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Soliton pulses in normally dispersive mode-locked lasers are considered using a nonlinear Schrödinger
equation, appropriately modified to model power �intensity� and energy saturations. Strongly chirped, localized
pulses are obtained when the effects of nonlinearity, dispersion, saturated gain, filtering, and loss form an
appropriate balance. In the case of constant dispersion, perturbation theory yields a set of uncoupled equations
for the amplitude and the phase of the soliton pulse. In dispersion-managed �DM� systems, an asymptotic
multiple-scale theory is used to analyze the dynamics. This equation, which describes solitons in the anomalous
regime, also admits higher-order solitons, the so-called antisymmetric soliton or bisoliton, in both constant
dispersion and DM systems. Such pulses have been observed in recent experiments.
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I. INTRODUCTION

Fiber amplifiers are key components in optical telecom-
munication systems and are often used as high-power ul-
trafast sources. They are generally configured to operate in a
range where nonlinear effects are negligible. However, re-
cent results have demonstrated an interesting operating re-
gime where nonlinear propagation is exploited to generate an
ultrashort nearly parabolic pulse that grows self-similarly as
it is amplified �1�. Such self-similar dynamical effects have
attracted considerable recent interest in the study of nonlin-
ear optical pulse propagation �2�.

Self-similar pulses have been asymptotically derived from
the nonlinear Schrödinger �NLS� equation in the normal re-
gime with linear gain �3�. This pulse shape represents a type
of nonlinear attractor toward which a rather general-shaped
input pulse tends to after sufficient distance. Such self-
similar pulses are often termed “similaritons” �4�.

Femtosecond solid-state lasers, such as those based on the
Ti:sapphire gain medium, have received considerable atten-
tion in the field of ultrafast science. In the past decade, fol-
lowing the discovery of Kerr-lens mode locking, the perfor-
mance of these lasers has led to their widespread use �5�.
More recently, ultrashort pulse mode locking has been dem-
onstrated in fiber lasers operating in the normal regime.
Wave-breaking-free operation has been achieved with pulse
energies much greater than those attained by stretched-pulse
lasers �6–8�.

Pulse propagation in a laser cavity is governed by the
interaction of chromatic dispersion, self-phase modulation,
saturable gain and filtering, and intensity discrimination. In
the anomalous regime, various models have been used to
describe this propagation, including Ginzburg-Landau �GL�
systems �9–13� and the so-called “master equation” �14,15�.
The master equation is a generalization of the classical NLS
equation modified to contain gain, filtering, and loss terms.
Gain and filtering are saturated by energy �i.e., the time in-

tegral of the pulse power�, while loss is represented by a
cubic nonlinearity. If the pulse energy is taken to be constant
the master equation reduces to a GL-type system. These
equations exhibit a variety of solutions ranging from un-
stable, chaotic to quasiperiodic, strong amplitude growth and
mode locking over a small region of parameter space �16�.

Here we use the power energy saturation �PES� equation
discussed in Refs. �17,18� to obtain localized pulses that
propagate in a normally dispersive laser, consistent with re-
cent experimental observations �6,19�. In the normal disper-
sion regime, a different type of pulse shaping occurs which is
qualitatively distinct from the well-known soliton �18� and
the dispersion-managed �DM� soliton �17� of the anomalous
dispersion regime both of which are described by this equa-
tion. Pulse formation in an ultrashort pulse laser in the
anomalous regime is typically dominated by the interplay
between dispersion and nonlinearity. Suitable gain media and
an effective saturable absorber are required for initiation of
pulsed operation from intracavity noise and subsequent sta-
bilization of the pulse. The pulses found here are positively
chirped throughout the cavity, consistent with experimental
observations �6�. Detailed aspects include �i� the approxi-
mately parabolic temporal amplitude profile near the peak of
the pulse with a transition to steep decay �6� and �ii� the large
and significant spectral profile of the pulse. This is unlike the
standard hyperbolic secant constant dispersion soliton solu-
tion and the Gaussian DM soliton of the anomalous regime.

