability in between the transm
sion lobes. Also, a negative nonlinearity (l,0) will cause
the odd lobes to shift to higher frequencies, while a posit
nonlinearity (l.0) will cause them to shift to lowe

FIG. 5. Switching-up~solid line! and switching-down~dot-
dashed line! intensities for a nonlinear impurity system sandwich
between two linear structures. The linear structures consist of~a! d
functions with N520, e085e052.5, and spacinga51, and as a
comparison,~b! a system of 41 dielectric bilayers withda5db50.5
and na

251, nb
255 in analogy with the d-function system:

dbnb
25e0. The b layer in the middle of the structure is nonline

with eb(x)5nb
2
„11luE(x)u2

…. In both cases we usedl561. The
dotted line in both graphs is the linear transmission coefficien
the structure. The band gap starts aroundk51.186 for the
d-function model andk51.51 for the finite-width model, as can b
seen from the large transmission drop. The exact value of the b
edge can be found by using Eq.~16!.
s
a
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n

re-
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frequencies.19 This is shown in Fig. 6 for both thed function
and finite-width models. Note that lobes closer to the g
shift at lower intensities, indicating that for those frequenc
smaller switching thresholds should be expected. With th
features, the bistability diagram in Fig. 5~a! is fully under-
stood.

An important consequence of the introduction of the tw
linear systems is the presence of resonances. The phase
introduced by the nonlineard function must be enough to
tune the incident wave with the shifted lobe. The same tra
mission lobes are found in the linear transmission diagram
a finite layer superlattice. Then, from the point of view
induced phase shifts, there should be no real qualitative
ference between thed-function model and the finite laye
superlattice, at least for the first bistable loop. The fin
layer system differs qualitatively from the nonline
d-function model insofar as it always exhibits multistabili
~the nonlineard-function system is strictly bistable!, a point
that will be discussed in Sec. III. But when considering t
first bistable loop only, the very thin layer approximatio
may be viewed as a reliable guide to more realistic syste
involving finite-width nonlinear layers. This is shown in Fig
5~b! where we plot the switching up and down intensities
the first bistable loop, for a finite-width layered model with
finite-width nonlinear impurity layer, having its system p
rameters defined in correspondence with thed-function
model bye05dn2. In order to stress the similarity, we hav
chosen the nonlinear layer to equal to half a lattice peri
We see that thed-function model indeed captures most
the essential features of the more realistic finite width sup
lattice.

Similar behavior is obtained for thee08Þe0 impurity case
for frequencies inside the transmission band. In Fig. 7

f

nd

FIG. 6. Gray scale plots of the transmission coefficient vs
wave vectork and the transmitted amplitudeuEtu for frequencies
inside the transmission band. Dark areas indicate low transmiss
The two upper graphs correspond to thed-function model described
in Fig. 5~a!, for l51 ~left! and l521 ~right!. The two lower
graphs correspond to the finite-width model described in Fig. 5~b!,
for l51 ~left! andl521 ~right!. The transmission lobes and the
frequency shift are clearly shown, except for the first one right
the band edge, which can barely be distinguished for thel51 case,
while for l521 it shifts inside the band gap.
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show the switching intensities of both thed-function layer
and finite-width layer systems for a weak impuritye08,e0.
For these values, the linear (l50! impurity mode, which is
actually them51 transmission lobe being shifted inside t
band gap,19 is very close to the transmission band. F
e08.e0, no gap impurity mode exists in thed-function model
so the response of the two systems inside the gap is diffe
For e08,e0, both systems exhibit an impurity mode insid
every band gap.14 When the fields are turned on, a positiv
nonlinearity in the middle of the structure will shift the im
purity mode to lower frequencies, while a negative nonl
earity will shift it to higher frequencies. As a consequen
whenl.0 bistability is observed at frequencies lower th
that of the linear impurity mode, while forl,0 we must use
higher frequencies.

