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We investigate the adequacy of the Kronig-Penneyd-function model in describing the electromagnetic wave
propagation in periodic structures consisting of thin layers of materials with an intensity-dependent dielectric
constant. We find that the model captures the most essential features of nonlinear response to radiation.
Excellent agreement is found between the results from thed-function model and the exact solutions of
nonlinear wave equations. However, discrepancies do exist below the bottom of transmission bands due to the
rigidness of the band edge in thed-function model. Consequently, gap solitons cannot form in the
d-function model when the nonlinear Kerr coefficient is positive.@S0163-1829~96!03740-X#

The presence of nonlinearity is known to lead to a much
richer and more complex optical response to radiation. One
such phenomenon, known as bistability, in which two pos-
sible output states exist for a single input, promises impor-
tant potential applications in ultrafast optical switches.1 A
bistable response can be observed in simple structures such
as the traditional nonlinear Fabry-Perot etlons2 or in distrib-
uted feedback structures such as multilayered systems con-
sisting of alternating nonlinear dielectric materials.3 In es-
sence, a bistable response results from the modulation of
transmission by an intensity-dependent phase shift. The
multilayer structure can also act as a Bragg reflector and
offers additional transmission modes known as gap solitons
within the stop band.4 The optimal coupling of these local-
ized modes to radiation may lead to switching thresholds
orders of magnitude smaller than achievable in the transmis-
sion band.5

Recently, global transmission diagrams of multilayer
structures with a Kerr nonlinearity were investigated within a
Kronig-Penneyd-function model.6 It was found that the ef-
fectiveness of the nonlinearity is strongly modified by the
frequency. In addition, the nonlinear responses of the posi-
tive and negative nonlinear media are distinctly different due
to the modulation of the dispersion relation by the superlat-
tice. Many dominant features were understood through an
analysis of stable periodic orbits of the corresponding non-
linear mapping, as well as an analysis of various spectrum
and stability bounds of the nonlinear difference and the cor-
responding differential equations. A simple and intuitive pic-
ture of the formation of gap solitons and soliton trains, based
on a mechanical analogy, was also presented. These under-
standings may prove useful for incorporating nonlinearity in
systems of higher dimensions, for example, in photonic
band-gap structures.7

All these results were based on the Kronig-Penney
d-function model. Such a model offers the advantage of be-
ing amenable to some analytical treatment, and is expected
to work well when the nonlinear layer is thin compared with
the wavelength of the incident wave. However, to our knowl-
edge, its general adequacy as well as its limitations have not
been previously investigated. In this Brief Report, we com-
pare results derived from the Kronig-Penneyd-function
model with direct numerical solutions of wave propagation

in nonlinear superlattices of finite thickness. We find the
Kronig-Penneyd-function model captures most of the essen-
tial features of the nonlinear response in superlattice struc-
tures. The global transmission diagrams from the two meth-
ods are in excellent agreement with each other. However,
some disagreement does exist, most significantly below the
bottom of the transmission band. This difference is entirely
due to the rigidness of the band edge in the Kronig-Penney
d-function model, a unphysical feature that affects the con-
clusion regarding the existence of gap solitons when the Kerr
nonlinearity is positive.

The formulation of the steady state plane wave transmis-
sion problem in nonlinear superlattices has been described in
detail elsewhere.6 The structure consists of alternating layers
of two dielectric materials, one of which has an intensity-
dependent Kerr nonlinearity,e5e01a2uEu2. For normal in-
cidence of a plane wave, the electric-field amplitudeE(x)
satisfies the equation

d2E~x!

dx2
1

v2

c2
e~x!E~x!50, ~1!

wherev is the optical frequency, andc is the vacuum speed
of the light.e(x) is the dielectric constant which varies along
the structure, and depends on the local-field intensity at non-
linear layers. The transmission characteristics are obtained
by solving Eq.~1! under the boundary condition

E~x,t !5HE0e
i ~kx2vt !1Ere

2 i ~kx1vt ! for x,0

Ete
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~2!

where E0, Et , and Er are the amplitude of the incident,
transmitted, and reflected waves, respectively. Wave vector
k5v/c, andL is the total length of the structure. The trans-
mission coefficientT is defined asT5uEtu2/uE0u2.

