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0. INTRODUCTION 

In this paper we deal with second and third order retarded differential 
equations and give some results on their oscillatory and asymptotic behavior which 
are analogous to the "Kneser-type" ones for second and third order ordinary dif­
ferential equations. More precisely, we consider the linear retarded differential 
equations 

(E,) [r{t)x'{i)\+ p{t)x\g{i)-\ = Ç,, t^to, 

(E2) [r{t) [r(0 хЩ'У + p{t) x[g{t)-] = 0 , t^to, 

where r is a positive continuous function on the interval [to, oo) with 

' dt 
- T T = 0 0 , 

КО 
p is a nonnegative continuous function on [fo» Qo) (^nd g is a continuously dif-
ferentiable and increasing function on [to, oo) such that 

Hm g(t) = 00 and g(t) ^ t for every t ^ t^ . 
t~*O0 

We also consider the (not necessarily linear) retarded differential equations 

(Ei) [rit)xШ' + pit)Ф{xУ{t)])==0, 

(E2) [KO [KO ̂ '(0]']' + Pit) ф(40(О]) = о, 
where Ф is a continuous function which is defined at least on R — {0} (R is the real 
line) and has the sign property 

у Ф 0=> у ф(^) > О . 

Sufficient smoothness for the existence of solutions of the above differential 
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equations which are defined for all large t will be assumed without mention. In 
what follows, we consider only such solutions x(t) which are defined for all large t. 
The oscillatory character is considered in the usual sense, i.e. a continuous real-
valued function on an interval [Г, oo) is said to be oscillatory if the set of its zeros is 
unbounded above, and otherwise it is said to be nonoscillatory. 

For the sake of brevity, we use the notations 

Г ds r°° 
^(0 = T T ' ^ = 0̂ , P{t) = P{s)ds, t^to, 

in the case where J°° p(t) dt < со, and 

Зф = max ) Mm sup — -̂~-, lim sup у у 
—-, lim sup 

Ф{у) y-^-^ Ф{у) 

1. OSCILLATION OF SECOND ORDER RETARDED 
DIFFERENTIAL EQUATIONS 

In this section we deal with the oscillation of the solutions of the second order 
retarded differential equations (E^) and (E[). It is known (cf. [3, 4]) that the condition 

poo ^ 

(HO ~p(t)dt = 
J KO 

00 

is sufficient for all bounded solutions of (E^) [or, more generally, of (Ej)] to be 
oscillatory. Moreover (cf. [6]), under the condition 

Г p{t) Rlgit)] dr - 00 , 

for every nonoscillatory solution x of (Е^) we have lim r[t) x'{t) = 0. In the present, 

sufficient conditions for all solutions of (E^) or (E^) to be oscillatory are estabHshed. 

Theorem 1. The condition 
(CO limMP{t)R[g{t)]>i 

t~>ao 

is sufficient for all solutions of (Ej) to be oscillatory. 
Proof. We observe that (CO implies (НО and hence it is enough to prove that ( E O 

does not have any unbounded nonoscillatory solutions. Moreover, because of the 
linearity of the equation (E^), with respect to the nonoscillatory solutions of this 
equation we can confine our discussion only to the positive ones. 

Let X be a positive unbounded solution on an interval [To, oo), TQ > tQ, of the 
equation (EO and let Г ^ To be chosen so that 

g{t) ^ To for every t ^ T, 
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Then from (Е^) it follows that (rx')' is nonpositive on [T, oo). Moreover, (гх'У is 
not identically zero on any interval of the form [T', oo), T ^ T, since (С^) ensures 
that the same holds for the function p. Thus, by the fact that J°° [l/r(r)] dr = oo, 
we can easily verify that x' is positive on [T, oo). Furthermore, we observe that (Ci) 
implies J°° p(t) R[g{tJ] dt = oo and consequently we always have lim r(t) x'(t) = 0. 
So, (El) gives '"^ 

