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We consider the general problem of electromagnetic wave propagation through a one-dimensional system
consisting of a nonlinear medium sandwiched between two linear structures. Special emphasis is given to
systems where the latter comprise Bragg reflectors. We obtain an exact expression for the nonlinear response
of such dielectric superlattices when the nonlinear impurity is very thin, or idthmction limit. We find that
both the switching-up and switching-down intensities of the bistable response can be made very low, when the
frequency of the incident wave matches that of the impurity mode of the structure. Numerical results for a
nonlinear layer of finite width display qualitatively similar behavior, thus confirming the usefulness of the
simpler §-function model. In addition, an analytical solution for the resonance states of an infinitely extended
finite-width superlattice with a finite-width nonlinear impurity is presenf&0163-18207)02848-9

I. INTRODUCTION device. For instance, a distributed feedback structure brings
about a photonic band gdpl*where certain modes are for-
Dielectric materials with an intensity-dependent dielectricbidden while others propagate freely. For frequencies inside
constant are well known for their complex response to radiathe transmission band, bistability results from a modulation
tion. Exciting features such as bistability, multistability, op- of transmission by an intensity dependent phase shift. For
tical limiting, etc. have been predicted theoretichfijand  frequencies inside the stop gap of the linear system, bistabil-
observed experimentalf7> Promising future applications ity and resonance transmission is achieved via gap soliton
include optical switches and transistors, pulse shapers, dermation**® However, nonlinear media are usually quite
well as memory elements. Already quite simple structuredossy and, thus, it is important to find ways of keeping the
like the traditional Fabry-Perot etalch®r multilayered amount of nonlinear material small while still retaining siz-
structures of alternating nonlinear dielectric matefias-  able nonlinear effects. Furthermore, the successful use of op-
hibit such a behavior. The common characteristic of all non+ical switches depends crucially on a low threshold, i.e., low
linear optical devices is the feedback mechanism, necessalgwitching” intensities. The above considerations lead to
to enhance the nonlinear effects. Crudely speaking, there exhe question of whether a single nonlinear layer, suitably
ist two types of realizations: In the case of a “localized” supplied with a feedback mechanism, may be sufficient for
feedback structure a homogeneous nonlinear medium igptical switching devices. In this paper we present the results
placed between two reflectorgmirrors*’ or Bragg- of our investigation of this and several related problems.
reflector§), while “distributed” feedback mechanisms are  The paper is divided into two parts: The first part deals
realized through a periodic modulation of the linear part ofwith the general case of a “localized” feedback structure
the nonlinear materials’ refractive indéxSimilar studies when the nonlinear layer is very thin, or in thfunction
have been done for the electronic response in a oneapproximation. We will give arguments as to why a system
dimensional nonlinear lattice** as well as for a linear lat- consisting of a nonlinear layer sandwiched between Bragg
tice with nonlinear impuritie$? reflectors may be considered the most efficient “localized”
The linear (or low-intensity properties of the feedback feedback structure, as well as which parameters of the sys-
mechanism are important for the nonlinear response of theem determine the bistability threshold. We also demonstrate
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the usefulness of thé-function approximation by comparing e=e, (1+ME(0))3(x)
with numerical results for a nonlinear layer of finite-width. o
However, a finite nonlinear layer always exhibits multistabil- " Ee
ity. This is illustrated in the second part of this paper, where Ee' ik
. . —— E e
we present an analytical solution for the resonance states of —
an infinite superlattice with a finite-width nonlinear impurity ] >
layer. These are modulated band-gap impurity modes and x=0 x

correspond to the the transmission resonances in the multi- . o .

stable input vs output diagram. Finally, a comparison be- FIG. 1. Geometry considered in this section. A plane wave of
tween the analytical solution for the infinite superlattice with @mplitude Eq strikes a nonlineaw function, giving rise to a re-
numerical results for a finite superlattice shows very goodlected and a transmitted wave.

agreement. 2 00, - -
where 7= egk/4 is related to the transmission coefficient

|To|> of the corresponding linear A&0) system,
IIl. VERY THIN NONLINEAR LAYER 7=(1—|To|?)/|To/2. The system will exhibit bistability if

Many features of wave propagation through one-We can ha\{e more than one output for a given input. This
dimensional nonlinear structures can most conveniently b¥ill be true if Y is a nonmonotonic function of. We find a
investigated and undeﬁtood within a nonlinear Kronig-Physical solution fordY/dX=0 only for A <0 and>3:
Penneys-function model.” Although discrepancies with the
more r)éalistic finite width modelsgdo exist,pit has been dem- :Zi vi-3/7
onstrated that thé-function model captures most of the es- - 3|\
sential features of nonlinear response to radiatfom this
section we will consider a very thin nonlinear layer centered The nonlinear response of such a system with negative

at the origin. The nonlinearity is expressed in first order byis shown in the input vs output diagram in Fig(ap for

