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We consider a new class of boundary value problems of nonlinear fractional differential equations
with fractional separated boundary conditions. A connection between classical separated and
fractional separated boundary conditions is developed. Some new existence and uniqueness
results are obtained for this class of problems by using standard fixed point theorems. Some
illustrative examples are also discussed.

1. Introduction

In this paper, we investigate the existence of solutions for a fractional boundary value prob-
lem with fractional separated boundary conditions given by

c
D
qx(t) = f(t, x(t)), t ∈ [0, 1], 1 < q ≤ 2,

α1x(0) + β1
( c
D
px(0)

)
= γ1, α2x(1) + β2

( c
D
px(1)

)
= γ2, 0 < p < 1,

(1.1)

where cDq denotes the Caputo fractional derivative of order q, f is a given continuous func-
tion, and αi, βi, γi (i = 1, 2) are real constants, with α1 /= 0.

Fractional calculus has recently gained much momentum as extensive and significant
progress on theoretical and practical aspects of the subject can easily be witnessed in the
literature. As a matter of fact, the tools of fractional calculus have been effectively applied
in the modelling of many physical and engineering problems. The recent development in
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the theory and methods for fractional calculus indicates its popularity. For some recent work
on fractional boundary value problems, See [1–16] and the references therein.

2. Linear Problem

Let us recall some basic definitions of fractional calculus [1, 3].

Definition 2.1. For a continuous function g : [0,∞) → R, the Caputo derivative of fractional
order q is defined as

cDqg(t) =
1

Γ
(
n − q)

∫ t

0
(t − s)n−q−1g(n)(s)ds, n − 1 < q < n, n =

[
q
]
+ 1, (2.1)

where [q] denotes the integer part of the real number q.

Definition 2.2. The Riemann-Liouville fractional integral of order q is defined as

Iqg(t) =
1

Γ
(
q
)
∫ t

0

g(s)

(t − s)1−q
ds, q > 0, (2.2)

provided the integral exists.
To define the solution of the boundary value problem (1.1) we need the following

lemma, which deals with linear variant of the problem (1.1).

Lemma 2.3. For a given σ ∈ C([0, 1],R), the unique solution of the problem

c
D
qx(t) = σ(t), t ∈ [0, 1], 1 < q ≤ 2,

α1x(0) + β1
( cDp x(0)

)
= γ1, α2x(1) + β2

( c
D
px(1)

)
= γ2, 0 < p < 1,

(2.3)

is given by

x(t) =
∫ t

0

(t − s)q−1
Γ
(
q
) σ(s)ds − t

ν1

(

α2

∫1

0

(1 − s)q−1
Γ
(
q
) σ(s)ds + β2

∫1

0

(1 − s)q−p−1
Γ
(
q − p) σ(s)ds

)

+
α1ν2t + γ1ν1

α1ν1
,

(2.4)

where

ν1 =
α2Γ

(
2 − p) + β2

Γ
(
2 − p) , ν2 =

γ2α1 − α2γ1
α1

. (2.5)
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Proof. It is well known [3] that the solution of fractional differential equation in (2.3) can be
written as

x(t) = Iqσ(t) − b1 − b2t =
∫ t

0

(t − s)q−1
Γ
(
q
) σ(s)ds − b1 − b2t. (2.6)

Using cDpb = 0 (b is a constant), cDpt = t1−p/Γ(2 − p), cDpIqσ(t) = Iq−pσ(t), (2.6) gives

c
D
px(t) =

∫ t

0

(t − s)q−p−1
Γ
(
q − p) σ(s)ds − b2 t1−p

Γ
(
2 − p) . (2.7)

From the boundary condition α1x(0) + β1(
cDpx(0)) = γ1, we have

α1(−b1) + β1(0) = γ1, which implies that b1 = − γ1
α1
. (2.8)

By the boundary condition α2x(1) + β2( cD
px(1)) = γ2, we get

α2

(∫1

0

(1 − s)q−1
Γ
(
q
) σ(s)ds − b1 − b2

)

+ β2

(∫1

0

(1 − s)q−p−1
Γ
(
q − p) σ(s)ds − b2

Γ
(
2 − p)

)

= γ2, (2.9)

which, on inserting the value of b1, gives

−b2
(
α2Γ

(
2 − p) + β2

Γ
(
2 − p)

)

=
γ2α1 − α2γ1

α1
− α2

∫1

0

(1 − s)q−1
Γ
(
q
) σ(s)ds − β2

∫1

0

(1 − s)q−p−1
Γ
(
q − p) σ(s)ds.