Лоо 

r{t) x'{t) = p{s) x[g{s)] ds for all t^T, 

Now, let К be the set of all fe > 0 for which there exists a T̂  ^ T such that the 
function Xj^ = xJR^ is increasing on [7]̂ , oo). Since 

lim 4 ^ = limr{t)x'{t) = 0, 
t-*oo R\t) t-*oo 

we always have к < 1 for any кеК. Moreover, К is not empty. Indeed, by (Ci), 
we choose a T* ^ Г such that for every t ^ T* 

g{t)^ T and P{t) R[g{t)] ^ i . 
Then for r ^ T* we obtain 

r[e{t)l ^Ы)1 ^ КО At) = f p{^) ^[Ф)! d̂  

Thus, because of the assumptions on g, we have 

r(t) xlt) > - ^ for every t > T* . 
^ ^ ^ ^ ~ 4 jR(0 

By using this inequality, it is easy to see that the function X1/4 has a nonnegative 
derivative on [Г*, 00), which means that ^еК. 

Next, let к be an arbitrary number in К and let T̂  ̂  Tbe such that the function Xj^ 
is increasing on [Г ,̂ oo). By (C^), we choose a T* ^ T̂  so that for every t ^ T^ 

g{t)^ T, and P{t) R[g{t)] ^ с , 

where с is a number with с > | . Then for t ^ T^ we get 

rbit)!ЧЬШ кЪШ + kUm R'-'Mt)! = '•[̂ (0] A9{t)l è 
Лоо , Лоо 

^ к о ^'(0 = P(̂ ) ̂ [^(^)] ds = I P{s) Xlg{s)-] R'[g{s)] ds ^ 
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/•oo 

1 — к 

> 

t 

с 
1 

So, for every î ^ T^ we have 

^^C^WIR^-'L^«] 

x£g{t)] 

which implies that 

ry{t)]xUt)]^(^Y'h~'^) 

^ ^ '^^ -~\i^ k J R{t) 

Since с > I, the minimum 2 ̂ (̂c) — 1 = m of the function 

is positive and we have 

r(t) X'Jî) ^ m ̂  for every t ^ T* , 
R{t) 

By this inequahty, we can easily verify that the function Xk+m = X /̂R"' has a non-
negative derivative on [Г/, oo), which means that /c + m belongs in K. But, as к 
can be chosen arbitrarily close to sup К and m is positive and independent of the 
choise of /c, this is a contradiction. 

Remark 1. Theorem 1 generalizes recent results in [2] and [7] concerning the 
special case where г = 1. Also, in the case of ordinary differential equations this 
theorem leads to a well-known classical oscillation result due to Hille [1] (cf. also 
Swanson [8, p. 45]). The method which we have used in the proof of Theorem 1 
patterns after that in [7]. 

Theorem V. The condition 
(c;) hm inf P(f) R[g{t)] > ^8ф 

t-*00 

is sufficient for all solutions of (E[) to be oscillatory. 
Proof. Since (Ci) implies (H^), it suffices to prove that (Ei) has not unbounded 

nonoscillatory solutions. Furthermore, the substitution z = — x transforms (E^) 
into the equation 

[rO)z'0)]' + KO%[ö(0]) = o, 
where ê[y) = —#( — 3;) for all y in the domain of Ф. The transformed equation 
inherits from (Ei) all conditions possed. Hence, with respect to the nonoscillatory 
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solutions of the equation (Ei) we can restrict our attention only to the positive ones. 
Let jc be a positive unbounded solution on an interval [To, oo), To ^ ÎQ, of the 

equation (E^) and let T ^ To be chosen so that 

g{t) ^ To for every t ^ T. 

Then it is obvious that the restriction of x on the interval [Т, oo) is a (positive) solu­
tion (on this interval) of the Hnear equation 

[r{t) wit)y + p{t) w[g{t)] = 0 , ^ ^ 0̂ , 
where 

K0 = 
[p{T), if toSt^T. 

Thus, by Theorem 1, we must have 

liminfi?[6^(r)] P{s)dsui^ 

From (E'l) it follows that x is increasing on [T, oo). So, if we choose a T* ^ Tso 
that 

g(t) ^ T for every t ^ T* , 

then for r > T* we obtain 

"̂ = r*'5 
/«00 I*) ds < 

= sup - f r I Pis)ds. 

