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A model system is presented that describes the physical properties of mode-locked lasers. This distributed
system incorporates gain and filtering saturated with energy while loss is saturated with power. It is found that
general initial pulses evolve to stable localized solutions which exist for wide choices of the parameters, the
only requirement being sufficient gain. Moreover, these pulses are essentially solitons of the classical nonlinear
Schrödinger �NLS� equation. In the anomalous regime, the additional terms present in the system serve to
provide the mode locking mechanism. Consequently, these pulses are approximated by the classical NLS
soliton, given by hyperbolic secant functions, in agreement with recent experiments.
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Ultrashort pulses have been the subject of extensive re-
search and have many important applications, including
communications �1�, optical clock technology �2�, high-order
harmonic generation �3�, extreme physics �4�, and measuring
of the fundamental constants of nature �5�. One of the tech-
niques used to produce ultrashort pulses is mode locking in
laser systems. Mode-locked �ML� lasers have been studied
for many years, with origins dating back more than four
decades. However, due to their complicated dynamics it is
only in recent years that researchers have begun to better
understand and utilize their true potential. ML laser pulses
can be generated actively by use of an external element or
passively via the Kerr-lens mechanism. The latter produces
shorter pulses and will be the focus of this paper.

Unlike a typical CW laser, a ML laser emits a series of
short intense pulses at a steady repetition rate. In practice,
ML laser pulses are produced in a laser gain medium with
sufficiently broad gain bandwidth. The effect is to generate
pulsed operation and phase lock different longitudinal modes
�6�. In the frequency domain, the pulses from the ML laser
correspond to a frequency comb, i.e., a sequence of spectral
lines.

A common technique developed for passive mode locking
is Kerr lens mode locking �KLM�. KLM is a method of
mode locking lasers via the optical nonlinear Kerr effect.
This method allows the generation of light pulses with a
duration of a few femtoseconds. Intensity changes with
lengths of nanoseconds are amplified by the Kerr-lensing
process and the pulse length further shrinks to achieve higher
field strengths in the center of the pulse. This sharpening
process is only limited by the bandwidth achievable with the
laser material and the cavity mirrors as well as the dispersion
of the cavity.

A laser can only operate if a sufficient amount of gain and
loss is present. Passive mode locking generally utilizes satu-
rable absorbers. KLM can simulate an effective saturable
absorber action that is extremely fast and is useful for short
pulse generation over a wide range of wavelengths. How-
ever, generation of ultrashort pulses also requires the action
of gain saturation.

In order to model the effects of nonlinearity, dispersion,
bandwidth limited gain, energy saturation and intensity dis-
crimination in a laser cavity the so-called master-equation
was introduced �7,8�. The master equation is a generalization
of the classical nonlinear Schrödinger equation �NLS� modi-
fied to contain gain, filtering, and loss terms. Gain and filter-
ing are saturated by energy �i.e., the time integral of the pulse
power�, while loss is represented by a cubic nonlinearity. For
certain values of the parameters this equation exhibits a
range of phenomena including mode locking pulse evolution,
pulses which disperse into radiation, pulses which evolve to
a nonlocalized quasiperiodic state, and pulses whose ampli-
tude grows rapidly. In the latter case, if the nonlinear gain is
too high, the linear attenuation terms are unable to prevent
the pulse from blowing up, suggesting the breakdown of the
master mode locking model �9�. Unfortunately, there is only
a small window of parameter space which allows for the
generation of stable mode-locked pulses. In particular, the
model is highly sensitive to the nonlinear loss and/or gain
parameter. To overcome this sensitivity, other types of terms,
such as quintic terms, can be added to the master equation in
order to stabilize the solutions. This, however, only slightly
increases the parameter range for mode locking �instabilities
may still occur� and also adds another parameter to the
model.

Another commonly used model is based on Ginzburg-
Landau �GL� type equations �10�. In fact, if the pulse energy
is taken to be constant the master-equation reduces to a GL
type system. These models do not include saturable terms
and chirp-free pulses are only found for specific values of the
parameters. In general, these equations exhibit a wide spec-
trum of pulses ranging from pulses with complex and chaotic
dynamics to pulses whose amplitude grows rapidly. These
systems are also employed to model “soliton explosions”
�11� and make use of a stretched cavity in the laser and the
lack of spectral filtering. Such pulses occur when the laser is
close to unstable operation.