(2.10)

Using (2.5) in the above equation, we obtain

b2 = −ν2
ν1

+
1
ν1

(

α2

∫1

0

(1 − s)q−1
Γ
(
q
) σ(s)ds + β2

∫1

0

(1 − s)q−p−1
Γ
(
q − p) σ(s)ds

)

. (2.11)

Substituting the values of b1 and b2 in (2.6), we get (2.4).

Remark 2.4. In the limit p → 1−, it has been observed that the solution (2.4) of problem (2.3)
is not reduced to the solution of the resulting problem given by

c
D
qx(t) = f(t, x(t)), t ∈ [0, 1], 1 < q ≤ 2,

α1x(0) + β1x′(0) = γ1, α2x(1) + β2x′(1) = γ2.
(2.12)



4 Abstract and Applied Analysis

The solution of (2.12) is

x(t) =
∫ t

0

(t − s)q−1
Γ
(
q
) σ(s)ds +

(
β1 − α1t

)

Δ

(

α2

∫1

0

(1 − s)q−1
Γ
(
q
) σ(s)ds + β2

∫1

0

(1 − s)q−2
Γ
(
q − 1

) σ(s)ds

)

+
1
Δ
(
γ1
(
α2 + β2

) − γ2β1 +
(
γ2α1 − γ1α2

)
t
)
,

(2.13)

where Δ = α1(α2 + β2) − α2β1 /= 0. However, we notice that the solution (2.4) of problem (2.3)
does not depend on the parameter β1 (appearing in the boundary conditions of (2.3)). Thus
we conclude that the parameter β1 is of arbitrary nature. Furthermore, it has been found that
the solutions (2.4) and (2.13) coincide by taking β1 = 0 in (2.13). Hence, for a particular choice
of β1 = 0 in problems (2.3) and (2.12), the two problems have the same solution.

3. Main Results

Let C = C([0, 1],R) denotes the Banach space of all continuous functions from [0, 1] → R

endowed with the norm defined by ‖x‖ = sup{|x(t)|, t ∈ [0, 1]}.
In view of Lemma 2.3, we define an operator F : C → C by

(Fx)(t) =
∫ t

0

(t − s)q−1
Γ
(
q
) f(s, x(s))ds

− t

ν1

(

α2

∫1

0

(1 − s)q−1
Γ
(
q
) f(s, x(s))ds + β2

∫1

0

(1 − s)q−p−1
Γ
(
q − p) f(s, x(s))ds

)

+
α1ν2t + γ1ν1

α1ν1
.

(3.1)

Observe that the problem (1.1) has solutions if and only if the operator equation Fx = x has
fixed points.

Now we are in a position to present our main results. The methods used to prove the
existence results are standard; however, their exposition in the framework of problem (1.1) is
new.

Theorem 3.1. Suppose that f : [0, 1] × R → R is a continuous function and satisfies the following
assumption:

(A1) |f(t, x) − f(t, y)| ≤ L|x − y|, for all t ∈ [0, 1], L > 0, x, y ∈ R.

Then the boundary value problem (1.1) has a unique solution provided

L

Γ
(
q + 1

)
(
1 +

|α2|
|ν1|

)
+

∣∣β2
∣∣

|ν1|
L

Γ
(
q − p + 1

) < 1. (3.2)
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Proof. Setting supt∈[0,1]|f(t, 0)| =M <∞ and choosing r ≥ (ΛM +N)/(1 − LΛ), where