Equation~1! can be solved4 by matching analytical solu-
tions in each nonlinear layer at the layer interfaces, which
may be expressed in terms of the Jacobi elliptic functions.4 A
much simpler numerical approach, however, is first to dis-
cretize the structure and then iterate the difference equation
numerically across the sample, starting from the output field
Et . Our numerical results are obtained this way.
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The Kronig-Penneyd-function model, on the other hand,
describes a system with infinitesimally thin nonlinear layers.6

In this model, the electric field obeys

d2E~x!

dx2
1

av2

c2 (
n51

N

@11luE~x!u2#E~x!d~x2n!1k2E~x!

50. ~3!

This can be easily rewritten6 as a difference equation in
terms of the field at the nonlinear layersEn ,

En111En215@2 cosk2aksink~11luEnu2!#En , ~4!

wherea5e0a andl5a2 /a. a is the thickness of the non-
linear layers. We have assumed that the linear medium is a
vacuum (e51), and the distance between the neighboring
nonlinear layers,d5a1b, is taken as one unit length. The
d-function model can be viewed as an approximation when
the nonlinear layer is thin compared with the effective wave-
length within it.

In order to compare the results obtained for the
d-function model with the results obtained for the finite-
width nonlinear layers, we have solved the wave equation
@Eq. ~1!# numerically for a system with nonlinear layers of
width 0.1 unit length and linear layers (e51) of width 0.9
unit length. The global transmission diagrams in thek2Et
plane for the positive Kerr coefficient is shown in Fig. 1~b!
as a gray scale plot, along with the results from the
d-function model@Fig. 1~a!#. The general features are re-
markably similar. Good agreement is also obtained when the
Kerr nonlinear coefficient is negative~Fig. 2!. These trans-
mission diagrams show features that have been understood
through analysis of stable periodic orbits and various spec-
trum and stability bounds.6

A remarkable phenomenon occurred in the nonlinear re-
sponse of superlattice structures is the existence of localized
gap soliton solutions in the stop band of the linear regime.4

In the previous study,6 with thed-function model, only in the
negative Kerr media did we find gap soliton solutions. This

is in disagreement with the conclusion of Chen and Mills
that soliton solutions exist regardless of the sign of the
nonlinearity.4 In Fig. 3, we show the transmission diagram
within the stop band for superlattices of finite widths with a
positive nonlinear coefficient. Clearly, resonant trajectories
exist. Examination of the solutions show well-localized
waves symmetrically distributed at the center of the struc-
ture. Different resonance bands correspond to solutions con-
taining different numbers of solitons, analogous to the situa-
tion with negative nonlinearity. Here the inadequacy of the
d-function model shows up, by not giving soliton solutions
in the gap. For a negative nonlinear coefficient, the transmis-
sion diagram of the superlattice structure again is in good
agreement with that of thed-function model~see Fig. 4!.

To understand why thed-function model fails to describe
the formation of a gap soliton in a superlattice with a positive
nonlinear coefficient, we have to examine the physical

FIG. 1. The transmission diagram for a nonlinear superlattice of
L580 units with a positive Kerr coefficient.~a! d-function model
with a51, and~b! exact solutions with linear layers of thickness
0.9 ande51, and nonlinear layers of thickness 0.1 ande0510.
Higher bands~not shown! show similar behavior.

FIG. 2. The transmission diagram for a nonlinear superlattice of
L580 units with a negative Kerr coefficient.~a! d-function model
with a51. ~b! Linear layers of thickness 0.9 ande51, and non-
linear layers of thickness 0.1 ande0510.

FIG. 3. The resonant transmission trajectories of single and mul-
tiple solitons in the third stop band of a nonlinear finite thickness
superlattice ofL580 units with a positive Kerr coefficient. Linear
layers of thickness 0.9 ande51, and nonlinear layers of thickness
0.1 ande0516.