Interestingly, recent experiments in the constant anoma-
lous regime �12� indicate that the normalized intensity of a
pulse in a mode-locked laser fits a hyperbolic secant spec-
trum well. Other experiments indicate that pulses should be
chirp-free �13�. In addition, it has been shown �14�, in dis-
persion managed systems, with net anomalous dispersion,
that when saturable absorption and gain are excluded from*theodoros.horikis@colorado.edu
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the theoretical model the underlying model’s predictions are
in good agreement with experiment. Namely, while the gain
and loss mechanisms are necessary to generate the pulse, it
can be expected that the long time pulse dynamics should be
governed by the simpler unperturbed equations, when the
pulse’s behavior should be dominated by the interplay of the
Kerr nonlinearity and the linear dispersion.

The distributed model describing the propagation of
pulses in a laser cavity is given in dimensionless form by

i�z +
d0

2
�tt + ���2� =

ig

1 + E/Esat
� +

i�

1 + E/Esat
�tt

−
il

1 + P/Psat
� , �1�

where E=E�z�=�−�
+����2dt is the pulse energy, Esat is the satu-

ration energy, P= P�z , t�= ���2 is the instantaneous pulse
power, Psat is the saturation power, d0 is the dispersion
�which is constant in this study�, and the parameters g, �, l
are all positive real constants. The first term on the right-
hand side represents saturable gain, the second is spectral
filtering, and the third saturable loss. The gain filtering
mechanisms are related to the energy of the pulse while the
loss is related to the power �intensity� of the pulse. Saturation
terms prevent the pulse from reaching a singular state; i.e.,
“infinite” energy or a blowup in amplitude. Indeed, if blowup
were to occur that would mean that both the amplitude and
the energy of the pulse are large, hence, the perturbing ef-
fects are very small thus reducing the equation to the unper-
turbed NLS, which admits a stable finite solution.

Further inspection of Eq. �1� reveals that a first-order Tay-
lor approximation results in the master equation where the
cubic term accounts for the saturable loss, while a higher
approximation �second order� results in higher-order GL
equations with quintic terms. Moreover, we find that this
model has stable soliton solutions over a wide parameter
range and does not exhibit blowup solutions. We refer to Eq.
�1� as the perturbed NLS with gain-loss or NLSGL and the
right-hand side of Eq. �1�, i.e., what we shall refer to as the
perturbing contribution, is denoted hereafter by Q���.

In some models loss is introduced in the form of fast
saturable power absorbers which are placed periodically.
This type of lumped model �15� has been studied in
dispersion-managed systems operating in the normal regime.
We find that the essential features of the lumped model are
included in this distributive equation, even in dispersion-

managed systems �16�. In fact, Eq. �1� also exhibits pulse
solutions in the normal regime �d0�0� �17�. We briefly dis-
cuss this at the end of this article.

Power saturation models also arise in other important
problems in nonlinear optics. For example, in the study of
the dynamics of localized lattice modes �solitons, vortices,
etc.� propagating in photorefractive nonlinear crystals
�18,19�. If the nonlinear term in these equations was simply
a cubic nonlinearity, without saturation, two-dimensional
fundamental lattice solitons would be vulnerable to blow up
singularity formation, which is not observed. Thus saturable
terms are crucial in these problems. Our model is based on
the Kerr effect and hence Kerr type nonlinearity is used. The
effects of gain and loss in photorefractive materials will be
studied in another article.