Λ =
1

Γ
(
q + 1

)
(
1 +

|α2|
|ν1|

)
+

∣
∣β2

∣
∣

|ν1|
1

Γ
(
q − p + 1

) , N =
|α1ν2| +

∣
∣γ1ν1

∣
∣

|α1ν1| , (3.3)

we show that FBr ⊂ Br , where Br = {x ∈ C : ‖x‖ ≤ r}. For x ∈ Br , we have

‖(Fx)(t)‖ ≤ sup
t∈[0,1]

{∫ t

0

(t − s)q−1
Γ
(
q
)

∣
∣f(s, x(s))

∣
∣ds +

|α2t|
|ν1|

∫1

0

(1 − s)q−1
Γ
(
q
)

∣
∣f(s, x(s))

∣
∣ds

+

∣
∣β2t

∣
∣

|ν1|
∫1

0

(1 − s)q−p−1
Γ
(
q − p)

∣
∣f(s, x(s))

∣
∣ds +

∣
∣α1ν2t + γ1ν1

∣
∣

|α1ν1|

}

≤ sup
t∈[0,1]

{∫ t

0

(t − s)q−1
Γ
(
q
)

(∣∣f(s, x(s)) − f(s, 0)∣∣ + ∣∣f(s, 0)
∣∣)ds

+
|α2|
|ν1|

∫1

0

(1 − s)q−1
Γ
(
q
)

(∣∣f(s, x(s)) − f(s, 0)∣∣ + ∣∣f(s, 0)
∣∣)ds

+

∣∣β2
∣∣

|ν1|
∫1

0

(1 − s)q−p−1
Γ
(
q − p)

(∣∣f(s, x(s)) − f(s, 0)∣∣ + ∣∣f(s, 0)
∣∣)ds +

∣∣α1ν2 + γ1ν1
∣∣

|α1ν1|

}

≤ (Lr +M) sup
t∈[0,1]

{∫ t

0

(t − s)q−1
Γ
(
q
) ds +

|α2|
|ν1|

∫1

0

(1 − s)q−1
Γ
(
q
) ds

+

∣∣β2
∣∣

|ν1|
∫1

0

(1 − s)q−p−1
Γ
(
q − p) ds

}

+

∣∣α1ν2t + γ1ν1
∣∣

|α1ν1|

≤ (Lr +M)

{
1

Γ
(
q + 1

) +
|α2|
|ν1|

1
Γ
(
q + 1

) +

∣∣β2
∣∣

|ν1|
1

Γ
(
q − p + 1

)

}

+
|α1ν2| +

∣∣γ1ν1
∣∣

|α1ν1|

= (Lr +M)Λ +N ≤ r.
(3.4)

Now, for x, y ∈ C and for each t ∈ [0, 1], we obtain

∥∥(Fx)(t) − (
Fy

)
(t)

∥∥ ≤ sup
t∈[0,1]

{∫ t

0

(t − s)q−1
Γ
(
q
)

∣∣f(s, x(s)) − f(s, y(s))∣∣ds

+
|α2|
|ν1|

∫1

0

(1 − s)q−1
Γ
(
q
)

∣∣f(s, x(s)) − f(s, y(s))∣∣ds

+

∣∣β2
∣∣

|ν1|
∫1

0

(1 − s)q−p−1
Γ
(
q − p)

∣∣f(s, x(s)) − f(s, y(s))∣∣ds
}

≤ L
{

1
Γ
(
q + 1

) +
|α2|
|ν1|

1
Γ
(
q + 1

) +

∣∣β2
∣∣

|ν1|
1

Γ
(
q − p + 1

)

}
∥∥x − y∥∥.

(3.5)
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As (L/Γ(q+1))(1+ |α2|/|ν1|)+(|β2|/|ν1|)(L/Γ(q−p+1)) < 1, therefore F is a contraction. Thus,
the conclusion of the theorem followed by the contraction mapping principle (Banach fixed
point theorem).

Example 3.2. Consider the following fractional boundary value problem

c
D

3/2x(t) =
1

(t + 2)2
|x|

1 + |x| , t ∈ [0, 1],

x(0) + β1
(
c
D

1/2x(0)
)
=

1
2
,

1
2
x(1) +

1
3

(
c
D1/2 x(1)

)
= 2.

