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Nonlinear optics in a birefringent optical fiber
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We extend the perturbation theory of the nonlinear Schro¨dinger equation for the study of perturbed~nonin-
tegrable! forms of the vector equation. We derive a set of linear equations that describe the radiation field shed
by the soliton as it propagates down a birefringent optical fiber. The formalism is applied to the case when
strong birefringence and higher-order dispersion are present in the fiber and to the study of polarization mode
dispersion. Finally we discuss an analytical treatment of the mechanism that generates the soliton shadow.
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I. INTRODUCTION

The nonlinear Schro¨dinger equation~NSE! is the model
equation best suited to describe the propagation of an op
pulse in weakly nonlinear and dispersive media. A ba
property of this equation is complete integrability by mea
of the inverse scattering transform~IST! @1#, with the
soliton—a localized optical pulse—one the fundamental
lutions. Refinements to the basic model equation—such
the addition of further dispersive terms—produces an eq
tion which is generally not integrable, but is susceptible
analysis using a perturbative theory developed around
IST @2,3#. Studies to date have tended to concentrate on
scaler form of the perturbed NSE, implicitly ignoring th
influence of the polarization of the optical pulse. When t
optical fiber along which the soliton propagates is birefr
gent, the effects of polarization are important~for example, a
change in the polarization state of the pulse results i
change in the speed of propagation of the soliton! and we
must then introduce a model equation: the vector nonlin
Schrödinger equation~VNSE!.

When an ultrashort pulse propagates down an ano
lously dispersive birefringent optical fiber, complex featur
develop which require explanation. The object of this arti
is to describe a formalism, developed within the framewo
of inverse scattering theory based on the Manakov sys
@4#, which admits useful application to the study of many
these observed features. One such feature is polariza
mode dispersion~PMD! which is one of the most importan
considerations in transmission systems; this is discussed
ther below. The theory developed in this article is a dir
extension of one developed previously for the scaler prob
@2,4#. Several authors have addressed the problem of the
velopment of a perturbation theory for application to t
study of perturbed forms of the~integrable! VNSE. An ear-
lier study of this problem utilizes a perturbation theory d
rived from a direct linearization of the VNSE@5#. This is a
complementary approach to that developed here, but d
not, we contend, use the best mathematical framework—
based on the IST. The present analysis extends that publi
by Midrio et al. @6# who computed the change in the vect
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soliton parameters in the perturbed birefringent system,
did not give full consideration to the generation of the rad
tion field. Further work is reported in Refs.@7–12#, initiated
primarily by a need to address the problem of PMD. PMD
discussed explicitly in Ref.@13#; it is shown first that a
change in the polarization state of the soliton results in
change in the soliton velocity. A random change in the bi
fringent axes along the fiber necessarily results in a rand
variation in the polarization state of the soliton pulse prop
gation along the fiber, with a resulting stochastic fluctuat
in the pulse velocity. This is the origin of PMD. Further wo
in Ref. @14# compares PMD jitter with that arising from othe
sources of stochasticity within the fiber.

The article is structured as follows: in Sec. II we intr
duce the perturbed VNSE while in Sec. III a formal pertu
bation theory centered around IST is developed. In particu
evolution equations for the scattering data associated w
the Manakov system are derived for the general case w
arbitrary perturbation terms are added to the VNSE, and
show how this data is linked with the radiation field in
manner which bears a close resemblance to the Fourier tr
form pair obtained for linear systems. The conserved qu
tities for the VNSE are then introduced and~briefly! dis-
cussed, and evolution equations for those are obtained fo
general case of an arbitrary perturbation, which need no
small; this is an exact result. Some features of inverse s
tering theory for the Manakov system are also included
the Appendixes. Different applications of the perturbati
theory are then discussed in Sec. IV. An associate field
malism analogous to that introduced for the scalar prob
@15# is first introduced and a connection is established
tween these~two! components and the components of t
radiation field. Three problems by way of application a
then discussed: we consider first the case when strong
fringence is the only perturbation in the fiber, and then wh
birefringent and third-order dispersion are both present.
conclude with a detailed discussion of the generation of
soliton shadow.

II. THE PERTURBED VECTOR SYSTEM

Ultrashort pulse propagation down an anomalously d
persive, birefringent optical fiber is described by VNSE
©2004 The American Physical Society03-1
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i ~q1,x1m q1,t1bq2!1kq12q1,tt2q1~ uq1u21Auq2u2!

2Bq2
2q1* 5 iF 1 , ~1a!

i ~q2,x2mq2,t2bq1!2kq22q2,tt2q2~ uq2u22Auq1u2!

1Bq1
2q2* 5 iF 2 , ~1b!

with A1B51. Here,k is the weak birefringence paramete
corresponding to a difference in the phase velocities betw
the two polarization modes, andm is the strong birefringence
parameter representing one half of the modal group velo
difference. The functionb(t) describes the twisting of the
birefringence axis with distance down the fiber. The para
eterA is the normalized cross-phase modulation coefficie
The equations describe the coupling of two linearly polariz
modes, withq1 and q2 the complex amplitudes in eac
mode, in which caseA52/3, B51/3. A simple transforma-
tion to circularly polarized modes results in a similar set
equations where now the subscripts ‘‘1’’ and ‘‘2’’ correspon
to differently circularly polarized modes andA52, B50.
Finally, F1 andF2 represent the higher-order effects for ea
mode, which may include higher-order dispersion, Brillou
scattering, and so on. We rearrange Eqs.~1! so that the per-
turbing terms containing the parametersm, b, and k are
taken over to the right hand side and thereafter considere
special choices ofF5(F1 ,F2)T, namely we take this system
in the form

iqx2qtt22q†qq5 iF, ~2!

whereq5(q1 ,q2)T. Deviations ofA from the valueA51,
and the term with the parameterB, are also subsumed intoF.
When F is set to zero the VNSE equation is known to
integrable using the techniques of inverse scattering the
@1#. In particular, it has the single soliton solution

q[qs5S cosu

sinu D qs , ~3!

where~scalar! qs is defined by

qs52h1exp@22i j1t14i ~j1
22h1

2!x#sech@2h1~ t24j1t !#.
~4!

