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SEMILINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS OF
FRACTIONAL ORDER WITH STATE-DEPENDENT DELAY

MOHAMED ABDALLA DARWISH, SOTIRIS K. NTOUYAS

ABSTRACT. In this paper we study the existence of solutions for the initial
value problem for semilinear functional differential equations of fractional order
with state-dependent delay. The nonlinear alternative of Leray-Schauder type
is the main tool in our analysis.

1. INTRODUCTION

Recently in [7], existence results were proved for an initial value problem for
functional differential equations of fractional order with state-dependent delay

Doy(t) = f(t,Ypry)): tE€JT=[0,8], 0<B <1, (L.1)
y(t) = ¢(t), te(—o0,0] (1.2)

as well as for neutral functional differential equations of fractional order with state-
dependent delay

Dﬁ[y(t) - g(t’yp(t,yt))] = f(t’yp(t,yt))7 for t € J, (13)
y(t) = ¢(t), te(—o0,0], (1.4)

where D? is the standard Riemman-Liouville fractional derivative, f : J x B — R,
g:JxB—Randp:JxB— (—o0,b] are appropriate given functions, ¢ € B,
»(0) =0, g(0,p) =0 and B is called a phase space.

The purpose of this paper is to extend the results of [7] by studying the exis-
tence of solutions for initial value problems for a functional semilinear differential
equations of fractional order with state-dependent delay, as well as, for a neutral
functional semilinear differential equations of fractional order with state-dependent
delay. In particular, in Section 3, we consider the following initial value prob-
lem for a functional semilinear differential equations of fractional order with state-
dependent delay

DPy(t) = Ay(t) + F(t.Ypiiyy), tE€JT =100, 0<pB<1, (1.5)
y(t) = (p(t), te (_OO’O]’ (1'6)
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while in Section 4, we consider the following initial value problem for a neutral
functional semilinear differential equations of fractional order with state-dependent
delay,

Dﬁ[y(t) - g(ta yp(t,yt))} = A[y(t) - g(ta yp(t,yt))} + f(ta yp(t,yt)), te J’ (17)
y(t) =p(t), te (—O0,0], (1.8)

where D? is the standard Riemman-Liouville fractional derivative.

Here, f: JxB — E,g: JxB — E and p: JxB — (—o0, b] are appropriate given
functions, ¢ € B, ¢(0) =0, g(0,9) =0, A: D(A) C E — E is the infinitesimal
generator of a strongly continuous semigroup {7'()}+>0, and B is called a phase
space that will be defined later (see Section 2).

The notion of the phase space B plays an important role in the study of both
qualitative and quantitative theory for functional differential equations. A usual
choice is a semi-normed space satisfying suitable axioms, which was introduced by
Hale and Kato [I4] (see also Kappel and Schappacher [2I] and Schumacher [36]).
For a detailed discussion on this topic we refer the reader to the book by Hino et
al [20].

While functional differential equations have been used in modelling a panorama
of natural phenomena as discussed in the books by Kolmanovskii and Myshkis
[23] and Hale and Lunel [I5], it has been only recently that fractional differential
equations have begun to see extensive utilization in modelling problems that arise in
engineering and other sciences, including viscoelasticity, electrochemistry, control,
porous media flow, physics, mechanics and others [I1], 19, 22| B0}, 32, B3} 37]. On
the other hand, functional differential equations with state-dependent delay appear
frequently in applications as model of equations and for this reason the study of
this type of equation has received a significant amount of attention in the last years,
we refer to [2, 3] Bl 10, 16, 17, 18] and the references therein.

In part, differential equations of fractional order play a very important role
in describing some real world problems. For example some problems in physics,
mechanics and other fields can be described with the help of fractional differential
equations, see [11} 12} 19, 29, B3, [34, B5] and references therein. The theory of
differential equations of fractional order has recently received a lot of attention
and now constitutes a significant branch of nonlinear analysis. Numerous research
papers and monographs have appeared devoted to fractional differential equations,
for example see [1} [, [6] [8 @] 221 24], 25] 26} 27, 28] B82] B37].

Our approach is based on the nonlinear alternative of Leray-Schauder type [13].
These results can be considered as a contribution to this emerging field.

2. PRELIMINARIES

In this section, we introduce notation, definitions, and preliminary facts which
are used throughout this paper.

By C(J, E) we denote the Banach space of continuous functions from J into F
with the norm

[Ylloo = sup{|y(t)| : t € J}.

Now, we recall some definitions and facts about fractional derivatives and frac-
tional integrals of arbitrary orders, see [22] [30], [32], 33].
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Definition 2.1. The fractional primitive of order 5 > 0 of a function h : (0,b] — E

is defined by
bt —s)Pt
IS h(t :/ U= g o)ds,
provided the right hand side exists pointwise on (0, b], where I" is the gamma func-
tion.