(3.6)

Here, q = 3/2, p = 1/2, α1 = 1, α2 = 1/2, β2 = 1/3, γ1 = 1/2, γ2 = 2, β1 is arbitrary, and
f(t, x) = (1/(t + 2)2)(|x|/1+ |x|). As |f(t, x)− f(t, y)| ≤ (1/4)|x−y|, therefore, (A1) is satisfied
with L = 1/4. Further, ν1 = 1/2 + 2/3

√
π , ν2 = 7/4 and

L

Γ
(
q + 1

)
(
1 +

|α2|
|ν1|

)
+

∣∣β2
∣∣

|ν1|
L

Γ
(
q − p + 1

) =
1

3
√
π

+
2 +

√
π

2
(
3
√
π + 4

) � 0.390505 < 1. (3.7)

Thus, by the conclusion of Theorem 3.1, the boundary value problem (3.6) has a unique
solution on [0, 1].

Now, we prove the existence of solutions of (1.1) by applying Krasnoselskii’s fixed
point theorem [17].

Theorem 3.3 (Krasnoselskii’s fixed point theorem). Let M be a closed, bounded, convex, and
nonempty subset of a Banach space X. LetA,B be the operators such that (i)Ax +By ∈M whenever
x, y ∈M; (ii)A is compact and continuous; (iii) B is a contraction mapping. Then there exists z ∈M
such that z = Az + Bz.

Theorem 3.4. Let f : [0, 1] × R → R be a jointly continuous function satisfying the assumption
(A1). In addition one assumes that

(A2) |f(t, x)| ≤ μ(t), for all (t, x) ∈ [0, 1] × R, and μ ∈ C([0, 1],R+).

Then the problem (1.1) has at least one solution on [0, 1] if

|α2|
|ν1|

L

Γ
(
q + 1

) +

∣∣β2
∣∣

|ν1|
L

Γ
(
q − p + 1

) < 1. (3.8)

Proof. Letting supt∈[0,1]|μ(t)| = ‖μ‖, we choose a real number r satisfying the inequality

r ≥ ∥∥μ
∥∥
{

1
Γ
(
q + 1

) +
|α2|
|ν1|

1
Γ
(
q + 1

) +

∣∣β2
∣∣

|ν1|
1

Γ
(
q − p + 1

) +
|α1ν2| +

∣∣γ1ν1
∣∣

|α1ν1|

}

, (3.9)
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and consider Br = {x ∈ C : ‖x‖ ≤ r}. We define the operators P and Q on Br as

(Px)(t) =
∫ t

0

(t − s)q−1
Γ
(
q
) f(s, u(s))ds,

(Qx)(t) = − t

ν1

(

α2

∫1

0

(1 − s)q−1
Γ
(
q
) f(s, x(s))ds + β2

∫1

0

(1 − s)q−p−1
Γ
(
q − p) f(s, x(s))ds

)

+
α1ν2t + γ1ν1

α1ν1
.

(3.10)

For x, y ∈ Br , we find that

∥
∥Px +Qy∥∥ ≤ ∥

∥μ
∥
∥
{

1
Γ
(
q + 1

) +
|α2|
|ν1|

1
Γ
(
q + 1

) +

∣
∣β2

∣
∣

|ν1|
1

Γ
(
q − p + 1

) +
|α1ν2| +

∣
∣γ1ν1

∣
∣

|α1ν1|

}

≤ r.

(3.11)

Thus, Px + Qy ∈ Br . It follows from the assumption (A1) together with (3.8) that Q is a
contraction mapping. Continuity of f implies that the operator P is continuous. Also, P is
uniformly bounded on Br as

‖Px‖ ≤
∥∥μ

∥∥

Γ
(
q + 1

) . (3.12)

Now we prove the compactness of the operator P.
In view of (A1), we define sup(t,x)∈[0,1]×Br |f(t, x)| = f , and consequently we have

|(Px)(t1) − (Px)(t2)| =
∣∣∣∣∣

1
Γ
(
q
)
∫ t1

0

[
(t2 − s)q−1 − (t1 − s)q−1

]
f(s, x(s))ds

+
∫ t2

t1

(t2 − s)q−1f(s, x(s))ds
∣∣∣∣
∣

≤ f

Γ
(
q + 1

)
∣∣∣2(t2 − t1)q + tq1 − t

q

2

∣∣∣,

(3.13)

which is independent of x. Thus, P is equicontinuous. Hence, by the Arzelá-Ascoli Theorem,
P is compact on Br . Thus, all the assumptions of Theorem 3.3 are satisfied. So the conclusion
of Theorem 3.3 implies that the boundary value problem (1.1) has at least one solution on
[0, 1].

