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Abstract. Linear differential systems ẋ(t) = Ax(t) (A ∈ R
n×n, x0 = x(0) ∈ R

n, t ≥ 0) whose
solutions become and remain nonnegative are studied. It is shown that the eigenvalue of A furthest to
the right must be real and must possess nonnegative right and left eigenvectors. Moreover, for some
a ≥ 0, A+aI must be eventually nonnegative, that is, its powers must become and remain entrywise
nonnegative. Initial conditions x0 that result in nonnegative states x(t) in finite time are shown to
form a convex cone that is related to the matrix exponential etA and its eventual nonnegativity.
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1. Introduction. In dynamical systems theory, one is frequently interested in
qualitative information regarding state evolution. In particular, due to physical and
modeling constraints arising in engineering, biological, medical, behavioral, and eco-
nomic applications, it is commonly of interest to impose or consider conditions for
nonnegativity of the states; see, e.g., [2, 6]. Such applications typically draw on the
theory, or directly take the form, of a linear differential system,

ẋ(t) = Ax(t), A ∈ R
n×n, x(0) = x0 ∈ R

n, t ≥ 0,(1.1)

whose solution is given by x(t) = etAx0. We shall refer here to the set

{x(t) = etAx0 | t ∈ [0,∞)}

as the trajectory emanating from x0 and say that x0 gives rise to this trajectory. In this
paper we will consider conditions for the entrywise nonnegativity of the trajectories
associated with (1.1). Our main concern is the following “hit and hold” problem:

When does the trajectory emanating from an initial point x0 become (entrywise)
nonnegative and remain nonnegative for all time thereafter?

More specifically, we will seek characterizations of system parameters that lead to
a trajectory becoming nonnegative at a finite time (reachability of R

n
+) and remaining

nonnegative for all time thereafter (holdability of R
n
+). This endeavor will comprise

two related efforts:
(1) Study matrices A ∈ R

n×n for which there exists t0 ∈ [0,∞) such that etA ≥ 0
for all t ≥ t0. We shall term such matrices eventually exponentially nonnegative.

(2) Given an eventually exponentially nonnegative matrix A, study initial points
x0 ∈ R

n for which there exists t̂ ∈ [0,∞) such that etAx0 ≥ 0 for all t ≥ t̂. We shall
refer to such initial points as points of nonnegative potential.

Some comments regarding these two goals and the structure of this paper are in
order.
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First, matrices all of whose off-diagonal entries are nonnegative (known as es-
sentially nonnegative or Metzler matrices) are eventually exponentially nonnegative
(with t0 = 0). However, as we shall see in section 3, the eventually exponentially
nonnegative matrices form a larger matrix class. They are closely related to the
eventually nonnegative matrices, namely, matrices whose powers become and remain
nonnegative. It is this latter fact that provides further motivation for our study, as
eventually nonnegative matrices arise in the theory of positive control systems; see
e.g., [16].

Second, it is clear that R
n
+ (the nonnegative orthant) comprises points of non-

negative potential but as we shall see, in the general case, the totality of such points
forms a convex cone that strictly contains R

n
+. Our relevant analysis is in section 4,

where points of nonnegative potential and the asymptotic behavior of solutions are
connected to the matrix exponential etA and its eventual nonnegativity. We note that
even in applications where initial points and states are de facto nonnegative, points of
nonnegative potential outside R

n
+ can be of practical interest. For example, suppose

that for some x0 ∈ R
n, x̂0 = Ax0 is a point of nonnegative potential. Then there

exists t̂ ≥ 0 such that for all t ≥ t̂,

ẋ(t) =
d

dt
(etAx0) = AetAx0 = etAAx0 = etAx̂0 ≥ 0;

that is, the trajectory emanating from x0 becomes (at t = t̂) and remains entrywise
nondecreasing. This situation occurs, e.g., when (1.1) models species that reach a
symbiotic state after which none of the populations decreases; see [9].

2. Notation, definitions, and preliminaries. Given an n× n matrix A, the
spectrum of A is denoted by σ(A) and its spectral radius by ρ(A) = max{|λ| | λ ∈
σ(A)}. An eigenvalue λ of A is said to be dominant if |λ| = ρ(A). The spectral
abscissa of A is defined and denoted by λ(A) := max{Reλ | λ ∈ σ(A)}. By index0(A)
we denote the degree of 0 as a root of the minimal polynomial of A. Consequently,
when we say index0(A) ≤ 1, we mean that either A is invertible or that the size of
the largest nilpotent Jordan block in the Jordan canonical form of A is 1 × 1.

The nonnegative orthant in R
n, that is, the set of all nonnegative vectors in R

n, is
denoted by R

n
+. For x ∈ R

n, we use the notation x ≥ 0 interchangeably with x ∈ R
n
+.

An n×n matrix A is called reducible if there exists a permutation matrix P such
that

PAPT =

[
A11 A12

0 A22

]
,

where A11 and A22 are square, nonvacuous matrices. Otherwise, A is called irreducible.
Recall that irreducibility of A is equivalent to the directed graph of A, G(A), being
strongly connected, namely, the existence of a path of edges leading from any vertex i
to any other vertex j. For details and further terminology regarding directed graphs,
see [1].