The solution, Eq.~3! is hereafter denoted asqs , the vector
soliton. The parametersj1 and h1 characterize the soliton
andu is the projection angle of the pulse onto each polari
tion mode. Without loss of generality, we hereafter setj1
50 and 2h151.

Comment. With F52ms3qt , the transformation

p5exp~2 ims3t/22 im2x/4!q ~5!

removes the birefringent term, producing the Manakov e
lution equation forp(x,t)

ipx2ptt22p†pp50.

This, of course, has the soliton solution quoted on the ri
hand side of Eq.~3!, which we temporarily denote asps . The
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corresponding soliton solution forq(x,t), which we denote
qs

(m) , is found by inverting the transformation~5!, to yield

qs
(m)~x,t !5exp~ im2x/4!S exp~ imt/2!cosu

exp~2 imt/2!sinu D qs, ~6!

with scalarqs defined in Eq.~4!. This approach has bee
discussed in Refs.@10,11# and will not be repeated here. I
any case, this transform is not applicable when other effe
such as higher order dispersion, are present in the fiber.

III. PERTURBATION THEORY

A. The evolution equations

A general evolution equation for the VNSE family can b
expressed in the form

iqx2k~2 iD!q50, ~7!

wherek(v) is an arbitrary function of the operatorD, which
is defined by the action

Df5ft2E
t

1`

$q†,f%Adt8q~ t !

on any vector functionf. Here $,%A denotes the anti-
Hermitian anticommutator operation, so that$h†,f%A 5h†f
1fh†2f†h2hf † for any vector functionsf and h. Further,
k(v) is the dispersion function derived from the lineariz
form of the appropriate member of the VNSE family, wi
q;exp(ivt2ikx). For example, the choicek(v)52v2 gives
the VNSE equation. Note the simplicity of the operatorD:
the prescriptionv→2 i ] t→2 iD takes us from dispersion
function, to linearized form of the NSE equation, to th
VNSE equation.

The spectral transform is a mapping from a poten
q(x,t) into a set of scattering dataSi j (x,z), i , j 51,2,3,
wherez is the eigenparameter. The inverse transform perm
construction of the ‘‘potential’’q from a limited set of the
dataSi j . Formally, we have@16#

Si j 5E
2`

1`

f( j )`c( i )S q

2q* D dt, ~8!

where

S q

2q* D 5
1

pEC
S S21

S11
c(2)~c̃(1)1

S31

S11
c(3)~c̃(1)Ddz

2
1

pEC̄
S D21

D11
c(1)~c̃(2)1

D31

D11
c(1)~c̃(3)Ddz.

~9!

Here,f( i )`c̃( j ) andc( i )~c̃( j ) are four component row and
column vectors, respectively, whose components are mad
products between Jost function components for the forw
and adjoint scattering problems. Namely,
3-2
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f( i )`c̃( j )5~f2
( i )c̃1

( j ) ,f3
( i )c̃1

( j ) ,f1
( i )c̃2

( j ) ,f1
( i )c̃3

( j )!,

c( i )~c̃( j )5~c1
( i )c̃2

( j ) ,c1
( i )c̃3

( j ) ,2c2
( i )c̃1

( j ) ,2c3
( i )c̃1

( j )!T.

The quantitiesD i j are cofactors of the matrix elementsSi j ,
while C (C̄) is a contour running from2`1 i e (2`2 i e)
to 1`1 i e (1`2 i e) passing above~below! all zeros ofS11
(D11). A summary of the spectral transform and some
marks for these quantities can also be found in the App
dixes; see Ref.@16# for further details.

For a perturbed system, Eq.~7! is modified by adding
( iF,2 iF* ) to the right hand side, whereF is the perturba-
tion, e.g., strong birefringence in the fiber, withF5(mq1t ,
2mq2t)

T , etc. This modified form for Eq.~7! can be substi-
tuted into

Si j ,x5E
2`

1`

f( j )`c̃( i )S qx

2qx*
D dt,

which expresses the evolution of the scattering data to g
the final result

Si j ,x5Si j ,x
(0) 1E

2`

1`

f( j )`c̃( i )S F

2F* D dt, ~10!

where the termSi j ,x
(0) represents the evolution for the unpe

turbed system. In particular,Si1,x
(0) 524i z2Si1 ,i 52,3, while

S11,x
(0) 50.

B. The radiation fields

We are interested in the case when a pulse comprisin
soliton and a radiation field propagates down the fiber. Th
q(x,t)5qs(x,t)1dq(x,t). Expressing the integrals in Eq.~9!
in terms of their discrete and continuum contributions giv

S q1

q2
D 5

1

pE2`

1`S S21

S11
S c1

(2)c̃2
(1)

c1
(2)c̃3

(1)D 1
S31

S11
S c1

(3)c̃2
(1)

c1
(3)c̃3

(1)D D dz

2
1

pE2`

1`S D21

D11
S c1

(1)c̃2
(1)

c1
(1)c̃3

(2)D 1
D31

D11
S c1

(1)c̃2
(3)

c1
(1)c̃3

(3)D D dz

22i (
k51

N S f1
(1)~zk!c̃2

(1)~zk!

f1
(1)~zk!c̃3

(1)~zk!
D

22i (
k51

N̄ S c1
(1)~ z̄k!f̃2

(1)~ z̄k!

c1
(1)~ z̄k!f̃3

(1)~ z̄k!
D .