Our next existence result is based on Leray-Schauder nonlinear alternative [18].

Lemma 3.5 (nonlinear alternative for single-valued maps). Let E be a Banach space, C a closed,
convex subset of E, U an open subset of C and 0 ∈ U. Suppose that F : U → C is a continuous,
compact (i.e., F(U) is a relatively compact subset of C) map. Then either
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(i) F has a fixed point inU, or

(ii) there is a u ∈ ∂U (the boundary ofU in C) and λ ∈ (0, 1) with u = λF(u).

Theorem 3.6. Let f : [0, 1] × R → R be a jointly continuous function. Assume that:

(A3) there exist a function p ∈ C([0, 1],R+) and a nondecreasing function ψ : R
+ → R

+ such
that |f(t, x)| ≤ p(t)ψ(‖x‖), for all (t, x) ∈ [0, 1] × R;

(A4) there exists a constantM > 0 such that

M

ψ(M)
{(

1/Γ
(
q+1

))
(1+|α2|/|ν1|)+

(∣∣β2
∣∣/|ν1|Γ

(
q − p+1))}∥∥p∥∥+(|α1ν2|+

∣∣γ1ν1
∣∣)/|α1ν1|

> 1.

(3.14)

Then the boundary value problem (1.1) has at least one solution on [0, 1].

Proof. Consider the operator F : C → C defined by (3.1). We show that F maps bounded sets
into bounded sets in C([0, 1],R). For a positive number r, let Br = {x ∈ C([0, 1],R) : ‖x‖ ≤ r}
be a bounded set in C([0, 1],R). Then

|(Fx)(t)| ≤
∫ t

0

(t − s)q−1
Γ
(
q
) p(s)ψ(‖x‖)ds + |α2|

|ν1|
∫1

0

(1 − s)q−1
Γ
(
q
) p(s)ψ(‖x‖)ds

+

∣∣β2
∣∣

|ν1|
∫1

0

(1 − s)q−p−1
Γ
(
q − p) p(s)ψ(‖x‖)ds +

∣∣α1ν2 + γ1ν1
∣∣

|α1ν1|

≤ ψ(‖x‖)
{∫ t

0

(t − s)q−1
Γ
(
q
) p(s)ds +

|α2|
|ν1|

∫1

0

(1 − s)q−1
Γ
(
q
) p(s)ds

+

∣∣β2
∣∣

|ν1|
∫1

0

(1 − s)q−p−1
Γ
(
q − p) p(s)ds

}

+
|α1ν2| +

∣∣γ1ν1
∣∣

|α1ν1|

≤ ψ(‖x‖)
{

1
Γ
(
q + 1

)
(
1 +

|α2|
|ν1|

)
+

∣∣β2
∣∣

|ν1|Γ
(
q − p + 1

)

}
∥∥p

∥∥ +
|α1|ν2 +

∣∣γ1ν1
∣∣

|α1ν1| .

(3.15)

Thus

‖Fx‖ ≤ ψ(r)
{

1
Γ
(
q + 1

)
(
1 +

|α2|
|ν1|

)
+

∣∣β2
∣∣

|ν1|Γ
(
q − p + 1

)

}
∥∥p

∥∥ +

∣∣α1ν2 + γ1ν1
∣∣

|α1ν1| . (3.16)
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Next we show that F maps bounded sets into equicontinuous sets of C([0, 1],R). Let t′, t′′ ∈ [0, 1]
with t′ < t′′ and x ∈ Br , where Br is a bounded set of C([0, 1],R). Then we obtain

∣
∣(Fx)

(
t′′
) − (Fx)