Every reducible matrix A can be symmetrically permuted to its Frobenius normal
form; namely, for every reducible matrix A ∈ R

n×n, there exists a permutation matrix
P such that

PAPT =

⎡
⎢⎢⎢⎣

A11 A12 · · · A1p

0 A22 · · · A2p

...
. . .

...
0 · · · 0 App

⎤
⎥⎥⎥⎦ ,
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where each diagonal block Ajj (j = 1, 2, . . . , p) is square and either irreducible or
the 1 × 1 zero matrix. Note that the diagonal blocks in the Frobenius normal form
correspond to a partition of the vertices of G(A) into classes of strongly connected
vertex subsets (a singleton is considered strongly connected).

To the Frobenius normal form of A above we associate the reduced graph R(A)
of A defined as follows: R(A) has p vertices, each one of them corresponding to a
strongly connected set of vertices in the directed graph of A. R(A) has a directed
edge from i to j if and only if Aij �= 0. In section 3 we will consider the transitive

closure of R(A), R(A), which is the directed graph obtained from R(A) having an
edge from i to j if and only if there is a path from i to j in R(A).

Definition 2.1. An n× n matrix A = [aij ] is called
• nonnegative (positive), denoted by A ≥ 0 (A > 0), if aij ≥ 0 (> 0) for all i

and j;
• essentially nonnegative (positive), denoted by A

s≥ 0 (A
s
> 0), if aij ≥ 0

(aij > 0) for all i �= j;
• eventually nonnegative (positive), denoted by A

v≥ 0 (A
v
> 0), if there exists

positive integer k0 such that Ak ≥ 0 (Ak > 0) for all k ≥ k0; we denote the
smallest such positive integer by k0 = k0(A) and refer to it as the power index
of A;

• exponentially nonnegative (positive) if for all t ≥ 0, etA =
∑∞

k=0
tkAk

k! ≥ 0
(etA > 0);

• eventually exponentially nonnegative (positive) if there exists t0 ∈ [0,∞) such
that for all t ≥ t0, e

tA ≥ 0 (etA > 0). We denote the smallest such nonneg-
ative number by t0 = t0(A) and refer to it as the exponential index of A.

Lemma 2.2. Let A ∈ R
n×n. The following are equivalent:

(i) A is eventually exponentially nonnegative.
(ii) There exists a ∈ R such that A + aI is eventually exponentially nonnegative.
(iii) For all a ∈ R, A + aI is eventually exponentially nonnegative.
Proof. The equivalences follow readily from the fact that as aI and A commute,

et(A+aI) = eatI etA = eatetA.

We conclude this section with some notions crucial to the analysis in section 3.
Definition 2.3. We say that A ∈ R

n×n has
• the Perron–Frobenius property if ρ(A) > 0, ρ(A) ∈ σ(A), and there exists a

nonnegative eigenvector corresponding to ρ(A);
• the strong Perron–Frobenius property if, in addition to having the Perron–

Frobenius property, ρ(A) is a simple eigenvalue such that

ρ(A) > |λ| for all λ ∈ σ(A), λ �= ρ(A),

and if there is a strictly positive eigenvector corresponding to ρ(A).
By the Perron–Frobenius theorem, every nonnilpotent A ≥ 0 has the Perron–

Frobenius property and every primitive A ≥ 0 has the strong Perron–Frobenius prop-
erty; see [1].

3. Eventually exponentially nonnegative matrices. There is a well-known
equivalence between the notions of exponential nonnegativity and essential nonnega-
tivity; see [1, Chapter 6, Theorem (3.12)]. We include a proof of this result next for
completeness.
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Lemma 3.1. A ∈ R
n×n is exponentially nonnegative if and only if A

s≥ 0.

Proof. If A
s≥ 0, then there exists large enough α ≥ 0 such that A + αI ≥ 0.

Hence, as A and αI commute, we have that for all t ≥ 0,

etA = e−tαIet(A+αI) = e−tαet(A+αI) ≥ 0.

Conversely, let etA ≥ 0 for all t ≥ 0 and by way of contradiction suppose that aij < 0

for some i �= j. Then, denoting the entries of Ak by a
(k)
ij , we have

(etA)ij = taij +
t2

2!
a
(2)
ij +

t3

3!
a
(3)
ij + · · · .

Thus, letting t → 0+ we have that for some t > 0, (etA)ij < 0, a contradiction.
As a consequence of the above lemma, every essentially nonnegative matrix A is

eventually exponentially nonnegative with exponential index t0 = 0. We proceed with
a characterization of eventually exponentially positive matrices based on some recent
results proven in [11].