Hence, because of Hm x(t) = oo, we get 
f-*co 

liminf P(r) R[g{t)] й Гит sup - ^ | Гнт in f ^[^(f)] Г p{s)as] S 

й - lim sup - ~ - й - Sф, 
4 y->oo Ф[у) 4 

which contradicts {C[). 

R e m a r k 2. Suppose that 5ф < oo. Then (cf. [5]) the condition J"" p(t)dt = oo 
is also sufficient for all solutions of (E^) to be oscillatory. 

Remark 3. It is known (cf. [5]) that the condition 

(C;) l imsupP(OR[^(0] > Sф 
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is also sufficient for all solutions of {E[) to be oscillatory. We note here that it is 
possible to have the condition (Ci) valid while [C[) fails. For example, in the case of 
the equation 

the condition (Ci) holds while (Ci) is not satisfied. 

2. OSCILLATORY AND ASYMPTOTIC BEHAVIOR OF THIRD ORDER 
RETARDED DIFFERENTIAL EQUATIONS 

Here, we are concerned with the oscillatory and asymptotic behavior of the solu­
tions of the third order retarded differential equations (E2) and (E2). It is known (cf. 
[3, 4]) that, under the condition 

00 , (H2) either -~— P(t) dr = 00 or - ^ —- P(s) ds dt 
J KO J r{t)], r{s) 

every bounded solution x of {E2) [or, more generally, of {Е2У] is oscillatory or such 
that 

lim x{t) = hm r(t) x'{t) = lim r{t) [r{t) x'{t)y = 0 monotonically . 
l-»oo t-^00 t~*ao 

Moreover (cf. [6]), if 

(H3) either RlgitJi p{t) dt= 00 or \ -jrl Ч^Ш P{') ds dt ^ со , 

then for every unbounded nonoscillatory solution x of (E2) we have 

lim [x{t)lR{t)] = ±00 . 
f--*oo 

In this section, we shall give conditions, under which every solution of (E2) or ( E Q 
is oscillatory or tending to zero at 00. For this purpose, we need the following 
lemma. 

Lemma. Let и be a nonnegative function on an interval [t, 00), т ^ tg, such that 
(r(ruyy exists on [т, oo). Suppose that 

u' ^0 and {r{ruyy S 0 on [т, oo). 
Then the function 

^«="«[1;|)Г' t > T 

is decreasing. 
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Proof. By our assumptions on и and the fact that J® [1/^01 ^̂  ~ ^ ' ^̂  ^̂  ^̂ У̂ 
to see that (rw')' is nonnegative on [т, oo). Let 

«(,)=.»j;|j-iK.)"t.)[fjj. .6,. 
For every Г ^ т we obtain 

r{t) G'{t) = uit) - i r{t) [r(0 uW [^j' 1 ^ J = 

= W(T) + Kt) u'ir) ['^+С'1-Г±- [r(w) [r(»v) u'(w)]'] dw d5 -
J,r(s) J,r(s)J,r(w) 

-H.)w.)"4.)i[j;|j* 

^•<'>f^')"'<*{i;i)i:i)--i[];ij]]--
Thus, G is increasing on [т, oo). Since G(T) = 0, we have that G is nonnegative 
on [T, oo) and consequently 

Г ds u{t) è i r(r) u^t) —' for every 
JtK«) 

t> X, 

By using this inequality, we can easily see that the function U has a nonpositive 
derivative on (т, oo), which proves the lemma. 

Theorem 2. Under the condition 

(C,) min {lim inf P(0 К'Ш1 \ lim inf r{t) p{t) R{t) R' [g{t)]} > - i - , 

t-*co t-*oo 3 у З 

every solution x of [E2) is oscillatory or such that 

Mm x{t) = lim r{t) x'{t) = Mm r(t) [r{t) x'{t)y = 0 monotonically . 
f-»oo f-*oo t-*ao 

Proof. Condition (C2) impUes (H2) and so it is enough to prove the nonexistence 
of unbounded nonoscillatory solutions of (E2). Moreover, for the study of the non-
oscillatory solutions of (E2) it suffices to deal only with the positive ones. 