(
t′
)∣∣ =

∣
∣
∣
∣
∣

1
Γ
(
q
)
∫ t′′

0

(
t′′ − s)q−1f(s, x(s))ds

− 1
Γ
(
q
)
∫ t′

0

(
t′ − s)q−1f(s, x(s))ds

∣
∣
∣
∣
∣
+
|ν2|
|ν1|

∣
∣t′′ − t′∣∣

≤
∣
∣
∣
∣
∣

1
Γ
(
q
)
∫ t′

0

[(
t′′ − s)q−1 − (

t′ − s)q−1
]
ψ(r)p(s)ds

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

1
Γ
(
q
)
∫ t′′

t′

(
t′′ − s)q−1ψ(r)p(s)ds

∣
∣
∣
∣
∣
+
|ν2|
|ν1|

∣
∣t′′ − t′∣∣.

(3.17)

Obviously the right hand side of the above inequality tends to zero independently of x ∈ Br
as t′′ − t′ → 0. As F satisfies the above assumptions, therefore it follows by the Arzelá-Ascoli
theorem that F : C([0, 1],R) → C([0, 1],R) is completely continuous.

Let x be a solution. Then, for t ∈ [0, 1] and using the computations in proving that F is
bounded, we have

|x(t)| = |λ(Fx)(t)| ≤ ψ(‖x‖)
{

1
Γ
(
q + 1

)
(
1 +

|α2|
|ν1|

)
+

∣∣β2
∣∣

|ν1|Γ
(
q − p + 1

)

}
∥∥p

∥∥ +
|α1ν2| +

∣∣γ1ν1
∣∣

|α1ν1| .

(3.18)

Consequently, we have

‖x‖
ψ(‖x‖){(1/Γ(q+1))(1+|α2|/|ν1|)+

(∣∣β2
∣∣/|ν1|Γ

(
q − p+1))}∥∥p∥∥+(|α1ν2|+

∣∣γ1ν1
∣∣)/|α1ν1|

≤ 1.

(3.19)

In view of (A4), there existsM such that ‖x‖/=M. Let us set

U = {x ∈ C([0, 1],R) : ‖x‖ < M + 1}. (3.20)

Note that the operator F : U → C([0, 1],R) is continuous and completely continuous. From
the choice of U, there is no x ∈ ∂U such that x = λF(x) for some λ ∈ (0, 1). Consequently, by
the nonlinear alternative of Leray-Schauder type (Lemma 3.5), we deduce that F has a fixed
point x ∈ U which is a solution of the problem (1.1). This completes the proof.

In the special case when p(t) = 1 and ψ(|x|) = κ|x|+N we have the following corollary.

Corollary 3.7. Let f : [0, 1] × R → R be a continuous function. Assume that there exist constants
0 ≤ κ < 1/Λ1, where Λ1 = (1/Γ(q + 1)(1 + |α2|/|ν1|)) + (|β2|/|ν1|Γ(q − p + 1)) and N1 > 0 such
that |f(t, x)| ≤ κ|x| +N1 for all t ∈ [0, 1], x ∈ C[0, 1]. Then the boundary value problem (1.1) has
at least one solution.
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Example 3.8. Consider the following boundary value problem:

c
D3/2 x(t) =

1
(6π)

sin(2πx) +
|x|

1 + |x| , t ∈ [0, 1],

x(0) + β1
(
c
D

1/2x(0)
)

=
1
2
,

1
2
x(1) +

1
3

(
c
D

1/2x(1)
)
= 2.

(3.21)

Here, q = 3/2, p = 1/2, α1 = 1, α2 = 1/2, β2 = 1/3, γ1 = 1/2, γ2 = 2, β1 is arbitrary, and

∣
∣f(t, x)

∣
∣ =

∣
∣
∣
∣

1
(6π)

sin(2πx) +
|x|

1 + |x|
∣
∣
∣
∣ ≤

1
3
|x| + 1. (3.22)

ClearlyN1 = 1 and

κ =
1
3
<

1
Λ1

= 0.640196. (3.23)

Thus, all the conditions of Corollary 3.7 are satisfied, and consequently the problem (3.21)
has at least one solution.
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