()

an intensity dependent term in the dielectric functigm): various values ofr and\. The absence of bistability for a
positive Kerr coefficient is one of the artifacts of the
e(X)=~ €o(1+ N|E(X)|?) (). (1) o-function approximation. We will see later that this restric-

tion is lifted, once the nonlineat function is placed between

Heree, is defined as the limin?d— e, for n—», d—0, of two linear systems with nonzero reflection coefficients.
a finite width layer of extenl and index of refractiom, and
€oh is the corresponding nonlinear Kerr coefficient. 13

We will first discuss the problem of a single nonlinear
function. More insight is obtained from a general discussion
of a §-function nonlinear layer sandwiched between two lin-
ear structures. It will be shown that the equation relating
input and output intensities has the same form as for a single 0.5
nonlineard function except for a parameter renormalization.
Also, a very useful phase diagram for the onset of bistability
in terms of the linear properties of the system will be de-
rived. From this it follows that the most interesting physics
appears when the linear structures on the two sides of the
nonlinear layer are identical Bragg reflectors. Assuming the
latter to consist of very thin layers, we arrive at a remarkably 0.4
simple but very rich result for the input-output intensity re-
lation.

1.0

0.0
0.
0.6

Output Intensity (X)

0.2

A. Single nonlinear é function

We first consider electromagnetic wave propagation 0.0 0.2 0.4 0.6
through a singles function with an intensity dependent di- Input Intensity (Y)
electric strength as given by EL). This is schematically o _ o ) _
depicted in Fig. 1. Our interest lies in the steady state re- FIG. 2. Transmitted intensity vs incident intensity faj a non-
sponse of the system. Let a plane Wﬂ,(&fikx with wave linear & function and(b) a nonlinear dielectric slab of width
numberk= w/c be incident from the right. This gives rise to ?:0'@”' In both C?_S%S‘_' gh;sdaihed Ill_gel_corresgonclhmtoéll_ and
a reflected waveE,e**, as well as to a transmitted wave, "3 t_ran_smlTs5|207|1100|1275 ) éthe Sdo' d'nitc;‘r._ an lune::;r
E.e”'**. Solving the Maxwell equation with a single nonlin- transmissior| To|*=0.125, and the dot-dashed line fo=+1 an

ear s-function laver ak=0 will vield a relationship between linear transmissiofiTo|>=0.125. Note that the bistability onset hap-
L Y N . y . . P 5 pens for the same system parameters. However, for large intensities
the incident and transmitted intensityy=|Eq* and

5 . ) the finite layer system withh>0 will always display multistable
X=|E|*, respectively: behavior [inset graph in(b), for the same parametera:=+1,
|To|?=0.125]. The dotted line is the total transmission relation
Y=X[1+7(1+\X)?], (2 Y=X.
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The switching-up and switching-down intensities are £:£O(J+x|E(0)|2)5(x)
given by Y. =Y(X3;), respectively. Forr=3 and\ <0 we R
have the onset of bistability &, =Y _=8/(9|\|). As T gets £
larger, Y_—1/x| while Y.~7/[\]. Note that for E ¢ [Linear System 1 | Linear System 2 __e_,
Y =X=1/|\| we have resonance transmission. Thus for large —= o ;y Ee™
7 (or equivelantly for low linear transmissipthe switching- b 2 2 N
down intensity and the resonance intensity are the same. =0 x

Clearly, the largef\| is, the smaller the switching intensities

are. Note further, that the resonance transmission intensities FIG. 3. The general geometry considered in this section. A non-
Y=X=1/|\| correspond toe(0)=0, i.e., the index mis- linear § function is sandwiched between two general linear systems
match between thé function and the background effectively characterized by the reflection and transmission amplitugesd
disappears, leading to total transmission. On the other hand, | =12. A plane wave of amplitudg, incident upon the system
for a finite-width linear layer with dielectric constaat nz’ from _the right results in a transmission amplitugleand a reflection
the condition for resonance transmission &=2m\;, where ~ 2MPIitudeE, .

d is the width of the layer anth\; is an integer multiple of
the wavelength inside the dielectric  material
(N f=2mc/nw).® If we incorporate a nonlinear coefficient in
the dielectric constanfe(x)=n?(1+\|E(x)|?)], then for
suitable choices of the parameters we can have bistabilit d ibed by the t _ i
(and even multistabilityfor both negative and positive Kerr s described Dy the transmission matrix:

medigm. F(_)r example, if.<2<)\f and)\>Q, then effectively C 1* “rt\V (A

the dielectric constant will get larger, yielding a smaller av- ( ) =( . ( ) (4
erage effective wavelengt\;). For some intensity we D —(r/t) 1 /\B

should expect the resonance condition to be “effectively” jyst as before, we assume this composed object to be illumi-

satisfied, and, as a consequence, get a transmission resgyed from the right by a plane wave with amplitugie The

nance. Higher-order resonances are also expected giving riggrresponding reflected and transmitted wave amplitudes are

to multistability. For a negative Kerr coefficient and2Xs  genoted byE, and E,, respectively. Then, the relation be-

we should not expect bistability, as correctly pointed out byyyeen the output intensitX=|E,|? and the input intensity