Theorem 3.2 (see [11, Theorem 2.2]). For a matrix A ∈ R
n×n the following are

equivalent:
(i) Both matrices A and AT have the strong Perron–Frobenius property.
(ii) A is eventually positive.
(iii) AT is eventually positive.
Our main result thus far is the following extension of Theorem 3.2.
Theorem 3.3. For a matrix A ∈ R

n×n the following properties are equivalent:
(i) There exists a ≥ 0 such that both matrices A+aI and AT +aI have the strong

Perron–Frobenius property.
(ii) A + aI is eventually positive for some a ≥ 0.
(iii) AT + aI is eventually positive for some a ≥ 0.
(iv) A is eventually exponentially positive.
(v) AT is eventually exponentially positive.
Proof. The equivalence of (i)–(iii) is the content of Theorem 3.2 applied to A+aI.

We will argue the equivalence of (ii) and (iv), with the equivalence of (iii) and (v)
being analogous:

Let A + aI be eventually positive and let k0 be a positive integer such that
(A + aI)k > 0 for all k ≥ k0. Then there exists large enough t0 > 0 so that the first
k0 − 1 terms of the series

et(A+aI) =

∞∑
m=0

tm(A + aI)m

m!

are dominated by the remaining terms, rendering every entry of et(A+aI) positive for
all t ≥ t0. It follows that etA = e−taet(A+aI) is positive for all t ≥ t0. That is, A is
eventually exponentially positive. Conversely, suppose A is eventually exponentially
positive. As (eA)k = ekA, it follows that eA is eventually positive. Thus, by Theorem
3.2, eA has the strong Perron–Frobenius property. Recall that σ(eA) = {eλ : λ ∈
σ(A)} and so ρ( eA) = eλ for some λ ∈ σ(A). Then for each μ ∈ σ(A) with μ �= λ
we have

eλ > |eμ| = |eReμ+iImμ| = eReμ.
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Hence λ is the spectral abscissa of A, namely, λ > Reμ for all μ ∈ σ(A) with μ �= λ.
In turn, this means that there exists large enough a > 0 such that

λ + a > |μ + a| for all μ ∈ σ(A), μ �= λ.

As A + aI shares its eigenspaces with eA, it follows that A + aI has the strong
Perron–Frobenius property. Invoking Theorem 3.2 once more, we have that A+ aI is
eventually positive.

Remark 3.4. Note that the equivalence of (ii) and (iv) in Theorem 3.3 represents a

generalization of the fact that A
s
> 0 is equivalent to A being exponentially positive.

Example 3.5. Consider the matrix

A =

⎡
⎢⎢⎣

1 1 1 1
1 1 1 1

−1 1 1 1
1 0 1 1

⎤
⎥⎥⎦

and observe that

A2 =

⎡
⎢⎢⎣

2 3 4 4
2 3 4 4
0 1 2 2
1 2 3 3

⎤
⎥⎥⎦ , A3 =

⎡
⎢⎢⎣

5 9 13 13
5 9 13 13
1 3 5 5
3 6 9 9

⎤
⎥⎥⎦ .

It is easily checked that A is an eventually positive matrix with power index k0 = 3,
so by Theorem 3.3, A is an eventually exponentially positive matrix. Computing etA

for t = 1, 2 we obtain, respectively,
⎡
⎢⎢⎣

5.0401 6.3618 8.6836 8.6836
4.0401 7.3618 8.6836 8.6836

−0.4655 2.7873 5.0401 4.0401
2.7873 3.5746 6.3618 7.3618

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

71.2660 134.1429 198.0199 198.0199
70.2660 135.1429 198.0199 198.0199
18.4960 45.3810 71.2660 70.2660
45.3810 88.7620 134.1429 135.1429

⎤
⎥⎥⎦ .

Taking into consideration the location of the nonpositive entries of A and A2, we infer
that the exponential index of A is t0 ∈ (1, 2).

Next we focus on eventually exponentially nonnegative matrices and connect them
to eventually nonnegative matrices. In what follows we state and prove conditions
that are sufficient for eventual exponential nonnegativity and investigate necessary
conditions. To do so, we first need to discuss the relationship among the Frobenius
normal forms of the powers of an eventually nonnegative matrix. This topic and its
relation to the spectrum are studied extensively in [3, 4]. Below we summarize and
paraphrase some of these results.

Theorem 3.6 (see [3, Theorems 3.4 and 3.5]). Let A ∈ R
n×n be eventually non-

negative with index0(A) ≤ 1. Then there exists a positive integer q and a permutation
matrix P such that

(i) Ak ≥ 0 for all k ≥ q;
(ii) PAPT and PAqPT are simultaneously in Frobenius normal form;
(iii) R(A) = R(Aq).
Theorem 3.7. Let A ∈ R

n×n be an eventually nonnegative with index0(A) ≤ 1.
Then A is an eventually exponentially nonnegative matrix.

Proof. To avoid trivialities, suppose n ≥ 2 and recall Theorem 3.6(ii). Without
loss of generality, assume P = I; otherwise our considerations apply to a permuta-
tional similarity of A. Thus A and Aq are assumed to be in Frobenius normal form
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as follows:

A =

⎡
⎢⎢⎢⎢⎣

A11 · · · · · · A1p

0
. . .