The switching up and down intensities are genera
Y2;1/ul8u andY1;t8/ul8u, and for band-gap frequencie
it is generallyt8@l8@1, yielding extremely low switching-
down intensities and very high switching-up intensities. Ne
ertheless, for frequencies relatively close to the linear de
frequency, it isl8@t8@1, yielding extremely small switch
ing up intensities as well. As can be seen in Fig. 8, where
plot the switching intensities for a large impurity~linear im-
purity mode deep inside the band gap!, the order of magni-
tude for aN520 system is well below 10220, and becomes
exponentially small asN gets larger. To get a feeling for thi
number, assume that typical electronic nonlinearities are
the order ofulu;10215 cm2/ W. Then Y6;1025 W/ cm2.
Furthermore, the intensity at the nonlinear defect laye
small enough, to secure that the nonlinearity is well d
scribed as a Kerr nonlinearity: The nonlinear effect does
saturate and the nonlinear layer will not get damaged fr
intense fields. However, the price one has to pay to ach
low power thresholds, is to maintain extreme accuracy in
incident frequency, due to the extremely highQ of the mode.
For the system described in Fig. 8 this accuracy is of

FIG. 7. The switching intensities for the same systems as
scribed in Fig. 5, but now the nonlinear impurity is~a! a nonlinear
d function with e0852.2 and ~b! a nonlinear layer
e(x)5nd

2(11luE(x)u2) with nd
254.4. We again usedl561. The

first lobe, that shifted in the gap and is now the linear (l50! im-
purity mode, is clearly seen in both cases. Note how the switch
intensities dropped about three orders of magnitude around
mode.
r

nt.
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order ofDk/k;10210. This is quite unrealistic. In addition
this ratio gets exponentially small for increasingN. Thus, for
a realistic application it is the laser’s linewidth that dete
mines the power thresholds for bistability and in gene
compromise has to be found.

III. DIELECTRIC SUPERLATTICE WITH NONLINEAR
IMPURITY: RESONANCE STATES

In the previous section, we have investigated the respo
of a very thin layer of nonlinear material sandwiched b
tween two linear Bragg-reflector structures. We demo
strated that such a structure can exhibit bistability with ve
low switching threshold as a result of coupling to the imp
rity mode in the stop gap of the linear structure. In this s
tion, we consider the situation when the nonlinear layer
not thin. There are qualitative differences between the
sponse of a nonlinear finite-width layer and a nonline
d-function layer. We have seen that a single finite-width
electric layer exhibits bistability for both positive and neg
tive Kerr coefficients@Fig. 2~a!#, whereas the single nonlin
ear d function exhibits bistability for negative Ker
coefficient only. Similarly, and in contrast to the strict
bistable d-function model, dielectric superlattices with
nonlinear impurity always exhibit multistability. This, w
will show, has to do with the fact that impurity modes ex
for each value ofDe. We can understand all these properti
qualitatively if we view the finite nonlinear layer as consis
ing of a sequence of of nonlineard functions. Then, reso-
nance phenomena allow to bypass the limited behavior
single nonlineard function. However, multistability is much
harder to detect than bistability, because the field value
the nonlinear layer may be very large and oscillating, th
requiring extremely high precision.

Let us first investigate the localized mode solution for
finite-width nonlinear layer sandwiched between two Bra
reflectors. The nonlinear wave equation inside the impu
layer is given by

e-

g
is

FIG. 8. The switching intensities~solid and dot-dashed lines fo
switching up and down, respectively! for the same system of Fig
5~a! for the d-function model but now for the large impurity cas
e0851. The linear impurity mode is now deep in the gap~dotted line
corresponds to the linear transmission coefficient!. Note that for
frequencies very close to this mode the switching intensities
come extremely small.
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d

dx2
E~x!1k0

2@11luE~x!u2#E~x!50, ~24!

wherek05n2(v/c). This equation may be solved by mea
of the following ansatz:6

E~x!5E0g~x!eif~x!. ~25!

Inserting this ansatz into Eq.~24! leads to a separation of th
amplitude and phase function,g(x) andf(x), respectively:

d

dx
f~x!5

W

g2~x!
, ~26!

S dg~x!

dx D 2

1
W

g2~x!
1k0

2g2~x!1 1
2 l̃k0

2g4~x!5A, ~27!

where l̃5luE0u2 is the effective nonlinearity andA andW
are constants to be determined. Upon introduc
I (x)5g2(x), the solution may be cast in the deceptive
simple form

E
I ~x0!