The eigenparameterz appears in the scattering equatio
~see the Appendix!, while zk andz̄k are the zeroes ofS11 and
D11, respectively. We identify the radiation field as the in
grals of the above equation. The discrete sum gives the
tribution toq(x,t) from a generalN-soliton state. From sym
metries associated with VNSE, it follows thatN̄5N, z̄
5z* . Since hereN51 the latter contribution is simplyqs ,
while dq(x,t)5(dq1 ,dq2)T is obtained from
01660
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dq2
D 5

1

pE2`

1`S S21

S11
S c1

(2)c̃2
(1)

c1
(2)c̃3

(1)D 1
S31

S11
S c1

(3)c̃2
(1)

c1
(3)c̃3

(1)D D dz

2
1

pE2`

1`S D21

D11
S c1

(1)c̃2
(2)

c1
(1)c̃3

(2)D 1
D31

D11
S c1

(1)c̃2
(3)

c1
(1)c̃3

(3)D D dz.

~11!

Again c j
( i ) , c̃ j

( i ) are components of Jost functions, whileSi j

andD i j , which depend onz andx, are elements of the sca
tering data. For first order in perturbation theory,c j

( i ) etc.
will be approximated by their solitonic expressions~all
known, see the appendix!, while Si j and D i j 5Si j* evolve
from an initial valueSi j (x50,z)50 in accordance with a
soliton input to the fiber.

Note that Eqs.~8! and ~9! are the direct extension of th
application of the Fourier transform to linear systems,
appropriate to the integrable VNSE equation. Indeed, in
limit where the pulseq(x,t) has no soliton component an
simply represents a weak radiation field,dq(x,t) say, Eqs.
~8! and ~9! reduce to

S S21

S31
D 52E

2`

1`S dq1*

dq2*
D exp~2 ivt !dt,

S dq1*

dq2*
D 52

1

2pE2`

1`S S21

S31
D exp~ ivt !dt,

where * denotes complex conjugation, andv52j
52Re$z%. Each componentdq1* , dq2* of dq* is here linked
to the one piece of scattering data,S21 andS31, respectively.
This simplifying feature is lost for the full~nonlinear! sys-
tem.

The intention here is the following: for a choice of pe
turbationsF, the integral in Eq.~10! is evaluated first, as-
suming solitonic forms forf ( j ) and c̃ ( i ), after which the
differential equation is solved to yieldSi j (x,z). This is then
substituted into Eq.~11!, yielding the required forms for the
radiation fieldsdq1 anddq2, namely, Eqs.~20!.

C. The conserved quantities

Any member of the vector NSE family has infinitel
many conserved quantities. The conserved quantities are
tained by examining the asymptotics off1

(1) ast→1` @spe-
cifically, we examine ln„f1

(1)exp(ijt)…[ ln S11, cf. Eq. ~15!,
as a formal asymptotic expansion in inverse powers ofj,
taken in limitj→1`], together with the result thatS11 does
not vary with x. Denoting the conserved quantities b
Cn , n50,1,2, . . . , it is thus found that

Cn5E
2`

1`

~qTrn!dt, ~12!

where

r05q* ,
3-3
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r15qt* ,

and

rn115rn,t1 (
i 50

n21

riq
Trn2 i 21 .

Note thatri are two-component vectors. In particular,

C25E
2`

1`

@qTqtt* 1~q†q!2#dt

is the Hamiltonian functional for Eq.~2!, when the termF is
set to zero.

As for the scalar problem, it is possible to introduce a
of trace formulas for the VNSE. Introduce the integral

I ~z!5E
2`

1`S118

S11

dj

j2z
1E

2`

1`D118

D11

dj

j2z
, ~13!

where the prime denotes a derivative with respect toj, andz
has a positive imaginary part, i.e., Im$z%.0. Then, sinceS11
and D11 are known to behave like 11O(1/z2) as uzu→`,
Eq. ~13! can be evaluated by the usual techniques of con
integration, by considering semicircular paths in the up
half plane for the first term, and the lower half plane for t
second, giving

I ~z!52p i (
n51

N S 1

z2 z̄n

2
1

z2zn
D 12p i

d

dz
lnS11~z!.

~14!

Again, zn andz̄n are the zeroes ofS11 andD11, respectively.
Now consider Eq.~14! in the limit Im$z%→0, Re$z%
→1`. Identifying Cn as the coefficients of a formal expan
sion of lnS11, i.e.,

ln S115 (
n50

`
Cn

~2i z!n11
, ~15!

we find

Cn5 (
m51

N

@~2i z̄m!n112~2i zm!n11#

2
1

pE2`

1`

~2i j!nln~12uS21u22uS31u2!dj. ~16!

The discrete sum gives the contribution toCn from an arbi-
trary N-soliton state, whereas the integral denotes the con
bution from the continuum radiation modes. The equival
form for Cn , Eqs.~12! and ~16!, constitute the trace formu
las for the VNSE.

For the unperturbed system, eachCn satisfies the evolu-
tion equationdCn /dx50. With the introduction of the per
turbing termiF, these become
01660
t
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dCn

dx
52~2 i !nReH E

2`

1`

F†~2 iD!nqdtJ .

Note that the evolution of eachCn is determined by the
projection of the perturbing termF† onto thenth flow of the
VNSE family, i.e., onto (2 iD)nq.

