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SOLUTIONS APPROACHING POLYNOMIALS AT INFINITY TO
NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

CHRISTOS G. PHILOS, PANAGIOTIS CH. TSAMATOS

Abstract. This paper concerns the solutions approaching polynomials at ∞
to n-th order (n > 1) nonlinear ordinary differential equations, in which the

nonlinear term depends on time t and on x, x′, . . . , x(N), where x is the un-

known function and N is an integer with 0 ≤ N ≤ n − 1. For each given

integer m with max{1, N} ≤ m ≤ n− 1, conditions are given which guarantee
that, for any real polynomial of degree at most m, there exists a solution that

is asymptotic at ∞ to this polynomial. Sufficient conditions are also presented

for every solution to be asymptotic at∞ to a real polynomial of degree at most
n− 1. The results obtained extend those by the authors and by Purnaras [25]

concerning the particular case N = 0.

1. Introduction

Since its invention by Isaac Newton around 1666, the theory of ordinary differen-
tial equations has occupied a central position in the development of mathematics.
One reason for this is its widespread applicability in the sciences. Another is its
natural connectivity with other areas of mathematics. In the theory of ordinary
differential equations, the study of the asymptotic behavior of the solutions is of
great importance, especially in the case of nonlinear equations. In applications
of nonlinear ordinary differential equations, any information about the asymptotic
behavior of the solutions is usually extremely valuable. Thus, there is every reason
for studying the asymptotic theory of nonlinear ordinary differential equations.

Very recently, the authors and Purnaras [25] studied solutions, which are as-
ymptotic at infinity to real polynomials of degree at most n− 1, for the n-th order
(n > 1) nonlinear ordinary differential equation

x(n)(t) = f(t, x(t)), t ≥ t0 > 0, (1.1)

where f is a continuous real-valued function on [t0,∞) × R. The work in [25] is
essentially motivated by the recent one by Lipovan [15] concerning the special case
of the second order nonlinear ordinary differential equation

x′′(t) = f(t, x(t)), t ≥ t0 > 0. (1.2)
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The application of the main results in [25] to the second order nonlinear ordinary
differential equation (1.2) leads to improved versions of the ones given in [15] (and
of other previous related results in the literature). Some closely related results for
second order nonlinear differential equations involving the derivative of the unknown
function have been given by Rogovchenko and Rogovchenko [29] (see, also, Mustafa
and Rogovchenko [17]).

It is the purpose of the present article to extend the results in [25] to the more
general case of the n-th order (n > 1) nonlinear ordinary differential equation

x(n)(t) = f(t, x(t), x′(t), . . . , x(N)(t)), t ≥ t0 > 0, (1.3)

where N is an integer with 0 ≤ N ≤ n − 1, and f is a continuous real-valued
function on [t0,∞) × RN+1. Note that our thoughts to extend the results in [25]
for the differential equation (1.3), in some future time, had been made known in
this paper.

Throughout the paper, we are interested in solutions of the differential equa-
tion (1.3) which are defined for all large t, i.e., in solutions of (1.3) on an interval
[T,∞), T ≥ t0, where T may depend on the solution. For questions about the
global existence in the future of the solutions of (1.3), we refer to standard clas-
sical theorems in the literature (see, for example, Corduneanu [6], Cronin [7], and
Lakshmikantham and Leela [14]).

The paper is organized as follows. In Section 2, for each given integer m with
max{1, N} ≤ m ≤ n − 1, sufficient conditions are presented in order that, for
any real polynomial of degree at most m, the differential equation (1.3) has a
solution defined for all large t, which is asymptotic at ∞ to this polynomial and
such that the first n − 1 derivatives of the solution are asymptotic at ∞ to the
corresponding first n− 1 derivatives of the given polynomial. Section 3 is devoted
to establishing conditions, which are sufficient for every solution defined for all large
t of the differential equation (1.3) to be asymptotic at ∞ to a real polynomial of
degree at most n− 1 (depending on the solution) and the first n− 1 derivatives of
the solution to be asymptotic at ∞ to the corresponding first n − 1 derivatives of
this polynomial. Moreover, in Section 3, conditions are also given, which guarantee
that every solution x defined for all large t of (1.3) satisfies [x(j)(t)/tn−1−j ] →
[c/(n − 1 − j)!] for t → ∞ (j = 0, 1, . . . , n − 1), where c is some real number
(depending on the solution x). Section 4 contains the application of the results to
the special case of second order nonlinear ordinary differential equations. For n = 2
and N = 0, (1.3) becomes (1.2). Moreover, in the special case where n = 2 and
N = 1, (1.3) can be written as

x′′(t) = f(t, x(t), x′(t)), t ≥ t0 > 0, (1.4)

where f is a continuous real-valued function on [t0,∞)×R2. Some general examples
are given in the last section (Section 5), which demonstrate the applicability of the
results (and, especially, of the main result in Section 2).

The asymptotic theory of n-th order (n > 1) nonlinear differential equations
has a very long history. A central role in this theory plays the problem of the
study of solutions which have a prescribed asymptotic behavior via solutions of
the equation x(n) = 0. In the special case of second order nonlinear differential
equations, a large number of papers have appeared concerning this problem; see,
for example, Cohen [3], Constantin [4], Dannan [8], Hallam [9], Kamo and Usami
[10], Kusano, Naito and Usami [11], Lipovan [15], Mustafa and Rogovchenko [17],
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Naito [18, 19, 20], Philos and Purnaras [24], Rogovchenko and Rogovchenko [29, 30],
Rogovchenko [31], Rogovchenko and Villari [32], Souplet [34], Tong [36], Waltman
[38], Yin [39], and Zhao [40]. For higher order differential equations (ordinary or,
more generally, functional), the above mentioned problem has also been investigated
by several researchers; see, for example, Kusano and Trench [12, 13], Meng [16],
Philos [21, 22, 23], Philos, Sficas and Staikos [26], Philos and Staikos [27], and
the references cited in these papers. We also mention the paper by Trench [37]
concerning linear second order ordinary differential equations as well as the paper
by Philos and Tsamatos [28] about the problem of the asymptotic equilibrium for
nonlinear differential systems with retardations.

Before closing this section, we note that it is especially interesting to examine
the possibility of generalizing the results of the present paper in the case of the n-th
order (n > 1) nonlinear delay differential equation

x(n)(t) = f(t, x(t− τ0(t)), x′(t− τ1(t)), . . . , x(N)(t− τN (t))), t ≥ t0 > 0,

where τk (k = 0, 1, . . . , N) are nonnegative continuous real-valued functions on
[t0,∞) such that limt→∞[t− τk(t)] = ∞ (k = 0, 1, . . . , N).

2. Conditions for the Existence of Solutions that are Asymptotic to
Polynomials at Infinity

Our results in this section are the theorem below and its corollary.

Theorem 2.1. Let m be an integer with max{1, N} ≤ m ≤ n−1, and assume that

|f(t, z0, z1, . . . , zN )| ≤
N∑

k=0

pk(t)gk

( |zk|
tm−k

)
+ q(t)

for all (t, z0, z1, ..., zN ) ∈ [t0,∞)× RN+1, (2.1)

where pk (k = 0, 1, . . . , N) and q are nonnegative continuous real-valued functions
on [t0,∞) such that∫ ∞

t0

tn−1pk(t)dt < ∞ (k = 0, 1, . . . , N), and
∫ ∞

t0

tn−1q(t)dt < ∞, (2.2)

and gk (k = 0, 1, . . . , N) are nonnegative continuous real-valued functions on [0,∞)
which are not identically zero. Let c0, c1, . . . , cm be real numbers and T be a point
with T ≥ t0, and suppose that there exists a positive constant K so that

max
k=0,1,...,N

{ N∑
`=0

[ ∫ ∞

T

(s− T )n−1−k

(n− 1− k)!
p`(s)ds

]
Θ`(c`, c`+1, . . . , cm;T ;K)

+
∫ ∞

T

(s− T )n−1−k

(n− 1− k)!
q(s)ds

}
≤ K,

(2.3)

where

Θ0(c0, c1, . . . , cm;T ;K) = sup
{
g0(z) : 0 ≤ z ≤ K

Tm
+

m∑
i=0

|ci|
Tm−i

}
(2.4)

and, provided that N > 0,

Θ`(c`, c`+1, ..., cm;T ;K)
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= sup
{
g`(z) : 0 ≤ z ≤ K