The dimensionless distributed constant dispersion model
describing the propagation of pulses in a laser cavity is given
by
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where ��z , t� is the slowly varying electromagnetic pulse en-
velope, E�z�=�−�

+����2dt is the pulse energy, and P�z , t�= ���2
is the instantaneous pulse power �intensity�. The first term on
the right-hand side represents saturable gain, the second is
spectral filtering, and the third the saturable loss; the param-
eters g �dimensionless gain�, ��0 �filtering�, l�0 �loss�, and
�, � �dimensionless inverses of the saturation energy and
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power, respectively� are all positive, real constants. The di-
mensionless constant dispersion is represented by d0�0.
DM systems are considered later �Sec. IV�. Notice that gain
and filtering are saturated with energy while loss is saturated
with power �intensity�. The gain and filtering mechanisms
are related to the energy of the pulse while the loss is related
to the power �intensity� of the pulse. The filtering mechanism
takes into account the frequency widow in the laser crystal.
The loss terms are often referred to as fast saturable absorb-
ers. Absorbers of the type introduced in the above model are
often used. In fact, Haus �20� introduced such a saturable
term and then expanded the power saturation term in a Tay-
lor series, keeping only the first two terms �up to cubic non-
linearity�. This resulted in the master equation. In other mod-
els, loss is introduced in the form of fast saturable power
absorbers which are placed periodically �6,19�. This type of
lumped model has also been studied in dispersion-managed
systems. We refer to the above equation as the PES equation.
All parameters appear in nondimensional form; later we re-
late these parameters to typical physical values obtained
from experimental data. We find that the essential features of
the lumped model are included in this distributive PES equa-
tion �21� in lasers operating in both the anomalous and nor-
mal regimes and in dispersion-managed systems as discussed
below. Hereafter, the right-hand side of Eq. �1� will be de-
noted by Q��� and will represent the perturbing effect of the
system.

Additional terms such as higher-order linear and nonlinear
dispersions, delayed nonlinear response, and Raman type
terms can be important in some mode-locked laser applica-

tions �22–24�. The study of the dynamics of normal solitons
in the PES model with additional higher-order perturbing
terms is an interesting topic for future study. More recently it
was shown �25� that dispersion-managed models with power
�intensity�-energy saturation are in good agreement with ex-
perimental results in mode-locked Ti:sapphire lasers. It is
therefore important to study the above distributed model.

II. SIMILARITONS AND SELF-SIMILAR
EVOLUTION

The effects of energy and power saturations in this model
are crucial. If we set �= l=0 and �=0, we recover the simi-
lariton supporting equation, namely, the NLS with linear gain
�3�. In this system, pulses evolve in a self-similar way in
both amplitude and width. Since energy saturation was
present in the original formulation of the master equation, it
is useful to compare the difference. To illustrate, we evolve
Eq. �1� including only the gain term in the right-hand side
with and without the saturation. The resulting evolutions are
shown in Fig. 1. Here, g=0.5 and �=0 �left� �=1 �right�.
Without energy saturation and starting from a unit Gaussian
under linear gain, the pulse undergoes a rapid increase in
both its amplitude and width. As indicated in the correspond-
ing contour plot, a self-similar evolution results; this is the
well-known similariton. However, when the gain is saturated
with energy, the pulse undergoes a decrease in its peak am-
plitude to a constant value for the duration of the evolution
�locks� but still continues to evolve and grow linearly in its
width. This suggests that the energy saturation term provides
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FIG. 1. �Color online� Self-similar evolution of a pulse under linear �left� and saturated �right� gains.
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a mechanism to control the growth in the amplitude of pulse.
The spectral filtering plays a crucial role in maintaining a

short pulse duration with high energy. This phenomenon is
generic to mode locking with normal dispersion as also dis-
cussed in Ref. �26�. With spectral filtering in the cavity, ro-
bust, localized, high-energy, ultrashort pulses can be gener-
ated. It has been observed that spectral filtering of a chirped
pulse in the cavity is a major component of the pulse shaping
in these lasers �8�. When ��0, the effects of self-similar
evolution are still present but not as prominent. This is to be
expected since the filtering effects acts as an overall loss to
the propagation of the pulse.