With F corresponding to strong birefringence, i.e.,F
52ms3qt ~or strong birefringence plus third-order dispe
sion whereF52ms3qt1dqttt), it is easy to show that both
C0 and C1 are conserved implying in turn that the solito
parametersj1 andh1 are similarly constants of the motion
That is, throughout this article, any perturbationsF will be
considered small,O(e) say. Then from Eq.~10!, the inho-
mogeneous term generatingSi j (x) is O(e) so, if Si j (x50) is
zero—as appropriate for soliton input to the fiber—Si j (x) is
O(e). The integral term in Eq.~16! is thereforeO(e2), as
are changes inh1 andj1 wheneverC0 andC1 are conserved
quantities.

Using the results of a related perturbation theory dev
oped elsewhere@13#, we can similarly show that the abov
choices forF result indu/dx50, whereu is the polarization
angle. In other words, the polarization state of the pulse
not altered. With no loss of generality we assume that pu
are linearly polarized with polarization angleu within the
fiber.

IV. APPLICATIONS

A. The associate field formalism

We are interested in the equation

iqx2qtt22q†qq5 iF, ~17!

whereF52ms3qt represents the effect of strong birefrin
gence within the fiber. The intention is to analyze Eq.~17!
using the perturbation theory developed in the preceding
tion.

Evaluating the integrals in Eq.~10! produces

S S21

S31
D

x

524i z2S S21

S31
D 22i zmS S21

2S31
D 1

im

2
sin~2u!~2z2 i !

3S sinu

2cosu D q̂s* . ~18!

The additional contribution

22i zmS S21

2S31
D

has been introduced as derived in Appendix B. This is p
cisely the additional term required to ensure thatS21 andS31
follow their respective characteristics. We now setz5jPR
to generate the continuum field. More details about the ori
of this term can be found in the appendix.

The evolution of the spectral data is now governed by E
~18!, subject to the initial condition thatS21(0,j)5S31(0,j)
50. As for the scalar problem@15#, it is useful to introduce
3-4
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two quantities related toS21 andS31, namely, theassociate
fields f1(x,t) and f 2(x,t). Define

f̂ 1~x,j!5
S21* ~x,j!

4j211
,

f̂ 2~x,j!5
S31* ~x,j!

4j211
,

where f̂ (x,j)[F$ f (x,t)%5*2`
1`exp(22ijt)f(x,t)dt is the

Fourier transforms off (x,t). Then, Eq.~18! becomes

2 i S f̂ 1

f̂ 2
D

x

54j2S f̂ 1

f̂ 2
D 12jmS f̂ 1

2 f̂ 2
D

1
2msin~2u!

2j1 i S sinu

2cosu D q̂s* ,

or in t space

2 i S f 1

f 2
D

x

5S f 1

f 2
D

tt

1 imS f 1

2 f 2
D

t

2
im

2
sin~2u!S sinu

2cosu D qs^ h, ~19!

whereqs is the ~scalar! soliton expression Eq.~4!,

h~ t !5H exp~ t !, t,0

0, t.0

and ^ denotes convolution product. From Eq.~11!, using
solitonic expressions forc j

( i ) , S11(j)5(2j2 i )/(2j1 i )
5D11* (j), and then evaluating the various integrals, the f
lowing expressions are obtained fordq1 anddq2:

2dq15~M2N sin2u! f 11 1
2 sin~2u!N f2

2qs
2cosu~ f 1* cosu1 f 2* sinu! ~20a!

2dq25~M2Ncos2u! f 21 1
2 sin~2u!N f1

2qs
2sinu~ f 2* sinu1 f 1* cosu!. ~20b!

To make these awkward expressions more manageable
have introduced the operators

M5
]2

]t2
22 tanht

]

]t
1tanh2t,

N5~12tanht !
]

]t
1tanh2t2tanht.

The algorithm for findingdq1 anddq2 is first to solve Eqs.
~19! for f 1(x,t) and f 2(x,t) subject to the initial condition
that f 1(0,t) and f 2(0,t) are both zero~so that the limitations
of the method derived in Ref.@17# do not apply here!. This is
01660
-

we

now straightforward since bothf 1 and f 2 satisfy linear dif-
ferential equations, and can be easily obtained using stan
~Fourier! transform methods. We finddq1 anddq2 simply by
using Eqs.~20!. This is, again, relatively straightforward re
quiring only differentiation of the known functionsf 1 and
f 2.

Using the fact that the Manakov system in invariant und
rotation we project Eqs.~20! onto the soliton polarization
states. By introducing the quantitiesf'5 f 1sinu2f2cosu and
f i5 f 1cosu1f2sinu, the projections of the vector (f 1 , f 2)T

onto the polarization modes orthogonal (e') and parallel (ei)
to the soliton pulse, respectively, we obtain

f',tt2~ tanht11! f',t1tanht f'

52~dq1 sinu2dq2 cosu!52dq' ,

f i ,tt22 tanht f i ,t1tanh2t f i2sech2t f i* exp~22ix !

52~dq1cosu1dq2 sinu!52dqi .

Both modes contribute to the radiation field, unlike observ
tions made elsewhere@7,8# ~also see Sec. IV A 2!.

Whenu is 0 orp/2, the source term in Eq.~19! vanishes
and hence bothf 1 and f 2 remain at their initial value of zero
in consequencedq1 and dq2 are both zero. Simply setting
u50, then p/2, in Eqs. ~20! produces the relationsdq2

5M f 12qs
2f 1* anddq25M f 22qs

2f 2* , from the first and sec-
ond equations, respectively; these are just the express
obtained for the scalar problem@15#.