Our analysis begins with the dynamics of pulses evolving
under the NLSGL equation. In practice, the mode locking
mechanism is often not self-starting; rather it requires a cru-
cial misalignment to occur. Such misalignments can be re-
garded as forming a general initial state of an evolution
equation, not as the initial state of an exact soliton solution.
This observation leads us to consider an arbitrary initial pro-
file, e.g., ��0, t�=exp�−At2�, and to employ a fourth-order
Runge-Kutta method to evolve Eq. �1� in z. Furthermore, all
terms are kept constant and only the gain parameter g
changes. More precisely, Esat= Psat=A=1, �= l=0.1, and as-
suming constant anomalous dispersion, d0=1 �d0�0�. The
filtering in the equation also acts as an additional loss term
for the system. For stable soliton solutions to exist the gain
parameter g needs only to be sufficiently large to counter the
two loss terms.

The evolution of the pulse peak for different values of the
gain parameter g is shown in Fig. 1. When g=0.1 the pulse
vanishes quickly due to excessive loss with no noticeable
oscillatory behavior; the pulse simply collapses, making this
a damped evolution. When g=0.2,0.3, due to the loss in the
system the pulse initially undergoes a relative to its ampli-
tude sharp decrease. However, it rapidly recovers and
evolves into a stable solution. Similar to the damped evolu-
tion, the amplitude is initially decreased but the resulting
evolution is stable. Interestingly enough, when g=0.7,1, and
the perturbations can no longer be considered small, a stable
evolution is again obtained, although somewhat different
from the case above. Now with excessive gain in the system,
the pulse amplitude increases and the steady state is rapidly
reached. The only major difference between the modes is the
resulting amplitude and the width of the pulse, i.e., for larger
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FIG. 1. �Color online� Evolu-
tion of the pulse peak of an arbi-
trary initial profile under NLSGL
with different values of gain. The
damped pulse-peak evolution is
shown with a dashed line. In the
second figure, the complete evolu-
tion is given for g=0.3.
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g the pulse is larger and narrower �see Fig. 2�.
The above suggest that in the NLSGL model, the mode

locking effect is always present for g�g*, a critical gain
value. Without enough gain, i.e., g�g*, pulses dissipate to
the trivial zero state. Furthermore, there is no complex radia-
tion states or states whose amplitudes grow without bound
for any choice of parameters studied. In terms of solutions,
Eq. �1� admits soliton states for all values of g�g*� l �re-
call, here l=0.1�. This has also been verified by analytical
methods �soliton perturbation theory�, but due to the lack of
space the details will be presented elsewhere.

The existence of modes, namely, solutions of Eq. �1�, is
examined next. We employ the spectral renormalization
method introduced in Ref. �20�. This is a spectrally accurate
iterative method that in each iteration modifies the ratio be-
tween the dispersive and nonlinear parts of the equation until
convergence is achieved. Assuming localized solutions of the
form ��z , t�=u�t�exp�i�z�, u�	��→0, we obtain

− �u +
1

2
utt + �u�2u = Q�u� ,

which is a nonlinear eigenvalue problem with respect to the
propagation constant �. Taking the Fourier transform �FT� of
the equation and setting u=
v⇔ û=
v̂ results in

− �� + �2/2�v̂ = F�Q�
nvn�/
n − �
nvn�2vn� .

The usual definition of the FT is used, namely,

f̂��� = F�f�t�� = 	
−�

+�

f�t�exp�i�t�dt .

The iterative scheme is

v̂n+1 = −
F�Q�
nvn�/
n − �
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� + �2/2
�2�

and the renormalization parameter 
n, in each iteration, is
defined by the roots of the algebraic equation

	
−�

+�

�� + �2/2��v̂n�2d� + 	
−�
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�F�Q�
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n

− �
nvn�2vn��v̂n
*d� = 0. �3�

Starting with a general initial guess for v�t�, say, v0
=exp�−At2�, we can construct solutions using Eqs. �2� and
�3�. This initial guess can be important in the convergence of
the method. Equation �3� cannot be solved analytically for 
,
and thus a numerical method, say Newton iteration, must be
used. The convergence of the Newton iteration depends on
the initial guess. If the method seems not to be converging at
the first iteration for n and Newton’s method cannot find a
reasonable 
, then an exponential with different width should
be considered; e.g., take A�1 at n=0.