Chgn and Mllllsz, un!e_ss we allow the unphysical situation at Y=|Eo|2 can be obtained straightforwardly by properly

which the intensities become large enough to makenaiching the values of the fields at the origin:

(n%g)<1. Only then we would get bistability, and this would

be the exact correspondence to thdunction case. For a Y=X[y+ 7 (1+1'X)?]. 5)

positive Kerr coefficient, however, bistability should always

be expectedalthough some times only at unrealistically high  Note that Eq(5) has exactly the same structure as &).

intensities, a feature that is absent in ti&efunction model.  Thus, we have shown that the introduction of the linear
In Fig. 2b) we show the transmission diagram for a Structures leads to a renormalization of the quantities in Eq.

finite-width dielectric slab ford=0.6\; and various values (2): 1—y, 7—7', andA\—\'. The quantitiesy, 7', and\’

of linear transmission coefficient and nonlinear Kerr coeffi-are given by the following expressions:

cient. Although this is not the exact analog of Figa)2it is

ally, for a linear system, with incident and reflected plane
waves from it's leftAe** andBe KX, respectively, and in-
cident and reflected plane waves from its righe'** and

ekX respectively, the relation between the field amplitudes

remarkable that both models show a similar dependence on LTI Tol?) — RE[U(T* Tp)] ©
their linear transmission properties. We also find that for v |1/Ty— 1/T|2 '

larger intensities the negative nonlinear medium does not

exhibit multistability, while a positive nonlinear medium will {UTol>~ R LAT*Tp)1}?

always exhibit multistability, as can be seen in the inset = , (7

graph in Fig. 2b). | 1To—1/T|?

The unphysical condition for resonance transmission in )
the single nonlineas-function case can be lifted if we sand- N =Ny = [ UT - 1T ()
wich the § function between two linear systems. Bistability whereT is the linear transmission amplitude for the system
will then occur as a result of the intensity dependent phas@vithout the & function at the origin é,=0):
shift that thed function will introduce between the two linear

systems, which will alter their transmission characteristics. 1 1 r*r
As we will see in the next section, this arrangement is also I S (9)
optimal for obtaining lower switching intensities. T 4t tit,

Similarly, Ty is the linear transmission amplitude for the
B. Nonlinear & function sandwiched case with thed function at the origin X=0),
between two linear systems

Let us now consider a more general geometry as shown in 1 _ 1 kel 11 ( 1 rZ) (10)
Fig. 3, where a nonlineas function is sandwiched between To T 2 '

two linear systems, characterized by the reflection and trans-

mission amplitudest; andt; (i=1,2), respectively. Gener- The conditions for bistability from Eq5) now read as
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T ' ' ' ' Eni1tEqn_1=(2 cok— ek sink)E,,, (15
where we have assumed the space betweenstfumctions
2 P~ o 1 to be vacuum and their separation todel. Upon express-
\\\N"B’“"b‘l”y ing all lengths in units of the lattice period€ 1) and using
N the Bloch's theoremE(x+1)=¢€'9E(x) we arrive at the
@ 0 20 A<O 1

band-structure equation that defines the Bloch wave vegtor

- - istabili - 1 ;
o k- No Bistability | COYJ=COX— 3 eok sink. (16)

The transmission bands are found by setfioosy|<1.
) ) . . We can easily generalize the above method to the present

"0.0 0.5 1.0 L5 2.0 25 problem of 2N+1 § functions utilizing the transfer matrix of
R each layer,
FIG. 4. The phase diagram for the onset of bistability fof a E_n-1 2cog’ -1 En
function sandwiched between two linear systems, as derived from ) ZMN( )MN( ) . (17
Egs. (13) and (14). ¢ and R are defined through T4=Re?%T E-n 1 0 En+1
whereTy is the total linear transmission amplitude of the two linear where
structures with thes function in the middle X=0) andT is the
total transmission amplitude without th# function (e,=0). Eqg. 2coy -1
(13) sets the values d® and @ for which we can observe bistability, M= 1 0 (18)

outside the gray areas, while Ed4) (dashed lingsets the sign of
the nonlinear coefficient for which we will observe bistability. and 2 cog’ =2 cok— e)(1+\|E(0)|9)k sink, comes from the
nonlinears function atx=0. E_y andE_y 1) are given by

