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The dynamics of dark matter-wave solitons in elongated atomic condensates are discussed at finite

temperatures. Simulations with the stochastic Gross-Pitaevskii equation reveal a noticeable, experimen-

tally observable spread in individual soliton trajectories, attributed to inherent fluctuations in both phase

and density of the underlying medium. Averaging over a number of such trajectories (as done in

experiments) washes out such background fluctuations, revealing a well-defined temperature-dependent

temporal growth in the oscillation amplitude. The average soliton dynamics is well captured by the

simpler dissipative Gross-Pitaevskii equation, both numerically and via an analytically derived equation

for the soliton center based on perturbation theory for dark solitons.
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Introduction.—Atomic Bose-Einstein condensates
(BECs) constitute ideal systems for studying nonlinear
macroscopic excitations in quantum systems [1].
Excitations in the form of dark solitons and vortices,
known to arise spontaneously at phase transitions [2,3],
are features also studied in high-energy [4] and condensed-
matter [5] systems, in dynamical processes [6], and
through controlled engineering [7–12]. Although thermal
effects revealed rapid soliton decay near the condensate
edge [7,13], recent experiments at reduced temperatures
(T � 0:5Tc) [9–11] found the predicted [14] oscillatory
pattern for the averaged soliton trajectories.

To date, finite temperature dynamics of dark solitons
have been investigated with phenomenological [15], qua-
siparticle scattering [16], and generalized mean-field [13]
models; see also [17] for quantum effects. The former
predict oscillations with increasing amplitude (‘‘antidamp-
ing’’ [14]), reproducing the average soliton trajectories to
varying degrees of accuracy; however, they fail to account
for the random nature of the experiments. In particular,
experiments showed variations from shot to shot [9–11],
with single realizations revealing the existence of dark
solitons for times much longer than those for which a
reproducible (or average) pattern can be generated, an
effect attributed to ‘‘preparation errors’’ [9].

In this Letter we show that a spread in the trajectories of
dark solitons prepared in the same manner could also arise
due to the critical dependence of individual solitons on
local phase or density fluctuations. Modeling the system by
the stochastic Gross-Pitaevskii equation (SGPE) [18,19],
we (i) calculate the spread of individual soliton trajectories
ab initio (Fig. 1, top); (ii) demonstrate that the well-defined
pattern generated by averaging over different trajectories is
restricted to times much less than the longest observed
trajectories (Fig. 1, bottom), consistent with experiments
[9–11]; (iii) show that results based on stochastic trajectory

averaging can be well captured by the dissipative GPE
(DGPE) [15,20–22], with an ab initio damping term;
(iv) derive an analytical equation for the soliton center
which captures the average dynamics at low temperatures.
Stochastic dynamics.—The importance of fluctuations to

the motion of solitonlike structures manifests in diverse
fields such as nonlinear optics [23], condensed-matter [24],
biological physics [25], and physics of the early Universe
[26], with their description often meriting a stochastic
formulation. For weakly interacting atomic BECs, an ap-
propriate description of this dynamics is given by the
SGPE [18,19]: this describes the condensate and lowest
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FIG. 1 (color online). Top: Normalized histograms of soliton
decay times (main) and initial soliton depth, nsol, scaled to the
average peak density hnð0Þi (inset) (based on 200 realizations).
Bottom: Individual stochastic trajectories from marked histo-
gram bins (for as long as they are numerically tractable), ten-
realization trajectory average (black circles) and DGPE trajec-
tory (green, dash-dotted). (Parameters: N � 20 000 87Rb atoms,
T ¼ 175 nK, !z ¼ 2�� 10 Hz, !? ¼ 250!z, � ¼ 395@!z,

kBT < 2@!?, lz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!z

p
and jvj ¼ 0:25c.)
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excitations in a unified manner, including both density and
phase fluctuations, with irreversibility and damping arising
from the coupling of such modes to a thermal particle
reservoir. For the parameters of interest here (see below),
the soliton dynamics occurs essentially along the axial
direction, and we solve an effective 1D equation which,
assuming a ‘‘classical’’ distribution for the modes and a
near equilibrium thermal cloud, reads [18]

i@@tc ¼ð1� i�Þ
�
� @

2

2m
@2zþVðzÞþgjc j2��

�
c þ�:

(1)

