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Abstract

The maximum likelihood estimation o f parameters o f two 
bivariate ‘Short/ distributions, introduced, by Papageorgiou 
(1986), is considered, by applying the E M  Algorithm  (D em p­
ster et a,l. 1977). The observed Fisher informations are 
derived, (Louis 1982) and, num.erica,I examples based on real 
data are presented, where the convergence o f the E M  algo­
rithm  is accelerated, substantially by the methods o f conju­
gate gradients (JamsIndian and Jennrich 1993) and, Louis 
(1982).
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1. Introduction

The analysis of accident data has stimulated a consider­
able amount of interest among researchers during the present 
century. The major innovations in accident theory have been 
made along with hypotheses on the occurrence of the event of 
an accident. These were based 011 the concepts of pure chance, 
contagion, risk, proneness and 'spells’ (time periods in which 
all accidents must occur). The formulations of such ideas have 
led to the development of many well known probability models 
and fruitful statistical theory. A  comprehensive review is pro­
vided by Kemp (1970). Cresswell and Froggatt (1963) proposed 
a three parameter discrete distribution as a ‘spells’ model for 
accident data, which they called the ‘Short’ distribution. Later 
Irwin (1964) pointed out that it can be given a proneness inter­
pretation. The definition of the ‘Short’ distribution, its statisti­
cal properties and estimation of parameters by the methods of 
moments and maximum likelihood can be found in Kemp (1967) 
and Kerr (1969).

Papageorgiou (1986) introduced two bivariate extensions of 
the ‘Short’ distribution with univariate ‘Short’ marginals. 
Kocherlakota and Kocherlakota (1992) refer to these distribu­
tions as bivariate ‘Short’ type I and II (henceforth type I and 
II). In their notation the distributions are defined by assuming 
pairs of discrete random variables Yk — (Yu., Yzk), k — 1, 2, with 
the structure

(1-1) (Yjk =  X jk +  X , k::j -  1, 2) k =  1, 2,

where X jk , j  — 1,2,3 are mutually independent Poisson and 
Neyman Type A  variables. Specifically, let I n ,  X 2\ follow Ney- 
man Type A  distributions with parameters (AJ? 0 j ) , j  — 1.2 and 
X 31 follow a Poisson distribution with parameter A. The distri­
bution of Y\ is type I with parameter vector φι — (θχ, θ2, λ, A-j, A*i)
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and probability function

(1.2) Ρ ( ν ι ;Φ ι ) =  β -χ Σ  —
Illill(7/11,7/21 ) χχ·Λ[

Similarly, by taking Χ ν2ι X 22 to be Poisson variables with 
parameters λ ι , Λ ·2 respectively and X 32 to be a Neyman Type 
A  variable with parameters (A,0) then the distribution of Y2 is 
type II with parameter vector φ2 — (Aj , λ2, Θ, A) and probability 
function

The statistical properties of the distributions and estima­
tion of their parameters by the method of moments have been 
studied by Papageorgiou (1986) where it is pointed out that 
the efficiency of the method of moments is consistently low for 
both distributions. Therefore, maximum likelihood estimators 
are strongly desired. A  review and generalizations of Papageor- 
giou’s results are provided by Kocherlakota and Kocherlakota

It is the purpose of this paper to consider the maximum 
likelihood estimation problems for the type I and II distribu­
tions. The likelihoods corresponding to (1.2) and (1.3) are 
rather unpleasant functions to maximize by computing their 
first or second derivatives, l··1 !«me that it seems unlikely to 
attain maximizers 111 closed luiins. In this paper, our interest 
is in approaching the maximization problems by means of the

(1.3) P (y 2;<i>2) = e~ xλ V  -----
χΜ=0 ·τ 32!

(1992).
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statistical reasoning underlying the theme of the EM algorithm 
(Dempster ct al. 1977). The observed Fisher informations of the 
EM estimates are obtained (Louis 1982, Section 3) and exam­
ples based on real data are included. In each of the examples the 
convergence of the EM algorithm is accelerated by the methods 
of Louis (1982, Section 5) and Jamshidian and Jennrich (1993).

2. Estimation using the E M  Algorithm

We assume that data Y£hs =  ( ; — 1,. . .  ,n, j  — 1,2), 
k =  1,2 are observed and are known to be i.i.d from the type
1 and II distributions with probability functions (1.2), (1.3) re­
spectively. We are concerned with the use of the EM algorithm 
(Dempster et al. 1977) to obtain maximum likelihood estimates 
of parameters of the distributions.