Tm−`
+

m∑
i=`

i(i− 1)...(i− ` + 1) |ci|
Tm−i

}
(` = 1, ..., N). (2.5)

Then the differential equation (1.3) has a solution x on the interval [T,∞), which
is asymptotic to the polynomial c0 + c1t + · · ·+ cmtm as t →∞; i.e.,

x(t) = c0 + c1t + · · ·+ cmtm + o(1) as t →∞, (2.6)

and satisfies

x(j)(t) =
m∑

i=j

i(i− 1) . . . (i− j + 1)cit
i−j + o(1) as t →∞ (j = 1, . . . ,m) (2.7)

and, provided that m < n− 1,

x(λ)(t) = o(1) as t →∞ (λ = m + 1, . . . , n− 1). (2.8)

Corollary 2.2. Let m be an integer with max{1, N} ≤ m ≤ n − 1, and assume
that (2.1) is satisfied, where pk (k = 0, 1, . . . , N) and q, and gk (k = 0, 1, . . . , N)
are as in Theorem 2.1. Then, for any real numbers c0, c1, . . . , cm, the differential
equation (1.3) has a solution x on an interval [T,∞) (where T ≥ max{t0, 1} depends
on c0, c1, . . . , cm), which is asymptotic to the polynomial c0 + c1t + · · · + cmtm as
t →∞; i.e., (2.6) holds, and satisfies (2.7) and (2.8) (provided that m < n− 1).

The method which will be applied in the proof of Theorem 2.1 is based on the
use of the well-known Schauder fixed point theorem (Schauder [33]). This theorem
can be found in several books on functional analysis (see, for example, Conway [5]).

Theorem 2.3 (Schauder theorem). Let E be a Banach space and X be any non-
empty convex and closed subset of E. If S is a continuous mapping of X into itself
and SX is relatively compact, then the mapping S has at least one fixed point (i.e.,
there exists an x ∈ X with x = Sx).

We need to consider the Banach space BC([T,∞), R) of all bounded continuous
real-valued functions on the given interval [T,∞), endowed with the sup-norm ‖ · ‖:

‖h‖ = sup
t≥T

|h(t)| for h ∈ BC([T,∞), R).

In the proof of Theorem 2.1, we will use the set (BC)N ([T,∞), R) defined as fol-
lows: (BC)0([T,∞), R) coincides with BC([T,∞), R); for N > 0, (BC)N ([T,∞), R)
is the set of all bounded continuous real-valued functions on the interval [T,∞),
which have bounded continuous k-order derivatives on [T,∞) for each k = 1, . . . , N .
Clearly, (BC)N ([T,∞), R) is a Banach space endowed with the norm ‖ · ‖N defined
by

‖h‖N = max
k=0,1,...,N

‖h(k)‖ for h ∈ (BC)N ([T,∞), R).

To present a compactness criterion for subsets of the space (BC)N ([T,∞), R),
we first give some well-known definitions of notions referred to sets of real-valued
functions. Let U be a set of real-valued functions defined on the interval [T,∞).
The set U is called uniformly bounded if there exists a positive constant M such
that, for all functions u in U ,

|u(t)| ≤ M for every t ≥ T.
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Also, U is said to be equicontinuous if, for each ε > 0, there exists a δ ≡ δ(ε) > 0
such that, for all functions u in U ,

|u(t1)− u(t2)| < ε for every t1, t2 ≥ T with |t1 − t2| < δ.

Moreover, U will be called equiconvergent at ∞ if all functions in U are convergent
in R at the point ∞ and, for each ε > 0, there exists a Tε ≥ T such that, for all
functions u in U ,

|u(t)− lim
s→∞

u(s)| < ε for every t ≥ Tε.

We have the following compactness criterion for subsets of (BC)N ([T,∞), R).

Lemma 2.4 (Compactness criterion). Let H be a subset of the Banach space
(BC)N ([T,∞), R) endowed with the norm ‖ · ‖N . Define H(0) = H and, provided
that N > 0, H(k) = {h(k) : h ∈ H} for k = 1, . . . , N . If H(k) (k = 0, 1, . . . , N) are
uniformly bounded, equicontinuous and equiconvergent at ∞, then H is relatively
compact.

In the special case N = 0, i.e., in the case of the Banach space BC([T,∞), R),
the above compactness criterion is well-known (see Avramescu [1], Staikos [35]).
The method used in the proof of our compactness criterion is a generalization of
the one applied in proving this criterion in the special case of the Banach space
BC([T,∞), R).

Proof of Lemma 2.4. First, we notice that the sets H(k) (k = 0, 1, . . . , N) are uni-
formly bounded if and only if the set H is uniformly bounded in (BC)N ([T,∞), R)
in the sense that there exists a positive constant M such that, for all functions h
in H,

|h(k)(t)| ≤ M for every t ≥ T (k = 0, 1, . . . , N).

Also, we observe that H(k) (k = 0, 1, . . . , N) are equicontinuous if and only if
H is equicontinuous in (BC)N ([T,∞), R), that is, for each ε > 0, there exists a
δ ≡ δ(ε) > 0 such that, for all functions h in H,

|h(k)(t1)− h(k)(t2)| < ε for every t1, t2 ≥ T with |t1 − t2| < δ (k = 0, 1, . . . , N).

Moreover, H(k) (k = 0, 1, . . . , N) are equiconvergent at ∞ if and only if H is
equiconvergent at ∞ in (BC)N ([T,∞), R) in the sense that all functions in H are
convergent in R at the point ∞ and, provided that N > 0, the first N derivatives
of every function in H tend to zero at ∞, and, for each ε > 0, there exists a Tε ≥ T
such that, for all functions h in H,

|h(t)− lim
s→∞

h(s)| < ε for every t ≥ Tε

and, provided that N > 0,

|h(k)(t)| < ε for every t ≥ Tε (k = 1, . . . , N).

Let (BC)N
` ([T,∞), R) be the subspace of (BC)N ([T,∞), R) consisting of all

functions h in (BC)N ([T,∞), R) such that limt→∞ h(t) exists in R and, provided
that N > 0,

lim
t→∞

h(k)(t) = 0 (k = 1, . . . , N).

Note that (BC)N
` ([T,∞), R) is a closed subspace of (BC)N ([T,∞), R).
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Consider the Banach space C([0, 1], R) of all continuous real-valued functions on
the interval [0, 1], endowed with the sup-norm ‖ · ‖0:

‖h‖0 = sup
0≤t≤1

|h(t)| for h ∈ C([0, 1], R).

Consider, also, the set CN ([0, 1], R) defined as follows: C0([0, 1], R) coincides with
C([0, 1], R); for N > 0, CN ([0, 1], R) is the set of all N -times continuously differen-
tiable real-valued functions on the interval [0, 1]. Clearly, CN ([0, 1], R) is a Banach
space endowed with the norm ‖ ‖0N defined by

‖h‖0N = max
k=0,1,...,N

‖h(k)‖0 for h ∈ CN ([0, 1], R).

By the Arzelà-Ascoli theorem, a subset of the Banach space CN ([0, 1], R) is
relatively compact if and only if it is uniformly bounded and equicontinuous. Note
that a subset H0 of CN ([0, 1], R) is called uniformly bounded if there exists a
positive constant M such that, for all functions h0 in H0,

|h(k)
0 (t)| ≤ M for every t ∈ [0, 1] (k = 0, 1, . . . , N).

Also, a subset H0 of CN ([0, 1], R) is said to be equicontinuous if, for each ε > 0,
there exists a δ ≡ δ(ε) > 0 such that, for all functions h0 in H0,

|h(k)
0 (t1)− h

(k)
0 (t2)| < ε

for every t1, t2 ∈ [0, 1] with |t1 − t2| < δ (k = 0, 1, . . . , N).
Next, we consider the function Φ : (BC)N

` ([T,∞), R) → CN ([0, 1], R) defined by
the formula

(Φx)(t) =

{
x(T + t

1−t ), if 0 ≤ t < 1
lims→∞ x(s), if t = 1.