Projecting the evolution Eqs.~19! onto the polarization
vectors (cosu,sinu)T and (2sinu,cosu)T results in evolution
equations where the source term is first zero, th
( im sin(2u)/2)qs^ h, respectively. In other words, the sourc
generates radiation orthogonally polarized to the soli
pulse @to O(e)]. There is an interesting asymmetry in th
source term. The termqs^ h peaks at a slightly larger valu
of t than doesqs . At first sight this appears odd; there
nothing in the formulation of this problem nor in our choic
of perturbation~strong birefringence! to have allowed one to
anticipate this loss oft symmetry in the perturbing term
However, we believe it may be related to the generation
the shadow, which in turn is related to the fast polarizat
mode instability reported elsewhere@18#.

The qualitative features of Eqs.~19! and~20! are straight-
forward: dispersive radiation is generated, which then pro
gates along the characteristicsx6mt. Both these contribute
to the generation of bothdq1 and dq2, in accordance with
Eqs.~20!. Near the soliton,dq1 anddq2 have a complicated
structure with no readily discernable features. Away from
soliton—that is, at large values ofutu—we expect the radia-
tion field to evolve in accordance with the linear theory: th
is, a predominance ofdq1 should appear in the slow polar
ization mode,dq2 in the fast, with each field propagatin
away from the~source! soliton pulse at a group velocity de
termined by the frequency shiftsdv56m/2. At large values
of utu, the cross terms proportional toqs

2 can be ignored in
Eqs.~20!, and we may approximate tanht.61 as appropri-
ate. Then,
3-5
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M.S ]

]t
71D 2

as t→6`, while

N.H 0 ast→0,

2S ]

]t
11D as t→2`.

Hence, ast→1`

S dq1

dq2
D .S ]2

]t2
22

]

]t
11D S f 1

f 2
D , ~21!

and ast→2`

S dq1

dq2
D .S ]2

]t2
12

]

]t
11D S f 1

f 2
D 1S 2sinu

cosu D 2S ]

]t
11D f' .

~22!

We have an interesting asymmetry with no ready expla
tion. For large values of the parameterm ~let us assume, for
the moment, that the perturbation theory continues to ho!,
one expectsf 1 to dominatef 2 as t→1`, since the charac
teristic for f 1 is t2mx, and hence we expectdq1 to domi-
natedq2; this would be in accord with simple intuition. Th
same intuition—with f 2 now dominating f 1—fails at
t→2` because of the presence off' in Eq. ~22!; here, now,
~large! f 2 will also contribute todq1. If the latter terms were
missing, the other difference between Eqs.~21! and~22! can
be explained in terms of the phase shift induced by the p
ence of the soliton pulse: i.e., (] t21)2/(]t11)2→(v
1 i )2/(v2 i )2 in frequency space, which is the phase sh
experienced by a linear plane wave exp(ivt) on passing from
t→1` to t→2` through a soliton pulse@15#.

1. Third-order dispersion

We shall now add an additional perturbing term in t
birefringent VNSE system, which represents the effect
third-order dispersion. The total effect will be mathema
cally modeled byF52mqt1dqttt . The second term repre
sents third-order dispersion and the parameterd, of O(e),
suggests that this term is of the same order as the bire
gencem term.

Evaluating the integrals in Eq.~10! gives

S S21

S31
D

x

524i z2S S21

S31
D 22i zmS S21

2S31
D 1 im sin~2u!~z2 ih1!

3S sinu

2cosu D q̂s* 14idz~z21h1
2!S cosu

sinu D q̂s*

28idz3S S21

S31
D ,

where q̂s* 5pexp(ix)sech(pz) and again we set 2h151.
Note the ‘‘extra’’ term
01660
-

s-

t

f
-

n-

28idz3S S21

S31
D .

This is obtained in a similar manner as the one describe
the appendix for the strong birefringence term. Also rec
that to O(e) the soliton parameters remain constants of
motion.

Using the associate field formalism we obtain

f̂ 1,x5 i ~v22mv2dv3! f̂ 1

1S 2im sin~2u!

v1 i
sinu12idv cosu D q̂s , ~23a!

f̂ 2,x5 i ~v21mv2dv3! f̂ 2

1S 2
2im sin~2u!

v1 i
cosu12idv sinu D q̂s ,

~23b!

where v522j is the frequency~recall that we setz5j
PR to generate the continuum!. These simple equations wil
be shown to account for all features noted in the numeric
produced spectra of Fig. 1.

FIG. 1. Pulse spectrumuq̂(v)u vs v at ‘‘distances’’x55 ~top!
and x57.5 ~bottom! down the fiber withm50.1, d50.2, andu
5p/4. All variables are dimensionless. The dashed line is the s
ton.
3-6
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The explicit x dependance represented by the fac
exp(2ix) contained inq̂s is easily removed by

f̂5S f̂ 1

f̂ 2
D→exp~ ix !S f̂ 1

f̂ 2
D ,

then Eqs.~23! become

f̂ 1,x5 iD 2~v! f̂ 11sech~pv!S 2im sin~2u!

v1 i
sinu

12idv cosu D , ~24a!

f̂ 2,x5 iD 1~v! f̂ 22sech~pv!S 2im sin~2u!

v1 i
cosu

22idv sinu D , ~24b!

where

D7~v!5v27mv2dv311.

The most prominent feature are the resonance peaks in
pulse spectrum, which are observed to occur atD750; this
is the origin of these resonance peaks. For any value
propagation distancex, f̂ will be returned to zero at thos
frequency components satisfyingxD7(v)52np, wheren
PZ.

The addition of further dispersive terms will not alt
things in any significant way. One then must find the n
dispersion function and the zeros~perhaps more than two!
will be on the points where secular growth occurs.