To implement the EM algorithm we view the actual data 
as incomplete data from the distributions of Xi- — (X jk ] j  =  
1 , . . . ,6  — k), />; =  1,2 with parameter vectors φ as in ( 1.2), 
(1.3) and probability functions

(2.1) / Τ α  : <?>a;) =  Π  k  =  1, 2,
Τ ι  x : * ·

where fi,jk a,re the j t h  elements of //-i =  (χα\Θι , .X5i#2, λ, Λχ, A-j),
//2 =  ( A i , A2, Χ42Θ, A). Thus, for k =  1,2 we postulate complete- 
data specifications based 011 Υξ — i =  1,.. . , n , j  =  1,. . . , 6— 
k) for the observed data Y£bs with the Y's  having the structure
(1.1). The marginal distributions of Χ Ί\ are Neyman Type A  
with parameters (Aj ,0 j )  for j  =  1,2 and Poisson with parame­
ters λ , λ ι , λ ‘2 for j  =  3,4,5 respectively. Also the variables are 
pair wise independent except (X j\ ,X ( j+zy\), j  =  1,2. Similarly, 
the marginal distributions of X  -]2 are Poisson with parameters 
A1?A2,A for j  -  1,2,4 respectively, Neyman Type A  with pa­
rameters (A, 0) for j  =  3 and the variables are pair wise indepen-
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dent except (λ '32, λ '42)· The distributions defined by (2.1) were 
constructed to have these specific marginals. Since the Neyinan 
Type A is obtained by coinpouding a Poisson distribution by a 
Poisson distribution, the product of their probability functions 
with those of a further of two independent Poisson distributions 
forms the probability function of a four variate distribution with 
Neyinan Tupe A  and Poisson marginals (see also Marshall and 
Olkin 1988 and references therein).

The E-step of the method estimates the unobserved complete- 
data log likelihoods by their conditional expectations, given the 
observed data and current estimates of φ̂ ·, φ^Κ k =  1, 2. The 
latter are linear in the following sufficient statistics for </>*.

7?
$k: (&jk ^ i jA:5 J 1, . . . , 6 k) h — 1,2.

i—1

Consequently, when Y*., k =  1,2 are observed the EM algorithm 
eliminates the unobserved X}. by finding the conditional expec­
tations of the sufficient statistics with respect to the distribu­
tions of The relevant computations can be reduced
by using the structure (1.1). Since Χ 3ι· — Y.)k — X ?)k for j  =  1, 2 
the conditional expectations of X  \k: X ‘2k: given ijk can be de­
rived using those of X ^  given In fact the central moments 
of (Xk\yk] 0Α;) can b(' calculated using the central moments of 
{Xjk\i/A:;0A:?.y — 3, ... ,6 — k). Using ( 1.1) we can easily show 
that for k =  1,2

(2.2) e  | n iA '. ;, -

-  ( - 1  Y i+r* E { [X 3k -  E ( X 3k\Yk) ]ri+r3+r!i 

X f l l X j k  -  E ( X jk\Yk) ]Vi\Yk}.
j =4

When k — ], A'.n is independent of A 51 and Aa:!i is indepen­
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dent of .V, i . j  =  f , 2,4, 5 so that

P(X:n  =  =  .ίΜ ι,Χ δ ΐ — ·χ 5ΐ , Y\ — V\)

=  P ( * l l  =  2/11 — ·* 311 X'2l — 7/21 -  •t'Sl |·';41) :i;5 l)

x Π  ρ (λ7ι =  Λ ι ) ·

Futherinore, X n  is independent of X 51 and X 41 is independent 
of X'2\ · It follows that

=  yn — .X‘31, X ‘2l — ]J21 — ^3l|^41j^5l)
2

=  Π  P ( A ’ j i  =  ?/yi -  •'·3||·'·(/+3}|)·
■j= 1

Therefore

(2.3) P (A 31 -  .X31, A”41 =  .X'41, X 51 =  .X51I2/1)
2

=  JJ  P ( X j l  =  Vjl -  ·ί·311^04-3)1)
.7=1

x  Π  ρ (χ η  =  xn ) / P ( y i ) ,
3 =  3

where the random variables Xji\x (j+3y\ and Xj\ follow Poisson 
distributions with parameters χ ^ ^ ι θ Ί for j  =  1,2 and Λ, Αχ, λ2 
for j  =  3, 4, 5 respectively, and Yj follows the type I distribution 
with probability function given by (1.2). The analogous result 
for the case k — 2 is derived by noting that X V2 is independent 
of X ‘2‘2 and both are independent of X 32, X 42· We find that

