
PACIFIC JOURNAL OF MATHEMATICS
Vol. 197, No. 1, 2001

RICCI CURVATURE AND MINIMAL SUBMANIFOLDS

Thomas Hasanis and Theodoros Vlachos

The aim of this paper is to find necessary conditions for
a given complete Riemannian manifold to be realizable as a
minimal submanifold of a unit sphere.

1. Introduction.

The general question that served as the starting point for this paper was
to find necessary conditions on those Riemannian metrics that arise as the
induced metrics on minimal hypersurfaces or submanifolds of hyperspheres
of a Euclidean space.
There is an abundance of complete minimal hypersurfaces in the unit hy-

persphere Sn+1. We recall some well known examples. Let Sm(r) = {x ∈
Rn+1, |x| = r}, Sn−m(s) = {y ∈ Rn−m+1, |y| = s}, where r and s are posi-
tive numbers with r2+ s2 = 1; then Sm(r)×Sn−m(s) = {(x, y) ∈ Rn+2, x ∈
Sm(r), y ∈ Sn−m(s)} is a hypersurface of the unit hypersphere in Rn+2.
As is well known, this hypersurface has two distinct constant principal cur-
vatures: One is s/r of multiplicity m, the other is −r/s of multiplicity
n − m. This hypersurface is called a Clifford hypersurface. Moreover, it
is minimal only in the case r =

√
m/n, s =

√
(n − m)/n and is called a

Clifford minimal hypersurface. Otsuki [11] proved that if Mn is a com-
pact minimal hypersurface in Sn+1 with two distinct principal curvatures
of multiplicity greater than 1, then Mn is a Clifford minimal hypersur-
face Sm(

√
m/n) × Sn−m(

√
(n − m)/n), 1 < m < n − 1. Furthermore, Ot-

suki constructed infinitely many compact minimal hypersurfaces, other than
S1(
√
1/n)× Sn−1(

√
(n − 1)/n), with two distinct principal curvatures and

one of them be simple, which are not congruent to each other in Sn+1. Using
the method of equivariant Differential Geometry, families of infinitely many
nonequitorial minimal embeddings of the n-sphere were constructed in Sn+1

for the dimensions n = 3, 4, 5, 6, 7, 9, 11 and 13 by Hsiang and Sterling in
[7]. Moreover, the same method will also produce at least one nonequitorial
in all even dimensional spheres ([16]). These results settled the so called
spherical Bernstein problem posed by S.S. Chern.
Let Mn be an n-dimensional smooth and oriented Riemannian manifold,

and f : Mn → Sn+1 an isometric immersion of Mn into the unit hypersphere
Sn+1 of Rn+2. The unit normal vectorfield of f in Sn+1 induces a map

13

http://nyjm.albany.edu:8000/PacJ/2001/
http://nyjm.albany.edu:8000/PacJ/2001/v197no1.html
http://nyjm.albany.edu:8000/PacJ/


14 T. HASANIS AND T. VLACHOS

ν : Mn → Sn+1, the Gauss map of the immersion f . If we pull back onto Mn

through ν the standard metric of Sn+1, we obtain a 2-covariant tensorfield
on Mn, which is a new metric on Mn provided that the shape operator
of f is non-singular everywhere. Using this metric, the first author and
Koutroufiotis in [6] proved: Let M3 be a complete 3-dimensional oriented
Riemannian manifold, and f : M3 → S4 an isometric minimal immersion;
then the Ricci curvature Ric satisfies supRic ≥ 3/2. If M3 is compact, then
supRic > 3/2, unless f(M3) = S1(

√
1/3)× S2(

√
2/3).