1 the output field,
u En=Ee ™ E_nip=Ee NP (19
N <0, (12) EN andEy, ; are related to the incoming and reflected fields
y

thus, allowing bistability for positive Kerr coefficients as

—F a—iNk iNK
well. We want to stress that the conditions for bistability En=Ece +EeT (20
depend on the transmission amplitudes of the linear systems L ami(N+DK i(N+1)k
with and withouts function only. They can conveniently be En+1=Eo€ +Ee ' (21)
rewritten in terms of the quantitieR and @ which are de- The intensity at the nonlinear sit&(0)|? can be expressed
fined via 1T,=Ré&/T: in terms of the transmitted intensityE_\|?°=X as
|E(0)|?=CX, where
Sirfg _1 13
5 S5 sinNg sin(N+1
(R—co)?> 3 C=17 ¢k sink a _n( )q. (22)
sirfq
, cos In Eq. (22) q should be replaced biq| for [cogy>1, and
- —|<0. : L '
S|gr()\)(1 R ) 0 (14 the lower sign inC is used when cog<-—1. After some

algebra we arrive at the final result,
Figure 4 shows the phase diagram for the onset of bista-
bility derived from Eqs(13) and(14). Obviously, the inser- Y=X[1+7'(1+N'X)?], (23
tion of the linear part of the nonlinea$ function has to

sufficiently alter the total transmission amplitudd ih or- where

der for bistability to occur. This alteration may be achieved sirf(2N+1)q € C2sing

by a change in the total transmission, i.e., by chandig =10 ——————, N=A—a oo,

and/or by introducing a phase shit sinfq €  Sin2N+1)q
One can get more explicit and transparent results wheg,q

the linear systems each consist of a periodic arrangement of

N linear 6 functions with a spacin@ equal to the distance (e4— €0)Csing

between the nonlineat function and the two linear systems. a= m .

We first consider the linear problem df equally spaced
functions of dielectric strengtl,. Between any twas func-  Of course, this result can also be obtained from EG)s-(8)
tions in the linear structure the solution consists of two planéy specifying the respective expressions for the reflection
waves traveling in opposite directions. Using the boundaryand transmission amplitudes,andt; (i =1,2). Since Eq(2)
conditions we can eliminate the waves in the intermediatend Eq.(23) have the same form, all the analysis done in
space and obtain a difference equation in terms of the field d#ec. Il A applies. However, due to the renormalization of the
the 5-function sites’’ parameters and\, interesting features arise! is related to
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FIG. 5. Switching-up(solid line and switching-down(dot-
dashed lingintensities for a nonlinear impurity system sandwiched g 6. Gray scale plots of the transmission coefficient vs the
betwgen twg linear structures. The linear structures consigt) af wave vectork and the transmitted amplitud&,| for frequencies
functions withN=20, €;=€,=2.5, and spacin@=1, and as a ipsjde the transmission band. Dark areas indicate low transmission.
compazrlson(b)z a system of 41 dielectric bilayers with,=d,=0.5  The two upper graphs correspond to #héunction model described
and nz=1, np;=5 in analogy with the d-function system: Fig. 5a), for A=1 (left) and \=—1 (right). The two lower
dpni=€o. Theb layer in the middle of the structure is nonlinear graphs correspond to the finite-width model described in Fig, 5
with ep(X) =nH(1+XE(X)[?). In both cases we used=+1. The  for \=1 (left) and\ = — 1 (right). The transmission lobes and their
dotted line in both graphs is the linear transmission coefficient offrequency shift are clearly shown, except for the first one right on

the structure. The band gap starts arouke1.186 for the  the band edge, which can barely be distinguished fonthd. case,
o-function model ank=1.51 for the finite-width model, as can be hile for A= -1 it shifts inside the band gap.

seen from the large transmission drop. The exact value of the band
edge can be found by using EG.6). frequencies?® This is shown in Fig. 6 for both thé function

and finite-width models. Note that lobes closer to the gap
the total linear § =0) transmission coefficient of the system shift at lower intensities, indicating that for those frequencies
7 =(1—|T rorall®)/| T roraLl?, @and the conditior’ >3 im-  smaller switching thresholds should be expected. With these
plies | T toral|?<0.25. Also, the constraint<<0 is now re-  features, the bistability diagram in Fig(&p is fully under-
laxed since it requires only’ <0. stood.

