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Tight-Binding Parametrization for Photonic Band Gap Materials
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The idea of the linear combination of atomic orbitals method, well known from the study of electrons,
is extended to the classical wave case. The Mie resonances of the isolated scatterer in the classi
wave case are analogous to the atomic orbitals in the electronic case. The matrix elements of th
two-dimensional tight-binding (TB) Hamiltonian are obtained by fitting toab initio results. The
transferability of the TB model is tested by reproducing accurately the band structure of different 2D
lattices, with and without defects, and at two different dielectric contrasts. [S0031-9007(98)06889-6]
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In recent years experimental and theoretical studies
artificially manufactured periodic dielectric media calle
photonic band gap (PBG) materials or photonic crysta
have attracted considerable attention [1,2]. PBG ma
rials can have a profound impact in many areas in pu
and applied physics. PBG materials are often consider
as analogous to electronic semiconductors. The existe
of spectral gaps in periodic PBG materials or localize
states in disordered systems, in analogy with what happe
to the electronic materials, is of fundamental importanc
Two different mechanisms, single scatterer resonances
macroscopic Bragg-like multiple scattering, contribute t
the formation of gaps and localized states. Preliminary r
sults [3,4] have shown that there is a direct corresponden
between the gaps calculated by plane wave expansion
the Mie resonances [5] of an isolated sphere. It is surpr
ing that the positions of the Mie resonances approximate
coincide with the center of the bands. It is tempting to su
gest that the Mie resonances of an isolated scatterer p
the role of the energy levels of an isolated atom in a cryst
This opens up the possibility to formulate the problem in
simpler way, similar to the tight-binding (TB) formulation
of the electronic problem.

It is well known that the TB method has proven to b
very useful in studying the electronic properties of solid
[6–9]. In an empirical TB approach, matrix elements o
the Hamiltonian between orbitals centered on differe
sites are treated as parameters which are adjusted
obtain the band structure and the band gaps, which ha
been determined by other more accurate methods. T
parameters obtained in this way are then used to stu
other properties of the systems, such as surface sta
impurities, and properties of disordered systems. T
success of the TB formulation has been tested in t
studies of all kinds of materials including Si, C, and
hydrogenated amorphous systems [7–10].

In this paper, we show that it is possible to extend th
ideas of the linear combination of atomic orbitals (LCAO
method to the classical wave case. The Mie resonan
of the isolated scatterer in the classical case play the sa
role as the atomic orbitals in the electronic case. How
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ever, there exist two important differences. First, Mie
resonances’ states are not localized; in fact, they decay t
slowly, as1yr asr ! `, and this may lead to divergences
in some matrix elements. However, in a lattice environ
ment they may be taken as localized, with a localizatio
length comparable to the interparticle dimension. Secon
in the classical wave case, as opposed to the electron
case, the host medium supports propagating solutions f
every frequency. For large wavelengths, this is the dom
nant propagation mode since no resonances have been
cited yet, while for wavelengths comparable to the particl
dimension, transmission is achieved mainly through tran
fer between neighboring localized resonances. Thus, w
may assume that the lowest frequency band is plane wav
like, while the higher bands are TB-like. This picture is
more easily justified in the case of wide gaps and narro
bands, but its validity seems to be much wider. Within
the framework of the systems we studied, we verified th
picture. Furthermore, we were able to show that the T
matrix elements, after an appropriate rescaling, are fun
tions of the distance only.

We will consider the scalar case of a 2D periodic arra
of N infinitely long dielectric cylinders in vacuum, with
periodic boundary conditions and with the incident plan
wave E polarized. We assume the normalized electri
field for each band to be given by

Ens$r , $kd ­
c1

nskd
p

N
ei $k $r 1

c2
nskd
p

N

X
$R

Cns$r 2 $Rdei $k $R ,

(1)

wheren ­ 0, 1, 2, . . . is the band’s index andCns$r 2 $Rd
with an angular symmetryC , cossnud stands for the
wave function of thenth resonance localized at$R. c1

n ­
0, c2

n ­ 1 for n fi 0, and are functions of the frequency
(k ; j $kj) only for n ­ 0 with jc1

0j2 1 jc2
0j2 ­ 1. $r, $R,

$k are 2D vectors, and we have assumed a unit area u
cell. In order to simplify the problem and make a bette
correspondence with the electronic case, we take theCn’s
to be orthonormal to each other and orthogonal toeikr so
that

R
Ep

mEn d $r ­ dmn. This will turn out to be a good
approximation for our case. For the lowest frequenc
© 1998 The American Physical Society 1405
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band, we should expectc1
0 ! 1, c2

0 ! 0 for j $kj ! 0 and
c1

0 ! 0, c2
0 ! 1 for j $kj ! j $Gjy2.