The Clifford minimal hypersurface Sm(
√

m/n)×Sn−m(
√
(n − m)/n), 1 ≤

m ≤ n − 1 is compact and its Ricci curvature varies between n(m − 1)/m
and n(n−m− 1)/(n−m). So, the Ricci curvature of any Clifford minimal
hypersurface satisfies infRic ≤ dn and supRic ≥ cn, where cn = dn = n − 2,
if n is even and dn = n(n − 3)/(n − 1), cn = n(n − 1)/(n + 1), if n is odd.
These are the clues for our main results:

Theorem A. Let Mn be a complete, oriented n-dimensional Riemannian
manifold and f : Mn → Sn+1 an isometric minimal immersion. Then
supRic ≥ n − 2. Moreover,

(i) If n = 2m, then supRic = n − 2 if and only if f(Mn) = Sm(
√
1/2)×

Sm(
√
1/2).

(ii) If n = 2m+ 1, then supRic > n− 2, unless the universal cover of Mn

is homeomorphic to Sn.

Theorem B. Let Mn be a compact, oriented odd-dimensional minimal
submanifold of the unit sphere Sn+k. Assume that the Ricci curvature sat-
isfies Ric > n(n − 3)/(n − 1). Then
(i) if n 
= 3, then Mn is homeomorphic to Sn;
(ii) if n = 3, then Mn is topologically a space form of positive sectional

curvature.

The following corollary is an immediate consequence of Theorem B.

Corollary. Let Mn be a compact, oriented odd-dimensional Riemannian
manifold which is not homeomorphic to Sn if n 
= 3, or to a spherical space
form if n = 3. A necessary condition for Mn to be realized as a minimal
immersed submanifold of a unit hypersphere is that infRic ≤ n(n − 3)/(n −
1).

Remark 1. In an attempt to extend Efimov’s inequality to hypersurfaces
in Sn+1, Smyth [13] proved the following: Let Mn be a complete, oriented
n-dimensional Riemannian manifold with sectional curvatures bounded from
below and f : Mn → Sn+1 an isometric immersion. If Mn is not diffeomor-
phic to Rn and not homeomorphic to a finite quotient of an odd-dimensional
sphere, then supRic ≥ n − 2.
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Remark 2. The totally geodesic great spheres in Sn+1 satisfy the assump-
tion of Theorem B on the Ricci curvature. However, the class of minimal
submanifolds in a hypersphere with Ricci curvature Ric > n(n−3)/(n−1) is
not trivial. In fact, Do Carmo and Warner [2] proved that for each positive
integer s there exists an isometric minimal immersion ψs of the 3-dimensional
sphere S3

k(s), with constant sectional curvature k(s) = 3/s(s + 2), into the

unit hypersphere Sm(s), where m(s) = s(s+ 2). It is obvious that ψs satis-
fies the assumption of Theorem B. Moreover, the assumption that n is odd
is essential. The Clifford minimal hypersurface Sm(

√
1/2) × Sm(

√
1/2) is

an example of a compact even dimensional minimal hypersurface in S2m+1,
which is not homeomorphic to a sphere and satisfies the assumption on Ricci
curvature. Leung [9] has proved that a compact, oriented n-dimensional
minimal submanifolds of the unit hypersphere is homeomorphic to a sphere
if the square length S of the second fundamental form satisfies S < n. The-
orem B is not a consequence of Leung’s result since there exist minimal
submanifolds of the unit hypersphere with S > n which are homeomorphic
to a sphere, for example ψs, s ≥ 2.

The paper is organized as follows: Section 2, is devoted to some notations
and preliminaries. In Section 3, we give the proofs of the main results. The
paper ends up with some concluding remarks and questions.

2. Preliminaries.

Let (Mn, 〈, 〉) be an n-dimensional smooth, oriented Riemannian manifold
and f : Mn → Sn+k an isometric immersion of codimension k into the unit
hypersphere Sn+k of Rn+k+1. Denote the standard connection of Sn+k by
∇, the Riemannian connection of Mn by ∇, and the second fundamental
form of the immersion by B. For tangent vectors X and Y of Mn, we have
the Gauss formula

∇XY = ∇XY +B(X,Y )

and the Weingarten formula

∇Xe = −AeX +DXe,

where the (1,1) tensorfield Ae is the shape operator associated with a normal
vectorfield e, and D is the connection in the normal bundle of Mn. It
is well known that 〈AeX,Y 〉 = 〈B(X,Y ), e〉. Let {e1, . . . , ek} be a local
orthonormal frame field in the normal bundle of Mn. For any unit tangent
vector X of Mn the Ricci curvature Ric(X) in the direction of X is given
by

Ric(X) = n − 1 +
k∑

α=1

(trAα)〈AαX,X〉 −
k∑

α=1

|AαX|2,
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where Aα denotes the shape operator associated with eα. In particular, for
a minimal immersion we have

(2.1) Ric(X) = n − 1−
k∑

α=1

|AαX|2.