I ~x! dI

~AI2k2I 22 1
2 l̃k2I 32W2!1/2

562~x2x0!, ~28!

f~x!5f~x0!1WE
x0

x

dx8
1

I ~x8!
. ~29!

The four unknownsA, W, f(x0), I (x0)[g2(x0) have to be
determined from the boundary conditions atx0. In particular,
W is related to the energy flux through the layer as can
seen by evaluating the Poynting ‘‘vector
S52c2/8pv Re@ iE* (x)„dE(x)/dx…#5c2uE0u2W/8pc. In
the case ofl50 it is an easy exercise to obtain the line
solutions from Eq.~28!. For lÞ0, despite the apparent sim
plicity of Eq. ~28!, a closed form solution cannot be obtain
in general. The reason for this difficulty is seen as follow
The solution of Eq.~28! comes down to finding the roots o
the denominator, whereA and W depend on the boundar
values in a complicated way. This task can be accomplis
in two special circumstances only: Ifdf(x0)/dx50, then,
according to Eq.~27! we already have one root, leaving u
with the simple exercise of solving a quadratic equati
Similarly, if W50 we immediately have the rootI 50, again
reducing the problem to a quadratic equation. The first c
was exploited by Chen and Mills6 in solving the transmission
problem through a single finite-width nonlinear layer on
without the superlattices on both sides.

We, however, are interested in the second situation.
parently,W50 impliesS50. This corresponds to a spatial
symmetric situation, i.e., a situation where parity is a go
‘‘quantum’’ number. Speaking in terms of the transmissi
experiment we have in mind, this amounts for solving for t
stationary or resonance states for which input equals out
This distinction is of no importance in the linear problem
because there we can construct any state by an approp
superposition of stationary states. Obviously, this canno
done in a nonlinear problem. Consider now the case wh
the nonlinear layer, centered atx50, is sandwiched betwee
two infinitely extended linear superlattices of alternating la
g

e

:

d

.

se

,

-

d

e
ut.
,
ate
e
re

-

ers of dielectric constantsea andeb and widthsa2d andd,
respectively~cf. Fig. 9!. Since the stationary states have pa
ity p561 we may impose the following values of the ele
tric field E(0) and its derivativeE8(0), i.e., the magnetic
field, at the origin.

Even solution (p51):

E~0!5E0Þ0⇒f~0!50, g~0!51

E8~0!50⇒g8~0!50.

Odd solution (p521):

E~0!50⇒f~0!50, g~0!50

E8~0!5E0k0A11 l̃ /2Þ0⇒g8~0!5k0A11 l̃ /2.

Here, we have chosen the nonzero value of the field’s der
tive for the odd solution in a particular convenient for
~compare with the later calculations for the constantA).

To compare with numerical studies, the above equati
define the value ofE0 and, thus, the effective nonlinearityl̃ .
Consequently, for a given frequency we need to search
the symmetric states~resonant states! in the transmission
problem and compute the fieldE0 at the origin. For givenl
we then get the effective nonlinearityl̃5luE0u2.

The computation of the parameterA in Eq. ~27! is now
straightforward and due to the ‘‘tricky’’ definitions is th
same for both parities:

A5k0
2~11 1

2 l̃ ! . ~30!

In addition, we can compute the missing roots of the cu
expression in Eq.~28!:

I 150,

I 252
21 l̃

l̃
,

I 351.

In order to finally solve Eq.~28!, we have to distinguish four
cases: The solution depends on parity, and the sign of
root, namely,I 2 depends on the sign ofl̃ ~cf. Ref. 20!. We
begin with l̃.0: Define the quantities

FIG. 9. The model superlattice used in this section. A nonlin
layer of dielectric constanted(11luE(x)u2) and thicknessl cen-
tered atx50 is sandwiched between two infinitely extended sup
lattices of alternating layers with dielectric constantsea andeb , and
widths a anda2d, respectively.
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k5A l̃

212l̃
, ~31!

a5H K~k!, p51

0, p521,
~32!

where K denotes the complete elliptic integral of the fir
kind. Then, the solution to Eq.~28! reads as

I ~x!5
sn2~6k0xA11 l̃1a;k!

