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The idea of the linear combination of atomic orbitals method, well known from the study of electrons,
is extended to the classical wave case. The Mie resonances of the isolated scatterer in the classical
wave case are analogous to the atomic orbitals in the electronic case. The matrix elements of the
two-dimensional tight-binding (TB) Hamiltonian are obtained by fitting ab initio results. The
transferability of the TB model is tested by reproducing accurately the band structure of different 2D
lattices, with and without defects, and at two different dielectric contrasts. [S0031-9007(98)06889-6]

PACS numbers: 42.70.Qs, 41.20.Jb, 71.15.-m

In recent years experimental and theoretical studies ofver, there exist two important differences. First, Mie
artificially manufactured periodic dielectric media called resonances’ states are not localized; in fact, they decay too
photonic band gap (PBG) materials or photonic crystalslowly, asl/r asr — o, and this may lead to divergences
have attracted considerable attention [1,2]. PBG matein some matrix elements. However, in a lattice environ-
rials can have a profound impact in many areas in purenent they may be taken as localized, with a localization
and applied physics. PBG materials are often considereléngth comparable to the interparticle dimension. Second,
as analogous to electronic semiconductors. The existende the classical wave case, as opposed to the electronic
of spectral gaps in periodic PBG materials or localizedcase, the host medium supports propagating solutions for
states in disordered systems, in analogy with what happerevery frequency. For large wavelengths, this is the domi-
to the electronic materials, is of fundamental importancenant propagation mode since no resonances have been ex-
Two different mechanisms, single scatterer resonances amdted yet, while for wavelengths comparable to the particle
macroscopic Bragg-like multiple scattering, contribute todimension, transmission is achieved mainly through trans-
the formation of gaps and localized states. Preliminary refer between neighboring localized resonances. Thus, we
sults [3,4] have shown that there is a direct correspondenaaay assume that the lowest frequency band is plane wave-
between the gaps calculated by plane wave expansion afide, while the higher bands are TB-like. This picture is
the Mie resonances [5] of an isolated sphere. Itis surprismore easily justified in the case of wide gaps and narrow
ing that the positions of the Mie resonances approximatelypands, but its validity seems to be much wider. Within
coincide with the center of the bands. Itis tempting to sugthe framework of the systems we studied, we verified this
gest that the Mie resonances of an isolated scatterer plajicture. Furthermore, we were able to show that the TB
the role of the energy levels of an isolated atom in a crystalmatrix elements, after an appropriate rescaling, are func-
This opens up the possibility to formulate the problem in ations of the distance only.
simpler way, similar to the tight-binding (TB) formulation ~ We will consider the scalar case of a 2D periodic array
of the electronic problem. of N infinitely long dielectric cylinders in vacuum, with

It is well known that the TB method has proven to beperiodic boundary conditions and with the incident plane
very useful in studying the electronic properties of solidswave E polarized. We assume the normalized electric
[6—-9]. In an empirical TB approach, matrix elements offield for each band to be given by
the Hamiltonian between orbitals centered on different chk) i k) L = iR
sites are treated as parameters which are adjusted to£n e T JN Z W (F = R)e™,

R

(7, k) =
- | JN
obtain the band structure and the band gaps, which have (1)
been determined by other more accurate methods. The ) o L=
parameters obtained in this way are then used to studyheren = 0,1,2,...is the band's index an&, (7 — R)
other properties of the systems, such as surface statd¥ith an angular symmetrg¥’ ~ cosnf) stands fog the
impurities, and properties of disordered systems. Thavave function of thesth resonance localized & ¢, =
success of the TB formulation has been tested in th8: ¢; = 1 for n # 0, and are functions of the frequency
studies of all kinds of materials including Si, C, and (k = Ikl) only for n = 0 with |co|* + |cg]> = 1. 7, R,
hydrogenated amorphous systems [7-10]. k are 2D vectors, and we have assumed a unit area unit
In this paper, we show that it is possible to extend thecell. In order to simplify the problem and make a better
ideas of the linear combination of atomic orbitals (LCAO) correspondence with the electronic case, we takeltfie
method to the classical wave case. The Mie resonancése be orthonormal to each other and orthogonat’t so
of the isolated scatterer in the classical case play the santeat [ E* E, d7 = §,,,. This will turn out to be a good
role as the atomic orbitals in the electronic case. Howapproximation for our case. For the lowest frequency
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band, we should expect — 1,c5 — 0 for |k| — 0 and 1.00
1 2 7 ~
c0—>0,c0—>1f0r |k|—>|G|/2 15| b ¢ b
The “Hamiltonian” for the scalar wave equation is 2200 Ao 075 G >&H/
H = —V?/e(7) and the eigenfrequencias?/c? of the 10¢ 1 osof g ]
system can be found by diagonalizing the Hamiltonian o5 | 000 ]
matrix H,, = [E*HE,dr. For a square lattice with ' 025y o ]
lattice constantz, using the standard notation [6—8] and 00 @ 0.00 (b)
taking up to second nearest neighbors into account, the £ r X M r r X M r
Hy, matrix element will be § 1.00
— 11217,12 212
00 — |C()| |k /<€> + |C()| 1.5 tesges g2 8- 075 'w:b‘:;?f
X [&5 + 2V\}) (cosp, + cose,) 10l
’ - 050 | | o oot 1
+ 4V cosg, cose, ], (2) s oo-oo
0.5 1 o025} 1
= = = [r2 2 i d
where ¢, . kxa,. ¢y = kya, |kl ‘*/kf + ky,fe>Js the 00 (c) 0.00 (d)
average dielectric constant, = [ W (7)HY¥(7)d7, and r X M r r X M r