Here g ¼ 2a@!? is the effective 1D coupling strength
(assuming Gaussian transverse profiles, with a the 3D
scattering length and !? � !z the transverse harmonic
confinement), and VðzÞ ¼ ð1=2Þm!2

zz
2 the axial confining

potential. � ¼ i�@�Kðz; tÞ=4 represents the ab initio de-
termined dissipation arising due to the coupling to the
thermal cloud (� ¼ 1=kBT). @�Kðz; tÞ is the Keldysh
self-energy due to incoherent collisions between con-
densate and noncondensate atoms and � is a noise
term with Gaussian correlations h��ðz; tÞ�ðz0; t0Þi ¼
2@kBT�ðz; tÞ�ðz� z0Þ�ðt� t0Þ (see [18,27] for details).

Soliton experiments are modeled by letting the system
equilibrate at a given temperature and then introducing a
dark soliton of specified velocity v at the trap center by
multiplying c by c sol ¼ � tanhð�z=�Þ þ iðv=cÞ, where

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv=cÞ2p

(�: healing length, c: speed of sound).
Although the soliton generation is identical in all realiza-
tions, fluctuations inherent in the atomic medium lead to a
large variation in the imprinted soliton: The soliton speed

v=c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nd=n

p ¼ cosðS=2Þ is closely related to the
depth of the density minimum (nd) and the phase slip S
across it. As a result, background phase and density fluc-
tuations upon generation should introduce a stochasticity
to the initial conditions, which we find leads to a slightly
asymmetric spread in the initial soliton depth (Fig. 1, in-
set); the ensuing trajectory is further modified by the local
fluctuations during the SGPE evolution.

Soliton experiments are typically conducted in highly
elongated geometries, in order to avoid dynamical insta-
bilities [28]. Phase fluctuations in such geometries set in at
a characteristic temperature T	 [29], which can be much

lower than the ‘‘critical’’ temperature Tc [30]. Although
recent experiments [9–11] were conducted in the regime
T � T	, Tc, where both density and phase fluctuations are

largely suppressed, soliton oscillations can still be ob-
served in the presence of phase fluctuations (T � T	),

provided T � Tc. To amplify the differences between
individual trajectories, we thus choose a rather deep initial
soliton and realistic experimental parameters (N � 20 000
87Rb atoms, !z ¼ 2�� 10 Hz, !? ¼ 250!z) corre-
sponding to this intermediate regime T	 � T � Tc, for

which the solitons (�< 2@!?) are dynamically stable
[28]. The phase coherence length L	 � ð0:1–0:2ÞR (R:

Thomas-Fermi radius), with the effective soliton ‘‘width’’
� � L	.

Typical trajectories are shown in Fig. 1 (bottom) up to
the point where the soliton can be numerically identified
over the fluctuating background, which sets a decay time
for each realization. We find an asymmetric distribution of
decay times, with some very long-lived trajectories, as best
visualized in individual trajectories from different histo-
gram bins [labeled (a)–(c)]. Despite their differences, aver-
aging over a sufficient number of trajectories (typically
�10) washes out such sensitivity, generating an anti-
damped oscillatory pattern, with a temperature-dependent
shift in amplitude and phase (black circles). The average
trajectory is only defined up to the earliest decay time
within the set of trajectories considered (here 27!�1

z ), in
analogy to the experimentally reproducible soliton dynam-
ics being restricted to much shorter times than those of
individual long-lived trajectories [9–11]. The average tra-
jectory is practically indistinguishable from an individual
trajectory from the mean decay time bin (solid red), en-
abling us to infer the average soliton evolution from a
single trajectory with a decay time close to the mean.
Figure 2 shows the dependence of the soliton decay time

on temperature (red circles) in the intermediate tempera-
ture range of noticeable antidamping: At higher T the
soliton is lost to the fluctuating background, prior to ex-
ecuting one full oscillation, thus leading to a decrease in
the width of the decay time histogram, and to smaller error
bars in the mean decay time. Although our model predicts
very little damping for T � 100 nK � 10%Tc, consistent
with recent pure condensate experiments [11], our results
may overestimate the actual lifetimes, due to the neglected
role of dynamics of the thermal cloud [13].
The DGPE vs the SGPE.—A dissipative mean-field