It is not difficult to check that Φ is a homeomorphism between the Banach spaces
(BC)N

` ([T,∞), R) and CN ([0, 1], R). So, it follows that a subset of the space
(BC)N

` ([T,∞), R) is relatively compact if and only if it is uniformly bounded,
equicontinuous and equiconvergent at ∞.

Now, assume that the sets H(k) (k = 0, 1, . . . , N) are uniformly bounded, equi-
continuous and equiconvergent at ∞. Then H is uniformly bounded, equicon-
tinuous and equiconvergent at ∞, in (BC)N ([T,∞), R). Thus, H is a relatively
compact subset of (BC)N

` ([T,∞), R). Since (BC)N
` ([T,∞), R) is a closed subspace

of (BC)N ([T,∞), R), we can be led to the conclusion that H is also relatively
compact in (BC)N ([T,∞), R). The proof of the lemma is complete. �

Proof of Theorem 2.1. Set

Pm(t) = c0 + c1t + · · ·+ cmtm ≡
m∑

i=0

cit
i for t ∈ R.

We have

P (j)
m (t) =

m∑
i=j

i(i− 1)...(i− j + 1)cit
i−j for t ∈ R (j = 1, ...,m)

and, provided that m < n− 1,

P (λ)
m (t) = 0 for t ∈ R (λ = m + 1, . . . , n− 1).
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Furthermore, we see that the substitution y = x − Pm transforms the differential
equation (1.3) into the equation

y(n)(t) = f(t, y(t) + Pm(t), y′(t) + P ′m(t), . . . , y(N)(t) + P (N)
m (t)). (2.9)

We observe that

y(t) = x(t)− (c0 + c1t + · · ·+ cmtm),

y(j)(t) = x(j)(t)−
m∑

i=j

i(i− 1) . . . (i− j + 1)cit
i−j (j = 1, . . . ,m),

and, provided that m < n− 1,

y(λ)(t) = x(λ)(t) (λ = m + 1, . . . , n− 1).

So, by taking into account (2.6), (2.7) and (2.8), we can be led to the conclusion
that what we have to prove is that the differential equation (2.9) has a solution y
on the interval [T,∞), which satisfies

lim
t→∞

y(ρ)(t) = 0 (ρ = 0, 1, . . . , n− 1). (2.10)

Let E denote the Banach space (BC)N ([T,∞), R) endowed with the norm ‖·‖N ,
and let us define

Y = {y ∈ E : ‖y‖N ≤ K}.
It is clear that Y is a nonempty convex and closed subset of E.

Consider, now, an arbitrary function y in Y . Then |y(t)| ≤ K for every t ≥ T
and, provided that N > 0,

|y(`)(t)| ≤ K for every t ≥ T (` = 1, . . . , N).

Thus, for every t ≥ T , we obtain

|y(t) + Pm(t)|
tm

≤ |y(t)|
tm

+
m∑

i=0

|ci|
tm−i

≤ K

Tm
+

m∑
i=0

|ci|
Tm−i

and, provided that N > 0,

|y(`)(t) + P
(`)
m (t)|

tm−`
≤ |y(`)(t)|

tm−`
+

m∑
i=`

i(i− 1) . . . (i− ` + 1)|ci|
tm−i

≤ K

Tm−`
+

m∑
i=`

i(i− 1) . . . (i− ` + 1)|ci|
Tm−i

(` = 1, . . . , N).

Hence, we have

g0

( |y(t) + Pm(t)|
tm

)
≤ Θ0(c0, c1, . . . , cm;T ;K) for t ≥ T,

where Θ0(c0, c1, . . . , cm;T ;K) is defined by (2.4); moreover, provided that N > 0,
we have

g`

( |y(`)(t) + P
(`)
m (t)|

tm−`

)
≤ Θ`(c`, c`+1, . . . , cm;T ;K) for t ≥ T (` = 1, . . . , N),

where Θ`(c`, c`+1, . . . , cm;T ;K) are defined by (2.5). But, from (2.1) it follows that∣∣f(
t, y(t) + Pm(t), y′(t) + P ′m(t), . . . , y(N)(t) + P (N)

m (t)
)∣∣

≤ p0(t)g0

( |y(t) + Pm(t)|
tm

)
+ p1(t)g1

( |y′(t) + P ′m(t)|
tm−1

)
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+ · · ·+ pN (t)gN

( |y(N)(t) + P
(N)
m (t)|

tm−N

)
+ q(t)

for all t ≥ T . So, we have

|f(t, y(t) + Pm(t), y′(t) + P ′m(t), . . . , y(N)(t) + P (N)
m (t))|

≤
N∑

`=0

p`(t)Θ`(c`, c`+1, . . . , cm;T ;K) for every t ≥ T. (2.11)

This inequality, together with (2.2), guarantee that∫ ∞

T

(s− T )n−1

(n− 1)!
f(s, y(s) + Pm(s), y′(s) + P ′m(s), . . . , y(N)(s) + P (N)

m (s))ds

exists in R. More generally, for each ρ ∈ {0, 1, . . . , n− 1},∫ ∞

T

(s− T )n−1−ρ

(n− 1− ρ)!
f(s, y(s) + Pm(s), y′(s) + P ′m(s), . . . , y(N)(s) + P (N)

m (s))ds

exists in R. Next, we use (2.11) to obtain, for any k ∈ {0, 1, . . . , N} and for every
t ≥ T ,∣∣∣ ∫ ∞

t

(s− t)n−1−k

(n− 1− k)!
f
(
s, y(s) + Pm(s), y′(s) + P ′m(s), . . . , y(N)(s) + P (N)

m (s)
)
ds

∣∣∣
≤

∫ ∞

t

(s− t)n−1−k

(n− 1− k)!

∣∣∣f(
s, y(s) + Pm(s), y′(s) + P ′m(s), . . . , y(N)(s) + P (N)

m (s)
)∣∣∣ds

≤
∫ ∞

T

(s− T )n−1−k

(n− 1− k)!

∣∣∣f(
s, y(s) + Pm(s), y′(s) + P ′m(s), . . . , y(N)(s) + P (N)

m (s)
)∣∣∣ds

≤
N∑

`=0

[ ∫ ∞

T

(s− T )n−1−k

(n− 1− k)!
p`(s)ds

]
Θ`(c`, c`+1, . . . , cm;T ;K)

+
∫ ∞

T

(s− T )n−1−k

(n− 1− k)!
q(s)ds .

Hence, by using (2.3), we have∣∣ ∫ ∞

t

(s− t)n−1−k

(n− 1− k)!
f
(
s, y(s) + Pm(s), y′(s) + P ′m(s), . . . , y(N)(s) + P (N)

m (s)
)
ds

∣∣
≤ K for all t ≥ T (k = 0, 1, . . . , N). (2.12)

We have thus proved that every function y in Y is such that (2.12) holds. So, it
is not difficult to check that the formula

(Sy)(t) = (−1)n

∫ ∞

t

(s− t)n−1

(n− 1)!

× f
(
s, y(s) + Pm(s), y′(s) + P ′m(s), . . . , y(N)(s) + P (N)

m (s)
)
ds for t ≥ T

defines a mapping S of Y into itself. Our purpose is to apply the Schauder theorem
for this mapping. We shall prove that S satisfies the assumptions of the Schauder
theorem.

We will show that SY is relatively compact. Define (SY )(0) = SY and, provided
that N > 0, (SY )(k) = {(Sy)(k) : y ∈ Y } for k = 1, . . . , N . By the given compact-
ness criterion, in order to show that SY is relatively compact, it suffices to establish
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that each one of the sets (SY )(k) ( k = 0, 1, . . . , N) is uniformly bounded, equicon-
tinuous, and equiconvergent at ∞. Let k be an arbitrary integer in {0, 1, . . . , N}.
Since SY ⊆ Y , we obviously have ‖(Sy)(k)‖ ≤ K for all y ∈ Y , and consequently
(SY )(k) is uniformly bounded. Moreover, in view of (2.11), we obtain, for any
function y ∈ Y and every t ≥ T ,

|(Sy)(k)(t)− 0| =
∣∣∣ ∫ ∞

t

(s− t)n−1−k

(n− 1− k)!