2. Polarization mode dispersion

Polarization mode dispersion~PMD! is a factor that must
be taken into account when transmitting over long fiber d
tances. In fibres, PMD is caused by the refractive index
exhibiting perfect rotational symmetry around the fiber ax
As a result, the two possible polarization states of the fi
propagate light with slightly different speeds. This differen
in propagation speed between the slow and fast fiber
leads to a broadening of the transmitted bits. PMD is c
rently a research topic attracting much attention. Its anal
cal treatment is quite complex in general because of its
tistical nature@19#.

Birefringence creates differing optical axes that genera
correspond to the fast and slow propagation mode axe
causes one polarization mode to travel faster than the o
resulting in a difference in the propagation time. In a line
system, pulse broadening can be estimated from the
delay Dt between the two polarization components duri
propagation of the pulse. We discuss here the complemen
effect for soliton systems.

We define the relative time displacement between the
polarization modes as
01660
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Dt~x!5ReH E
2`

1`

tdq2q2s* dtJ 2ReH E
2`

1`

tdq1q1s* dtJ
5Dt2~x!2Dt1~x!.

Recall that the soliton is in one polarization stateei , whereas
the radiation field is in two polarization modes (ei ,e') or-
thogonal to each other. For that we introduceDT1 andDT2
in order to have the two orthogonal modes in the integrals
that

DT15Dt1tanu2Dt2 cotu,

DT25Dt11Dt2 ,

then

Dt~x!52sin~2u! DT12cos~2u! DT2 .

Using Eqs.~11!, it can be shown that,DT2[0 and finally

Dt~x!5sin~2u! DT15sin~2u!

3ReH exp~ ix !E
2`

1`

exp~2t ! sech2tF~x,t !dtJ .

~25!

After using the identity

E
2`

1`

f ~ t !g* ~ t !dt5
1

2pE2`

1`

f̂ ~v!ĝ* ~v!dv,

the relative time displacement, Eq.~25!, can be expressed a

Dt~x!5sin~2u!ReH iexp~ ix !

2 E
2`

1`

~v2 i !

3sech~pv/2! f̂'~x,v!dvJ , ~26!

where

f̂'~x,v!5
2mp sin~2u!sech~pv/2!

v2 i

3S sin2u

11v1
2 @exp~2 ix !2exp~ iv1

2 x!#

1
cos2u

11v2
2 @exp~2 ix !2exp~ iv2

2 x!# D , ~27!

andv6
2 5v26mv.

Figure 2 shows the relative time displacement obtain
using Eqs.~26! and ~27! versus normalized distance wit
parametersu5p/3 andm50.01. The graph shows a rapi
decay at first and thenDt approaches a 1/Ax behavior, as
3-7
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observed in Ref.@7#. This can now be verified by approx
mating Eq.~26! for large values ofx using the method of
steepest descents.

Comment. These results do not imply that the continu
is zero at the orthogonal polarization stateei , as argued in
Ref. @8#. Recall that

dqi52M f i1qs
2f i* ,

since f 1 and f 2 are nonzero@cf., Eq. ~19!#, so isdqi . The
interesting feature here is that radiation generated paralle
the vector soliton is nonoscillatory~in the sense discusse
above!, evolving very much in the manner of the radiatio
field associated with the scalar problem@15#. Conversely, the
perpendicular componentdq' exhibits strong oscillatory
motion.

In a ‘‘real’’ optical fiber, the birefringence axes vary alon
the fiber length in a random manner, giving rise to a sim
random variation in the pulse velocity. This is the origin
PMD jitter, an important consideration in the design of
soliton based communication system. The problem is a
lyzed in detail in Refs.@13,14#, and references therein.

B. The soliton shadow

Equations~11! and ~18! describe in full the properties o
the radiation field generated as a result of birefringence in
optical fiber. This is clearly a complicated system to analy
so we begin with some preliminary comments. Consider
~18! first: we see here that bothS21 andS31 contribute to the
generation of bothdq1 anddq2, contrary to what one migh
have anticipated. A simple rearrangement of Eq.~18! permits
it to be written in the form

dq5dqi1dq' , ~28!

with

dqi5dqiS cosu

sinu D , dq'5dq'S 2sinu

cosu D ,

where

FIG. 2. Time displacementDt corresponding to Eq.~26!, with
birefringence parameterm50.01 and polarization angleu5p/3.
All quantities are dimensionless.
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dqi52
1

pE2`

1`S bi

a
c2

21
bi*

a*
c1

2D dj, ~29a!

dq'52
1

pE2`

1` b'
*

a*
exp~2 i jt !c1dj. ~29b!

Here, we have introduced

bi5S21 cosu1S31 sinu, ~30a!

b'52S21 sinu1S31 cosu, ~30b!

a5S11, ~30c!

while

c15
exp~2 i jt !

j2 ih1
@j2 ih1 tanh~2h1t !#, ~31a!

c252
ih1

j1 ih1
exp~ i jt24ih1

2x!sech~2h1t !. ~31b!

Note that Eq.~28! resolvesdq into components polarized
parallel and orthogonal to the soliton pulse. Moreover,
reconstruction formula, Eq.~29a!, for scalardqi is precisely
that obtained for the scalar problem, withc1 and c2 the
appropriate scalar Jost function components quoted in E
~31a! and ~31b!. Of course, the evolution equations forbi
andb' have no counterpart in the scalar problem: these n
read@cf. Eqs.~18!, ~30a!, and~30b! above#

bi ,x524i j2bi22i jm@bi cos~2u!2b'sin~2u!#,
~32a!

b',x524i j2b'12i jm@bi sin~2u!1b'cos~2u!#

2 im sin~2u!~j2 ih1!q̂s . ~32b!