equation similar to Eq. (1), but without a noise term, was
first introduced phenomenologically [20]; in BECs this
was applied to damping of excitations [21], vortex lattice
growth [22,31] and dark soliton decay [15]. A numerical
advantage of the DGPE (also restricting its predictive
ability) is that only a single realization is needed under
the assumption that trajectory-averaged properties only
depend on the dissipation [shown in Fig. 2 (inset)]. The
self-consistent inclusion of the mean-field potential
2ghjc j2i in the expression for � generates a flattened
profile around the trap center, with peaks at the condensate
edges. As the soliton resides mainly within the condensate,
an averaged dissipation can be extracted as �� ¼R
�ðzÞdz=R over, e.g. [�R=2, R=2]. While comparison to

the formula �ð0Þ ¼ 
ðma2kBT=�@
2Þ, with 
 � 3 [31],

reveals �� has a more pronounced temperature scaling,
1=2<
< 4 yields damping comparable to ��.
At low temperatures, the DGPE soliton oscillations are

practically indistinguishable from the SGPE ones (Fig. 1,
bottom), leading to similar soliton decay times (Fig. 2): in
the DGPE, these are identified by the time taken for the
soliton to decay to a depth comparable to the background
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density fluctuations (predicted by a single SGPE run, or
measured experimentally). We find good agreement for
both �ðzÞ and ��, within the error bars (gray bands), with
a smaller relative error at lower temperatures. We have also
verified the validity of our 1D model by a direct compari-
son of the 1D DGPE predictions (blue hollow squares) to
those of the 3D DGPE with corresponding �� (orange filled
squares). We now provide an analytical solution for the
soliton evolution within the DGPE.

Analytical results.—Upon dropping the position depen-
dence of �ðzÞ and further introducing the transformation
t ! ð1þ �2Þt, the 1D DGPE takes the form

ði� �Þ@tc ¼ ½�1
2@

2
z þ VðzÞ þ jc j2 ��	c ; (2)

where the density jc j2, length, time and energy are, re-

spectively, measured in units of ð2aÞ�1, l? ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!?

p
,

!�1
? , and @!?, and VðzÞ ¼ ð1=2Þ�2z2, with � ¼

!z=!? � 1. We seek a solution of Eq. (2) in the form

c ðz; tÞ ¼ c bðz; tÞe�i�ðtÞ�ðz; tÞ, where c bðz; tÞ and �ðtÞ de-
note the background amplitude and phase, respectively,
while the dark soliton �ðz; tÞ is governed by

i@t�þ 1

2
@2z�� c 2

bðj�j2 � 1Þ� ¼ �@zc b

c b

@z�þ �@t�:

(3)

Assuming that the condensate dynamics involves a fast
relaxation scale to the ground state and that the dark soliton
evolves on top of this, in the Thomas-Fermi limit, and
rescaling t ! �t, z ! ffiffiffiffi

�
p

z, we obtain a perturbed non-

linear Schrödinger equation:

i@t�þ 1
2@

2
z�� ðj�j2 � 1Þ� ¼ Pð�Þ; (4)

where Pð�Þ stands for the total perturbation, namely,

Pð�Þ ¼ 1

2�2

�
2ð1� j�j2ÞV�þ dV

dz
@z�þ 2��@t�

�
; (5)

and all terms in P are assumed to be of the same order. We
now apply the perturbation theory for matter-wave dark
solitons [32]: starting from the soliton solution of the
unperturbed system, we seek a solution in the form
�ðz; tÞ ¼ cos’ðtÞ tanhZþ i sin’ðtÞ, where Z 
 cos’ðtÞ�
½z� z0ðtÞ	, and ’ðtÞ and z0ðtÞ are the slowly varying phase
(j’j � �=2) and center of the soliton. The resulting equa-
tions for ’ and z0, namely, d’=dt¼�ð1=2Þcos’dV=dzþ
ð2=3Þ��cos’sin’, and dz0=dt ¼ sin’, lead to the follow-
ing equation of motion for the soliton center,

d2z0
dt2

¼
�
2

3
��

dz0
dt

�
�
�ffiffiffi
2

p
�
2
z0

��
1�

�
dz0
dt

�
2
�
: (6)

The nonlinear Eq. (6) can be integrated directly to yield the
soliton trajectory: Fig. 3 shows very good agreement be-
tween the prediction of Eq. (6) (red) and the full DGPE
(black) based on the spatially integrated ��, which are also
consistent with the SGPE predictions with �ðzÞ.
For a nearly black soliton (with dz0=dt � 1),