It is well known that if the normal connection D is flat, then at each point
there exists an orthonormal basis of the tangent space which simultaneously
diagonalizes all shape operators. Moreover, in this case the Ricci curvature
attains its absolute extrema at principal directions.
We restrict ourselves to immersions of codimension k = 1. Let (Mn, 〈, 〉)

be an n-dimensional smooth and oriented Riemannian manifold, and f :
Mn → Sn+1 an isometric immersion of Mn into the unit hypersphere Sn+1.
Denote by N the unit normal vectorfield of f in Sn+1 with associated shape
operator A. We denote by Λ the so called principal curvature set which is
the set of values assumed by the principal curvatures and write Λ̄ for the
closure of Λ in R̄ the extended real numbers. We set Λ± = Λ ∩ R±.
The map ft = cos tf + sin tN is an immersion if cot t = k 
∈ Λ and is

in fact an isometric immersion if we endow Mn with the pull back metric
〈, 〉t via ft. Its shape operator At with respect to the unit normal vector
Nt = cos tN − sin tf is given by

At = (kA+ I)(kI − A)−1.

Obviously, if the Riemannian manifold (Mn, 〈, 〉) is complete, then (Mn, 〈, 〉t)
is complete if k 
∈ Λ̄. For t = π/2, the immersion fπ/2 is the Gauss mapping
with unit normal vectorfield −f and associated shape operator −A−1. If the
principal curvatures of f are λi, i = 1, . . . , n, then the principal curvatures
of ft are

(2.2) λi(t) =
kλi + 1
k − λi

.

The principal curvature set Λt of ft is related to the principal curvature
set Λ of f by the Möbius transformation ρ(x) = (kx + 1)/(k − x). It is
obvious that Λ and Λt have the same number of connected components.
The following auxiliary result is crucial for the proof of the Theorem A

and is a combination of some lemmas given in [13, 14]. For the sake of
completeness we give a short proof of it.

Lemma 2.1. Let Mn be a compact oriented Riemannian manifold and f :
Mn → Sn+1 an isometric immersion with principal curvature set Λ. If Λ±
are both non-empty and infΛ+supΛ− < −1, then 0 ∈ Λ.

Proof. Assume that 0 
∈ Λ. Choose a positive number t > 0, such that
infΛ+ > k > −1/supΛ−, where k = cos t/ sin t. Obviously, the map ft+π/2

is an isometric immersion with principal curvatures λi(t + π/2) = (λi −
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k)/(1 + kλi), as it follows from (2.2), since cot(t+ π/2) = −1/k. We easily
deduce that all principal curvatures of ft+π/2 are positive, that is, its shape
operator is positive definite everywhere. It follows from Do Carmo-Warner
[3] that Mn is diffeomorphic to Sn and ft+π/2 embeds it as the boundary
of a convex domain in an open hemisphere. Moreover, Λt+π/2 is connected
and so Λ must be connected. This contradicts our assumption that 0 
∈ Λ.
So 0 ∈ Λ.

3. Proofs of the results.

Proof of Theorem A. Arguing indirectly, we assume that supRic = a < n−2.
Bearing in mind (2.1), for each principal curvature λ ∈ Λ we have

(3.1) |λ| ≥ √
n − 1− a.