. . .
...

...
. . .

. . .
...

0 · · · 0 App

⎤
⎥⎥⎥⎥⎦ and Aq =

⎡
⎢⎢⎢⎢⎢⎣

A
(q)
11 · · · · · · A

(q)
1p

0
. . .

. . . A
(q)
2k

...
. . .

. . .
...

0 · · · · · · A
(q)
pp

⎤
⎥⎥⎥⎥⎥⎦
.(3.1)

Consider the power series etA =
∑∞

k=0
tmAk

k! partitioned in blocks conformably to
the matrices in (3.1) and let cij(t) be the (i, j)th entry of etA. Abusing slightly the
notation, let {1, 2, . . . , p } denote the p strongly connected classes in G(A) implied by
(3.1). Let i belong to class u and j to class v, where u, v ∈ {1, 2, . . . , p}. The following
cases ensue:

Suppose that p = 1. As n ≥ 2, A is irreducible. Thus for all powers k ≥ q, the
(i, j)th entry of Ak is nonnegative and is indeed positive for at least some powers
≥ q. As a consequence, as t ≥ 0 increases, cij(t) is dominated in the power series
by positive terms. That is, cij(t) becomes and remains positive for all large enough
t ≥ 0.

Suppose next that p > 1. The blocks in the lower triangular part of the block
partition of each Ak implied by (3.1) must be zero; namely, if u > v, then cij(t) = 0
for all t ≥ 0.

If u = v, that is, if i, j belong to the same equivalence class, then either Auu

and A
(q)
uu are both equal to the 1 × 1 zero matrix or they are both irreducible. In the

former case, cij(t) = 0 for all t ≥ 0, and in the latter case, cij(t) becomes and remains
positive for all large enough t ≥ 0 analogously to the p = 1 case above.

Finally, let us consider the sign of cij(t) when u < v. Let a
(k)
ij denote the (i, j)th

entry of Ak. If a
(k)
ij = 0 for all k < q, then by Theorem 3.6(i) we have that cij(t) ≥ 0

for all t ≥ 0. If a
(k)
ij �= 0 for some k < q, then there must be a path form i to j in

G(A). Thus there is a path from u to v in R(A). By Theorem 3.6(iii), R(A) = R(Aq)
and so there must be a path from u to v in R(Aq). It follows that there is a path from

i to j in G(Aq). In turn, this implies that there is a power m ≥ q such that a
(m)
ij > 0.

As a
(k)
ij ≥ 0 for all k ≥ q, we have once again that cij(t) is dominated in the power

series by positive terms and so it becomes and remains positive for all large enough
t ≥ 0.

To conclude, we have shown that each entry cij(t) of etA becomes and remains
nonnegative for all large enough t ≥ 0, namely, that A is eventually exponentially
positive.

Corollary 3.8. Let A ∈ R
n×n such that A + aI is eventually nonnegative for

all a ∈ [a1, a2] (a1 < a2). Then A is an eventually exponentially nonnegative matrix.
Proof. Since σ(A) is a finite set, there exists a ∈ [a1, a2] such that A + aI is

invertible. Hence index0(A+aI) = 0 and so by Theorem 3.7, A+aI is eventually ex-
ponentially nonnegative. By Lemma 2.2, it follows that A is eventually exponentially
nonnegative.

We illustrate the above results on eventual nonnegativity with the following ex-
amples.
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Example 3.9. Consider

A =

⎡
⎢⎢⎣

0 1 1 −1
1 0 1 1
0 0 1 1
0 0 1 1

⎤
⎥⎥⎦

for which

A2 =

⎡
⎢⎢⎣

1 0 1 1
0 1 3 1
0 0 2 2
0 0 2 2

⎤
⎥⎥⎦ , A3 =

⎡
⎢⎢⎣

0 1 3 1
1 0 5 5
0 0 4 4
0 0 4 4

⎤
⎥⎥⎦ ,

A4 =

⎡
⎢⎢⎣

1 0 5 5
0 1 11 9
0 0 8 8
0 0 8 8

⎤
⎥⎥⎦ , A5 =

⎡
⎢⎢⎣

0 1 11 9
1 0 21 21
0 0 16 16
0 0 16 16

⎤
⎥⎥⎦ .

Notice that A is reducible, eventually nonnegative, and, referring to Theorem 3.6,
q = k0 = 2. Since index0(A) = 1, Theorem 3.7 implies that A is an eventually
exponentially nonnegative matrix. For illustration, we compute etA for t = 1, 2 to be,
respectively,

⎡
⎢⎢⎣

1.5431 1.1752 2.3404 −0.0100
1.1752 1.5431 4.0487 2.9625

0 0 4.1945 3.1945
0 0 3.1945 4.1945

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

3.7622 3.6269 18.1543 10.9006
3.6269 3.7622 35.4439 29.9195

0 0 27.7991 26.7991
0 0 26.7991 27.7991

⎤
⎥⎥⎦ .