Furthermore, a laser can only operate when a sufficient
amount of both gain and loss is present. Passive mode lock-
ing generally utilizes saturable absorbers, such as the type
introduced in the PES model.

III. PULSES IN THE CONSTANT DISPERSION REGIME

The dynamics of pulses evolving under the PES equation
are studied next. All terms are kept constant and only the
gain parameter g is changed. More precisely, typical values
are taken: d0=�=�=1, �= l=0.1. The evolution of the pulse
peak for different values of the gain parameter g is shown in
Fig. 2. When g=0.1, the pulse decays quickly due to exces-
sive loss with no noticeable oscillatory or chaotic behavior;
the pulse exhibits damped evolution. When g=0.5, due to the
loss in the system, the pulse undergoes an initial decrease
and then continues to slowly dissipate. When g=1.5, a local-
ized evolution is obtained. With sufficient gain in the system,
the pulse amplitude initially decreases but then a steady state
is reached. The features of self-similar evolution are initially
present since the sharp and narrow initial Gaussian rapidly
evolves into a wide but finite-energy pulse. Three regimes
are observed: �a� when the loss is much grater than the gain,
the pulse decays to zero, �b� when the loss is again the
prominent effect but sufficient gain exists in the system to
sustain a very slowly decaying evolution resulting in a “qua-
sisoliton” state, and �c� the soliton regime above a certain
value of gain.

Localized modes of Eq. �1� are examined next. The spec-
tral renormalization �SPRZ� method of Ref. �27� is employed

to calculate these solutions with spectral accuracy. With
SPRZ, in each iteration, the ratio between the dispersive and
nonlinear parts of the equation is modified until convergence
is achieved. Assuming localized solutions of the form
��z , t�=u�t�exp�i�z�, u����→0, we obtain from Eq. �1�

− �u −
d0

2
utt + �u�2u = Q�u� ,

which is a nonlinear eigenvalue problem with respect to the
propagation constant �. To find these solutions, we must
determine the appropriate value�s� of the propagation con-
stant � for which a solution actually exists. The criterion for
determining � is that the renormalization constant in SPRZ
is real. With this additional requirement, we obtain only one
value of �, for a specific set of parameters, that the iteration
converges. When g	 l in Eq. �1�, we do not find a solution,
i.e., we do not find a value of � for which the above iteration
will converge. This is consistent with the observation that
when the effect of loss is stronger than the gain, the only
acceptable solution is the trivial or quasisoliton solution. So-
lutions of the PES for various values of g and the corre-
sponding propagation constant are depicted in Fig. 3. Notice
the change in the pulse width and amplitude. As the gain
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FIG. 2. �Color online� Evolution of the pulse peak of an arbitrary initial profile under the PES equation with different values of gain. The
damped pulse-peak evolution is shown with a dashed line. In the right figure, the complete evolution is given for g=1.5.
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parameter increases, so does the amplitude and the pulse
become narrower.

As indicated above, the values for the gain, loss, and fil-
tering parameters provide operating regions of the laser sys-
tem which depend critically on the gain parameter. The pa-
rameters � ,� were conveniently chosen to have unit value.
Changing these values corresponding to experimental data
confirms the above observations. If we begin with a dimen-
sional system and rescale, we find d0=
z� / t�

2, g=g�z�, �
=g�z� /��2t�

2, �=E� /Esat, and �= P� / Psat. For a Ti:sapphire
laser �7�, 
=60 fs2 /mm is the group-velocity dispersion,
z�=2 mm the characteristic length, t�=10 fs the character-
istic time, P�=5 MW the characteristic power, E�= P�t� the
characteristic energy, g�=20 dB the dimensional gain over
the crystal, ��2=100 fs−1 the frequency cutoff, and Esat
=10 nJ, Psat=2 MW are the saturated energy and power,
respectively. The loss is taken as a distributive saturable ab-
sorber and its nondimensional value is l=0.3. The corre-
sponding nondimensional values are d0=1.2, g=5, �=0.02,
l=0.3, �=5.5, and �=2.5. For the fiber laser of Ref. �8�, 

=230 fs2 /mm, z�=1.6 mm, t�=170 fs, P�=0.13 MW, E�

=20 nJ, g�=15 dB, ��2=6 fs−1, 0.25 nJEsat6 nJ, and
0.1 kW Psat2.4 kW, so that d0=0.0013, g=3.5, �
=3.25, l=0.7, 2.5�60 �here taken 5.5 as before�, and
40�1000 �here taken 50�. In Fig. 4, we show the result-
ing soliton for these parameters which agrees with the obser-
vations in Refs. �7,8�.

A. Asymptotic theory of solitons in the normal regime

Using the spectral renormalization method, we have
found localized pulses in the normal dispersive regime for a
broad range of parameters, provided that sufficient gain is
present in the system. These pulses are slowly varying in t,
with large phase. This suggests that by assuming a slow time
scale in the equation and using perturbation theory, i.e., a
WKB-type expansion, the soliton system can be reduced to
simpler ordinary differential equations for the amplitude and
the phase of the pulse. The first step before performing per-
turbation theory is to write the solution of Eq. �1� in the form
��z , t�=R exp�i�z+ i��, where R=R�t� and �=��t� are the
pulse amplitude and phase, respectively. Substituting into the
equation and equating real and imaginary parts, we get
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We then take the characteristic time length of the pulse to
be such that we can define a scaling in the independent vari-
able of the form �=T / t or T=�t so that R=R��t�, �t=O�1�
�i.e., � is large�, and �tt=O���, where ��1. Then Eq. �2a�
becomes
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The leading-order equation is

�t
2 =

2
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Using the same argument and this newly derived Eq. �3�, we
then find that Eq. �2b� to leading order reads

Rt = − sgn�t�
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This is now a nonlocal first-order differential equation for
R=R�t�, since E=�−�

+�R2dt. We also note that imposing �t�t
=0�=0⇒�
R2�0�.

To remove the nonlocality, another condition is needed
and it is based on the singular points of Eq. �4�. Recall that
R�t� is a decaying function in t� �0,+�� and �
R2�0�
�R�t�2. Thus, there exists a point in t such that the denomi-
nator in the equation becomes zero. To remove the singular-
ity, we require that the numerator of the equation is also zero
at the same point which leads to
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FIG. 4. �Color online� The soliton solution and its phase corresponding to the experimental values of the parameters given in Refs. �7�
�left� and �8� �right�.
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Thus Eq. �4� is now a first-order equation which can be
solved by standard numerical methods and analyzed by
phase plane methods. The resulting solutions from the PES
equation and the reduced equations are compared in Fig. 5.
Notice that here �=0.1216, while R2�0�=0.1218.

B. Higher-order modes

Finally, we mention the intriguing observation of higher-
order solutions: i.e., antisymmetric solitons or bisolitons in
mode-locked lasers operating in the normal regime. Recent
experiments �19� demonstrate that higher-order antisymmet-
ric or bisolitons can propagate in these lasers. These solitons
differ significantly from the higher-order solutions of the
classical NLS and the dispersion-managed solitons since
they do not exhibit any oscillatory or breathing behavior as
they propagate in the cavity. These solutions are different
from the so-called bistable solitons �28�, a class of solutions
which NLS systems with generalized nonlinearities exhibit,
and are not observed in a Kerr-type medium.