(2.4) P (X : i2 =  X32,*42 =
2

=  Π  p ( x J *  =  VP- -  · ' ·> · .' ) / ’ ( - V 3 2  =  X V \ X A 2 )  
j =  I

X P ( X 42 =
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with X j 2i Χ?>2\χ 42 following Poisson distributions with param­
eters λ i , Λ2, A, j  — 1,2,4 and χ#2θ respectively and Y2 being a 
type II variable with probability function (1.3). The conditional 
moments of the two distributions are given by

( 6—A; \ nii n(yik,V2k) oo oo

Π·74ιν ^ Φ Λ =  Σ Σ ··· Σ
j = 3 / ^ = 0  x4lc= 0  X (6 -k ) k =®

C)—k

Π  χ % ρ {χ 3k, · · · , (̂G—k)k\Vk] <l>k),
J = 3

for appropriate values of ΙΊ G iV U {0 } ,  j  =  3, . . .  , 6 — k,k  =  1,2 
and the probability functions are obtained from (2.3), (2.4). The 
required conditional expectations are computed for each experi­
mental unit and the E-steps are completed by accumulating over 
all units to obtain

( 2.6) £ (S JI:|nA ’ ; 4 '>)
η n

— Σ  VHk ~  Σ E (Xi3k\yak, Vak] Φ Ϊ )  j  — 1, 2,
i= 1 i—\
n

=  E (X i j k\ynk, Vi'ik'i 4 $ )  j  =  3 , . . .  ,6 -  k
i=l

for k =  1, 2.
The M-steps of the EM algorithms determine updated val­

ues of Φιϊ say, by simulating the maximum likelihood es­
timations which would have been carried out if the data were 
complete. This is done by maximizing the expected log like­
lihoods of the complete data given the observed data over <:/>*.. 
Hence we require the maximizers for the log likelihoods corre­
sponding to (2.1) with the sufficient statistics replaced by their 
conditional expectations. The maximizations of the complete- 
data log likelihoods over <f)k,k =  1,2 are easily accomplished to 
give 4>jk — sjk/S(5- 2Jk+i)fc for j  =  2k - 1, . . . ,  k +  1 and </>jk =  sjk/n
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for j  — 5 — 2k, 6 — 2k, 6 — k, whereupon the M-steps dictate the 
new estimates

♦ST”  =  4 ir)/£ (S (5 -2 t+ j)tln '* '; Φΐ·’)

j  =  2k -  i , . . . , A: +  1,

-  lE (5 jfc| y ^ ; r f } ) .7 =  5 -  2k, 6 -  2fc, G -  A:,

for k — 1, 2 .
The transitions from φ^) to through the E and M

{sobs, j.i1) λ [sobs.

given above define the EM algorithms for the estimation 
problems under consideration. Repeated EM steps maximize 
the observed data log likelihoods over φk and at convergence, 
where — φ%+1  ̂ — 4>k, the estimates satisfy the maximum 
likelihood equations

(2.7) ]>jk =  (yjk -  φ3, φ ^ )/ φ \ r+* )jfc j  — 1,2,
n

Σ Ε (χ  ijk\iJnk, y%2k\ Φk)
i=1

n E ( X m \ym , yt >2] Φ2)/n 
J=1

j  =  3 , . . . ,  6 -  k,

where the expectations are given using (2.5) with φ  ̂ — </)*., k 
1, 2 .

3. The observed information matrices

Using the result of Louis (1982, Section 3) (see also Meilijson 
1989), the observed Fislier informations of the EM estimates 
can be derived from the conditional expectations and variances 
of the complete-data observed information matrices and score 
functions respectively, given the observed data. These involve 
calculating the conditional variances of X pk,p — 1,. . . , 6 —A; and
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covariances of the pairs ( X pk, Xqk): P> (1 — 1, · - - , G — k,p φ q, 
given ///,.. /,· =  1,2. However, using (2.2) with appropriate values 
of (/·,: /' =  1 ,.. .  ,G — k) we find that