For instance, I°h exists for all 3 > 0, when h € C((0,b], E) N L'((0,b], E); note
also that when h € C([0,b], E) then I°h € C([0,b], E) and moreover I”h(0) = 0.

Definition 2.2. The fractional derivative of order 3 > 0 of a continuous function
h: (o,b] — FE is given by

dPh(t) 1 d [ _ d __
70 F(l—ﬁ)dt/a(ts) ﬁh(s)d5:ala Bh(t).

In this paper, we will employ an axiomatic definition for the phase space B which
is similar to those introduced in [20]. More precisely, B will be a linear space of all
functions from (—o0, 0] to E endowed with a seminorm ||-|| satisfying the following
axioms:

(A) If y : (—o0,b] — E, b > 0, is continuous on J and yo € B, then for every
t € J the following conditions hold:
(i) y+ € B,
i) flyells < K (5 sup{Jy(s)| : 0 < s < £} + M(B)olls,
(i) [y(t)] < H s,
where H > 0 is a constant, K : [0,00) — [1,00) is continuous, M : [0,00) —
[1,00) is locally bounded and H, K, M are independent of y(-).
(A1) For the function y(-) in (A4), y; is a B-valued continuous function on [0, b].
(A2) The space B is complete.

The next lemma is a consequence of the phase space axioms and is proved in [16].
Lemma 2.3. Let ¢ € B and I = (v,0] be such that ¢, € B for every t € I.
Assume that there exists a locally bounded function J¥ : I — [0,00) such that

letlls < J2(@t)|l¢lls for every t € I. If y : (00,b] — R is continuous on J and
yo = ¢, then

lyells < (My + J# (max{y, —|s|})ll¢lls + Kb sup{|y(0)] : 6 € [0, max{0, s}]},
for s € (7,b], where we denoted Ky, = sup,¢ ; K(t) and My, = sup,c; M(t).

3. MAIN RESULT

In this section, the nonlinear alternative of Leray-Schauder type is used to in-
vestigate the existence of solutions of problem (1.5)-(1.6).
Let us start by defining what we mean by a solution of problem (|1.5)-(1.6).

Definition 3.1. A function y : (—oo,b] — F is said to be a solution of ([1.5))-(1.6)
if Yo = ¢, Yp(s,y,) € B for every s € J and

y(t) = F(lﬁ)/o (t— s)’@*lT(t —8)f(8,Yp(s,y.)) ds, t€J.

In what follows we assume that p : J x B — (—o0,b] is continuous and ¢ € B
and the following hypotheses are satisfied
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(H1) Ais the infinitesimal generator of a strongly continuous semigroup of bound-
ed linear operators T'(t),¢ > 0 in E, which is compact for ¢ > 0, and there
exist constant M > 1 such that ||T(t)||pg) < M,t > 0;

(H2) f:J x B — E is a continuous function;

(H3) there exists p € C([0,b],RT) and © : [0,00) — (0,00) continuous and
nondecreasing such that

|f (&, w)| < p(t)Q(||ull5)

for ¢t € [0,b] and each u € B;
(H4) there exists a number Ky > 0 such that

Ko
] >
(M, + J#) ||l 5 + ME,Q(Eo) | I9p] oo

)

(H5) the function ¢ — ¢ is well defined and continuous from the set R(p~) =
{p(s,v¢) : (s,9) € J x B,p(s,9) < 0} into B. Moreover, there exists a
continuous and bounded function J¥ : R(p~) — (0, 00) such that ||¢;]|p <
J?(t)||l¢lls for every t € R(p~).

Remark 3.2. The hypothesis (H5) is adapted from [16], where we refer for remarks
concerning this hypothesis.

Theorem 3.3. Assume that the hypotheses (H1)—(H5) hold. If p(t,v) <t for every
(t,v) € J x B, then the (1.5)-(1.6) has at least one solution on (—o0,b].

Proof. Let Y = {u € C(J,E) : u(0) = ¢(0) = 0} endowed with the uniform
convergence topology and N : Y — Y be the operator defined by

t
Ny@)ZAQLi/(t—sﬁ‘ﬁY#—@f@@%@jgﬁk, ted,
I'(3) Jo
where § : (—o00,b] — E is such that §p = ¢ and § = y on J. From axiom (A) and
our assumption on ¢, we infer that Ny(-) is well defined and continuous.

Let ¢ : (—o0,b] — E be the extension of ¢ to (—oo, b] such that @(0) = ¢(0) =0
on J and J¥ = sup{J¥ : s € R(p~)}.