The bisolitons are pairs of regular solitons whose peak
amplitudes have a difference in phase ��=� and an appro-
priate separation �19�. In the PES equation, we find these
solutions by evolving the initial condition in the constant
dispersive normal regime: ��0, t�= t exp�−t2�; again g=1.5,
�= l=0.1, and d0=�=�=1. A typical bisoliton is shown in
Fig. 6. Interestingly, away from the peaks, the pulse is well
approximated by a single soliton.

IV. DISPERSION-MANAGED SYSTEMS

The introduction of dispersion and nonlinear management
induces rapidly varying dynamics which often obscure the
main features. To overcome this difficulty we employ a mul-
tiscale method and work with the underlying averaged equa-
tion. Solitons as solutions of equations with constant disper-
sion are localized modes whose amplitude is constant in
time. On the other hand, dispersion-managed solitons exhibit
rapid breathing behavior, namely, their amplitude changes

according to the dispersion map. A convenient feature of the
averaged model is that the modes represent pulses averaged
over one cavity round trip, as though the pulses were propa-
gating in a system with the �constant� average cavity disper-
sion. In the averaged equation, the DM solitons have con-
stant amplitude. For a pulse with amplitude u�z , t�, power
P�z , t�= �u�2, and energy E�z�=�−�

+��u�2dt, which is propagat-
ing along the z direction, our model equation takes the form
�17�

i
�u
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ig

1 + �E
u +

i�

1 + �E
utt −

il

1 + �P
u .

�5�

Note that u�z , t� will be used for the description of the pulse
envelope to distinguish this case from the constant dispersion
case where ��z , t� was used. We model the effect of disper-
sion management by splitting the dispersion d�z� into two
components �29� d�z�=d0+��z /za� /za, where d0 is the
constant-averaged dispersion. The variable za is the
dispersion-map period, which measures the ratio of the char-
acteristic nonlinear distance to the characteristic dispersion
length. Typically, za is small, i.e., za�1. The function d���
=d�z /za� is large and periodic and n�z /za�=n��� is O�1� and
periodic. The path-averaged dispersion is d0 and ��z� is rap-
idly varying and has zero average. Within each map period,
the dispersion flips its sign as follows: ����= �−�1 ,0	�
	1 /2,�1 ,1 /2	�	1�, whereas the propagation is periodi-
cally linear-nonlinear-linear, i.e., n���= �0,0	�
	1 /2,n0 ,1 /2	�	1�. A key parameter is the map strength
s=�1 /4, which models the variability of the dispersion
around the average. To illustrate the features of this system,
we set d0=−1,n0=1 and allow s to vary.

To obtain the averaged equation, we introduce multiple
scales and apply perturbation theory �29�. Define the new
variables for distance �=z /za and Z=z representing the
short- and long-scale dynamics, respectively. Next, expand u
in powers of za�1 as
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u��,Z,t� = u�0���,Z,t� + zau�1���,Z,t� + O�za
2� .

In this way, Eq. �5� breaks into a series of equations corre-
sponding to the different powers of za. At O�za

−1�,

i
�u�0�

��
+

����
2

�2u�0�

�t2 = 0. �6�

To leading order, the evolution of the pulse is determined by
the large variations of d�z� about the mean and nonlinearity
and residual dispersion represent only a small perturbation to
the linear equation. The linear equation, Eq. �6�, can be
solved using Fourier transforms, namely,

û�0���,Z,�� = exp− i
�2

2
C����Û0�Z,�� , �7�

where C���=�0
������d�� and Û0�Z ,��= û�0���=0,Z ,��. The

Fourier transform of any function, f�t�, is denoted

f̂��� = F�f�t�� � �
−�

+�

f�t�exp�i�t�dt .

The function Û0 represents the slowly evolving amplitude of
û, whereas the fast oscillations induced by the local values of
the dispersion are included in the exponential term. The

function Û0 is arbitrary at this stage and is determined by
removing secular terms at the next order of perturbation.