In Fig. 5@ we plot the switching up and down intensities  An important consequence of the introduction of the two
for the cases;= €y and for frequencies close to the first band linear systems is the presence of resonances. The phase shift
gap. We note that the sign afrequired to obtain bistability, introduced by the nonlineaé function must be enough to
between successive lobes of the linear=Q) transmission tune the incident wave with the shifted lobe. The same trans-
curve, is alternating from <0 to A>0. We can understand mission lobes are found in the linear transmission diagram of
this by means of the field configuration that characterizes finite layer superlattice. Then, from the point of view of
these lobes for the linear lattice. Every lobe corresponds to taduced phase shifts, there should be no real qualitative dif-
transmission resonance for which the intensity envelope iference between thé-function model and the finite layer
|[E(x)|?xsirf(mxL) wherelL is the length of the structure, superlattice, at least for the first bistable loop. The finite
0=x=<L, andm=1,2,3,...2N+1 starting from the upper layer system differs qualitatively from the nonlinear
band edge and moving to lower frequencig&vhenm is  &-function model insofar as it always exhibits multistability
odd, the intensity at the middle of the structure will have a(the nonlinears-function system is strictly bistablea point
maximum, while whemn is even, it will have a minimum. If  that will be discussed in Sec. Ill. But when considering the
we now turn on the nonlinearity\@ 0) in the & function in  first bistable loop only, the very thin layer approximation
the middle of the structure, it will introduce an appreciablemay be viewed as a reliable guide to more realistic systems
phase shift only when the incident wave is tuned close to ainvolving finite-width nonlinear layers. This is shown in Fig.
“odd” lobe’s frequency. This phase shift will change the 5(b) where we plot the switching up and down intensities of
intensity envelope, and thus the resonance frequencies, rthe first bistable loop, for a finite-width layered model with a
sulting in an effective frequency “shift” for the “odd” finite-width nonlinear impurity layer, having its system pa-
lobes. For some intensity, the incident wave's frequency willlameters defined in correspondence with thdunction
match to the “shifted” lobe’s frequency, and a transmissionmodel bye,=dn?. In order to stress the similarity, we have
resonance will be obtained. This is where the bistable behawhosen the nonlinear layer to equal to half a lattice period.
ior originates from. The condition on’ sets the allowed We see that theS-function model indeed captures most of
frequencies for observing bistability in between the transmisthe essential features of the more realistic finite width super-
sion lobes. Also, a negative nonlinearity<0) will cause lattice.
the odd lobes to shift to higher frequencies, while a positive Similar behavior is obtained for the# e, impurity case
nonlinearity (\>0) will cause them to shift to lower for frequencies inside the transmission band. In Fig. 7 we
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1.'48 1.49 1.50 1.5] 1.52 FIG. 8. The switching intensitiesolid and dot-dashed lines for
Wave Vector k switching up and down, respectivelfor the same system of Fig.

5(a) for the s-function model but now for the large impurity case

FIG. 7. The switching intensities for the same systems as deey=1. The linear impurity mode is now deep in the ddptted line
scribed in Fig. 5, but now the nonlinear impurity(& a nonlinear ~ corresponds to the linear transmission coeffigiehlote that for
8 function with €,=2.2 and (b) a nonlinear layer frequencies very close to this mode the switching intensities be-
e(x)=n3(1+\|E(x)|?) with nf=4.4. We again useN=+1. The  come extremely small.
first lobe, that shifted in the gap and is now the liner=Q) im-
purity 'mode, is clearly seen in both cases. Note hpw the SWitChin%rder of Ak/k~10"
intensities dropped about three orders of magnitude around thlﬁ]
mode.

10, This is quite unrealistic. In addition,
is ratio gets exponentially small for increasiNg Thus, for

a realistic application it is the laser’'s linewidth that deter-
show the switching intensities of both thfunction layer ~Mines the power thresholds for bistability and in general
and finite-width layer systems for a weak impurigy<e,. ~ COmpromise has to be found.
For these values, the lineax £0) impurity mode, which is
actually them=1 transmission lobe being shifted inside the
band gap? is very close to the transmission band. For Ill. DIELECTRIC SUPERLATTICE WITH NONLINEAR
€0> €0, NO gap impurity mode exists in th&function model IMPURITY: RESONANCE STATES
so the response of the two systems inside the gap is different.
For €,<eg, both systems exhibit an impurity mode inside
every band gap* When the fields are turned on, a positive
nonlinearity in the middle of the structure will shift the im-