The map f̃ = ft for t = π/2 is an immersion. We denote by ˜〈, 〉 the induced
metric on Mn via f̃ . Then f̃ becomes an isometric immersion with shape
operator Ã = −A−1. Since 0 
∈ Λ̄, the Riemannian manifold (Mn, ˜〈, 〉) is
complete. The sectional curvature K̃ of (Mn, ˜〈, 〉) for the plane spanned by
the orthogonal principal directions e1, e2 is

K̃(e1 ∧ e2) = 1 +
1
λµ

,

where λ, µ are the corresponding principal curvatures. Using (3.1), we easily
see that

K̃ ≥ n − 2− a

n − 1− a
.

By the Bonnet-Myers’ theorem, we deduce that Mn is compact. This
implies that there is a point P ∈ Mn and a principal curvature λ(P )
such that |λ(P )| = √

n − 1− a. Then, either infΛ+ =
√

n − 1− a, or
supΛ− = −√

n − 1− a. Moreover, from (3.1) we get supΛ− ≤ −√
n − 1− a

and infΛ+ ≥ √
n − 1− a. Since a < n − 2, in any case we obtain

infΛ+supΛ− ≤ −(n − 1− a) < −1.
Appealing to Lemma 2.1, we infer that 0 ∈ Λ, which contradicts (3.1). Hence
we have proved that supRic ≥ n − 2.
Now assume that supRic = n − 2. Then for each λ ∈ Λ we have

(3.2) |λ| ≥ 1.

We consider again the map f̃ = ft for t = π/2. The map f̃ is an immersion
with shape operator Ã = −A−1 and induced metric ˜〈, 〉. Moreover, (3.2)
implies that (Mn, ˜〈, 〉) is complete. Denote by λi, i = 1, . . . , n, the principal
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curvatures of f and by ei, i = 1, . . . , n, the corresponding principal direc-
tions. The sectional curvature K̃ of (Mn, ˜〈, 〉) for the plane spanned by the
orthogonal principal directions ei, ej , (i 
= j) is

(3.3) K̃(ei ∧ ej) = 1 +
1

λiλj
.

Case 1. Assume that n = 2. In this case the map f̃ is an isometric
minimal immersion of the complete Riemannian manifold (M2, ˜〈, 〉) with
shape operator Ã = −A−1 and Gaussian curvature K̃ ≥ 0, as it follows
from (3.3). Hence M2 is either compact or parabolic. We proceed now in a
standard way. Using Simon’s formula, we find that ∆̃trA−2 ≥ 0, where ∆̃ is
the Laplace operator of (M2, ˜〈, 〉); therefore, trA−2 = const., because trA−2

is bounded from above. Thus, λ1 = −λ2 = 1 and f(M2) = S1(
√
1/2) ×

S1(
√
1/2).

Case 2. Assume that n ≥ 3. Because of (3.2), we may suppose, after an
eventual change of orientation, that

λ1 ≥, . . . ,≥ λk ≥ 1 > −1 ≥ λk+1 ≥, . . . ,≥ λn,

with k ≤ [n/2], where [n/2] stands for the integer part of n/2. We shall
prove that Mn is compact. To this aim we distinguish two subcases.

Assume that k = 1. Since
n∑

i=1
λi = 0, we get λ1 ≥ n − 1. Obviously,

we have K̃(ei ∧ ej) > 1, if i, j > 1. For the two plane spanned by e1 and
ei, i > 1, we have

K̃(e1 ∧ ej) ≥ n − 2
n − 1

.

Therefore, all the sectional curvatures of (Mn, ˜〈, 〉) are bounded below by a
positive constant; so Mn is compact by the Bonnet-Myers’ theorem.
Assume that k > 1. By virtue of (3.3), the Ricci curvature of (Mn, ˜〈, 〉)

in the direction ei is given by

R̃ic(ei) = n − 1 +
1
λi

∑
j �=i

1
λj

.

Using (3.2), for 1 ≤ i ≤ k, we have

R̃ic(ei) ≥ n − 1 +
1
λi

n∑
j=k+1

1
λj

≥ k − 1 > 0.