The “Hamiltonian” for the scalar wave equation is
H ­ 2 $=2yes$rd and the eigenfrequenciesv2yc2 of the
system can be found by diagonalizing the Hamiltonia
matrix Hmn ­

R
Ep

mHEn d $r. For a square lattice with
lattice constanta, using the standard notation [6–8] and
taking up to second nearest neighbors into account,
H00 matrix element will be

H00 ­ jc1
0j2jkj2ykel 1 jc2

0j2

3 f´s 1 2V s1d
sssscosfx 1 cosfyd

1 4V s2d
sss cosfx cosfyg , (2)

wherefx ­ kxa, fy ­ kya, jkj ­
q

k2
x 1 k2

y , kel is the

average dielectric constant,´s ­
R

C
p
0s$rdHC0s$rd d $r, and

V s1d,s2d
sss ­

R
C

p
0s$rdHC0s$r 2 $Rs1d,s2dd d $r; the superscripts

s1d ands2d stand for first and second neighbors. We argu
that the functional form ofjc2

0skdj2 is similar to the form
of the scattering cross section of a single cylinder [5] fo
the n ­ 0 (or s-wave) case, so thatjc1

0skdj2 . e2ls fdvm
r .

Herevr ­ j $kjcysv0

p
kel d, v0 is the single cylinder Mie

resonance frequency,ls fd is a function of the filling ratio
f of the form ls fd ­ h1yfh2 . The exponentm has to
be larger than2 in order to preserve the correct slope a
j $kj ! 0. For simplicity, we choosem ­ 4.

The second band (n ­ 1 or p-like) has aC , cosu

symmetry, and will consist of two linearly independen
polarizations,px and py . The Hamiltonian matrix ele-
ments are

Hpxpx ­ ´px 1 2V s1d
ppp cosfy 1 2V s1d

pps cosfx

1 2sV s2d
pps 1 V s2d

pppd cosfx cosfy , (3)

Hpxpy ­ 2sV s2d
ppp 2 V s2d

ppsd sinfx sinfy , (4)

where all quantities are defined the same way as
Eq. (2). The matrix elementHpypy is similar to Hpxpx

with x $ y; Hpypx ­ Hp
pxpy

. In this Letter we consider
only these two bands. We take also the dielectric consta
of the cylinders to bee ­ 100. This large value of
e ensures that the matrix elementHsp is negligible.
However, even smaller values ofe (e.g., e ­ 13) seem
to giveHsp . 0.

We have fitted theV and ´ matrix elements, as well
as the value ofl, to the band structure of five dif-
ferent rectangular lattices with largeysmall axis ratios:
1, 1.05, 1.1, 1.15, 1.2 as well as to a hexagonal lattice, fo
six different filling ratios:f ­ 0.1 0.6. Taking into ac-
count up to third nearest neighbors for the rectangul
lattice involves 13 (9V ’s, 3 ´’s, and the value ofl)
adjustable parameters, while for the hexagonal we co
sidered only first nearest neighbors and so used on
6 adjustable parameters. The quality of these fits can
seen in Fig. 1 where we plot the bands as found nume
cally by the plane wave expansion (PWE) method alon
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FIG. 1. The first two frequency bands for a square lattice wi
filling ratio f ­ 0.1 (a) andf ­ 0.4 (b), and for a hexagonal
lattice with f ­ 0.1 (c) and f ­ 0.4 (d). Circles correspond
to numerical results from the PWE method, while solid line
correspond to the TB fit.

with the TB fit, for a square and a hexagonal lattice fo
two filling ratios. The excellent fit is an indication of the
potential usefulness of the TB method.