Vs(}?f(z) = [Ws(FHY(F — RV?)dF; the superscripts FIG. 1. The first two frequency bands for a square lattice with
(1) and(2) stand for first and second neighbors. We argusilling ratio f = 0.1 (a) andf = 0.4 (b), and for a hexagonal
that the functional form ofc3(k)|? is similar to the form lattice with f = 0.1 (c) and f = 0.4 (d). Circles correspond
of the scattering cross section of a single cylinder [5] forto numerical results from the PWE method, while solid lines
then = 0 (or s-wave) case, SO that ) (k)|? = e ANer

Herew, = Iklc/(wm/(e ), wyq is the single cylinder Mie

correspond to the TB fit.

resonance frequency( 1) is a function of the filling ratio with Fh_e B T't’ for a square and_ a hexggo.nall lattice for
two filling ratios. The excellent fit is an indication of the

f of the form A(f) = h;/f". The exponen has to
be larger thar2 in order to preserve the correct slope atPOtential usefulness of the TB method.
We plot next some of the fitted matrix elements. The

Ik| — 0. For simplicity, we choosg. = 4. square root of the diagonal, ande, matrix elements

The second bandu(= 1 or p-like) has aW¥ ~ cosf
. . . . are plotted [Fig. 2(a)] as a function of the filling ratfg
symmetry, and will consist of two linearly mdependentWhlle the off-diagonalV,,, matrix elements are plotted

polarizations,p, and py. The Hamiltonian matrix ele- [Fig. 2(c)] as a function of the dimensionless separation

ments are | | distanced;; = r;j/a, wherer;; is the separation distance
H,, =¢, + 2V,(,,,)7T COS¢y + 2V,(,,,)0 COS¢ between cylinderg andj and « is the cylinders’ radius.
+2(v® 4+ v )cose, cose, 3 Obviously the matrix elements, especialy,,, do not
(2 ppo T Vipr) COS. COSY, @) depend on a single parameter (edy;). Apparently the

Hyp =2V = VQ )sing,sing,, (4) lattice environment [10] has to be included, hopefully

where all quantities are defined the same way as ifirough rescaling functions. o

Eq. (2). The matrix elemen, , is similar to H,,_,, The proposed simple rescaling functiGh®"); for the
with x < y; H, , = H . In this Letter we consider diagonal matrix elements of cylinder that takes into

only these two bands. We take also the dielectric constarftccount the filling ratio and the different symmetries is
of the cylinders to bee = 100. This large value of Of the form
€ ensures that the matrix eleme#i,, is negligible. Tco§(n0,])
However, even smaller values ef (e.g.,e = 13) seem (Don)l Z T
to give H,, = 0. s Y

We have fitted theV and ¢ matrix elements, as well where 6;; is the angle between the symmetry axis of
as the value ofA, to the band structure of five dif- the p resonance on cylindei and the #; direction,
ferent rectangular lattices with largemall axis ratios: »n = 0,1,..., for thes, p,..., resonances, and the sum
1,1.05,1.1,1.15,1.2 as well as to a hexagonal lattice, for runs over the nearest neighbors of cylinderThe power
six different filling ratios:f = 0.1-0.6. Taking into ac- on the angular function was chosen so that theand
count up to third nearest neighbors for the rectangulap, resonances in the hexagonal lattice are the same. The
lattice involves 13 (9’s, 3 ¢’s, and the value ofA)  only choices were 2 and 4, and it was found that 2 gives
adjustable parameters, while for the hexagonal we corbetter results. Equation (5) is similar to what was used
sidered only first nearest neighbors and so used onlin Ref. [10] for the atomic orbitals, except for two differ-
6 adjustable parameters. The quality of these fits can bences: (a) Here we take into account the resonance’s an-
seen in Fig. 1 where we plot the bands as found numerigular symmetry, and (b) the exponentially decaying part
cally by the plane wave expansion (PWE) method alonds missing, reflecting the nonlocalized character of the