Similarly, for k + 1 ≤ i ≤ n, we find that R̃ic(ei) ≥ k − 1 > 0. Hence the
Ricci curvature of (Mn, ˜〈, 〉) is bounded below by a positive constant. By
the Bonnet-Myers’ theorem, Mn is compact.
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Moreover, (3.2) easily implies that (Mn, ˜〈, 〉) has non-negative sectional
curvatures. Denote by M̄n the universal cover of Mn with covering pro-
jection π : M̄n → Mn. We consider the isometric minimal immersion
g = f ◦ π : M̄n → Sn+1 and the immersion g̃ = f̃ ◦ π : M̄n → Sn+1,
where f̃ = fπ/2. The above arguments applied to M̄n and g yield that M̄n

is compact with non-negative sectional curvatures and positive Ricci curva-
ture with respect to the Riemannian metric induced on it by g̃. The proof of
Theorem A(ii) in the case n = 3 follows directly from the Hamilton’s theo-
rem [5] which states that a compact and connected Riemannian 3-manifold
with positive Ricci curvature is diffeomorphic to a spherical space form. We
treat the case where n ≥ 4. Appealing to a result due to Baldin and Mercuri
[1, Theorem 3.2] we infer that either M̄n is a homotopy sphere or is isometric
to a product Md

1 × Mn−d
2 of two compact manifolds of non-negative curva-

ture. Moreover, in the latter case there are isometric (convex) embeddings
f1 : Md

1 → Rd+1 and f2 : Mn−d
2 → Rn−d+1 such that g̃ = f1 × f2. In the

case where M̄n is a homotopy sphere, by the generalized Poincare conjecture
(Smale n ≥ 5, Freedman n = 4) we deduce that M̄n is homeomorphic to
Sn. The subspace spanned by the positive eigenspaces at each point defines
a continuous k-plane field on M̄n. According to Steenrod [15], n must be
odd. In the case where M̄n is isometric to a product and g̃ = f1×f2, we see
that f̃(Mn) is a product of two round hyperspheres. Hence f(Mn) is also
a product of two round hyperspheres. Since f is minimal, we deduce that
f(Mn) = Sm(

√
m/n) × Sn−m(

√
(n − m)/n). Moreover, since supRic =

n − 2, we conclude that n = 2m and f(Mn) = Sm(
√
1/2) × Sm(

√
1/2).

This completes the proof of Theorem A.

The main idea in the proof of Theorem B is to prove that Mn is a homol-
ogy sphere based on the following result due to Lawson and Simons [8].

Theorem 3.1. Let Mn be a compact submanifold of the unit sphere Sn+k

with second fundamental form B. Let p, q be positive integers such that
p+q = n. If for any P ∈ Mn and any orthonormal basis {e1, . . . , ep, . . . , en}
of TP M , the following inequality is satisfied

p∑
i=1

n∑
j=p+1

(
2|B(ei, ej)|2 − 〈B(ei, ei), B(ej , ej)〉

)
< pq,

then
Hp(Mn, Z) = Hq(Mn, Z) = 0,

where Hi(Mn, Z) denotes the i-th homology group of Mn with integer coef-
ficients.

Proof of Theorem B. If n = 3, then it follows by a result due to Hamil-
ton [5] that Mn is diffeomorphic to a spherical space form. Hereafter, we
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assume that n > 3. Let P ∈ Mn and {e1, . . . , ep, . . . , en} be an arbitrary
orthonormal basis of TP M . Since Mn is minimal we have

p∑
i=1

n∑
j=p+1

(
2|B(ei, ej)|2 − 〈B(ei, ei), B(ej , ej)〉

)

=
p∑

i=1

n∑
j=p+1

2|B(ei, ej)|2 +
p∑

i=1

p∑
i1=1

〈B(ei, ei), B(ei1 , ei1)〉.

We choose an orthonormal basis {en+1, . . . , en+k} of the normal space at
P and denote by An+1, . . . , An+k the corresponding shape operators. Then
the above equality becomes

p∑
i=1

n∑
j=p+1

(
2|B(ei, ej)|2 − 〈B(ei, ei), B(ej , ej)〉

)

= 2
p∑

i=1

n∑
j=p+1

n+k∑
α=n+1

〈Aαei, ej〉2 +
n+k∑

α=n+1

(
p∑

i=1

〈Aαei, ei〉
)2

.