Here, q̂s5exp(24ih1
2x) sech(pj/2h1) is the Fourier trans-

form of ~scalar! qs52h1exp(24ih1
2x)sech(2h1t). Note that

the inhomogeneous term is in the equation forb' , which in
turn generatesdq' , the radiation field orthogonally polar
ized to the soliton pulse. The above equations uncouple
values ofu50,p/2, where the VNSE similarly reduces to th
scalar form for one or other of the componentsq1 andq2.

When writing Eqs.~9!, an important assumption wa
made which was not discussed then, but which is appropr
to mention now. Namely, it was assumed that the potent
q1 andq2 are on compact support: that is, they vanish fas
than exp(2lutu) asutu→` for any positive value ofl. When
this assumption is not appropriate—such as whenq(0,t) has
the sech profile of the soliton pulse, Eq.~9! must be modified
by moving the contoursC and C̄ onto the real axis, collect-
ing discrete contributions from the poles~assumed simple! of
S11

21 andD11
21 in the upper and lower half planes in the pr

cess. These discrete terms are of course the soliton cont
tion to q ~here assumed to be a single soliton!, while the
3-8
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NONLINEAR OPTICS IN A BIREFRINGENT OPTICAL FIBER PHYSICAL REVIEW E69, 016603 ~2004!
remaining integral along the real axis is the continuum c
tribution ~i.e., the radiation field!; see Ref.@16# for details
and further comment.

We now return to Eq.~9! and, before taking the contour
C and C̄ down to the real axis as discussed above, we fi
project the right hand side of the equation onto the ortho
nal polarization modes (cosu,sinu) and (2sinu,cosu) ~i.e.,
parallel to and orthogonal to the polarization state of
soliton pulse!. When S11 has a single zero atz5 i /2 in the
upper half plane~recall we have set 2h151), then the par-
allel contribution from the discrete terms is just

qi5qs ,

as one might expect. Theorthogonal contribution is not
equal to zero, but rather is given by

dq'52b'
* uz52 i /2sechtF2sinu

cosu G .
Here, we have useddq' rather thanq' to emphasize that this
is a small quantity. For this to make sense, of cour
b'uz52 i /2 must have meaning, which it will not have unle
we reintroduce the assumption of compact support. If we
this, then the evolution equation forb'

* uz52 i /2 is readily ob-
tained from Eqs.~18! and ~32b!,

b',x* uz52 i /252 ib'uz52 i /22
m

p
sin~2u!exp~2 ix !.

To obtain this, we note that

lim
z→2 i /2

~z1 i /2!q̂s~z!5
i exp~2 ix !

p
.

This has the solution

b'~x!52
m

p
x sin~2u!exp~2 ix !,

and so

dq'5x
m

p
sin~2u!qsS 2sinu

cosu D , ~33!

where qs is the scalar soliton, Eq.~4!, with j150, 2h1
51.

The interesting feature here is the linear growth withx,
which indicates asecularinteraction of the soliton pulse with
the birefringence medium. Expression~33! is valid only for
propagation distancesmx!1. We propose that the contribu
tion ~33! is a true description of the early evolution of th
soliton shadow. It is in a polarization direction perpendicu
to the soliton pulseqs , is a ‘‘true’’ radiation mode in the
sense that it does not arise from a simple ‘‘tilt’’ of the pola
ization angleu ~actually du/dx50 for the choice of the
perturbation F taken here!, and is a resonant—an
localized—contribution to the radiation field in the sense t
growth is secular. Moreover, the composite pulseqs1dq' on
01660
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shedding radiation in the manner discussed in preceding
tions evolves towards its asymptotic soliton state, Eq.~6!.
Note that, the sense of the early tilt~toward smaller values o
u) is consistent with the findings of studies on the polariz
tion fast mode instability@18#. Some final comments on th
nature of the soliton shadow are in order. First, there is
concise definition of the soliton shadow in the literature.
has been identified as the small orthogonal complement
pulse close to a polarization mode@20#, a second eigenpa
rameter in the scattering data which appears when the pa
eterm exceeds some critical value@10,11#, or associated with
soliton collisions@20#. In his article, Malomed discusses th
VNSE for the case whenq5(q1 ,dq2) obtains a linearized
evolution equation fordq2, and finds an eigenmode solutio
to this which is effectively our Eq.~33!, but without the
appearance of ‘‘x, ’’ that is, without the secular growth. We
would like to propose that the term ‘‘soliton shadow’’ b
reserved for the localized mode orthogonal to, and reson
with, the vector soliton discussed above.

V. CONCLUSIONS

We have developed a perturbation theory to analyze p
turbed forms of the VNSE, as appropriate to studies on pu
propagation down an anomalously dispersive, birefring
optical fiber. We described the radiation shed by the soli
as it propagates down the fiber as a set of linear differen
equations. These equations uncouple when projected on
soliton polarization states. Moreover, unlike other a
proaches, we have shown that both modes contribute to
generation of this field. The theory was finally applied
different examples, namely, the study of third-order disp
sion and polarization mode dispersion. We also proposed
analytical treatment for the study of the effect of the solit
shadow.

APPENDIX A: INVERSE SCATTERING FOR THE
MANAKOV SYSTEM

The linear eigenvalue problem associated with the unp
turbed form (F50) of Eq. ~2! is

u1t1 i zu15q1u21q2u3 , ~A1a!

u2t2 i zu252q1* u1 , ~A1b!

u3t2 i zu352q2* u1 . ~A1c!