× f
(
s, y(s) + Pm(s), y′(s) + P ′m(s), . . . , y(N)(s) + P (N)

m (s)
)
ds

∣∣∣
≤

∫ ∞

t

(s− t)n−1−k

(n− 1− k)!

×
∣∣∣f(

s, y(s) + Pm(s), y′(s) + P ′m(s), . . . , y(N)(s) + P (N)
m (s)

)∣∣∣ds

≤
N∑

`=0

[ ∫ ∞

t

(s− t)n−1−k

(n− 1− k)!
p`(s)ds

]
Θ`(c`, c`+1, . . . , cm;T ;K)

+
∫ ∞

t

(s− t)n−1−k

(n− 1− k)!
q(s)ds.

Thus, by (2.2), it follows easily that (SY )(k) is equiconvergent at ∞. Furthermore,
by using again (2.11), for any y ∈ Y and for every t1, t2 with T ≤ t1 < t2, we have:

|(Sy)(n−1)(t2)− (Sy)(n−1)(t1)|

=
∣∣∣ ∫ ∞

t2

f
(
s, y(s) + Pm(s), y′(s) + P ′m(s), . . . , y(n−1)(s) + P (n−1)

m (s)
)
ds

−
∫ ∞

t1

f
(
s, y(s) + Pm(s), y′(s) + P ′m(s), . . . , y(n−1)(s) + P (n−1)

m (s)
)
ds

∣∣∣
=

∣∣∣− ∫ t2

t1

f
(
s, y(s) + Pm(s), y′(s) + P ′m(s), . . . , y(n−1)(s) + P (n−1)

m (s)
)
ds

∣∣∣
≤

∫ t2

t1

f
(
s, y(s) + Pm(s), y′(s) + P ′m(s), . . . , y(n−1)(s) + P (n−1)

m (s)
)∣∣∣ds

≤
n−1∑
`=0

[ ∫ t2

t1

p`(s)ds
]
Θ`(c`, c`+1, . . . , cm;T ;K) +

∫ t2

t1

q(s)ds,

if k = n− 1 (and so N = n− 1); and

|(Sy)(k)(t2)− (Sy)(k)(t1)|

=
∣∣∣ ∫ ∞

t2

(s− t2)n−1−k

(n− 1− k)!
f
(
s, y(s) + Pm(s), y′(s) + P ′m(s), . . . , y(N)(s) + P (N)

m (s)
)
ds

−
∫ ∞

t1

(s− t1)n−1−k

(n− 1− k)!
f
(
s, y(s) + Pm(s), y′(s) + P ′m(s), . . . , y(N)(s) + P (N)

m (s)
)
ds

∣∣∣
=

∣∣∣ ∫ ∞

t2

[ ∫ ∞

r

(s− r)n−2−k

(n− 2− k)!
f(s, y(s) + Pm(s), y′(s) + P ′m(s),

. . . , y(N)(s) + P (N)
m (s))ds

]
dr
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−
∫ ∞

t1

[ ∫ ∞

r

(s− r)n−2−k

(n− 2− k)!
f(s, y(s) + Pm(s), y′(s) + P ′m(s),

. . . , y(N)(s) + P (N)
m (s))ds

]
dr

∣∣∣
=

∣∣∣− ∫ t2

t1

[ ∫ ∞

r

(s− r)n−2−k

(n− 2− k)!
f
(
s, y(s) + Pm(s), y′(s) + P ′m(s),

. . . , y(N)(s) + P (N)
m (s)

)
ds

]
dr

∣∣∣
≤

∫ t2

t1

[ ∫ ∞

r

(s− r)n−2−k

(n− 2− k)!

∣∣∣f(s, y(s) + Pm(s), y′(s) + P ′m(s),

. . . , y(N)(s) + P (N)
m (s))

∣∣∣ds
]
dr

≤
N∑

`=0

{∫ t2

t1

[ ∫ ∞

r

(s− r)n−2−k

(n− 2− k)!
p`(s)ds

]
dr

}
Θ`(c`, c`+1, . . . , cm;T ;K)

+
∫ t2

t1

[ ∫ ∞

r

(s− r)n−2−k

(n− 2− k)!
q(s)ds

]
dr,

if k < n−1. Hence, it is not difficult to verify that the set (SY )(k) is equicontinuous.
We have thus proved that SY is relatively compact.

It remains to prove that the mapping S is continuous. To this end, let us consider
a y ∈ Y and an arbitrary sequence (yν)ν≥1 in Y with

‖ · ‖N − lim
ν→∞

yν = y.

Then we obviously have ‖ · ‖ − limν→∞ yν = y and, provided that N > 0,

‖ · ‖ − lim
ν→∞

y(k)
ν = y(k) (k = 1, . . . , N).

On the other hand, by (2.11), we have, for all ν ≥ 1,∣∣∣f(
t, yν(t) + Pm(t), y′ν(t) + P ′m(t), . . . , y(N)

ν (t) + P (N)
m (t)

)∣∣∣
≤

N∑
`=0

p`(t)Θ`(c`, c`+1, . . . , cm;T ;K) + q(t) for every t ≥ T.

So, because of (2.2), one can apply the Lebesgue dominated convergence theorem
to obtain, for every t ≥ T ,

lim
ν→∞

∫ ∞

t

(s− t)n−1

(n− 1)!
f(s, yν(s) + Pm(s), y′ν(s) + P ′m(s), . . . , y(N)

ν (s) + P (N)
m (s))ds

=
∫ ∞

t

(s− t)n−1

(n− 1)!
f(s, y(s) + Pm(s), y′(s) + P ′m(s), . . . , y(N)(s) + P (N)

m (s))ds.

This ensures the pointwise convergence limν→∞(Syν)(t) = (Sy)(t) for t ≥ T . Next,
we establish that

‖ · ‖N − lim
ν→∞

Syν = Sy. (2.13)

For this purpose, we consider an arbitrary subsequence (Syµν
)ν≥1 of (Syν)ν≥1.

Since SY is relatively compact, there exists a subsequence (Syµλν
)ν≥1 of (Syµν

)ν≥1

and a u ∈ E so that
‖ · ‖N − lim

ν→∞
Syµλν

= u.
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Since the ‖ · ‖N−convergence implies the uniform convergence and, in particular,
the pointwise one to the same limit function, we must have u = Sy. This means
that (2.13) holds true. We have thus proved that the mapping S is continuous.

Now, by applying the Schauder theorem, we conclude that there exists a y ∈ Y
with y = Sy. That is,

y(t) = (−1)n

∫ ∞

t

(s− t)n−1

(n− 1)!

× f
(
s, y(s) + Pm(s), y′(s) + P ′m(s), . . . , y(N)(s) + P (N)

m (s)
)
ds for t ≥ T.

This yields

y(n)(t) = f(t, y(t) + Pm(t), y′(t) + P ′m(t), . . . , y(N)(t) + P (N)
m (t)) for t ≥ T

and so y is a solution on [T,∞) of the differential equation (2.9). Furthermore, for
each ρ = 0, 1, . . . , n− 1, we have

(−1)n−ρy(ρ)(t)

=
∫ ∞

t

(s− t)n−1−ρ

(n− 1− ρ)!
f
(
s, y(s) + Pm(s), y′(s) + P ′m(s), . . . , y(N)(s) + P (N)

m (s)
)
ds

for all t ≥ T . Thus, it follows that the solution y satisfies (2.10). The proof of the
theorem is now complete. �

Proof of Corollary 2.2. Let c0, c1, . . . , cm be given real numbers. By taking into
account the hypothesis that gk (k = 0, 1, . . . , N) are not identically zero on [0,∞),
we can consider a positive constant K so that

Θ0
0 ≡ sup

{
g0(z) : 0 ≤ z ≤ K +

m∑
i=0

|ci|
}

> 0

and, provided that N > 0,

Θ0
` ≡ sup

{
g`(z) : 0 ≤ z ≤ K +

m∑
i=0

i(i− 1) . . . (i− ` + 1)|ci|
}

> 0 (` = 1, . . . , N).

Furthermore, by (2.2), we can choose a point T ≥ max{t0, 1} such that∫ ∞

T

(s− T )n−1−k

(n− 1− k)!
p`(s)ds ≤ K

2(N + 1)Θ0
`

(k, ` = 0, 1, . . . , N)

and ∫ ∞

T

(s− T )n−1−k

(n− 1− k)!
q(s)ds ≤ K

2
(k = 0, 1, . . . , N).