By Cauchy-Schwarz inequality we obtain

p∑
i=1

n∑
j=p+1

(
2|B(ei, ej)|2 − 〈B(ei, ei), B(ej , ej)〉

)

≤ 2
p∑

i=1

n∑
j=p+1

n+k∑
α=n+1

〈Aαei, ej〉2 + p

n+k∑
α=n+1

p∑
i=1

〈Aαei, ei〉2.

We suppose that p ≥ 2. Then we get

p∑
i=1

n∑
j=p+1

(
2|B(ei, ej)|2 − 〈B(ei, ei), B(ej , ej)〉

)

≤ p

p∑
i=1

n∑
j=p+1

n+k∑
α=n+1

〈Aαei, ej〉2 + p

n+k∑
α=n+1

p∑
i=1

〈Aαei, ei〉2

= p

p∑
i=1

n+k∑
α=n+1


 n∑

j=p+1

〈Aαei, ej〉2 + 〈Aαei, ei〉2

 .

This implies that

p∑
i=1

n∑
j=p+1

(
2|B(ei, ej)|2 − 〈B(ei, ei), B(ej , ej)〉

) ≤ p

p∑
i=1

n+k∑
α=n+1

|Aαei|2.
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In view of (2.1), we get
p∑

i=1

n∑
j=p+1

(
2|B(ei, ej)|2 − 〈B(ei, ei), B(ej , ej)〉

) ≤ p

p∑
i=1

(
n − 1− Ric(ei)

)
.

From our assumption on the Ricci curvature, we infer that
p∑

i=1

n∑
j=p+1

(
2|B(ei, ej)|2 − 〈B(ei, ei), B(ej , ej)〉

)
< p2 n+ 1

n − 1
.

Obviously p 
= q. Without loss of generality we may assume that p < q,
hence n ≥ 2p+ 1. Since n ≥ 2p+ 1, we finally have

p∑
i=1

n∑
j=p+1

(
2|B(ei, ej)|2 − 〈B(ei, ei), B(ej , ej)〉

)
< p2 n+ 1

n − 1
≤ pq.

It follows from Theorem 3.1 that Hp(Mn, Z) = Hq(Mn, Z) = 0 for all
2 ≤ p, q ≤ n − 2 and p + q = n. Since Hn−2(Mn, Z) = 0, by the uni-
versal fundamental theorem Hn−1(Mn, Z) has no torsion and consequently
H1(Mn, Z) has no torsion by Poincare duality. By our assumption on the
Ricci curvature and the Bonnet-Myers’ theorem, we know that the funda-
mental group π1(Mn) of Mn is finite. Hence H1(Mn, Z) = 0 and therefore
by Poincare duality Hn−1(Mn, Z) = 0. So Mn is a homology sphere. The
above arguments can be applied to the universal covering M̃n of Mn. Since
M̃n is a homology sphere which is simply connected, i.e., π1(M̃n) = 0, it
is also a homotopy sphere. By the generalized Poincare conjecture (Smale
n ≥ 5, Freedman n = 4) we have that M̃n is homeomorphic to Sn. A result
due to Sjerve [12] implies that π1(Mn) = 0 and so Mn is homeomorphic to
Sn. This completes the proof of Theorem B.

4. Concluding remarks and questions.

(i). It is well known [7, 16] that for any n ≥ 3 there is an abundance of
minimal immersions or embeddings of the differentiable n -sphere into the
standard Euclidean unit hypersphere Sn+1, which are not equators. By a
similar argumentation as in the proof of Theorem A we obtain: If n = 2m,
and f : Sn → Sn+1 is a minimal immersion, then supRic = n − 1. In
fact, if supRic < n − 1, then the principal curvatures λi, i = 1, . . . , n, of
f satisfy |λi| > 0. So the subspace spanned by the positive eigenspaces
at each point define a continuous r-plane field (0 < r < n), which is a
contradiction by Steenrod [15]. It is natural to pose the following question:
Let f : Sn → Sn+1 be a minimal immersion of an odd-dimensional n-sphere.
Is it true that supRic = n − 1?
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(ii). A direct computation shows that all odd n-dimensional Clifford mini-
mal hypersurfaces satisfy