Let X be a positive unbounded solution on an interval [TQ, 00), To > ô» ^^ the 
equation (E2) and let т ^ To be chosen so that 

g(t) ^ TQ for every t ^ r . 

Then the function (r(rx')')' is nonpositive on [т, oo). Furthermore, this function is 
not identically zero on any interval of the form [т', oo), z' ^ r, since, because of (C2), 
the same is valid for p. Thus, by j°° [l/KOl dr = 00, (rx')' is positive on [т, oo). 
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Moreover, x' is eventually positive. We suppose, without loss of generality, that x' 
is positive on the whole interval [т, oo). We remark that (E2) gives 

/•00 

r{t) {r{t) x' {t)\ ^ p(5) x\g{s)\ ds for every ^ ̂  т . 

We put 
v{t) = R{i) r(t) x'{t) - x{t), t^T. 

Then 
V{t) = R(t) [r{t) x'{t)y > 0 for r è T 

and consequently v is either negative on [т, oo) or eventually positive. The case 
where t; < 0 on [т, oo) is impossible. Indeed, in this case 

r^(OT = _ J < 0 _ < 0 forall t>. 
lRit)j rit)R^ 

and hence 
lim [x{t)lR{t)'] < 00 . 

f-»-oo 

This is a contradiction, since condition (C2) implies (H3). Thus, v is eventually 
positive, i.e. 

R{t) r{t) x'{t) - x{t) > 0 for all large t. 

Now, by (C2), we consider two constants c ,̂ с with 2/3 ^Ъ < c^ < с <2 and 

mm{2\im'mfP{t)R\g{t)'\, lim inf r(OKO ^(0 ^'[^(Ol) > ^ ' 

Furthermore, we choose a T > т so that for every t ^ T 

9{t) > T, 

I •.(') ds-12 

A •(̂ ). 

Ci R-\g{i)\^^-l, 
С 

min {2 P(0 i?^[ö(0], КО КО ^(0 ^'[^(0]} è с , 

R{T) r{T) х'{Т) - х(Т) > О . 

Let к be а number with 

2 4 2 V \ 4 
and such that 

R(T)r{T)x'{T)-kx(T)>0. 
We shall prove that the function X,^ = xJR'' is increasing on [Г, oo). To do this, we 
first remark that 

lim x[g{ty] P{t) = 0, 
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since for every t ^ T 
/•00 /•°° 

x[g{t)] P{t) - x[g{t)] I p{s) ds й J K^) х[^С^)] d̂  . 

Sô  for every ^ ̂  Twe obtain 

rim (rxiy ym R'bm + 2fcr[̂ (0] х'мт'~'[т + 
+ k{k - i)Xlg{ij\ R'-\g{t)-\ = r[g{i)\ (rx')' [^(0] ^ КО [КО ^'(0]' ^ 

/»00 ^ 0 0 

г \ p{s)x{g{s)\às^-\ x[Ks)]dP(s) = 

/*oo 

= -^[0(^)] ^'(^)lr + '̂Ĉ ) ^'[^(^)] e'{s) as = 

= " lim x{g{s)\ P{s) + P(0 x\g{t)-\ + [" P(s) x'[^(s)] g'{s) as = 
/»00 

= P ( O x [ 0 ( O ] + I P ( s ) x ' [ ^ ( 5 ) ] 0 ' ( ^ ) d s è 

è p(0 4^(0] + ' •Ш] ^'[^(0] j " ; : ^ ^ Л^) d. ^ 

= -''•[^(O]^^[0(O]^'-^[^(O] + l{k + ̂ )^ы)'\^'-ът • 

Thus, for r ^ T we have 

ко [ К О « ] ' + (2^-2) 
c\r{t)X[{t) 

m + fc^ - 1 + - U - -Xlt)R-'{t)^0. 

It is easy to see that /ĉ  — (1 + ^c) fc — ^c g 0 and therefore 

(1) [K0^;(0] ' + ( 2 f c - ^ ) ^ ^ è O for all t ^ r . 