11
l̃

21 l̃
cn2~6k0xA11 l̃1a;k!

.

Here, sn and cn are the Jacobian elliptic functions. Th
results may be simplified by the use of the addition theore
of the Jacobian elliptic functions.

p51:

I ~x!5 cn2~k0xA11 l̃ ;k!. ~33!

p521:

I ~x!5S 11 1
2 l̃

11 l̃
D sn2~k0xA11 l̃ ;k!

dn2~k0xA11 l̃ ;k!
, ~34!

where dn5A12k2sn2. Similar solutions emerge in the cas
of a negative Kerr coefficient,l̃,0. Define the quantities

h5u l̃ u, ~35!

k5A h

22h
, ~36!

b5H K~k!, p51

0, p521.
~37!

Then the solution to Eq.~28! reads as

I ~x!5 sn2~6k0xA12 1
2 h1b;k!.

These results may, again, be simplified by the use of
addition theorems of the Jacobian elliptic functions

p51:

I ~x!5
cn2~k0xA12 1

2 h;k!

dn2~k0xA12 1
2

h;k!
. ~38!

p521:

I ~x!5 sn2~k0xA12 1
2 h;k!. ~39!

Outside the nonlinear layer the waves obey the Blo
Floquet theorem. We employ the ‘‘traveling wave
description,21 which decomposes the fieldE(x) and~implic-
itly ! its derivativeE8(x) into left- and right-moving waves:

EW ~x!5S Are
ikx

Ale
2 ikxD . ~40!
e
s

e

-

Within this formalism, the Bloch-Floquet condition for a de
fect state inside the photonic band gap, created by the lin
superlattice, may be written as~connecting the fields in the
middle of one linearA layer atx5s to the fields atx5a1s,
wherea is a lattice constant!:

~M6e2gaE!EW ~s!50, ~41!

where the matrix elements ofM are well known:

M115eika~a2d!S cos~kbd!1
i

2 S kb

ka
1

ka

kb
D sin~kbd! D ,

M125
i

2 S kb

ka
2

ka

kb
D sin~kbd!.

where ka5 (v/c)Aea, kb5 (v/c)Aeb and M115M22* ,
M125M21* . Inside the nonlinear layer we know the fie
and its derivative at the origin. Using the solutions Eq
~33!–~39!, we can now calculate the field and its derivati
at the interface to theA material, translate the results into th
traveling wave formalism~field and derivative are continu
ous at the boundary!! and propagate them to the middle
the A layer, i.e., we obtainEW (s):

~EW !1~s!5eikasAI ~ l /2!2
i

ka
eikas

d

dx
AI ~ l /2!, ~42!

~EW !2~s!5@~EW !1~s!#* , ~43!

where s5(a2 l )/2 and l is the thickness of the nonlinea
layer. Thus, Eq.~41! constitutes two linear equations, th
second being the complex conjugate of the first. Upon se
rating this complex equation into real and imaginary pa
we observe that the real part does not containg and may thus
be used to determinev:

sin@ka~a2d!#cos~kbd!1
1

2 S kb

ka
1

ka

kb
D cos@ka~a2d!#

3sin~kbd!1
1

2 S kb

ka
2

ka

kb
D sin~kbd!c~v!50. ~44!

Here, c(v) contains the information about the nonline
layer. If we define

x ~0!~x!5
AI ~x!

ka

d„AI ~x!…

dx
,

x~1/2 !~x!5I ~x!6
1

ka
2 S d„AI ~x!…

dx D 2

,

thenc(v) is given as

c~v!5
cos~kas!x ~2 !~ l /2!12sin~kas!x ~0!~ l /2!

x ~1 !~ l /2!
, ~45!

wheres5a2d1 l (a5lattice constant;d5thickness of the
B layers; l 5thickness of the nonlinear layer!. AI ( l /2) and
d„AI ( l /2)…/dx have to be evaluated according to the sign
l̃ and parity.
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Equation~44! defines the solution for the impurity mode
for our structure. These impurity modes manifest themse
as resonances in the nonlinear multistable response, for
quencies inside the gap of the linear superlattice. In
d-function model we had only one such resonance, as
quired from its strictly bistable character. As discuss
above, for a nonlinear impurity of finite width in an infinitel
extended linear superlattice we now expect multistable
havior. For practical applications, the linear superlattic
cannot be infinitely extended. However, as long as the n
ber of the layers is large enough to have a well-defined
calized solution, the resonant frequencies should be g
exactly by Eq.~44!.