(5)
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0.28 ‘ — 0.28 ‘ wherel runs over’s nearest neighbors (including. 6;;;
(a) H (b) J’/ is the angle between th&; and 7;; directions for thes
0.27 | . 91027} ]
g o resonance i = 0), and for the p resonance i = 1),
|7w=x 0.26 | i § 8] 0.26 | it is the angle between théth resonance’s symmetry
i ] axis and the#; direction. Both angles are taken to
025} i 1051 Ve have a range from-/2 to «/2 [11]. Finally, if we
024 W ] 024 Lo B include screening in our considerations, then the ac-
02 04 06 02 04 06 tual matrix elementV to be used in a particular prob-
> , 1D, lem can be obtained by the fully rescaled ong, by
x10 x10 ij ij(1 — Qij offy=1 offy~1 ij i
0.0 — 1 007 S Vil ="Vii(1 — §7)/[(D");;" + (D°M);;'] whereS" is
01 ;‘ 4 0&”# 3 the same screening function used in Ref. [18} =
£ 01} tanh(by >, ;. e Pl@itd/dul*) "and is different for dif-

S 02 | Fog ferent matrix elements. The fully rescaled matrix ele-
=03 1 o2 ments are found to scale with separation distance as
04 12 ] Vil = ¢1d;;? + e3d; ™ wherecy,...,cs4 are constants.

04 (c) (d) - / ! -
P In Fig. 2(d) we plot the rescaled/,,, matrix element.
-0.5 : -0.3 : o . .
2 4 6 8 2 4 6 8 We see now that it is a smooth function of separation
d d distance, except for the third nearest neighbor matrix ele-
FIG. 2. Fitted TB parameters for the secong-like) fre-  Ments which do not scale very well for large filling ra-

quency band. (a)/z, vs f. (b) /&, Vs the rescaled envi- ti0s (small distances). Apparently an improved screening
ronment function1/D". Circles and squares correspond to function that depends on the filling ratio as well is needed.
JEp, and /g, , respectively, of a rectangular lattice with the  The constants in the expressions for thie and the

big axis alongt, and triangles to a hexagonal lattice. {G),= Vs are given in Tables | and Il. We have also found

vs the dimensionless separatign (d) The rescaledV,,, vs v, = 1.65 for all n, andh; = 0.068, h» = 1.23 for A(f).

d. Circles, squares, and diamonds correspond to a rectangulaf’ - .
lattice’s V., elements along the small axis, the large axis, and To check the transferability of our results we study first

the diagonal, and triangles to a hexagonal lattice. All matrixthe defect case shown in the inset graph of Fig. 3(a).
elements are expressed in the dimensionless units af/c). There the central cylinder of & X 3 supercell is dis-
placed as shown. Fdra = (0,1/3) we plot in Fig. 3(a)

the three edge eigenfrequencies of the first two bands,
and directly compare our results with the ones ob-
tained numerically by the PWE method for exactly the
same system. The agreement is excellent. Thus our TB
parametrization works very well for the defect case too.
It is worth noting that the PWE method takes a factor of
10* more CPU time than the TB method.

The second test checks the transferability of our pa-
rameters for different dielectric contrasts. We fitted
he TB parameters for a square lattice of= 13 for

different filling ratios. The quality of the fit can be
seen in Fig. 3(b) where we plot the PWE bands along
with the TB fit for the f = 20% case. We find that the

EM resonances. Finallyr = [7a?/(a%f)]? takes into
account that different structures, with the samand «,
have different filling ratios. = = 1 for the rectangular
structures and- = 3/4 for the hexagonal. We will use
this parameter only for the diagonal matrix elements.
For the periodic case, the functioD{"); is the
same for everyi. We find that the diagonal matrix
element depends ofD?"); as follows: \/e, = ag +
al(D™)~% + a4(D°")~% where af = woa/c is the
corresponding dimensionless Mie resonance frequen
and thea}’s (j = 1,...,4) are constants. In Fig. 2(b)
we plot ./, vs the environment functio(ﬂ/Dg“). We
can see that/s, now scales very well, having a larger

is found for all bands.