Since T ≥ 1, we have

K

Tm
+

m∑
i=0

|ci|
Tm−i

≤ K +
m∑

i=0

|ci|

and, provided that N > 0,

K

Tm−`
+

m∑
i=`

i(i− 1) . . . (i− ` + 1)|ci|
Tm−i

≤ K +
m∑

i=`

i(i− 1) . . . (i− ` + 1)|ci|

for ` = 1, . . . , N . Consequently,

Θ`(c`, c`+1, . . . , cm;T ;K) ≤ Θ0
` (` = 0, 1, . . . , N),
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where Θ0(c0, c1, . . . , cm;T ;K) is defined by (2.4) and, in the case where N > 0,
Θ`(c`, c`+1, . . . , cm;T ;K) (` = 1, . . . , N) are defined by (2.5). Now, we obtain

max
k=0,1,...,N

{ N∑
`=0

[ ∫ ∞

T

(s− T )n−1−k

(n− 1− k)!
p`(s)ds

]
Θ`(c`, c`+1, . . . , cm;T ;K)

+
∫ ∞

T

(s− T )n−1−k

(n− 1− k)!
q(s)ds

}
≤

N∑
`=0

K

2(N + 1)Θ0
`

Θ`(c`, c`+1, . . . , cm;T ;K) +
K

2

=
N∑

`=0

K

2(N + 1)
· Θ`(c`, c`+1, . . . , cm;T ;K)

Θ0
`

+
K

2

≤ K

2(N + 1)
(N + 1) +

K

2
= K,

which implies (2.3). Hence, the corollary follows from Theorem 2.1. �

3. Sufficient Conditions for all Solutions to be Asymptotic to
Polynomials at Infinity

Our results in this section are formulated as a proposition and a theorem. Our
proposition is interesting of its own as a new result. Moreover, this proposition will
be used, in a basic way, in proving Theorem 3.2.

Proposition 3.1. Assume that

|f(t, z0, z1, . . . , zN )| ≤
N∑

k=0

pk(t)gk

( |zk|
tn−1−k

)
+ q(t)

for all (t, z0, z1, . . . , zN ) ∈ [t0,∞)× RN+1, (3.1)

where pk (k = 0, 1, . . . , N) and q are nonnegative continuous real-valued functions
on [t0,∞) such that∫ ∞

t0

pk(t)dt < ∞ (k = 0, 1, . . . , N), and
∫ ∞

t0

q(t)dt < ∞; (3.2)

and gk (k = 0, 1, . . . , N) are continuous real-valued functions on [0,∞), which are
positive and increasing on (0,∞) and such that∫ ∞

1

dz∑N
k=0 gk(z)

= ∞. (3.3)

Then every solution x on an interval [T,∞), T ≥ t0, of the differential equation
(1.3) satisfies

x(j)(t) =
c

(n− 1− j)!
tn−1−j + o(tn−1−j) as t →∞ (j = 0, 1, . . . , n− 1), (3.4)

where c is some real number (depending on the solution x).
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Theorem 3.2. Assume that (3.1) is satisfied, where pk (k = 0, 1, . . . , N) and q
are as in Theorem 2.1, i.e., nonnegative continuous real-valued functions on [t0,∞)
such that∫ ∞

t0

tn−1pk(t)dt < ∞ (k = 0, 1, . . . , N), and
∫ ∞

t0

tn−1q(t)dt < ∞, (3.5)

and gk (k = 0, 1, . . . , N) are as in Proposition 3.1. Then every solution x on
an interval [T,∞), T ≥ t0, of the differential equation (1.3) is asymptotic to a
polynomial c0 + c1t + · · ·+ cn−1t

n−1 as t →∞; i.e.,

x(t) = c0 + c1t + · · ·+ cn−1t
n−1 + o(1) as t →∞, (3.6)

and satisfies

x(j)(t) =
n−1∑
i=j

i(i− 1) . . . (i− j + 1)cit
i−j + o(1) as t →∞ (j = 1, . . . , n− 1),

(3.7)
where c0, c1, . . . , cn−1 are real numbers (depending on the solution x). More pre-
cisely, every solution x on an interval [T,∞), T ≥ t0, of (1.3) satisfies

x(t) = C0 + C1(t− T ) + · · ·+ Cn−1(t− T )n−1 + o(1) as t →∞ (3.8)

and

x(j)(t) =
n−1∑
i=j

i(i−1) . . . (i−j+1)Ci(t−T )i−j+o(1) as t →∞ (j = 1, . . . , n−1),

(3.9)
where

Ci =
1
i!

[
x(i)(T ) + (−1)n−1−i

∫ ∞

T

(s− T )n−1−i

(n− 1− i)!
f(s, x(s), x′(s), . . . , x(N)(s))ds

]
(i = 0, 1, . . . , n− 1). (3.10)

Combining Corollary 2.2 and Theorem 3.2, we obtain the following result.

Assume that (3.1) is satisfied, where pk (k = 0, 1, . . . , N) and q are nonneg-
ative continuous real-valued functions on [t0,∞) such that (3.5) holds, and gk

(k = 0, 1, . . . , N) are nonnegative continuous real-valued functions on [0,∞) which
are not identically zero. Then, for any real polynomial of degree at most n− 1, the
differential equation (1.3) has a solution defined for all large t, which is asymptotic
at ∞ to this polynomial and such that the first n− 1 derivatives of the solution are
asymptotic at ∞ to the corresponding first n − 1 derivatives of the given polyno-
mial. Moreover, if, in addition, gk (k = 0, 1, . . . , N) are positive and increasing on
(0,∞) and such that (3.3) holds, then every solution defined for all large t of the
differential equation (1.3) is asymptotic at ∞ to a real polynomial of degree at most
n− 1 (depending on the solution)and the first n− 1 derivatives of the solution are
asymptotic at ∞ to the corresponding first n− 1 derivatives of this polynomial.

The following lemma plays an important role in proving our proposition. This
lemma is the well-known Bihari’s lemma (see Bihari [2]; see, also, Corduneanu [6])
in a simple form which suffices for our needs.
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Lemma 3.3 (Bihari). Assume that

h(t) ≤ M +
∫ t

T0

µ(s)g(h(s))ds for t ≥ T0,

where M is a positive constant, h and µ are nonnegative continuous real-valued
functions on [T0,∞), and g is a continuous real-valued function on [0,∞), which
is positive and increasing on (0,∞) and such that∫ ∞

1

dz

g(z)
= ∞.

Then

h(t) ≤ G−1
(
G(M) +

∫ t

T0

µ(s)ds
)

for t ≥ T0,

where G is a primitive of 1/g on (0,∞) and G−1 is the inverse function of G.

Proof of Proposition 3.1. Consider an arbitrary solution x on an interval [T,∞),
T ≥ t0, of the differential equation (1.3). From (1.3) it follows that

x(k)(t) =
n−1∑
i=k

(t− T )i−k

(i− k)!
x(i)(T ) +

∫ t

T

(t− s)n−1−k

(n− 1− k)!
f
(
s, x(s), x′(s), . . . , x(N)(s)

)
ds

(k = 0, 1, . . . , N) for t ≥ T . Therefore, in view of (3.1), for any k ∈ {0, 1, . . . , N}
and every t ≥ T , we obtain

|x(k)(t)|

≤
n−1∑
i=k

(t− T )i−k

(i− k)!
|x(i)(T )|+

∫ t

T

(t− s)n−1−k

(n− 1− k)!
|f(s, x(s), x′(s), . . . , x(N)(s))|ds

≤
n−1∑
i=k

ti−k

(i− k)!
|x(i)(T )|+ tn−1−k

∫ t

T

|f(s, x(s), x′(s), . . . , x(N)(s))|ds

≤
n−1∑
i=k

ti−k

(i− k)!
|x(i)(T )|+ tn−1−k

∫ t

T

[ N∑
`=0

p`(s)g`

( |x(`)(s)|
sn−1−`

)
+ q(s)

]
ds

≤
[ n−1∑

i=k

ti−k

(i− k)!
|x(i)(T )|+ tn−1−k

∫ t

T

q(s)ds
]

+ tn−1−k

∫ t

T

[ N∑
`=0

p`(s)g`

( |x(`)(s)|
sn−1−`

)]
ds.