10 250 54BRIEF REPORTS



mechanism in which gap solitons form when nonlinearity is
incorporated into the model. This was elucidated with a me-
chanical analogy in the previous work.6 The soliton forms
only when the frequency is in the forbidden region of the
spectrum in a linear system, i.e., in the gap. As the wave
intensity varies along the structure, the dielectric constant of
the nonlinear layers changes accordingly. Consequently the
location of the effective transmission bands moves. For the
soliton to form, the linearized transmission band has to shift
in the right direction, such that the incident frequency
merges into it. This is illustrated in Fig. 5, in which we show

a single soliton profile@Fig. 5~a!# in the stop band. The cor-
responding effective transmission band edges are shown in
Fig. 5~b!, calculated from the linear dispersion relation using
the local dielectric constant. Clearly, as the soliton intensity
increases, the effective transmission band shifts toward the
incident frequency and eventually takes it completely in the
vicinity of the center of the soliton.

An examination of the effective transmission bands as a
function of the effective dielectric constant in the nonlinear

FIG. 5. Illustration of gap soliton formation in a system with
L580 layers with positive nonlinearity. Linear layers of thickness
0.9 ande51, and nonlinear layers of thickness 0.1 ande0516.
k57.07369 andEt50.01. ~a! Profile of a gap soliton, and~b! the
local effective stop-band edges as determined from the soliton pro-
file. The stop band extends from the dashed line~low-frequency
stop-band edge! to the solid line~high-frequency stop-band edge!.
The thin line is the incident frequency. Clearly, the incident fre-
quency merges inside the effective transmission band around the
center of the soliton.

FIG. 6. The transmission band as a function of the effective
dielectric constant at the nonlinear layers.L580. ~a! d-function
model witha51. ~b! Linear layers of thickness 0.9 ande51, and
nonlinear layers of thickness 0.1 ande0510. The horizontal line
indicates the bands in the linear regime.

FIG. 7. Transmission coefficient as a function of the transmitted
amplitudeEt , for anL580 layer system with a negative nonlinear-
ity. k53.0. ~a! d-function model witha50.35.~b! Linear layers of
thickness 0.9 ande51, and nonlinear layers of thickness 0.1 and
e053.5.

FIG. 4. The resonant transmission trajectories of single and mul-
tiple solitons in the first stop band of anL580 multilayer system
with a negative Kerr coefficient.~a! d-function model with
a50.35.~b! Finite-thickness bilayers with linear layers of thickness
0.9 ande51, and nonlinear layers of thickness 0.1 ande053.5.

54 10 251BRIEF REPORTS



layers shows clearly the difference between thed-function
model and the more realistic multilayer system~Fig. 6!. For
the negative nonlinearity~ the portion below the dotted line!,
the collapse of the gap is described well with thed function
@Fig. 6~a!#. But for positive nonlinearity~the portion above
the dotted line!, the shift of the bottom of the bands toward
lower frequency in the real system is completely missed in
thed function. This is not surprising, since the bottom of the
band in thed-function model is always located atk5mp.
Thus the rigidness of the band edge in thed-function model
prevents the frequency below the bottom of the band from
merging into the effective transmission band when the field
intensity increases, and therefore hinders the formation of
gap solitons.

In Fig. 7, we compare the transmission coefficient as a
function of the transmitted amplitude obtained from the ex-
act solution@Fig. 7~b!# and from thed-function model@Fig.
7~a!#, for a negative nonlinearity with a frequency below the
bottom of the second band. Again, the qualitative features
are the same. Notice the total transmission peaks at the reso-
nance of gap soliton solutions.8

We have also investigated systems with thicker nonlinear
layers, and found qualitatively similar behaviors. Qualitative
agreement worsens, of course, as the nonlinear layer thick-
ness increases. However, the essential features remain the
same. Thus thed-function model seems to be sufficiently
adequate for a qualitative study of nonlinear response to ra-
diation.

In conclusion, we examined many aspects of the nonlin-
ear response in multilayer structures, and found the
d-function model quite adequate, aside from the obvious de-
ficiency of processing a rigid bottom band edge. The model
captures the most essential features in the transmission char-
acteristics, and therefore should be widely used due to its
simplicity.
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