In the previous section, we have investigated the response
of a very thin layer of nonlinear material sandwiched be-
tween two linear Bragg-reflector structures. We demon-

purity mode to lower frequencies, while a negative nonIin-IStrated_thr?t Su%h ar?trlgcture can Tth'b't b|s|_tab|I|ty r\:\”th very
earity will shift it to higher frequencies. As a consequence W SWitching threshold as a result of coupling to the Impu-
when)\>0 bistability is observed at frequencies lower than!y mode in the stop gap of the linear structure. In this sec-

that of the linear impurity mode, while for<0 we must use tion, we consider the situation when the nonlinear layer is
higher frequencies. not thin. There are qualitative differences between the re-
The switching up and down intensities are generallySPOnse of a nonlinear finite-width layer and a nonlinear
Y_~1/\'| andY,~7'/|\'|, and for band-gap frequencies é-function layer. We have seen that a single finite-width di-
it is generallyz’>\'> 1, yielding extremely low switching- €lectric layer exhibits bistability for both positive and nega-
down intensities and very high switching-up intensities. Nev-tive Kerr coefficient{Fig. 2(a)], whereas the single nonlin-
ertheless, for frequencies relatively close to the linear defeatar & function exhibits bistability for negative Kerr
frequency, it is\'>7'>1, yielding extremely small switch- coefficient only. Similarly, and in contrast to the strictly
ing up intensities as well. As can be seen in Fig. 8, where wedistable J-function model, dielectric superlattices with a
plot the switching intensities for a large impuritinear im-  nonlinear impurity always exhibit multistability. This, we
purity mode deep inside the band gathe order of magni- will show, has to do with the fact that impurity modes exist
tude for aN=20 system is well below IG°, and becomes for each value of\e. We can understand all these properties
exponentially small abl gets larger. To get a feeling for this qualitatively if we view the finite nonlinear layer as consist-
number, assume that typical electronic nonlinearities are aihg of a sequence of of nonlined functions. Then, reso-
the order of|\|~10"Scm?/ W. ThenY.~10"°>W/ cn?.  nance phenomena allow to bypass the limited behavior of a
Furthermore, the intensity at the nonlinear defect layer isingle nonlineats function. However, multistability is much
small enough, to secure that the nonlinearity is well de-harder to detect than bistability, because the field values at
scribed as a Kerr nonlinearity: The nonlinear effect does nothe nonlinear layer may be very large and oscillating, thus
saturate and the nonlinear layer will not get damaged fromiequiring extremely high precision.
intense fields. However, the price one has to pay to achieve Let us first investigate the localized mode solution for a
low power thresholds, is to maintain extreme accuracy in thdinite-width nonlinear layer sandwiched between two Bragg
incident frequency, due to the extremely higiof the mode. reflectors. The nonlinear wave equation inside the impurity
For the system described in Fig. 8 this accuracy is of thdayer is given by
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ca (1+ A E(z)°)

izE(x)+k§[1+)\|E(x)|2]E(x):O, (24)
dx

whereky=n?(w/c). This equation may be solved by means
of the following ansat?:

E(x)=Eqg(x)e' ?™. (25) €q € € € €b €a

Inserting this ansatz into EqR4) leads to a separation of the  FIG. 9. The model superlattice used in this section. A nonlinear
amplitude and phase functiog(x) and ¢(x), respectively: layer of dielectric constangy(1+\|E(x)|?) and thickness” cen-
tered atx=0 is sandwiched between two infinitely extended super-
lattices of alternating layers with dielectric constasi®nde, , and
(26)  widthsa anda—d, respectively.

d

JR— X = ,

ax 2™ 200

da0l2 W ers of dielectric constants, and ¢, and widthsa—d andd,
g(X 2 9 1124 respectively(cf. Fig. 9. Since the stationary states have par-

( dx ) g2(x) Thog" 00+ 2h kg ) =A, (27 ity p=+1 we may impose the following values of the elec-

_ tric field E(0) and its derivativeE’(0), i.e., the magnetic

where\ = \|Ey|? is the effective nonlinearity and andW field, at the origin.

are constants to be determined. Upon introducing Even solution p=1):

I(x)=g?(x), the solution may be cast in the deceptively

simple form E(0)=Ey#0=¢(0)=0, g(0)=1
N =*2(X—Xp), (28 =
J"(Xo)(A| k212— INK213—W?)12 ( o)

Odd solution p=—1):

X 1 _ _ _
¢(x)=¢(x0)+WJ dx’ ™% (29) E(0)=0=¢(0)=0, 9(0)=0
X0

The four unknownsA, W, ¢(x,), | (Xo)=g%(X,) have to be E'(0)=EokoV1+A/2#0=9"(0)=koV1+\/2.
determined from the boundary conditionsxgt In particular,

W is related to the energy flux through the layer as can b
seen by evaluating the Poynting  ‘“vector”
S=—c%/8mw RIE* (X)(dE(X)/dx)]=Cc?|Eo|?W/87c. In
the case o\ =0 it is an easy exercise to obtain the linear
solutions from Eq(28). For A # 0, despite the apparent sim-
plicity of Eq. (28), a closed form solution cannot be obtained / . 7
in general. The reason for this difficulty is seen as follows:the symmetric stateﬁesonant statgsin t_h_e transmlssmn
The solution of Eq(28) comes down to finding the roots of problem and compute_the f|e|§0 at t_,rle origin. For given

the denominator, wher& and W depend on the boundary We then get the effective nonlinearity=X\|Eq|*.