Thus, for any k ∈ {0, 1, . . . , N}, we have

|x(k)(t)|
tn−1−k

≤
[ n−1∑

i=k

1
(i− k)!tn−1−i

|x(i)(T )|+
∫ ∞

T

q(s)ds
]

+
∫ t

T

[ N∑
`=0

p`(s)g`

( |x(`)(s)|
sn−1−`

)]
ds
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for every t ≥ T . So, by taking into account (3.2), we immediately conclude that,
for each k ∈ {0, 1, . . . , N}, there exists a positive constant Mk such that

|x(k)(t)|
tn−1−k

≤ Mk +
∫ t

T

[ N∑
`=0

p`(s)g`

( |x(`)(s)|
sn−1−`

)]
ds for t ≥ T.

Hence, by setting M = maxk=0,1,...,N Mk (M is a positive constant), we obtain

|x(k)(t)|
tn−1−k

≤ M +
∫ t

T

[ N∑
`=0

p`(s)g`

( |x(`)(s)|
sn−1−`

)]
ds for t ≥ T (k = 0, 1, . . . , N).

That is,
|x(k)(t)|
tn−1−k

≤ h(t) for every t ≥ T (k = 0, 1, . . . , N), (3.11)

where

h(t) = M +
∫ t

T

[ N∑
`=0

p`(s)g`

( |x(`)(s)|
sn−1−`

)]
ds for t ≥ T.

Furthermore, by using (3.11) and the hypothesis that gk (k = 0, 1, . . . , N) are
increasing on (0,∞), we obtain for every t ≥ T

h(t) ≡ M +
∫ t

T

[ N∑
`=0

p`(s)g`

( |x(`)(s)|
sn−1−`

)]
ds

≤ M +
∫ t

T

[ N∑
`=0

p`(s)g`(h(s))
]
ds

≤ M +
∫ t

T

[ N∑
`=0

p`(s)
][ N∑

`=0

g`(h(s))
]
ds.

Consequently,

h(t) ≤ M +
∫ t

T

[ N∑
`=0

p`(s)
]
g(h(s))ds for t ≥ T, (3.12)

where g =
∑N

`=0 g`. Clearly, g is a continuous real-valued function on [0,∞), which
is positive and increasing on (0,∞). Moreover, because of (3.3), g is such that∫ ∞

1

dz

g(z)
= ∞. (3.13)

Next, we consider the function

G(z) =
∫ z

M

du

g(u)
for z ≥ M.

We observe that G is a primitive of the function 1/g on [M,∞). It is obvious that
G(M) = 0 and that G is strictly increasing on [M,∞). Also, by (3.13), we have
G(∞) = ∞. So, it follows that G([M,∞)) = [0,∞). Thus, the inverse function
G−1 of G is defined on [0,∞). Moreover, G−1 is also strictly increasing on [0,∞),
and G−1([0,∞)) = [M,∞). Furthermore, we can take into account (3.12) and use
the Bihari lemma to conclude that h satisfies

h(t) ≤ G−1
(
G(M) +

∫ t

T

[ N∑
`=0

p`(s)
]
ds

)
= G−1

( N∑
`=0

∫ t

T

p`(s)ds
)
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for t ≥ T . Therefore, in view of (3.2), it follows that

h(t) ≤ G−1
( N∑

`=0

∫ ∞

T

p`(s)ds
)

for every t ≥ T ;

i.e., there exists a positive constant Λ such that h(t) ≤ Λ for t ≥ T . So, (3.11)
yields

|x(k)(t)|
tn−1−k

≤ Λ for all t ≥ T (k = 0, 1, . . . , N). (3.14)

Now, by taking into account (3.1) and (3.14), we obtain for t ≥ T

|f
(
t, x(t), x′(t), . . . , x(N)(t)

)
| ≤

N∑
k=0

pk(t)gk

( |x(k)(t)|
tn−1−k

)
+ q(t)

≤
N∑

k=0

pk(t)
[

sup
0≤z≤Λ

gk(z)
]
+ q(t)

and consequently, in view of (3.2),∫ ∞

T

f
(
s, x(s), x′(s), . . . , x(N)(s)

)
ds exists in R.

On the other hand, from (1.3) it follows that

x(n−1)(t) = x(n−1)(T ) +
∫ t

T

f(s, x(s), x′(s), . . . , x(N)(s))ds for t ≥ T,

which gives

lim
t→∞

x(n−1)(t) = x(n−1)(T ) +
∫ ∞

T

f
(
s, x(s), x′(s), . . . , x(N)(s)

)
ds ≡ c,

where c is a real number (depending on the solution x). Finally, by applying the
L’Hospital rule, we obtain

lim
t→∞

x(j)(t)
tn−1−j

=
1

(n− 1− j)!
lim

t→∞
x(n−1)(t) =

c

(n− 1− j)!
(j = 0, 1, . . . , n− 1),

which implies that x satisfies (3.4). The proof of the proposition is complete. �

Proof of Theorem 3.2. Let x be an arbitrary solution on an interval [T,∞), T ≥
t0, of the differential equation (1.3). Since (3.5) implies (3.2), as in the proof
of Proposition 3.1, we can be led to the conclusion that (3.14) holds, where Λ
is some positive constant. This conclusion is also a consequence of Proposition
3.1 itself; in fact, from this proposition it follows that, for each k = 0, 1, . . . , N ,
limt→∞[x(k)(t)/tn−1−k] exists (as a real number). By using (3.1) and (3.14), we
obtain

|f
(
t, x(t), x′(t), . . . , x(N)(t)

)
| ≤

N∑
k=0

pk(t)gk

( |x(k)(t)|
tn−1−k

)
+ q(t)

≤
N∑

k=0

pk(t)
[

sup
0≤z≤Λ

gk(z)
]
+ q(t)
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for every t ≥ T . This, together with (3.5), guarantee that

Li ≡
∫ ∞

T

(s− T )n−1−i

(n− 1− i)!
f
(
s, x(s), x′(s), . . . , x(N)(s)

)
ds (i = 0, 1, . . . , n− 1)

are real numbers. Now, (1.3) gives, for t ≥ T ,

x(t) =
n−1∑
i=0

(t− T )i

i!
x(i)(T ) +

∫ t

T

(t− s)n−1

(n− 1)!
f
(
s, x(s), x′(s), . . . , x(N)(s)

)
ds. (3.15)

Following the same procedure as in the proof of the corresponding theorem in
Philos, Purnaras and Tsamatos [25], we can show that∫ t

T

(t− s)n−1

(n− 1)!
f
(
s, x(s), x′(s), . . . , x(N)(s)

)
ds

=
n−1∑
i=0

(t− T )i

i!
(−1)n−1−iLi + (−1)n

∫ ∞

t

(s− t)n−1

(n− 1)!
f
(
s, x(s), x′(s), . . . , x(N)(s)

)
ds

for all t ≥ T . So, (3.15) becomes

x(t) =
n−1∑
i=0

(t− T )i

i!
[
x(i)(T ) + (−1)n−1−iLi

]
+ (−1)n

∫ ∞

t

(s− t)n−1

(n− 1)!
f
(
s, x(s), x′(s), . . . , x(N)(s)

)
ds for t ≥ T.

Taking into account the definition of Li (i = 0, 1, . . . , n − 1) as well as (3.10), we
see that the above equation can be written as

x(t) =
n−1∑
i=0

Ci(t−T )i+(−1)n

∫ ∞

t

(s− t)n−1

(n− 1)!
f
(
s, x(s), x′(s), . . . , x(N)(s)

)
ds (3.16)

for all t ≥ T . We have

lim
t→∞

∫ ∞

t

(s− t)n−1

(n− 1)!
f
(
s, x(s), x′(s), . . . , x(N)(s)

)
ds = 0

and thus (3.16) implies that the solution x satisfies (3.8). Furthermore, (3.16) gives

x(j)(t) =
n−1∑
i=j

i(i− 1) . . . (i− j + 1)Ci(t− T )i−j

+ (−1)n−j

∫ ∞

t

(s− t)n−1−j

(n− 1− j)!
f(s, x(s), x′(s), . . . , x(N)(s))ds

for t ≥ T (j = 1, . . . , n− 1).