(∗) supRic ≥ n(n − 1)
n+ 1

,

with equality only in the case of Sm(
√

m/n) × Sm+1(
√
(m+ 1)/n), where

n = 2m+ 1. On the other hand, in [6] it has been proved that: Let M3 be
a compact and oriented 3-dimensional Riemannian manifold, and f : M3 →
S4 an isometric minimal immersion; then supRic ≥ 3/2 and the equality
holds only in the case where f(M3) = S1(

√
1/3) × S2(

√
2/3). Moreover,

by an easy computation, we verify that the Cartan minimal hypersurfaces
and the minimal hypersurfaces constructed by Otsuki in [11] do satisfy (∗).
Taking all these as a clue, it is plausible to raise the following question. Let
Mn be a compact, oriented Riemannian manifold of dimension n = 2m+ 1
and f : Mn → Sn+1 an isometric minimal immersion. Is it true that
supRic ≥ n(n − 1)/(n+ 1), with equality only in the case where f(Mn) =
Sm(

√
m/n)× Sm+1(

√
(m+ 1)/n)?

(iii). The following statement holds and its proof is elementary. Let λi, i =
1, . . . , n, (n = 2m+1) be real numbers satisfying

∑
i

λi = 0 and m
m+1 ≤ λ2

i ≤
m+1

m ; then m of them (after an eventual change of sign) are equal to
√

m
m+1

and the remainder are equal to −
√

m+1
m . Moreover,

∑
i

λ2
i = n. In fact,

without loss of generality, we may suppose that the numbers λ1, . . . , λk, (1 ≤
k ≤ m) are positive and the numbers λk+1, . . . , λn are negative. Since

λ1 + · · · + λk = −λk+1 − · · · − λn, we obtain (n − k)
√

m
m+1 ≤ k

√
m+1

m , or

equivalently k ≥ m. So k = m. Now from −
√

m+1
m ≤ λ2m+1 ≤ −

√
m

m+1

and λ2m+1 = −
2m∑
i=1

λi, we obtain

√
m+ 1

m
≥

2m∑
i=1

λi ≥
√

m

m+ 1
.

On the other hand, we have
2m∑
i=1

λi ≤ m

√
m+ 1

m
− m

√
m

m+ 1
=
√

m

m+ 1
,

which implies the desired result.
As an application of the above observation, we get the following local

result: Let Mn be an odd-dimensional Riemannian manifold and f : Mn →
Sn+1 an isometric minimal immersion satisfying n(n−3)

n−1 ≤ Ric ≤ n(n−1)
(n+1) ;
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then f(Mn) is an open portion of Sm(
√

m/n)×Sm+1(
√
(m+ 1)/n). In fact,

by the hypothesis on the Ricci curvature, the principal curvatures λi, i =
1, . . . , n, satisfy m

m+1 ≤ λ2
i ≤ m+1

m at every point. So the square length S of
the second fundamental form satisfies S = n and the deduction is standard.

Remark. This result has been proved by Haizhong [4] for n = 3 under
the global assumption of compactness.

(iv). In [10, p. 389] Leung posed the following conjecture: Let n = 2m+1.
Suppose that Mn is a compact and connected immersed minimal submanifold
of the unit sphere Sn+k. If |B(X,X)|2 < n+1

n−1 for any unit tangent vector X
at any point, where B is the second fundamental form, then Mn is homeo-
morphic to Sn. Theorem B provides a partial confirmation of this conjecture,
since our assumption Ric > n(n− 3)/(n− 1) implies that |B(X,X)|2 < n+1

n−1
for any unit tangent vector X. However, in the case where the normal
connection of Mn is flat, the condition |B(X,X)|2 < n+1

n−1 is equivalent to
Ric > n(n − 3)/(n − 1). So under this assumption, Theorem B proves the
above conjecture.
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