If ? > Tis such that the function rZ^ takes a local minimum at ~t, then {rX'^' (f) = 0 
and so, since 2k — \c > 0, the above inequality gives X'J(Ï) ^ 0. Moreover, 

X;(T) = \R{T) r{T) x'{T) - к x{T)'\\r{T) R'^^T) > 0 . 

Thus, X'^ is either nonnegative on [T, 00) or such that for some T > T 

X^(f) = 0 and X'^{t)<0 for t>T. 
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But, the latter case is impossible, since then (1) gives 

[r{t)Xl{t)y > 0 for all t> f, 

which is a contradiction. We have thus proved that X^ ^ 0 on [Г, oo), which means 
that Xj^ is increasing on [T, oo). 

Next, we consider the set К of all numbers k, 1 < к < 2, for which the function 
X,^ = xJR^ is increasing on [T ,̂ oo) for some T^ è T. We observe that the set К is 
nonempty and we put /CQ = sup K. 

Let к be an arbitrary number in К and T̂  ^ T be such that X^ ^ 0 on [T ,̂ oo). 
We shall prove that the function rX^. is decreasing on [T/, oo) for some Tj^ è T,,. 

To this end, by using the lemma, for every t ^ T^WQ get 

Ш1г{г)Х'М'УК\1) + 3k[rit)xm'R''-\t) + 3k{k - l)Xl{t)R'^-\t) + 

+ k{k -l){k- 2)Щ^ я - з ( , ) = [r(t)[r(Ox'0)]']' = -P{t)x[9{t)] й 

КО 
r{t)R{t) 

That is, for all t^ T̂  it holds 

\r{i) [KO^üW]']' R\^ + ^т)ХШ' R\t) + Щк ~ 1)̂ K0 R{t) + 

r( 

We remark that the maximum of the function 

ö-(ö) = -е{в - 1){в -2), 1 ^ ö g 2 

is 2/3 ^/3 which is less than c .̂ Hence we have 

k{k - 1) (fc - 2) + ci ^ 0 . 

Moreover, we observe that fc(/c — 1) > 0. Thus, 

(2) [r(t) [r(0 ХШ'У R{t) + 3fc[r(0 XüCO]' йО, t^T,. 

This inequality implies that (rXÇ)' is eventually nonpositive. 

To prove this assertion, we first assume that (rXl)' > 0 on some interval [̂ it, oo), 
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т;, ^ Г̂ . Then 
r{t)Xl{t)>r{T,)Xl{T,) for t>T, 

and consequently there exist a т* > r̂  and a positive constant a such that 

r{t)X',,{t)^a for all Г à т* . 
So, 

which gives 

l i m i n f - ^ ^ , = l iminf^^) > a > 0. 

But, by the lemma and the fact that к > 1, we have 

hm — -̂̂ ~~ = 0 , 

i.e. a contradiction. Next, if the function r(rXiy ^̂ ^̂ ^ a local maximum at ï ^ T̂ , 
then (r(rX;)')' (ï) = 0, and hence (2) gives (rXÇ)' (ï) й 0. We have thus proved that 
the only possible case is that (rXÇ)' ^ 0 on [Г^, oo) for some T^ ^ T̂ . 

Now, we choose a T̂ * ^ T̂ ' so that 

éf(0 ^ Tj^ for all r ^ Tfc* . 

Then for every t ^ T;* we obtain 

rim И 0 ' [3(0] R'[9it)i + 2fcr[0(o] jf;[g(0] А*-^[з(о] + 
+ к{к - l)X,[g{t)] К^-Ът = гЫЩ (гх'У [0(0] à r(0 [KO x'(0]' è 

/•00 /«00 

^ J K^) x[g{s)-] ds = P(0 x[0(O] + J Pis) xlg{s)] g'{s) ds = 

= P(O^.[0(O] RW)] + Г Р{^)ХЫ^)'] Ä*[0(s)] »'(̂ )d^ + 
J t 

+ 

Therefore we derive that 

/л лл'/л ^ /с̂  - 3/с̂  H- 2fc + с Z,(r) ^ ^ ^^ 
rOMOi , , р _ , ) ^ ' for . 8 г.-. 
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Since the minimum of the function 

(ji(ö) -= в^ ~ 39^ + 2в + с, 1 ̂  ö ̂  2 

is с — 2/3 у/З > О, we get 

r{t)X'j,{t) ^ m ' b W for every ^ ̂  T* , 

where 
If 2 

m = - \ С — — 
2 V 3V3 

By the last inequality, it is easy to see that the function X^+m = ^л/^ '" is increasing 
on [T;*, oo). This, as к can be chosen arbitrarily close to ко, is a contradiction. 