We plot next some of the fitted matrix elements. Th
square root of the diagonaĺpx and ´py matrix elements
are plotted [Fig. 2(a)] as a function of the filling ratiof,
while the off-diagonalVppp matrix elements are plotted
[Fig. 2(c)] as a function of the dimensionless separati
distancedij ­ rijya, whererij is the separation distance
between cylindersi andj anda is the cylinders’ radius.
Obviously the matrix elements, especiallyVppp , do not
depend on a single parameter (e.g.,dij). Apparently the
lattice environment [10] has to be included, hopeful
through rescaling functions.

The proposed simple rescaling functionsDon
n di for the

diagonal matrix elements of cylinderi that takes into
account the filling ratio and the different symmetries
of the form

1
sDon

n di
­

X
jfii

t cos2snuijd
d

nn
ij

, (5)

where uij is the angle between the symmetry axis o
the p resonance on cylinderi and the r̂ij direction,
n ­ 0, 1, . . . , for the s, p, . . . , resonances, and the sum
runs over the nearest neighbors of cylinderi. The power
on the angular function was chosen so that thepx and
py resonances in the hexagonal lattice are the same.
only choices were 2 and 4, and it was found that 2 giv
better results. Equation (5) is similar to what was us
in Ref. [10] for the atomic orbitals, except for two differ-
ences: (a) Here we take into account the resonance’s
gular symmetry, and (b) the exponentially decaying pa
is missing, reflecting the nonlocalized character of th
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FIG. 2. Fitted TB parameters for the second (p-like) fre-
quency band. (a)

p
´p vs f. (b)

p
´p vs the rescaled envi

ronment function1yDon
p . Circles and squares correspond

p
´px and p

´py , respectively, of a rectangular lattice with th
big axis alongx̂, and triangles to a hexagonal lattice. (c)Vppp

vs the dimensionless separationd. (d) The rescaledVppp vs
d. Circles, squares, and diamonds correspond to a rectan
lattice’s Vppp elements along the small axis, the large axis, a
the diagonal, and triangles to a hexagonal lattice. All ma
elements are expressed in the dimensionless units ofsvaycd2.

EM resonances. Finally,t ­ fpa2ysa2fdg2 takes into
account that different structures, with the samea anda,
have different filling ratios. t ­ 1 for the rectangular
structures andt ­ 3y4 for the hexagonal. We will use
this parameter only for the diagonal matrix elements.

For the periodic case, the functionsDon
n di is the

same for everyi. We find that the diagonal matrix
element depends onsDon

n di as follows:
p

´n ­ an
0 1

an
1 sDon

n d2an
2 1 an

3 sDon
n d2an

4 where an
0 ­ v0ayc is the

corresponding dimensionless Mie resonance freque
and thean

j ’s s j ­ 1, . . . , 4d are constants. In Fig. 2(b
we plot

p
´p vs the environment functions1yDon

p d. We
can see that

p
´p now scales very well, having a large

value for increasing lattice density. The same depende
is found for all bands.

In order to rescale the off-diagonalV matrix element
between two neighboring resonancesi and j, we need
contributions from the neighbors that are close to the l
joining i and j. Contributions have to be projected o
the r̂ij direction for thes resonance, while for thep
resonance we have to project on its symmetry axis. O
first nearest neighbors will contribute. At the end, w
have to normalize with the sum of all projection weight

A simple formula that describes the environment of t
n resonance on cylinderi along ther̂ij direction is

1
sDoff

n dij
­

P
lscos2 u

n
iljyd

nn

il dP
l cos2 u

n
ilj

, (6)
-
to
e

gular
nd

trix

ncy
)

r
nce
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n
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e

s.
he

wherel runs overi’s nearest neighbors (includingj). u
n
ilj

is the angle between thêril and r̂ij directions for thes
resonance (n ­ 0), and for the p resonance (n ­ 1),
it is the angle between theith resonance’s symmetry
axis and ther̂il direction. Both angles are taken to
have a range from2py2 to py2 [11]. Finally, if we
include screening in our considerations, then the a
tual matrix elementV to be used in a particular prob-
lem can be obtained by the fully rescaled oneV , by
V ij ­ V ijs1 2 SijdyfsDoffd21

ij 1 sDoffd21
ji g whereSij is

the same screening function used in Ref. [10]:Sij ­
tanhsb1

P
lfii,j e2b2fsdil1djldydij gb3 d, and is different for dif-

ferent matrix elements. The fully rescaled matrix ele
ments are found to scale with separation distance
V ij ­ c1d

2c2
ij 1 c3d

2c4
ij wherec1, . . . , c4 are constants.