(3.17)

Since

lim
t→∞

∫ ∞

t

(s− t)n−1−j

(n− 1− j)!
f(s, x(s), x′(s), . . . , x(N)(s))ds = 0 (j = 1, . . . , n− 1),

it follows from (3.17) that the solution x satisfies, in addition, (3.9). Finally, we
observe that

C0 + C1(t− T ) + · · ·+ Cn−1(t− T )n−1 ≡ c0 + c1t + · · ·+ cn−1t
n−1
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for some real numbers c0, c1, . . . , cn−1. So, the solution x satisfies (3.6) and (3.7).
The proof is complete. �

4. Application of the Results to Second Order Nonlinear Ordinary
Differential Equations

This section is devoted to the application of the results to the special case of the
second order nonlinear ordinary differential equations (1.2) and (1.4).

In the case of the differential equation (1.2), Theorem 2.1, Corollary 2.2, Propo-
sition 3.1, and Theorem 3.2 are formulated as follows:

Theorem 4.1. Assume that

|f(t, z)| ≤ p(t)g
( |z|

t

)
+ q(t) for all (t, z) ∈ [t0,∞)× R, (4.1)

where p and q are nonnegative continuous real-valued functions on [t0,∞) such that∫ ∞

t0

tp(t)dt < ∞ and
∫ ∞

t0

tq(t)dt < ∞;

and g is a nonnegative continuous real-valued function on [0,∞) which is not iden-
tically zero. Let c0, c1 be real numbers and T be a point with T ≥ t0, and suppose
that there exists a positive constant K so that[ ∫ ∞

T

(s− T )p(s)ds
]
sup

{
g(z) : 0 ≤ z ≤ K

T
+
|c0|
T

+ |c1|
}

+
∫ ∞

T

(s− T )q(s)ds

≤ K.

Then the differential equation (1.2) has a solution x on the interval [T,∞), which
is asymptotic to the line c0 + c1t as t →∞; i.e.,

x(t) = c0 + c1t + o(1) as t →∞, (4.2)

and satisfies
x′(t) = c1 + o(1) as t →∞. (4.3)

Corollary 4.2. Assume that (4.1) is satisfied, where p, q, and g are as in The-
orem 4.1. Then, for any real numbers c0, c1, the differential equation (1.2) has a
solution x on an interval [T,∞) (where T ≥ max{t0, 1} depends on c0, c1), which
is asymptotic to the line c0 + c1t as t →∞; i.e., (4.2) holds, and satisfies (4.3).

Proposition 4.3. Assume that (4.1) is satisfied, where p and q are nonnegative
continuous real-valued functions on [t0,∞) such that∫ ∞

t0

p(t)dt < ∞ and
∫ ∞

t0

q(t)dt < ∞,

and g is a continuous real-valued function on [0,∞), which is positive and increasing
on (0,∞) and such that ∫ ∞

1

dz

g(z)
= ∞.

Then every solution x on an interval [T,∞), T ≥ t0, of the differential equation
(1.2) satisfies

x(t) = ct + o(t) and x′(t) = c + o(1), as t →∞,

where c is some real number (depending on the solution x).
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Theorem 4.4. Assume that (4.1) is satisfied, where p and q are as in Theorem
4.1, and g is as in Proposition 4.3. Then every solution x on an interval [T,∞),
T ≥ t0, of the differential equation (1.2) is asymptotic to a line c0 + c1t as t →∞;
i.e., (4.2) holds, and satisfies (4.3), where c0, c1 are real numbers (depending on
the solution x). More precisely, every solution x on an interval [T,∞), T ≥ t0, of
(1.2) satisfies

x(t) = C0 + C1(t− T ) + o(1) and x′(t) = C1 + o(1), as t →∞,

where

C0 = x(T )−
∫ ∞

T

(s− T )f(s, x(s))ds and C1 = x′(T ) +
∫ ∞

T

f(s, x(s))ds.

The above results have also been obtained in Philos, Purnaras and Tsamatos
[25] (as consequences of the main results given therein). Here, these results are
stated for the sake of completeness.

Now, we concentrate on the differential equation (1.4). By applying Theorem
2.1, Corollary 2.2, Proposition 3.1, and Theorem 3.2 to the differential equation
(1.4), we obtain following results:

Theorem 4.5. Assume that

|f(t, z0, z1)| ≤ p0(t)g0

( |z0|
t

)
+ p1(t)g1(|z1|) + q(t)

for all (t, z0, z1) ∈ [t0,∞)× R2, (4.4)

where p0, p1, and q are nonnegative continuous real-valued functions on [t0,∞)
such that∫ ∞

t0

tp0(t)dt < ∞,

∫ ∞

t0

tp1(t)dt < ∞, and
∫ ∞

t0

tq(t)dt < ∞;

and g0 and g1 are nonnegative continuous real-valued functions on [0,∞) which are
not identically zero. Let c0, c1 be real numbers and T be a point with T ≥ t0, and
suppose that there exists a positive constant K so that[ ∫ ∞

T

(s− T )p0(s)ds
]
sup

{
g0(z) : 0 ≤ z ≤ K

T
+
|c0|
T

+ |c1|
}

+
[ ∫ ∞

T

(s− T )p1(s)ds
]
sup

{
g1(z) : 0 ≤ z ≤ K + |c1|

}
+

∫ ∞

T

(s− T )q(s)ds ≤ K

and

[ ∫ ∞

T

p0(s)ds
]
sup

{
g0(z) : 0 ≤ z ≤ K

T
+
|c0|
T

+ |c1|
}

+
[ ∫ ∞

T

p1(s)ds
]
sup

{
g1(z) : 0 ≤ z ≤ K + |c1|

}
+

∫ ∞

T

q(s)ds ≤ K .

Then the conclusion of Theorem 4.1 holds for the differential equation (1.4).

Corollary 4.6. Assume that (4.4) is satisfied, where p0, p1, and q, and g0 and g1

are as in Theorem 4.5. Then the conclusion of Corollary 4.2 holds for the differential
equation (1.4).
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Proposition 4.7. Assume that (4.4) is satisfied, where p0, p1, q are nonnegative
continuous real-valued functions on [t0,∞) such that∫ ∞

t0

p0(t)dt < ∞,

∫ ∞

t0

p1(t)dt < ∞, and
∫ ∞

t0

q(t)dt < ∞;

and g0 and g1 are continuous real-valued functions on [0,∞), which are positive
and increasing on (0,∞) and such that∫ ∞

1

dz

g0(z) + g1(z)
= ∞.

Then the conclusion of Proposition 4.3 holds for the differential equation (1.4).

Theorem 4.8. Assume that (4.4) is satisfied, where p0, p1, q are as in Theorem
4.5, and g0 and g1 are as in Proposition 4.7. Then the conclusion of Theorem 4.4
holds for the differential equation (1.4) with

C0 = x(T )−
∫ ∞

T

(s− T )f(s, x(s), x′(s))ds, C1 = x′(T ) +
∫ ∞

T

f(s, x(s), x′(s))ds.

5. Examples

Example 5.1 (Philos, Purnaras, Tsamatos [25]). Consider the second order su-
perlinear Emden-Fowler equation

x′′(t) = a(t)[x(t)]2 sgn x(t), t ≥ t0 > 0, (5.1)

where a is a continuous real-valued function on [t0,∞).

Applying Theorem 2.1 (or, in particular, Theorem 4.1), we obtain the following
result:

Assume that ∫ ∞

t0

t3|a(t)|dt < ∞. (5.2)

Let c0, c1 be real numbers and T be a point with T ≥ t0, and suppose that there
exists a positive constant K so that

A(T )
(K

T
+
|c0|
T

+ |c1|
)2

≤ K, (5.3)

where

A(T ) =
∫ ∞

T

(s− T )s2|a(s)|ds. (5.4)

Then (5.1) has a solution x on the interval [T,∞), which is asymptotic to the line
c0 + c1t as t →∞; i.e.,

x(t) = c0 + c1t + o(1) as t →∞, (5.5)

and satisfies
x′(t) = c1 + o(1) as t →∞ . (5.6)

Now, assume that (5.2) is satisfied, and let c0, c1 be given real numbers and
T ≥ t0 be a fixed point. Moreover, let A(T ) be defined by (5.4). As it has been
proved in [25], there exists a positive constant K so that (5.3) holds if and only if

A(T )(|c0|+ |c1|T ) ≤ T 2

4
. (5.7)

Thus, we have the following result:



EJDE-2005/79 SOLUTIONS APPROACHING POLYNOMIALS AT INFINITY 21

Assume that (5.2) is satisfied, and let c0, c1 be real numbers and T ≥ t0 be a
point so that (5.7) holds, where A(T ) is defined by (5.4). Then (5.1) has a solution
x on the interval [T,∞), which satisfies (5.5)and (5.6).