This confirms A is an eventually exponentially nonnegative matrix with 1 < t0 < 2.
Example 3.10. Consider the matrix

A =

⎡
⎢⎢⎣

1 1 −1 1
1 1 1 −1
0 0 1 1
0 0 1 1

⎤
⎥⎥⎦

and its sequence of powers

Ak =

⎡
⎢⎢⎣

2k−1 2k−1 0 0
2k−1 2k−1 0 0

0 0 2k−1 2k−1

0 0 2k−1 2k−1

⎤
⎥⎥⎦ (k = 2, 3, . . .).

The matrix A is eventually nonnegative with k0 = 2. As the (1, 2) block of Ak is 0 for
all k ≥ 2, while the one of A is not and contains negative entries, A is not eventually
exponentially nonnegative. In agreement, the assumptions of Theorem 3.7 do not
hold since index0(A) = 2.

The failure of eventual nonnegativity to force eventual exponential nonnegativity
observed in the above example can occur even if A is irreducible, as the following
example shows.
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Example 3.11. Consider the matrix

A =

⎡
⎢⎢⎣

1 1 1 1
1 1 1 1

−1 1 1 1
1 −1 1 1

⎤
⎥⎥⎦

and its sequence of powers

Ak =

⎡
⎢⎢⎣

2k−1 2k−1 k2k−1 k2k−1

2k−1 2k−1 k2k−1 k2k−1

0 0 2k−1 2k−1

0 0 2k−1 2k−1

⎤
⎥⎥⎦ (k = 2, 3, . . .).

The matrix A is an eventually nonnegative matrix with k0 = 2 and index0(A) = 2.
As the assumptions of Theorem 3.7 do not hold, we may not conclude that A is
eventually exponentially nonnegative. The (2, 1) block of Ak is 0 for all k ≥ 2,
while the one of A is not and contains negative entries. Thus A is not eventually
exponentially nonnegative. Indeed,

eA =

⎡
⎢⎢⎣

4.1945 3.1945 7.3891 7.3891
3.1945 4.1945 7.3891 7.3891
−1 1 4.1945 3.1945
1 −1 3.1945 4.1945

⎤
⎥⎥⎦ , e3A =

⎡
⎢⎢⎣

202.2 201.2 1210.3 1210.3
201.2 202.2 1210.3 1210.3
−3 3 202.2 201.2
3 −3 201.2 202.2

⎤
⎥⎥⎦ .

We now turn our attention to necessary conditions for eventual exponential non-
negativity for which we need to quote some results from [11]. Note that in the first
theorem below from [11], we have added the assumption that A is not nilpotent; the
need for this assumption is observed in [5].

Theorem 3.12 (see [11, Theorem 2.3]). Let A ∈ R
n×n be an eventually nonneg-

ative matrix which is not nilpotent. Then both A and AT have the Perron–Frobenius
property.

Theorem 3.13 (see [11, Theorem 2.4]). Let both A ∈ R
n×n and AT have the

Perron–Frobenius property. If ρ(A) is a simple and the only dominant eigenvalue of
A, then

lim
k→∞

(
A

ρ(A)

)k

= xyT ,

where x and y are, respectively, right and left nonnegative eigenvectors of A corre-
sponding to ρ(A), satisfying xT y = 1.

Theorem 3.14. Let A ∈ R
n×n be an eventually exponentially nonnegative ma-

trix. Then the following hold:

(i) eA and eA
T

have the Perron–Frobenius property.
(ii) If ρ(eA) is a simple eigenvalue of eA and ρ(eA) = eρ(A), then there exists

a0 ≥ 0 such that limk→∞ ((A + aI)/(ρ(A + aI))k = xyT for all a > a0, where x and
y are, respectively, right and left nonnegative eigenvectors of A corresponding to ρ(A),
satisfying xT y = 1.

Proof. (i) Let A be eventually exponentially nonnegative. As (eA)k = ekA, it
follows that eA is eventually nonnegative. Thus, by Theorem 3.12 and since eA and

eA
T

are not nilpotent, they have the Perron–Frobenius property.
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(ii) From (i) we specifically have that ρ(eA) ∈ σ(eA). Let x, y be right and
left nonnegative eigenvectors, respectively, corresponding to ρ(eA) and normalized so
that xT y = 1. As in the proof of Theorem 3.3, ρ( eA) = eλ for some λ ∈ σ(A) with
λ > Reμ for all μ ∈ σ(A) \ {λ}. This means that there exists large enough a0 > 0,
such that for all a ≥ a0,

ρ(A + aI) = λ + a > |μ + a| for all μ ∈ σ(A), μ �= λ.