V ar(X ?M:|yu., y 2fc) =  V ar(X 3fc|ylfe, y>A:) P  =  1,2, 

Cov(Xpk, X qk\Y\k, Y'2k) -  ( - i r v a r ( x 3fc|ylfc, y 2fc)

P  =  1, q  =  2;

p =  1, 2, q =  3,

C o v (X Pk, Χ Φ\Υη, Y-2k) =  - C o v ( X , k, X qk\Yu,  Yu-)

P =  1, 2, q =  4, . . . , 6 -

with A: =  1,2.
Using the latter results the elements in the upper triangu­

lar part, of the (6 — fc)th order observed information matrices 
l{(l)k\Ykbs), k =  1,2 of the observed data, are found to be

(3.1) Ipp =  - i -  jZilJrvk ~ E ( X lSk) -  Var(X ak)
Vpk i=1

-  (2 -  fc )[0^Var(X ?;(p+3)fc)

+  2</>pfcCov(X7;(p+3)fc, Χ ν;3Α:)]}, p =  1, 2,

=  4 -  E i^ (X ip fc ) -  V a r (x ipjfc)
Vpk 7-1

-  ( f c - l ) ( 4 - p ) [ 0 2V ar(X <42)

-  2 6* C o v ( X  j ·> 2, X  ,;42) ] } ,  p — 3 , . . .  ,6 — k,

(3.2) I pq =  - 4 -  E {V a r (.V , ;s, )  +  (2 -  fc )[«iC ov (X i4i, * « i )
VpkVqk j —\

+  $ ]02Cov(A%;4j, X,r, I ) +  02C ov (X 7.51, -X’,;3i ) ] } ,

P  =  l , ?  =  2,
1

<Ppk<Pqk j — |
]T [C o v (X i(jA:, +  (2
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χ Οον(Χ.ι(ρ+:!μ, Χ ίφ )  -  (/,: -  1)(4 -  q) 

χ e C o v (X m , XiA-i)], Ρ =  1, 2, q =  3 , . . . , 6 -  k,

-  — Y , [C o v (X ipk, Xiqk) +  (1 -  k)XVax(Xi42)],
Φ/̂ Φηk ,

p — 3,. . ., 5 — A:, =  p +  1,.. . , 6 — A;,

where the expectations are conditional on (t/7;h·, t/v;*2A;; </>*;), A: =  1, 2 
and are obtained using (2.5).

The inverses of the matrices defined by (3.1), (3.2) are re­
quired in every iteration of Louis (1982, Section 5) method which 
may be employed to accelerate the convergence of the EM al­
gorithm. As pointed out in Meilijson (1989), Louis’s method 
is a slight modification of the classical Newton-Raphson itera­
tive scheme. The analytical work required is the same for both 
methods provided that Fisher’s (1925) and Louis’s identities are 
used for the computations of the observed-data scores and ob­
served informations, so that tedious differentiations, as they are 
in our problems, are avoided. On the other hand, the conju­
gate gradient acceleration method of Jamshidian and Jennrich
(1993) makes no reference to observed information matrices nor 
to their inverses. Every cycle consists of an EM step treated 
as generalized gradient and used as search direction. The ac­
celerated estimate is effected by first modifying the direction of 
the EM step and then optimizing its length by a simple linear 
search. The computation of the new direction involves calcu­
lations of first derivatives of the observed-data log likelihood; 
for the problems considered here, these can be obtained by sim­
ple modifications of the EM equations. Specifically, in virtue of 
Fisher’s (1925) identity the gradients of the observed-data log
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likelihoods (/(0A:)7 k — 1,2 are found to be

att jk ) =  ^ - E { s jk\ Y t \'/'/,) -  P (5 (5-2fc+7)fc|n0'’'5;
<Pjk

j  — 2k — 1,. .., k +  1,

=  ^ - E ( S 3k\ \ t s- A , ) ~ n  
(pjk

j  =  5 -  2k, 6 -  2k, 6 -  k,

where the expectations are given by ( 2.6) for k =  1, 2.
If the conjugate gradient acceleration method (or the normal 

EM scheme) is prefered the observed Fisher information matri­
ces given above need to be evaluated only at the last interation. 
In this case the maximum likelihood equations given by (2.7) can 
be used in (3.1), (3.2) to yield simpler expressions. The resulting 
matrices are inverted to give the asymptotic variance-covariance 
matrix of the maximum likelihood estimates. O f course, an al­
ternative to be derivation of analytic forms of the observed infor­
mations matrices, is use of a numerical differentiation method; 
see for example Meilijson (1989), Meng and Rubin (1991).