We define the fundamental~or Jost! solutions f( i ) and
c( i ), i 51,2,3, for realz5j by the requirements that

f(1);e1 exp~2 i jt !,

f(2);e2 exp~ i jt !,

f(3);e3 exp~ i jt !,

as t→2`, and

c(1);e1 exp~2 i jt !,

c(2);e2 exp~ i jt !,
3-9
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c(3);e3 exp~ i jt !,

as t→1`, wheree15(1,0,0)T etc. Sincef( i ) and c( i ) are
independent sets of solutions, we can write

f( i )5(
j 51

3

Sji ~z!c( j ), ~A2!

which defines the scattering dataSji (z). For z5j real,S is a
333 unitary unimodular matrix.

We also require an adjoint scattering problem which
taken to be

ṽ1t2 i z ṽ15q1* ṽ21q2* ṽ3 , ~A3a!

ṽ2t1 i z ṽ252q1ṽ1 , ~A3b!

ṽ3t1 i z ṽ352q2ṽ2 , ~A3c!

where the symbol; is used to denote solutions of the a
joint problem. As with the direct problem, we define th
fundamental solutionsf̃( i ) and c̃( i ) of the adjoint problem
by the requirement that

f̃(1);e1 exp~ i jt !,

f̃(2);e2 exp~2 i jt !,

f̃(3);e3 exp~2 i jt !,

as t→2`, and

c̃(1);e1 exp~ i jt !,

c̃(2);e2 exp~2 i jt !,

c̃(3);e3 exp~2 i jt !,

ast→1`. Since, by constructionc̃( i )Tc( j )5D i j , it follows
that Si j 5c̃( i )Tf( j ). The scattering dataD i j for the adjoint
scattering problem are introduced in an analogous mann
Eq. ~A2! by

f̃( i )5(
j 51

3

D j i ~z!c̃( j ).

By virtue of the unitary nature ofS, it is easily demonstrated
that D j i (z) is the cofactor of the elementSi j (z), and that

D i j ~z!5Si j* ~z!,

where * denotes complex conjugate.

APPENDIX B

It is required to evaluate the integral

I 52mE
2`

1`

~f( j )`c̃( i )!Ts3S qt

2qt*
D dt.
01660
s

to

Introduce the quantitiesa andb so that the scattering equa
tions ~A1a!–~A1c! and their adjoints~A3a!–~A3c! become,
respectively,

a t1 i za5qTb,

bt2 i zb52aq* ,

and

ã t2 i zã5q†b̃,

b̃t2 i zb̃52ãq.

We then write the integralI as

I 52mE
2`

1`

~ lT,mT!s3S q

2q* D dt,

where l5ãb andm5ab̃. Integrating by parts and evalua
ing the derivativeslt andmt gives

I 522i zmE
2`

1`

~ lTs3q1mTs3q* !dt.

Finally introduce the quantityk5bTs3b̃. Evaluate its de-
rivative

kt52 lTs3q2mTs3q* ,

so that

I 52i zmku2`
1`1other terms522i zmS S21

2S31
D 1other terms.

The ‘‘other terms’’ correspond to the rest of the term in E
~18! which are obtained directly from Eq.~10! as discussed
in the text.

APPENDIX C: THE JOST FUNCTIONS

We will list here the components for the Jost functio
c( i ) and c( j ). These are obtained by direct solution of th
scattering problem with appropriate boundary conditions
t→6`, with solitonic expressions forqs . The adjoint Jost
functions are obtained from the relationshipsf̃ j

( i )(z,t)

5f j
( i )(z,t)* and c̃ j

( i )(z,t)5c j
( i )(z,t)* , where * denotes

complex conjugate,

f1
(1)5

exp~2 i zt !

z1 ih1
@z2 ih1tanh~2h1t !#,

f2
(1)52

ih1

z1 ih1
exp~2 i zt14ih1

2x!sech~2h1t !cosu,

f3
(1)52

ih1

z1 ih1
exp~2 i zt14ih1

2x!sech~2h1t !sinu,
3-10
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f1
(2)52

ih1

z2 ih1
exp~ i zt24ih1

2x!sech~2h1t !cosu,

f2
(2)5

exp~ i zt !

z2 ih1
„z1 ih1@cos2u tanh~2h1t !2sin2u#…,

f3
(2)5

ih1

z2 ih1
exp~ i zt !@11tanh~2h1t !#sinu cosu,

f1
(3)52

ih1

z2 ih1
exp~ i zt24ih1

2x!sech~2h1t !sinu,

f2
(3)5

ih1

z2 ih1
exp~ i zt !@11tanh~2h1t !#sinu cosu,

f3
(3)5

exp~ i zt !

z2 ih1
„z1 ih1@sin2u tanh~2h1t !2cos2u#…,

c1
(1)5

exp~2 i zt !

z2 ih1
@z2 ih1tanh~2h1t !#,

c2
(1)52

ih1

z2 ih1
exp~2 i zt14ih1

2x!sech~2h1t !cosu,
r-

01660
c3
(1)52

ih1

z2 ih1
exp~2 i zt14ih1

2x!sech~2h1t !sinu,

c1
(2)52

ih1

z1 ih1
exp~ i zt24ih1

2x!sech~2h1t !cosu,

c2
(2)5

exp~ i zt !

z1 ih1
„z1 ih1@cos2u tanh~2h1t !1sin2u#…,

c3
(2)5

ih1

z1 ih1
exp~ i zt !@211tanh~2h1t !#sinu cosu,

c1
(3)52

ih1

z1 ih1
exp~ i zt24ih1

2x!sech~2h1t !sinu,

c2
(3)5

ih1

z1 ih1
exp~ i zt !@211tanh~2h1t !#sinu cosu,

c3
(3)5

exp~ i zt !

z1 ih1
„z1 ih1@sin2u tanh~2h1t !1cos2u#….
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