In order to rescale the off-diagon& matrix element
between two neighboring resonancesnd j, we need
contributions from the neighbors that are close to the line' '™
joining i and j. Contributions have to be projected on Plicative constants are = 3.88 for V,,,, andc = 4.46
the #; direction for thes resonance, while for the for V. A larger rescaling powew can easily be
resonance we have to project on its symmetry axis. Onhl,mderstood since less contrast produces less localized

first nearest neighbors will contribute. At the end, we

and scale with distance with the samparameters as ob-
tained from Table II, except for a multiplication constant.
dn the e = 13 case, we find that = 4.37 and the multi-

have Fo normalize with the sum of all proje_ction weights. TABLE I. The parameters for the elements.
A simple formula that describes the environment of the
n resonance on cylinderalong the#;; direction is o a1 a2 as a4
1 >, (coS 0Ly, /diy J& 00804 0.0460 0.716 —0.0121  5.000
= : , (6) € 0.2371 0.0890 1.640 0.0020 0.320
(D) 2./ COS 0j); o
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TABLE Il. The parameters for th& elements.

b by b3 Cl C2 Cc3 Cq
Viso 0.075 0.0008 10.0 —0.108 4.00 —0.00096 1.30
Vopo 0.100 0.00008 135 0.425 6.14 0.0550 3.22
Vopr 0.700 0.0015 10.0 -0.076 5.40 —0.0044 2.32

resonances, and so the environmental effect will be largement of Energy by lowa State University under Contract
The rescaledV,,, and V,,, are plotted in Figs. 3(c1) No. W-7405-Eng-82. This work was supported by the
and 3(c2). We see that our TB parameters are transfeBirector for Energy Research office of Basic Energy Sci-
able to other, more realistic, dielectric contrasts, with mi-ences and Advanced Energy Projects, by NATO Grant
nor changes. No. 940647, by dIENEA grant, and by an EU grant.
In conclusion, we have obtained a successful TB
formulation of light propagation in 2D PBG structures
with transferable matrix elements. Thus we provide an
efficient scheme for handling not only periodic systems
but defects and disordered cases as well. We hope thall] (a) See, for examplePhotonic Band Gaps and Local-
this scheme can be extended to 3D structures as well. ization, edited by C.M. Soukoulis (Plenum, New York,
We thank C.Z. Wang and K. M. Ho for useful discus- 1993); (b) J. Opt. Soc. Am. BIO, 208408 (1993);

: . . (c) Photonic Band Gap Materials,edited by C.M.
sions. Ames Laboratory is operated for the U.S. Depart Soukoulis (Kluwer, Dordrecht, 1996),

[2] J. Joannopoulos, R.D. Meade, and J. WirRhotonic
3 Crystals(Princeton University, Princeton, NJ, 1995).
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ol (b ] E. N. Economou, irfPhotonic Band Gaps and Localization
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FIG. 3. (a) The three edge eigenfrequencies (circles for PWE,  (North-Holland Publishing Company, London, 1971).
solid line for TB) for each band for & X 3 supercell including  [10] M. S. Tang, C.Z. Wang, C.T. Chan, and K. M. Ho, Phys.
a defect with f = 20%. All cylinders are identical, with Rev. B53, 979 (1996).

the middle one moving from the equilibrium position, as11] Note, however, that fo¥,,, matrix elements, since both
pointed in the inset graph witls = a/4. The wave vector lobes of thep resonance are involvedsz-',j must take

is always constanta = (0,1/3). The first band gap extends : ; y

approximately fromwa/c — 0.53 t0 wa/c ~ 0.87, while the all possible values, but we will have to average over

second starts aba/c = 1.03. (b) PWE bands (circles) along the contgbutlons to G;H;h Iobea Also note thlat for the
with the TB fit (solid line) fore = 13 and f = 20%. (c) The nonperiodic case, certaf,, ,, andH,, , matrix elements

(c1)

o
)

0.65

(,ot-

055}

w

0.45 [ —
0,00 (30 (3-8 (0,0) 3 4
Defect Position d

fully rescaledV,,, [circles in (c1)] andV,,, [circles in (c2)] will not be complex conjugates if the formula is applied
for the system in (b) vs the dimensionless separationThe explicitly. In this event we have to average over the
solid line is the fit using the parameters from Table Il and a two possibilities, in order to keep the Hamiltonian matrix
multiplicative constant. Hermitian.
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