As A + aI and eA share eigenvectors, we obtain that for all a > a0, A + aI and
AT + aI both have the Perron–Frobenius property, with λ+ a being simple and their
only dominant eigenvalue. Applying Theorem 3.13 to A + aI, we thus obtain

lim
k→∞

1

ρ(A + aI)k
(A + aI)k = xyT ≥ 0.(3.2)

Remark 3.15. Referring to the proof of Theorem 3.14, by (3.2) we have that
if (xyT )ij > 0, then

(
(A + aI)k

)
ij

> 0 for all k sufficiently large. In particular, if

xyT > 0, then A + aI is eventually nonnegative for all a > a0. If, however, xyT is
nonnegative but not strictly positive, A+aI can fail to be eventually nonnegative for
all a ∈ R. This situation is illustrated by the matrix A in Example 3.11.

4. Points of nonnegative potential. In this section A ∈ R
n×n denotes an

eventually exponentially nonnegative matrix with exponential index t0 = t0(A) ≥ 0.
We will study points of nonnegative potential, that is, the set

XA(Rn
+) = {x0 ∈ R

n | (∃t̂ = t̂(x0) ≥ 0) (∀t ≥ t̂) [etAx0 ≥ 0]}.(4.1)

XA(Rn
+) comprises all initial points giving rise to trajectories of (1.1) that reach R

n
+

at some finite time and stay in R
n
+ for all time thereafter.

First, let us recall some basic facts and terminology on convex cones in R
n. Our

references are [1, Chapter 1] and [12]. A convex set K ⊆ R
n is called a convex cone

if aK ⊆ K for all a ≥ 0. A convex cone is called polyhedral if it consists of all finite
nonnegative linear combinations of the elements of a finite set. A convex cone K
is pointed if K ∩ (−K) = {0} and solid if its topological interior is nonempty. A
pointed, solid convex cone is called a proper cone. The nonnegative orthant R

n
+ is

indeed a proper cone; it is also a polyhedral cone, comprising all finite nonnegative
combinations of the standard basis vectors. Any subset of R

n of the form K = SR
n
+,

where S is an invertible matrix, is a proper polyhedral cone and referred to as a
simplicial cone.

Given an eventually exponentially nonnegative matrix A ∈ R
n×n with exponential

index t0 = t0(A) ≥ 0, define the simplicial cone

K = et0AR
n
+ = {x0 ∈ R

n | (∃y ≥ 0) [x0 = et0Ay]}

and consider the sets

YA(K) = {x0 ∈ R
n | (∃t̂ = t̂(x0) ≥ 0) [et̂Ax0 ∈ K]}(4.2)

and

XA(K) = {x0 ∈ R
n | (∃t̂ = t̂(x0) ≥ 0) (∀t ≥ t̂) [etAx0 ∈ K]}.(4.3)

Lemma 4.1. Let K, YA(K) as defined above. Then K ⊆ R
n
+ ⊆ YA(K).
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Proof. We have that K ⊆ R
n
+ since et0A ≥ 0. If x0 ∈ R

n
+, then for t̂ = 2t0,

et̂Ax0 = et0A (et0Ax0) ∈ K. Hence, R
n
+ ⊆ YA(K).

Note that the sets YA(K), XA(K), and XA(Rn
+) are convex cones. They are not

necessarily closed sets, however. For example, when

A =

[
0 1
0 0

]
,

it can be shown that XA(R2
+) consists of the whole upper plane excluding the negative

x-axis.
The set YA(K) comprises initial points for which the trajectories enter K at some

time. The set XA(K) comprises initial points for which the trajectories enter K at
some time and remain in K for all time thereafter. The set of points of nonnegative
potential, XA(Rn

+), comprises initial points for which the trajectories at some time be-
come nonnegative and remain nonnegative for all time thereafter. Next we shall argue
that YA(K), XA(K), and XA(Rn

+) coincide and interpret this result subsequently.
Proposition 4.2. Let A ∈ R

n×n be an eventually exponentially nonnegative
matrix with exponential index t0 = t0(A) ≥ 0 and let K = et0AR

n
+. Then

YA(K) = XA(Rn
+) = XA(K).

Proof. We begin by proving the first equality. If x0 ∈ YA(K), then there exists

t̂ ≥ 0 and y ≥ 0 such that et̂Ax0 = et0Ay. Thus, x0 = e(t0−t̂)Ay and so etAx0 =
e(t+t0−t̂)Ay ≥ 0 if t + t0 − t̂ ≥ t0, i.e., for all t ≥ t̂. It follows that x0 ∈ XA(Rn

+),
i.e., YA(K) ⊆ XA(Rn

+). For the opposite containment, let x0 ∈ XA(Rn
+); that is,

there exists t̂ ≥ 0 such that etAx0 ≥ 0 for all t ≥ t̂. Let t̃ = t̂ + t0. Then et̃Ax0 =
et0A(et̂Ax0) ∈ K, proving that XA(Rn

+) ⊆ YA(K) and thus equality holds.
For the second equality, clearly XA(K) ⊆ XA(Rn

+) since K ⊆ R
n
+. To show

the opposite containment, let x0 ∈ XA(Rn
+). Then there exists t̂ ≥ 0 such that

et0AesAx0 ∈ K for all s ≥ t̂. That is, etAx0 ∈ K for all t ≥ t0 + t̂ and thus
x0 ∈ XA(K).