values in a complicated way. This task can be accomplished The computation of the parametarin Eq. (27) is now

in two special circumstances only: #fé(x,)/dx=0, then, straightforward an_q due to the “tricky” definitions is the
according to Eq(27) we already have one root, leaving us same for both parities:

with the simple exercise of solving a quadratic equation. _

Similarly, if W=0 we immediately have the robt=0, again A=K3(1+3X). (30
reducing the problem to a quadratic equation. The first case

was exploited by Chen and Mifisn solving the transmission I addition, we can compute the missing roots of the cubic
problem through a single finite-width nonlinear layer only, expression in Eq(28):

without the superlattices on both sides.

Here, we have chosen the nonzero value of the field’s deriva-
five for the odd solution in a particular convenient form
(compare with the later calculations for the constajt

To compare with numerical studies, the above equations

define the value oE, and, thus, the effective nonlinearity.
Consequently, for a given frequency we need to search for

We, however, are interested in the second situation. Ap- 1,=0,
parently, W= 0 impliesS=0. This corresponds to a spatially
symmetric situation, i.e., a situation where parity is a good 24N
“quantum” number. Speaking in terms of the transmission o=~ T

experiment we have in mind, this amounts for solving for the

stationary or resonance states for which input equals output.

This distinction is of no importance in the linear problem, l3=1.
because there we can construct any state by an approprigte , o
superposition of stationary states. Oybviously,ythis cgﬁnort) b ord?r to finally _solve Eq(28), we haye to d|st|ngw_sh four
done in a nonlinear problem. Consider now the case wher&3S€s: The solution depends on_pan’tuy, and the sign of one
the nonlinear layer, centeredsat 0, is sandwiched between 00t, namely,l, depends on the sign of (cf. Ref. 20. We

two infinitely extended linear superlattices of alternating lay-begin with A >0: Define the quantities
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[ N Within this formalism, the Bloch-Floquet condition for a de-
K= — (31) fect state inside the photonic band gap, created by the linear
2+2\ superlattice, may be written gsonnecting the fields in the
middle of one lineaA layer atx=s to the fields ak=a+s,

K(k), p=1 wherea is a lattice constaint
o S, (32
’ o | (M+e "E)E(s)=0, (41)
where K denotes the complete elliptic integral of the first
kind. Then, the solution to Eq28) reads as where the matrix elements g¥1 are well known:
PR . i [k
|(X): inz(ikox 1+)\+C¥,K) . M11: elka(a_d)(C0$kbd)+ E k_b+ k_: Sln(kbd)),
a

A =
1+ mcnz(ikox\/l+)\+a;f<)

i [ky, k
o _ M12=§(k—b—k—a)sin(kbd).
Here, sn and cn are the Jacobian elliptic functions. These a "b

results may be simplified by the use of the addition theoremgpere ka= (0/C)Vea kp=(w/c)\Ve, and M= M3,,

f the Jacobian elliptic functi °
ot the Jacobian €elliptic functions. M= M3, . Inside the nonlinear layer we know the field

p=1: and its derivative at the origin. Using the solutions Egs.
(33)—(39), we can now calculate the field and its derivative
1(x)= crP(koXV1+NX\;k). (33  atthe interface to th& material, translate the results into the
traveling wave formalisnifield and derivative are continu-
p=—1: ous at the boundary'and propagate them to the middle of
-~ = the A layer, i.e., we obtairﬁ(s):
) <1+ %A) Sr(kgxV1+X ;)
X)= = = (34) , . i _d
I+N ] drf(koxV1+X;k) (E)1(s)=€e*%I(1/2)— k—e'kasa(\/l (112), (42
where dr= \/1— «?sr?. Similar solutions emerge in the case :
of a negative Kerr coefficiend, <0. Define the quantities (E)o(S)=[(E)4(s)]*, (43
n=|\|, (35) Wwheres=(a—1)/2 andl is the thickness of the nonlinear

layer. Thus, Eq.(41) constitutes two linear equations, the
second being the complex conjugate of the first. Upon sepa-

K= ﬂ (36 rating this complex equation into real and jmaginary parts,
we observe that the real part does not contaand may thus
[K(K), p=1 be used to determine:
0. p=-L 7 sinfk,(a— d)Jcog kyd) + }(EJFE)coik (a—d)]
Then the solution to Eq28) reads as 2\ka Kk 2
()= srP(=kox\1— 25+ B:k). ><sin(kbd)+% %—E—:)Sin(kbd)z,//(w)zo. (44)
a