R e m a r k 4. Theorem 2 generalizes a recent result in [7] concerning the particular 
case where r = 1. The technique used here in proving Theorem 2 patterns after 
that in [7]. 

Theorem 2'. Under the condition 

(C2) min {hm inf P{t) ЯЪШ i ^™ i^f КО КО ^ ( 0 ^ ' [ ^ ( 0 ] } > " Л " ^Ф ' 
t-*oo t-*ao 3 v/J 

every solution x of (E2) is oscillatory or such that 

lim x(t) = lim r(t) x'(r) = lim r(t) [r(t) x'(t)y = 0 monotonically . 

Proof. Condition (C2) ensures that (H2) holds and hence we can restrict our 
attention only to the unbounded solutions of (E2). Furthermore, the substitution 
z = —X transforms (E2) into an equation of the same form satisfying the conditions 
possed for (E2). Thus, in order to study the existence or not of nonoscillatory solutions 
of (E2) we can concentrate our interest only to the positive ones. 

Let X be a positive unbounded solution on an interval [TQ, 00), To ^ to, of the 
equation (E2). Moreover, let T ^ Го be such that 

g{t) ^ To for every t ^ T, 

Then the restriction of x on [T, GO) is a solution of the (hnear) equation 

[r{t)[r{t)w'{t)-]J + p{t)w[g{t)-] = 0, t^to, 
where 

p{t) = l ^ЫЛ 
[p(T), if tout ST. 

By Theorem 2, for the function p we always have 

min (lim inf R'[g{t)] Г p{s) ds, i lim inf r{t) p{t) R{t) R'lg{t)}\ g - ^ . 
I t-*oo J J t-»co J 3 ^ 3 
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From (E2) it follows that x is eventually increasing. We suppose, without loss of 
generality, that x is increasing at least on the interval [T, 00) and we consider 
a Г* g T such that 

g{i) ^ T for every Г ^ Г* . 

Then for Ï ^ T* we obtain 

p{t) - ß ( , ) _ ^ L d s ^ | s u p ^ 
-L=.%(x[^)])JJ. '^ 

Ids < 

< 

and 

sup 
y^xigit)-] Ф{у) 

Thus, by lim x{î) = 00, we derive 

mm in {lim inf P{t) R'[g{t)l i lim inf r{t) p{t) R{t) К'УШ 

Hm sup — 
у-00 Ф{у)] 

miniliminfi?:^[ö^(f)] p{s) ds, 

iliminfr(OKO^(0^'[^(0] 

1 v i 
й —r~ lim sup —-- g —-- 5ф , 

3^3 y-oo Ф{у) 3^3 
which contradicts (C2). 

Remark 5. Suppose that Зф < oo. Then (cf. [5]) we have also the conclusion of 
Theorem 2\ provided that J°° p{t)àî = 00. 

(Cd 

Remark 6. It is known (cf. [5]) that, under the condition 

hm sup. 
fg(t) r{w)^ 

ds > 5ф, 

we have also the conclusion of Theorem 2' for the solutions of (E2). We note here 
that it is possible to have the condition (C2) valid while (C2) fails as, for example, in 
the case of the equation 

х"'(0 + ' з - ^ ' 0, t e l 

Remark 7. It remains an open question to the authors if Theorem 2' can be 
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extended for the differential equation 

[Ы0['-1(0^'(0]']' + К0Ф(Ф«]) = о, 
where r^, TJ are positive continuous functions on [to, oo) such that 

Г _A'__ _ Г dt 00 

and, in general, r-̂  Ф Г2. 
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