Remark 4.3. Referring to Proposition 4.2, we must make the following observa-
tions:

(i) If t0 = 0 (i.e., if A
s≥ 0, or equivalently if etA ≥ 0 for all t ≥ 0), then K = R

n
+.

In this case, XA(Rn
+) coincides with the reachability cone of the nonnegative orthant

for an essentially nonnegative matrix, which is studied in detail in [10, 9].
(ii) The equality XA(Rn

+) = XA(K), in conjunction with Lemma 4.1, can be
interpreted as saying that the simplicial cone K = et0AR

n
+ serves as an attractor

set for trajectories emanating at points of nonnegative potential; in other words,
trajectories emanating in XA(Rn

+) always reach and remain in K ⊆ R
n
+ after a finite

time.
(iii) Our observations so far imply that the trajectory emanating from a point of

nonnegative potential will enter cone K; however, it may subsequently exit K while it
remains nonnegative, and it will eventually re-enter K and remain in K for all finite
time thereafter. This situation is illustrated by the following example.

Example 4.4. Consider the matrix

A =

⎡
⎢⎢⎣

0.3929 −0.8393 1.1071 1.3393
1.0357 0.6964 −0.5357 0.8036
1.0357 −0.3036 0.4643 0.8036
1.4643 1.0536 −0.9643 0.4464

⎤
⎥⎥⎦ .
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It can be checked that A and AT have the strong Perron–Frobenius property and
so, by Theorems 3.2 and 3.3, A is an eventually exponentially positive matrix. Using
MATLAB and a bisection method, we estimated (within five decimals) the exponential
index to be t0 = t0(A) = 2.64378. The matrices eA and et0A are

eA =

⎡
⎢⎢⎣

3.6277 −0.7991 1.4260 3.1345
3.0341 2.2579 −0.6987 2.7958
3.0341 −0.4604 2.0196 2.7958
3.3050 1.4836 −0.9696 3.5701

⎤
⎥⎥⎦

and

et0A =

⎡
⎢⎢⎣

91.902 3.5982 14.0615 88.299
91.499 18.162 0.3981 87.801
91.499 4.0959 14.4643 87.801
91.897 17.494 0 88.469

⎤
⎥⎥⎦ .

Hence the cone K = et0AR
n
+ is the cone generated by the columns of the matrix et0A

above. Consider now the following trajectory points x(t) = etAx(0):

x0 = x(0) =

⎡
⎢⎢⎣

−1.1617
0.6014
0.9693
1.0887

⎤
⎥⎥⎦ , x(1) = eAx0 =

⎡
⎢⎢⎣

0.1
0.2
1.2

0

⎤
⎥⎥⎦ , x(2) = e2Ax0 =

⎡
⎢⎢⎣

1.9141
−0.0834

2.6348
−0.5363

⎤
⎥⎥⎦ ,

e(t0+1)Ax0 =

⎡
⎢⎢⎣

26.7836
13.2600
27.3263
12.6884

⎤
⎥⎥⎦ , e(t0+2)Ax0 =

⎡
⎢⎢⎣

165.3049
127.5845
165.8206
126.9949

⎤
⎥⎥⎦ , e(2t0+1)Ax0 =

⎡
⎢⎢⎣

4013.8
3816.4
4014.3
3815.8

⎤
⎥⎥⎦ .

Observe the following: e(t0+1)Ax0 ∈ K since eAx0 ∈ R
n
+; e(t0+2)Ax0 �∈ K since

e2Ax0 �∈ R
n
+; e(2t0+1)Ax0 ∈ K since e(t0+1)Ax0 ∈ R

n
+; finally, trajectory points x(t)

are in K for all t ≥ 2t0 + 1. In other words, the trajectory emanating at x0 enters K,
exits K, and eventually re-enters and remains in K for all time thereafter.

In view of the above example, a natural question arises: When is it possible that
all trajectories emanating in XA(Rn

+) reach and never exit K? This is equivalent to
asking whether or not etAK ⊆ K for all t ≥ 0. To resolve this question, we will invoke
the following extension of Lemma 3.1 from R

n
+ to simplicial cones, which can be found

in [13, 14].
Lemma 4.5. Let A ∈ R

n×n and K = SR
n
+, where S ∈ R

n×n is nonsingular.
Then there exists a ≥ 0 such that (A + aI)K ⊆ K if and only if etAK ⊆ K for all
t ≥ 0.

Proof. Consider the similarity transformation A → B = S−1AS. We claim

that there exists a ≥ 0 such that (A + aI)K ⊆ K if and only if B
s≥ 0. Indeed, if

(A + aI)K ⊆ K, then

(B + aI)Rn
+ = S−1(A + aI)SR

n
+ = S−1(A + aI)K ⊆ S−1K = R

n
+.