Further, to find these solutions, we must first determine
the appropriate value�s� of the propagation constant � for
which a solution actually exists. The criterion for determin-
ing � is that Im�
n�=0. With this additional requirement we
obtain only one value of �, for a specific set of parameters,
that a solution exists. Also, when g� l, in Eq. �1�, we do not
find a solution, i.e., we do not find a value of � for which the
above iteration will converge. This is consistent with the ob-
servation that when the effect of loss is stronger than the gain
the only acceptable solution is the trivial solution. Solutions
of the NLSGL equation for various values of g and the cor-
responding propagation constant are depicted in Fig. 2. No-
tice the change in the pulse width and amplitude. As the gain
parameter increases so does the amplitude and the pulse be-
comes narrower. The energy and the amplitude of the pulse
increases with g. In fact, the energy changes according to
E
��. Indeed, from soliton theory of the classical NLS
equation this is exactly the way a classical soliton’s energy
changes. The key difference being that in the pure NLS a
semi-infinite set of � exists, whereas now � is unique for the
given set of parameters. Hence one expects that the solutions
of the two equations, NLSGL and NLS, are comparable. In
Fig. 3 we plot the two solutions for different values of g. In
each case the same value of � is used. The amplitudes match
so closely that they are indistinguishable in the figure, mean-
ing the perturbing effect is strictly the mode locking mecha-
nism, i.e., its effect is to mode lock to a soliton of the pure
NLS with the appropriate propagation constant. The solitons
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FIG. 2. �Color online� Solutions of Eq. �1� for different values
of the gain parameter g and the corresponding propagation
constants.
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FIG. 3. �Color online� Solitons of the perturbed and unperturbed
equations.
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of the unperturbed NLS system are well known in closed
analytical form, i.e., they are expressed in terms of the hy-
perbolic secant function, �=�2� sech��2�t�exp�−i�z�, and
therefore describe solitons of the NLSGL to a good approxi-
mation.

This constraint on the propagation constant seems to relax
for large values of �. Indeed, as � grows larger the energy
and power of the pulse also increase resulting in a better
approximation to a Hamiltonian system, the unperturbed
NLS equation. In this regime approximate pulse solutions
which are obtained by weakening the accuracy requirement
in the mode finding algorithm exist for wide ranges of �, we
refer to these solutions as quasisolitons.

Another type of pulse that has recently attracted much
attention are the pulses propagating in a ML laser in the
normal dispersion regime �15� �the pulses sometimes grow
self-similarly depending on the gain and/or loss mechanism
�21��. Indeed we find mode-locked pulse solutions of Eq. �1�
with d0�0. The main difference these pulses exhibit from
those in the anomalous regime is that they are now highly
chirped, very wide �almost parabolic� pulses that do not cor-
respond to the solution of the unperturbed equation. A typical
mode locking evolution for these pulses is shown in Fig. 4.
In the second part of the figure we compare two typical soli-
tons corresponding to the same parameters with g=1 and
d0=−1. We will discuss the pulse dynamics and properties in
the normal regime in a future communication �17�.

To conclude, we have analyzed a distributive model sys-
tem which can be used in the study of pulse propagation in
mode-locked lasers. The results of the pulse dynamics in the
anomalous regime are simple: pulses are either damped, i.e.,
decay to zero, or their evolution leads to mode locking.
Complicated evolution �chaotic, radiation, or strong growth�
is not observed for a wide range of the parameters even when
the perturbations cannot be considered small at the initial
instant. The saturated �energy� gain and filtering, and satu-
rated �power� loss, though crucial to the mode-locking

mechanism, after evolution they are only found to be pertur-
bative effects. The resulting modes are essentially the modes
of the unperturbed NLS system, i.e., hyperbolic secants, for
the same corresponding propagation constant.
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FIG. 4. �Color online� Top: Evolution of an arbitrary unit Gauss-
ian under the NLSGL in the normal regime �d0=−1�. Bottom: Com-
parison with the corresponding mode of the anomalous equation. In
the insets the phase of the chirped pulse and a zoom-in of the two
solutions are shown. The soliton of the NLSGL equation in the
anomalous regime is essentially chirp-free.
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