4. Examples

Three examples serve as illustrations of the foregoing the­
ory. In the first and third examples the data are observations 
on the number of accidents sustained by groups of 708 and 79 
bus drivers respectively in two consecutive 2-year time periods; 
in the second example the data are the distribution of the num­
ber of plants of two species in each of 100 systematically laid 
out contiguous quadrats obtained in the course of a study of 
a secondary rain forest in Trinidad. The data can be found 
in Kocherlakota and Kocherlakota (1992, pp. 294, 295, 243) 
respectively and are not reproduced here.
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In each of the examples the maximum likelihood estimates 
of parameters of the relevant distributions and matrix of their 
asymptotic variances and covariances based 011 the sampled data 
are obtained. The fit of the associated distribution is examined 
by the usual \“-test using the maximum likelihood estimates 
and row-by-row grouping to ensure that the expected number 
in any group does not fall below unity. The grouping schemes 
are similar to those in Kocherlakota and Korcherlakota (1992).

Initial values for the parameters were those provided by their 
moment estimates. The EM algorithm in its usual scheme was 
painfully slow in all cases considered. The convergence was ac­
celerated substantially by the methods of conjugate gradients 
and Louis, starting after the first iteration. Following the sug­
gestion of Jamshiclian and Jennrich (1993), the line search in 
the former method was performed by secant iterations and in 
all methods convergence was assumed when the absolute differ­
ences between successive estimates were less than 10~5. The 
total number of iterations to convergence for each method is re­
ported below. Furthermore, following the suggestion of a referee 
we carried out direct Newton-Raphson on the log likelihoods 
from the observed data to compare its speed to Louis’s method. 
We found that for our second example both methods converged 
in the same number of iterations while for the first and third ex­
amples the Newton Raphson method converged three iterations 
later.

Example 1: type I distribution, n — 708.
The normal EM procedure needed 2312 iterations to con­

verge whereas the conjugate gradients and Louis’s methods con­
verged in 43 and 7 iterations respectively. The maximum like­
lihood estimates attained and their asymptotic variances and 
covariances are given below

0i -  .275, §2 =  .239, λ -  .267, λ Ί -  2.668, λ2 =  4.294,
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/(</·>! |ϊ
-ohs\ — 1

(  .0081 .0003 .0008 -.0798 -.0087 \
.0004 .0005 -.0045 -.1153

.0019 -.0136 -.0150
.8267 .1387

\ 2.145 )

These resulted in a χ 2 value of 27.74 on 28 degrees of free­
dom (compared with 33.40 on 29 degrees of freedom reported in 
Kocherlakota and Kocherlakota using moment estimates).

Example 2: type I distribution, n, — 100.
The normal EM procedure needed 564 iterations to converge 

whereas the conjugate gradients and Louis’s methods converged 
in 36 and 5 iterations respectively. The maximum likelihood es­
timates attained and their asymptotic variances and covariances 
are given below

θγ =  .698, θ2 =  .309, λ =  .259, λ χ =  .976, λ2 =  1.233,

η Φ ι Μ
ohs \ — 1

/ .0755 .0039 .0026 -.0993 -.0240 \
.0683 .0001 -.0056 -.2630

.0052 -.0075 -.0091
.1593 .0467

\ 1.092 )

These resulted in a χ 2 value of 9.63 on 8 degrees of freedom (com­
pared with 12.33 on 8 degrees of freedom obtained by Gillings 
1974, who fitted a bivariate Neyman Type A distribution us­
ing maximum likelihood estimates; see also Kocherlakota and 
Kocherlakota).

Example 3: type II distribution, n =  79.
The normal EM procedure needed 1172 iterations to con­

verge whereas the conjugate gradients and Louis’s methods con­
verged in 19 and 5 iterations respectively. The maximum like­
lihood estimates attained and their asymptotic variances and
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covariances are given below

A j =  1.090, λ 2 =  1.331, θ\ =  .358, Λ =  1.624,

/ .0425 .0287 .0343 -.2359 \
.0456 .0343 -.2359 

.1568 -.7953 
V 4.293 /

These resulted in a χ 2 value of f4.69 on 17 degrees of free­
dom (compared with 20.57 on 18 degrees of freedom reported in 
Kocherlakota and Kocherlakota).
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