Conversely, if B
s≥ 0, then there exists a ≥ 0 such B+aI = S−1(A+aI)S ≥ 0. Hence

for each x ∈ K, there exists y ≥ 0 such that

S−1(A + aI)x = S−1(A + aI)Sy = z ≥ 0.
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That is, (A + aI)Sy = Sz ∈ K. Similarly, one can show that etAK ⊆ K for all t ≥ 0
if and only if etB ≥ 0 for all t ≥ 0.

We note in passing that Lemma 4.5 holds more generally for every polyhedral
cone K; see [13, 14].

Corollary 4.6. Let A ∈ R
n×n be an eventually exponentially nonnegative

matrix with exponential index t0 = t0(A) ≥ 0. Let K = et0AR
n
+. Then etAK ⊆ K

for all t ≥ 0 if and only if t0 = 0 (or equivalently, if and only if A
s≥ 0).

Proof. If t0 = 0, then K = R
n
+ and etA ≥ 0 for all t ≥ 0. For the converse,

suppose etAK ⊆ K for all t ≥ 0. We must show that t0 = 0. Let y ≥ 0 and consider
x0 = et0Ay ∈ K. As etAx0 ∈ K for all t ≥ 0, there must exist z ≥ 0 such that

e(t+t0)A y = et0A z for all t ≥ 0.

But this means etAy = z ≥ 0 for all t ≥ 0. Since y was taken arbitrary in R
n
+, we

have etAR
n
+ ⊆ R

n
+ for all t ≥ 0; that is, t0 = 0.

We conclude this section with a discussion on a possible numerical test for points
of nonnegative potential. When A = [aij ]

s≥ 0, XA(Rn
+) admits a numerical character-

ization reported in [10] and briefly described in the following. Consider the sequence
{xk} generated from x0 by the Cauchy–Euler finite differences scheme

xk = (I + hA)kx0, k = 0, 1, . . . ,

which we refer to as the discrete trajectory (associated with the time-step h) emanating
from x0. Define the quantity

h(A) = sup

{
h | min

1≤i≤n
(1 + haii) > 0

}

and notice that h(A) = sup{h | (I + hA) ≥ 0} > 0, as well as that h(A) = ∞ when
A ≥ 0.

For any h ∈ (0, h(A)), denote by XA,h(Rn
+) the set of all initial states x0 ∈ R

n that
give rise to discrete trajectories {xk} which become and remain (due to nonnegativity
of I + hA) nonnegative; that is,

XA,h(Rn
+) = {x0 ∈ R

n | (∃k0 = k0(x0) ≥ 0) (∀k ≥ k0) [(I + hA)kx0 ∈ R
n
+]}.

We refer to XA,h(Rn) as the discrete reachability cone (of R
n
+ under A with respect

to h). The geometric and algebraic properties of the discrete reachability cone are
studied extensively in [8, 10].

Theorem 4.7 (see [10]). Let A ∈ R
n×n be an essentially nonnegative matrix and

let h ∈ (0, h(A)) such that (I + hA) is invertible. Then XA(Rn
+) = XA,h(Rn

+) .

When A
s≥ 0, Theorem 4.7 suggests a simple test to find out whether or not a

given initial point x0 belongs to XA(Rn
+): 1. Choose a positive h < h(A) such that

the iteration matrix I + hA is invertible. 2. Check whether for some nonnegative
integer k, xk = (I + hA)kx0 is nonnegative (in which case x0 ∈ XA(Rn

+)) or decide
that xk will never be nonnegative (in which case x0 �∈ XA(Rn

+)).
As noted in [15], Theorem 4.7 can be generalized from R

n
+ to any simplicial cone

K such that etAK ⊆ K for all t ≥ 0. Thus, in view of Proposition 4.2, the question
arising is whether the above test can be extended to XA(Rn

+) = XA(K), when A
is eventually exponentially nonnegative with exponential index t0 ≥ 0 and K =
et0AR

n
+. By Corollary 4.6, however, it follows that the answer is in the negative when
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t0 > 0. The development of a characterization of points of nonnegative potential in
terms of discrete trajectories will likely require a close examination of the generalized
eigenspaces of A as in the proof of Theorem 4.7. We plan to undertake this task in
future work, as well as perform a numerical analysis of the associated test.

5. Conclusions. We considered the problem of when a trajectory x(t) = etAx0

(t ≥ 0) becomes and remains nonnegative. Naturally, we needed to study (1) matri-
ces A for which etA becomes and remains nonnegative and (2) initial points x0 giving
rise to nonnegative trajectories, which we called points of nonnegative potential. The
combination of such matrices and initial points results in trajectories that reach and
stay in the nonnegative orthant. We discovered that eventual nonnegativity of the
exponential matrix is intimately related to eventual nonnegativity of the powers of A
(section 3). We also found that the collection of points of nonnegative potential coin-
cides with the collection of initial points that reach and stay in a certain simplicial cone
K associated with etA. Interestingly, trajectories emanating at points of nonnegative
potential may enter and subsequently exit this cone K; however, K eventually attracts
such trajectories permanently (section 4). Our results generalize and parallel well-
known facts in nonnegative systems theory and are illustrated with several examples.
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