In particular, let us consider the differential equation (5.1) with a(t) = tσµ(t)
for t ≥ t0, where σ is a real number and µ is a continuous and bounded real-valued
function on [t0,∞). In this case, there exists a positive constant θ so that

|a(t)| ≤ θtσ for every t ≥ t0.

We see that (5.2) is satisfied if σ < −4. Furthermore, assume that σ < −4 and let
c0, c1 be real numbers and T ≥ t0 be a point. Then (see [25]) it follows that (5.7)
holds if

T σ+2(|c0|+ |c1|T ) ≤ (σ + 3)(σ + 4)
4θ

.

Example 5.2. Consider the n-th order (n > 1) sublinear Emden-Fowler equation

x(n)(t) = a(t)|x(t)|1/2 sgn x(t), t ≥ t0 > 0, (5.8)

where a is a continuous real-valued function on [t0,∞).

For the differential equation (5.8), we have the following result:
Let m be an integer with 1 ≤ m ≤ n− 1, and assume that∫ ∞

t0

tn−1+(m/2)|a(t)|dt < ∞. (5.9)

Then, for any real numbers c0, c1, . . . , cm, the differential equation (5.8) has a
solution x on the (whole) interval [t0,∞), which is asymptotic to the polynomial
c0 + c1t + · · ·+ cmtm as t →∞; i.e.,

x(t) = c0 + c1t + · · ·+ cmtm + o(1) as t →∞,

and satisfies

x(j)(t) =
m∑

i=j

i(i− 1) . . . (i− j + 1)cit
i−j + o(1) as t →∞ (j = 1, . . . ,m)

and, provided that m < n− 1,

x(λ)(t) = o(1) as t →∞ (λ = m + 1, . . . , n− 1).

To prove the above result, we assume that (5.9) is satisfied and we consider arbitrary
real numbers c0, c1, . . . , cm. By Theorem 2.1, it is sufficient to show that there exists
a positive constant K such that

A(t0)
( K

tm0
+

m∑
i=0

|ci|
tm−i
0

)1/2

≤ K, (5.10)

where

A(t0) =
∫ ∞

t0

(s− t0)n−1

(n− 1)!
sm/2|a(s)|ds.

In the trivial case A(t0) = 0, (5.10) holds for any positive constant K. So, in the
sequel, we suppose that A(t0) > 0. We see that (5.10) is equivalent to

K2 − [A(t0)]2

tm0
K − [A(t0)]2

m∑
i=0

|ci|
tm−i
0

≥ 0. (5.11)
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Let us consider the quadratic equation

Ω(ω) ≡ ω2 − [A(t0)]2

tm0
ω − [A(t0)]2

m∑
i=0

|ci|
tm−i
0

= 0

in the complex plane. The discriminant of this equation is

∆ =
[
− [A(t0)]2

tm0

]2

− 4
[
− [A(t0)]2

m∑
i=0

|ci|
tm−i
0

]
.

We see that ∆ > 0 and so the equation Ω(ω) = 0 has two real roots:

ω1 =
[A(t0)]2

2tm0
−
√

∆
2

, ω2 =
[A(t0)]2

2tm0
+
√

∆
2

with ω1 < ω2. Clearly, ω2 > 0. We have Ω(ω) ≥ 0 for all ω ≥ ω2. Hence, (5.11)
(or, equivalently, (5.10)) is satisfied for every positive constant K with K ≥ ω2 > 0.
We have thus proved that, in both cases where A(t0) = 0 or A(t0) > 0, there exists
a positive constant K so that (5.10) holds. So, our result has been proved.

Example 5.3. Consider the second order Emden-Fowler equation

x′′(t) = a(t)|x(t)|γ sgn x(t) + b(t)|x′(t)|δ sgn x′(t), t ≥ t0 > 0, (5.12)

where a and b are continuous real-valued functions on [t0,∞), and γ and δ are
positive real numbers.

By applying Theorem 2.1 (or, in particular, Theorem 4.5) to the differential
equation (5.12), we arrive at the next result:

Assume that ∫ ∞

t0

t1+γ |a(t)|dt < ∞ and
∫ ∞

t0

t|b(t)|dt < ∞. (5.13)

Let c0, c1 be real numbers and T be a point with T ≥ t0, and suppose that there
exists a positive constant K so that[ ∫ ∞

T

(s− T )sγ |a(s)|ds
](K

T
+
|c0|
T

+ |c1|
)γ

+
[ ∫ ∞

T

(s− T )|b(s)|ds
]
(K + |c1|)δ

≤ K

and [ ∫ ∞

T

sγ |a(s)|ds
](K

T
+
|c0|
T

+ |c1|
)γ

+
[ ∫ ∞

T

|b(s)|ds
]
(K + |c1|)δ ≤ K.

Then (5.12) has a solution x on the interval [T,∞), which is asymptotic to the line
c0 + c1t as t →∞; i.e., (5.5) holds, and satisfies (5.6).

Moreover, an application of Corollary 2.2 (or, in particular, of Corollary 4.6) to
the differential equation (5.12) leads to the following result:

Assume that (5.13) is satisfied. Then, for any real numbers c0, c1, (5.12) has a
solution x on an interval [T,∞) (where T ≥ max{t0, 1} depends on c0, c1), which
satisfies (5.5) and (5.6).

Also, we can apply Proposition 3.1 (or, in particular, Proposition 4.7) for the
differential equation (5.12) to obtain the result:

If ∫ ∞

t0

tγ |a(t)|dt < ∞ and
∫ ∞

t0

|b(t)|dt < ∞, (5.14)
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and γ ≤ 1 and δ ≤ 1, then every solution x on an interval [T,∞), T ≥ t0, of (5.12)
satisfies

x(t) = ct + o(t) and x′(t) = c + o(1), as t →∞,

where c is some real number (depending on the solution x).
Furthermore, applying Theorem 3.2 (or, in particular, Theorem 4.8) to the dif-

ferential equation (5.12), we obtain the following result:
Assume that (5.13) is satisfied, and that γ ≤ 1 and δ ≤ 1. Then every solution x

on an interval [T,∞), T ≥ t0, of (5.12) is asymptotic to a line c0 + c1t as t →∞;
i.e., (5.5) holds, and satisfies (5.6), where c0, c1 are real numbers (depending on
the solution x). More precisely, every solution x on an interval [T,∞), T ≥ t0, of
(5.12) satisfies

x(t) = C0 + C1(t− T ) + o(1) and x′(t) = C1 + o(1), as t →∞,

where

C0 = x(T )−
∫ ∞

T

(s− T )a(s)|x(s)|γ sgn x(s)ds−
∫ ∞

T

(s− T )b(s)|x′(s)|δ sgn x′(s)ds,

C1 = x′(T ) +
∫ ∞

T

a(s)|x(s)|γ sgn x(s)ds +
∫ ∞

T

b(s)|x′(s)|δ sgn x′(s)ds.

Before ending this example, we concentrate on the Emden-Fowler equation (5.12)
with

a(t) = tσµ(t) for t ≥ t0, and b(t) = tτν(t) for t ≥ t0,

where σ and τ are real numbers, and µ and ν are continuous and bounded real-
valued functions on [t0,∞). In this case, we have

|a(t)| ≤ θtσ for t ≥ t0, and |b(t)| = ξtτ for t ≥ t0,

where θ and ξ are positive constants. We see that (5.13) is satisfied if γ + σ < −2
and τ < −2. Moreover, we observe that (5.14) holds if γ + σ < −1 and τ < −1.
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