These results may, again, be simplified by the use of th

addition theorems of the Jacobian elliptic functions %ere, ¥(w) contains the information about the nonlinear

layer. If we define

p=1:
(0o V1) d(VI(x))
cr?(koxV1— 3 7;k) xT= Ka dx
drP(kox\/1— % 7:K) - +i(d(w(x>))2
p=—1: A AR T

1(x)= sf(kox V1= 3 7; ). 39 theny(w) is given as

Outside the nonlinear layer the waves obey the Bloch- ~cogk,s)x (112) +2sin(k,s) x V(112)
Floquet theorem. We employ the “traveling wave” Ylo)= x (112)
descriptior?! which decomposes the fiel(x) and (implic-
itly) its derivativeE’(x) into left- and right-moving waves: Wheres=a—d+1| (a=lattice constantd=thickness of the
B layers;| =thickness of the nonlinear layeryI(l1/2) and

, (45

- A’ d(y1(1/2))/dx have to be evaluated according to the sign of
E(x)= e (40 =~ -
Ae N\ and parity.
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FIG. 11. Transmitted intensity vs incident intensity for the same

FIG. 10. The resonance state frequencies as a function of thseystem .descrlbed n Flg'. 10. We used a TOdel of 20 bilayers on
ceach side of the nonlinear layer with=1 and frequency

effective nonlinearityx inside the third band gap. The linear super- wal2mc=0.93. Every resonance point in this diagrafutput
lattice consists of equal thickness layers of alternating dielectric:input) will yield a point in the resonance frequency diagram in
constantse,=1 ande,=5, while the nonlinear layer ha&=8,  Fjg 10, with alternating parity. The very first resonaiticet distin-

/=d, and\=1. Solid lines correspond to the analytical results g, jishaple in this pictusecorresponds to an open circle in Fig. 10
while circles correspond to the results of a numerical simulationsy, ,a/27c=0.93 and will have an odd parity.

using 20 bilayers on each side of the nonlinear layer. Filled circles
correspond to states with even parity, while open circles correspond
to states with odd parity. The gray areas correspond to parts of the
third and fourth transmission bands. IV. CONCLUSIONS

We have investigated the general problem of electromag-

Equation(44) defines the solution for the impurity modes Netic wave propagation through a one-dimensional system
for our structure. These impurity modes manifest themselve§Onsisting of a nonlinear layer sandwiched between any two
as resonances in the nonlinear multistable response, for fréihear systems. Our studies provide a general frame within
quencies inside the gap of the linear superlattice. In th&vhich calculations can be done, based on the transmission
S-function model we had only one such resonance, as recharacteristics of the linear systems. In the case of a very thin
quired from its strictly bistable character. As discussedayer, we have shown that@&function approximation is ad-
above, for a nonlinear impurity of finite width in an infinitely equate. It follows from our analysis that a nonlinear layer
extended linear superlattice we now expect multistable besandwiched between two identical Bragg reflectors can be
havior. For practical applications, the linear superlattices
cannot be infinitely extended. However, as long as the num- 15
ber of the layers is large enough to have a well-defined lo- (a) Even State
calized solution, the resonant frequencies should be given
exactly by Eq.(44).

Figure 10 shows the resonance state frequencies as a
function of X for a linear superlattice consisting of equally
wide layers of alternating dielectric constaetf=1 and
€,=5. The nonlinear layer is described by=8, 1=d, and
A=1. Solid lines represent the analytical solution according
to Eq. (44), while the circles correspond to the results of a
numerical simulation using 20 bilayers on each side of the
nonlinear layer. In addition, the parity of the resonance states
is indicated. Evidently, the agreement between the two meth-
ods is excellent, thus illustrating the multistable behavior.
This feature(multistability) is explicitly shown in Fig. 11,
where we show the input-output diagram for the same con-
figuration. Finally, in Fig. 12 we show the intensity configu-
ration for two resonance states with different parities. Each Bilayer number
resonance state is characterized by the intensity configuration
inside the nonlinear layer. The first has one lobe, the second g, 12. we plot the intensity configuration for the same model
two, the third three, etc. In thé-function case, the possibil- gescribed in Fig. 10, fowa/2mc=0.93.(a) Even-parity state with
ity of different intensity configurations inside the nonlinear \ = — 1, corresponding to the branch on the Iéftied circles in
medium is absent. Thus, only one resonance state would k@g. 10.(b) Odd-parity state with. =1, corresponding to the branch
allowed, which is the analogue of the first resonance state af the middle of Fig. 10. The latter is actually the very first reso-
the finite-width case shown in Fig. (&. nance state described in Fig. 11.

10t

05

Field Intensity
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regarded as the most efficient “localized” feedback struc-the basic feature absent in theunction model. Our numeri-
ture. For this system, a cubic equation has been derivedal studies agree extremely well with these solutions.
describing the nonlinear bistable response, with normalized
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