This procedure determines an equation for Û0�Z ,��
which is given by

i
�Û0

�Z
−

d0

2
�2Û0 + �

0

1

exp− i
�2

2
C�����n���F��u�0��2u�0��

− F�Q�u�0����d� = 0. �8�

This is a nonlocal equation for U0�Z ,�� and describes the
averaged dynamics of the pulse envelope. We refer to Eq. �8�
as the dispersion-managed power energy saturation equation
�DMPES�.

The effects of self-similar evolution in this DM system
are shown in Fig. 7. As in the case of constant dispersion,
without energy saturation and starting from a unit Gaussian
under linear gain, the pulse undergoes a rapid increase in
both its amplitude and width resulting in a quasi-self-similar
evolution. However, when the gain is saturated with energy,
the pulse undergoes a decrease in its peak amplitude to a
constant value for the duration of the evolution �locks� but
still continues to evolve and grow linearly in its width.

The mode-locking mechanism of more general pulses in-
serted in the cavity at z=0 is addressed next. To study such
an evolution, we integrate Eq. �8� with Eq. �7� �using fourth
order Runge-Kutta� with a given initial profile U0�0, t�
=exp�−t2�. In order to lock onto localized solutions, the gain
parameter g needs to be sufficiently large to counter the two
lossy terms �filtering and loss�. In what follows, d0=−1 and
we fix �= l=0.1 and �=�=1. As in the case of constant dis-
persion, enough gain must be present in the system for the
pulse not to dissipate to zero. As seen in Fig. 8, three cases
are again observed: dumped evolution, a slowly decaying
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evolution resulting to quasisolitons, and the mode-locking
regime. Notice that the transient state, before mode-locking
occurs, is now more pronounced than before. The resulting
pulses can also be found with the SPRZ method. Here we fix
the gain parameter, g=1.5, and vary the dispersion strength.
The results for s=1 and s=10 are shown in Fig. 9. Recall
that the case s=0.1 is close to the constant dispersion case
and is not repeated here. Unlike the anomalous case �17� the
map strength seems to be overwhelmed by the size of the
soliton and its chirp. In fact, the cases of weak �s=0.1� and
moderate �s=1� dispersion strengths are essentially the same.
We note that the pulses become somewhat broader as the
map strength s increases.

We conclude with the higher state or a bisoliton in DM
systems, shown in Fig. 10. We find these solutions by evolv-
ing an initial condition u�t ,0�= texp�−t2�, with g=1.5 and all
other parameters are the same as in the previous DM figures.
Numerical studies indicate that these bisoliton states are
stable. Further research needs to be done to define the stabil-
ity characteristics.

V. CONCLUSIONS

Soliton propagation in mode-locked lasers as described by
the power energy saturation equation was analyzed. This
model captures the qualitative features of different types of

mode-locked lasers operating in the normal regime. The PES
model describes mode locking to steady solitons in both the
anomalous and normal regimes. Depending on the size of the
gain parameter, pulses are either damped, i.e., decay to zero,
or are asymptotically attracted to a localized solitary wave.
Instabilities and blow up are not observed for a wide range of
the parameters, even when the dissipative mechanisms are
strong. The energy-saturated gain and filtering and power-
saturated loss, which are typically small perturbation effects
in lasers, are crucial in the mode-locking mechanism. The
same results are obtained for both constant and dispersion-
managed systems.

In the normally dispersive regime, pulses are wide and
strongly chirped; unlike solitons, their anomalous regime
counterparts �which also satisfy the PES equation�, they are
not well approximated by the unperturbed equations without
gain, filtering, and loss. These pulses agree with those ob-
served recently in experiments. To further analyze their prop-
erties, an asymptotically reduced first-order equation was ob-
tained. Finally, it was shown that the model also supports
higher-order soliton solutions: the so-called antisymmetric or
bisoliton in both constant as well as DM systems.

This research was partially supported by the U.S. Air
Force Office of Scientific Research under Grant No.
FA9550-09-1-0250 and by the National Science Foundation
under Grant No. DMS-0505352.
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