We will prove that N(-) is completely continuous from B,.(¢|;,Y) to B.(@|s,Y).
Step 1: N is continuous on B, (@|s,Y). This was proved in [I6, p. 515, Step 3].
Step 2: N maps bounded sets into bounded sets. If y € B,.(¢],Y), from Lemma
2.3l follows that

1p(tg0) I8 < 77 = (My + J?) | lls + Kor

and so

(Ny)(b)] = %) / (t = $)5T(t — )f(5, Gp(o.9)) ds

M ¢ -1 P
gm/o (t = )" p()2|Fp(s.5.)
ﬂ r* t — S A=t S
< 75717100 / (t—5)°"d
M

L(B+1)

B) ds

1Pl o0 2(r)-
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Thus

Mb?
N Q(r*) = 4.
H y”oo = F(ﬂ-i—l) HpHoo (T )
Step 3: N maps bounded sets into equicontinuous sets of B. Let t1, t2 € (0,]
with t; < t9 and B, be a bounded set as in Step 2. Let € > 0 be given. Now let
71,7 € J with 79 > 7. We consider two cases 71 > € and 7 < e.
Case 1. If 71 > € then

[(Ny)(t2) — (Ny)(t)]

1 he —s)f-t —8) — (t; — s)? 1! -5 s S
Sqg [ = T =) = (= 9T = ) sy )|
ﬁ /tl—e [(ta =)' T(ty — 5) = (tr — )" " T(ts = )] | £ (5, Up(s.5)) | ds
1 t2
*Tm/ (ts — )71 T(ts — )| (5, Gp(e.gy)| ds
”pHoo T* ’/ ((ts — ) (- S),@’fl]T(t2 — ) ds’

+ / a e(tl — S)ﬁ_lT(tl — € — S)[T(tg — tl — 6) — T(G)]dS’
0

n /ttl [(t2 — 8)°~1 — (1 — 8)PYT(ts — s)ds’

1—€

+ /ttz(tz — 5)f-1 ds>

1

+ /t i (t1 — 8)P7IT(ty — € — 8)[T(ty — t1 — €) — T(€)] ds

Il oo 2(1*) fhe _ )1 _ 581145
< B (0 [ (= = (=9

t1—e
+ M|T(ts—tr — &) — T(O)l| ) / (ts — )P~ ds
0

JrM/ ty — 8)P~t — (t; — 5)P"1ds
tl t?

+MHT(t2—t1 —6)—T(6)||B(E)/ (tz —S)ﬁ_l dS+M (tQ —S)ﬂ_l dS),
ti1—e€ t1

where we have used the semigroup identities
T(ro—s)=T(e—n+eT(n—s—¢), T(mn—s)=T(r1—s—¢€T(e).

Case 2. Let 1y <e. For 7 — 1 < € we get

ta
/O (tg — S)BilT(t2 - S)f(S, gp(57ﬂs)) ds

1
[(Ny)(t2) — (Ny)(t1)] < 5

t1
= [t = 9 Tt = 97 (5B |
0

<l C(ta— s+ [ e-9as).
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Note equicontinuity follows since (i). T'(t),¢ > 0 is a strongly continuous semigroup
and (ii). 7'(t) is compact for ¢ > 0 (so T'(t) is continuous in the uniform operator
topology for ¢ > 0) [31].

From the steps 1 to 3, together with Arzela-Ascoli theorem, it suffices to show
that NV maps B, into a precompact set in E.

Let 0 < t < b be fixed and let € be a real number satisfying 0 < e¢ < t. For
y € B, we define

T(e)

Ne(y)(t) = T(3) /0 76(25 —s—e)f Tt —s— €)f (8, Up(s,5.)) ds-

Since T'(t) is a compact operator for ¢ > 0, the set Y,(¢t) = {Nc(y)(t) : y € B} is
precompact in E for every e, 0 < € < t. Moreover

[N (y)(t) = Ne(y)(0)]

* t—e t
SMM(/ [(t— )7L — (¢t — s — )] ds+/ (t—s)ﬁflds).
F(ﬁ) 0 t—e

Therefore, the set Y (t) = {N(y)(t) : y € By} is precompact in E. Hence the
operator N is completely continuous.

Step 4: (A priori bounds). We now show there exists an open set U C Y with
y# AN(y) for A € (0,1) and y € OU. Let y € Y and y = AN (y) for some 0 < A < 1.
Then for each ¢ € [0,b] we have

1 t _ _
o) = N[5 | =T = 9700 5]
This implies by (H3) and lemma [2.3] that
W) < 55 / (t = 5)P L IT(E = 5)IF (5, ooz ds
M

ST /0 (t — )P 'p(s)QU(My + J?)|l¢lls + Ky sup{|g(s)| : s € [0,1]}) ds,

since p(s, Js) < s for every s € J. Here J® = sup{J?(s) : s € R(p™)}.
Set u(t) = sup{|y(s)|: 0 < s <t} t € [0,b]. Then we have

ult) < Fﬂ(é) / (t — )5 p()((My + J)llglls + Kopa(s)) ds.
If £(t) = (My + J#)||¢||s + Kpp(t) then we obtain

ME, [* — 5 1p(s s))ds
fr | =)

< (My + J?)lells + MES([1€]loo) 117 o-

£(t) < (My + J?)|lolls +

Then
[1€lo

= <1
(My + J2)|[¢lls + MEQ(|E]|oo) [ 18]
By (H4), there exists M, such that ||y|lecc # M. Set
U={yeY ||ylloc < M*+1}.