Figure 10 shows the resonance state frequencies
function of l̃ for a linear superlattice consisting of equal
wide layers of alternating dielectric constantea51 and
eb55. The nonlinear layer is described byn258, l 5d, and
l51. Solid lines represent the analytical solution accord
to Eq. ~44!, while the circles correspond to the results of
numerical simulation using 20 bilayers on each side of
nonlinear layer. In addition, the parity of the resonance sta
is indicated. Evidently, the agreement between the two m
ods is excellent, thus illustrating the multistable behav
This feature~multistability! is explicitly shown in Fig. 11,
where we show the input-output diagram for the same c
figuration. Finally, in Fig. 12 we show the intensity config
ration for two resonance states with different parities. Ea
resonance state is characterized by the intensity configura
inside the nonlinear layer. The first has one lobe, the sec
two, the third three, etc. In thed-function case, the possibil
ity of different intensity configurations inside the nonline
medium is absent. Thus, only one resonance state woul
allowed, which is the analogue of the first resonance stat
the finite-width case shown in Fig. 12~a!.

FIG. 10. The resonance state frequencies as a function o

effective nonlinearityl̃ inside the third band gap. The linear supe
lattice consists of equal thickness layers of alternating dielec
constantsea51 and eb55, while the nonlinear layer hased58,
l 5d, and l51. Solid lines correspond to the analytical resu
while circles correspond to the results of a numerical simulat
using 20 bilayers on each side of the nonlinear layer. Filled circ
correspond to states with even parity, while open circles corresp
to states with odd parity. The gray areas correspond to parts o
third and fourth transmission bands.
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IV. CONCLUSIONS

We have investigated the general problem of electrom
netic wave propagation through a one-dimensional sys
consisting of a nonlinear layer sandwiched between any
linear systems. Our studies provide a general frame wit
which calculations can be done, based on the transmis
characteristics of the linear systems. In the case of a very
layer, we have shown that ad-function approximation is ad-
equate. It follows from our analysis that a nonlinear lay
sandwiched between two identical Bragg reflectors can

he

ic

n
s

nd
he

FIG. 11. Transmitted intensity vs incident intensity for the sa
system described in Fig. 10. We used a model of 20 bilayers
each side of the nonlinear layer withl51 and frequency
va/2pc50.93. Every resonance point in this diagram~output
5input! will yield a point in the resonance frequency diagram
Fig. 10, with alternating parity. The very first resonance~not distin-
guishable in this picture! corresponds to an open circle in Fig. 1
for va/2pc50.93 and will have an odd parity.

FIG. 12. We plot the intensity configuration for the same mo
described in Fig. 10, forva/2pc50.93. ~a! Even-parity state with
l521, corresponding to the branch on the left~filled circles! in
Fig. 10.~b! Odd-parity state withl51, corresponding to the branc
in the middle of Fig. 10. The latter is actually the very first res
nance state described in Fig. 11.
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regarded as the most efficient ‘‘localized’’ feedback stru
ture. For this system, a cubic equation has been deri
describing the nonlinear bistable response, with normali
parameters that characterize the experimental situation.
obtain bistability in the gap of the linear system, via t
impurity mode, and find that the switching thresholds can
made very small by enlarging the structure and/or widen
the gap. In addition, we have obtained an analytic solut
for the localized resonance modes in the band gap for a n
linear impurity of finite extent in an otherwise linear diele
tric superlattice. The solution shows multistable behav
tt.

ev

l.
-
d,
d
e

e
g
n
n-

r,

the basic feature absent in thed-function model. Our numeri-
cal studies agree extremely well with these solutions.
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