In Fig. 2(d) we plot the rescaledVppp matrix element.
We see now that it is a smooth function of separatio
distance, except for the third nearest neighbor matrix el
ments which do not scale very well for large filling ra-
tios (small distances). Apparently an improved screenin
function that depends on the filling ratio as well is neede

The constants in the expressions for the´’s and the
V ’s are given in Tables I and II. We have also found
nn ­ 1.65 for all n, andh1 ­ 0.068, h2 ­ 1.23 for ls fd.

To check the transferability of our results we study firs
the defect case shown in the inset graph of Fig. 3(a
There the central cylinder of a3 3 3 supercell is dis-
placed as shown. For$ka ­ s0, 1y3d we plot in Fig. 3(a)
the three edge eigenfrequencies of the first two band
and directly compare our results with the ones ob
tained numerically by the PWE method for exactly th
same system. The agreement is excellent. Thus our
parametrization works very well for the defect case too
It is worth noting that the PWE method takes a factor o
104 more CPU time than the TB method.

The second test checks the transferability of our p
rameters for different dielectric contrasts. We fitte
the TB parameters for a square lattice ofe ­ 13 for
5 different filling ratios. The quality of the fit can be
seen in Fig. 3(b) where we plot the PWE bands alon
with the TB fit for thef ­ 20% case. We find that the
matrix elements are rescaled by the same functions w
the same parameters except for only a different powern,
and scale with distance with the samec parameters as ob-
tained from Table II, except for a multiplication constant
In the e ­ 13 case, we find thatn ­ 4.37 and the multi-
plicative constants arec ­ 3.88 for Vpps andc ­ 4.46
for Vppp . A larger rescaling powern can easily be
understood since less contrast produces less localiz

TABLE I. The parameters for thé elements.

a0 a1 a2 a3 a4
p

´s 0.0804 0.0460 0.716 20.0121 5.000
p

´p 0.2371 0.0890 1.640 0.0020 0.320
1407
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TABLE II. The parameters for theV elements.

b1 b2 b3 c1 c2 c3 c4

Vsss 0.075 0.0008 10.0 20.108 4.00 20.000 96 1.30
Vpps 0.100 0.000 08 13.5 0.425 6.14 0.0550 3.22
Vppp 0.700 0.0015 10.0 20.076 5.40 20.0044 2.32
t

-
t

resonances, and so the environmental effect will be larg
The rescaledVpps and Vppp are plotted in Figs. 3(c1)
and 3(c2). We see that our TB parameters are transf
able to other, more realistic, dielectric contrasts, with m
nor changes.

In conclusion, we have obtained a successful T
formulation of light propagation in 2D PBG structures
with transferable matrix elements. Thus we provide a
efficient scheme for handling not only periodic system
but defects and disordered cases as well. We hope t
this scheme can be extended to 3D structures as well.

We thank C. Z. Wang and K. M. Ho for useful discus
sions. Ames Laboratory is operated for the U.S. Depa
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FIG. 3. (a) The three edge eigenfrequencies (circles for PW
solid line for TB) for each band for a3 3 3 supercell including
a defect with f ­ 20%. All cylinders are identical, with
the middle one moving from the equilibrium position, a
pointed in the inset graph withd ­ ay4. The wave vector
is always constant$ka ­ s0, 1y3d. The first band gap extends
approximately fromvayc . 0.53 to vayc . 0.87, while the
second starts atvayc . 1.03. (b) PWE bands (circles) along
with the TB fit (solid line) fore ­ 13 andf ­ 20%. (c) The
fully rescaledVpps [circles in (c1)] andVppp [circles in (c2)]
for the system in (b) vs the dimensionless separationd. The
solid line is the fit using the parameters from Table II and
multiplicative constant.
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