Then N : U — Y is continuous and completely continuous. From the choice of U,
there is no y € U such that y = AN (y), for A € (0,1). As a consequence of the
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nonlinear alternative of Leray-Schauder type [I3], we deduce that N has a fixed
point y in U, which is a solution of (|L.5)-(1.6]). O

4. NFDEs oF FRACTIONAL ORDER

In this section we give an existence result for (|L.7])-(1.8).

Definition 4.1. A function y : (—oo,b] — F is said to be a solution of ([1.7))-(1.8)
if Yo = ¢, Yp(s,y,) € B for every s € J and

1 t
y(t) = g(sayp(s,ys)) + m~/0 (t - S)ﬁ_lT(t - S)f(svyp(s,ys))dsa teld

Theorem 4.2. Assume (H1)-(H3), (H5) are satisfied. In addition we suppose that
the following two conditions hold:

(H6) the function g is continuous and completely continuous, and for any bounded
set Q in BNC([0,b], E), the set {t — g(t,y:) : y € Q} is equicontinuous in
C([0,b], E), and there exist constants 0 < dy < 1/Kp, d2 > 0 such that

lg(t,u)| < di|lullg +d2, t€]0,0], uebB;
(HT) there exists a number Ko > 0 such that

1€l oo
= = >1
(My, + J?) |l ¢lls + =3 {dar (My, + J#) [ @ll5 + d2 + MO([[€]| o) 1 TP 00 }

If p(t,p) < t for every (t,1) € J x B, then the (L.7)-(1.8) has at least one solution
on (—o0,b].

Proof. Consider the operator Ny : C((—00,b], E) — C((—00,b], E) defined by,

(), ift € (—o0,0],
No(y)(t) = (t Yt yt))
fo s)P1T(t — 5) (8, Yp(s,y.))ds, if t €0,0].
In analogy to Theorem @ we consider the operator N7 : Y — Y defined by
0, t<0

= {g(t,ypu,gs)) w5 Jo (6 = )P 71Tt = 8) [ (5, Gp(sp))ds, €€ [0,1].

We shall show that the operator Nj is continuous and completely continuous.
Using (H6) it suffices to show that the operator Ny : Y — Y, defined by

N2<y><t>=ﬁ / (t = )PV (t — 8)f (5, Gpiogy) ds, ¢ € [0,8],

is continuous and completely continuous. This was proved in Theorem [3.3]
We now show there exists an open set U CY withy # AN1(y) for A € (0,1) and
y € QU. Let y € Y and y = ANy (y) for some 0 < A < 1. Then

y(t) = )‘{g(s’yp(&ﬂs)) + ﬁ/o (t - s)ﬁ_lT(t - s)f(svgp(s,@s)) ds}? te [07 b],
and
[y(O)] < di [(My + )]s + Ky sup{Jy(s)| : s € [0,1]}] + o

57 [ €= 9 UM+ Tl + Kysup{lie)] <5 € 0.1},
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for ¢t € (0,0]. If u(t) = sup{|y(s)| : s € [0,¢]} then
plt) < dy(My + J9) ol + di Kypu(t) + da

+ / (t - )7 p()(My + Tl plls + Kippu(s)) ds,

I(5)
Mﬂéit%QEMﬂMthWﬂw+dﬂ
1 M [ . -
1K T () /0 (t = )" p()A(My + T9)l ol + Kopu(s)) ds,

for t € (0,b]. If £(t) = (My + J#)||¢||s + Kppu(s) then we have

§(t) < (My + J%) ||l s
Ky M [
® _ )1
L R L )||g0||3+d2+r(ﬂ)/0(t 9P p()E(S)) ds)
< (My + J%)|¢lls
b Ly + )l + da + MO ) 177l
1 — Kpdy > °
Consequently,
~ el .
(My + J9)[ells + =g {da(My + T#) |l @l 5 + da + MQIE] o) 1 79p]loc } ~

By (HT7), there exists L* such that ||y|lec # L*. Set
Up={yeY :||yllo < L*+1}.

From the choice of U there is no y € 9U; such that y = ANy (y) for A € (0,1). As
a consequence of the nonlinear alternative of Leray-Schauder type [13], we deduce
that N7 has a fixed point y in U;. Then N; has a fixed point, which is a solution

of ([LD-(3). 0
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