Eq. (6) reduces to the linear equation d2z0=dt
2 �

ð2=3Þ��ðdz0=dtÞ þ ð�=
ffiffiffi
2

p Þ2z0 ¼ 0. This includes the
temperature-induced antidamping term / ��dz0=dt, and
is reminiscent of the equation of motion derived by means
of a kinetic theory approach [16]. For T ¼ 0 (� ¼ 0) we
recover the constant amplitude oscillation of frequency

�=
ffiffiffi
2

p
[14,32]. For T � 0 (� � 0), the solutions of the

linearized Eq. (6) are z0ðtÞ ¼ expðs1;2tÞz0ð0Þ, where s1;2 ¼
��=3� ffiffiffiffi

�
p ð�=

ffiffiffi
2

p Þ are the roots of the resulting charac-
teristic equation. The discriminant � 
 ð�=�crÞ2 � 1

(with �cr ¼ ð3=�Þð�=
ffiffiffi
2

p Þ ¼ 0:053 here) distinguishes
the regimes of soliton trajectories as subcritical weak anti-
damping (�< 0, �< �cr), critical (� ¼ 0, � ¼ �cr), and
supercritical strong antidamping (�> 0, � > �cr). Assum-
ing an initial soliton location z0ð0Þ ¼ 0 and speed _z0ð0Þ,
the subcritical soliton trajectory z0ðtÞ ¼ ð _z0ð0Þ=!oÞ �
e��t=3 sinð!otÞ, !o ¼ ð�=

ffiffiffi
2

p Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�=�crÞ2

p
, indicates

an exponential increase in its maximum amplitude
(Fig. 3 top, dashed green line), whose magnitude depends
on both T and �; the oscillation frequency !o is also
shifted from its T ¼ 0 value [13]. Corresponding trajecto-
ries in the critical and supercritical cases read z0ðtÞ ¼
_z0ð0Þt expð��t=3Þ and z0ðtÞ ¼ ½ _z0ð0Þ=ðs1 � s2Þ	�
½expðs1tÞ � expðs2tÞ	. The above results are also supported
by a linear stability analysis around the stationary dark
soliton, c ds. This waveform makes the right-hand side of
Eq. (2) vanish and is, thus, an exact solution of the T � 0
problem. The anomalous (negative Krein signature) mode
of the soliton leads to an instability upon dissipative per-
turbations [33]: the relevant mode of the linearization
around the soliton (solution of the eigenvalue problem
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FIG. 2 (color online). Mean soliton decay times as a function
of temperature obtained from 1D simulations of SGPE (red
circles), DGPE with ab initio determined �ðzÞ (green diamonds),
and also averaged �� over [�R=2, R=2] (blue hollow squares);
3D DGPE results corresponding to the latter (same axial density)
are shown by orange filled squares. SGPE values within 1
standard deviation of the mean decay time (for 200 runs) are
indicated by the grey band; the dotted horizontal line indicates
one oscillation time for T ¼ 0. Inset: �ðzÞ (solid) for T ¼
150 nK (bottom) and 300 nK with �� (horizontal) for T ¼
300 nK; vertical lines show R (parameters as in Fig. 1; T	 ¼
Nð@!zÞ2=kB� � 25 nK [29], Tc ¼ N@!z=kB lnð2NÞ � 900 nK
[30]).
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arising from c ¼ c ds þ ð expð�tÞaðxÞ þ expð�?tÞb?ðxÞÞ
for the eigenvalue-eigenvector pair f�; ða; bÞg) acquires
Reð�Þ> 0 for � > 0. Figure 3 (bottom) shows excellent
agreement between the analytical prediction for the rele-
vant eigenvalue and the numerical result for the DGPE
excitation spectrum.

Discussion.—A full description of the rich features seen
in dark soliton experiments, including shot-to-shot varia-
tions, requires a stochastic model incorporating density
and phase fluctuations. The stochastic Gross-Pitaevskii
equation was shown to capture these features well, leading
to specific predictions for the spread of soliton decay times
with different noise realizations, in close analogy to differ-
ent experimental realizations. Nonetheless, mean soliton
trajectories or decay times are captured reasonably by the
simpler dissipative Gross-Pitaevskii equation (with addi-
tional experimental or theoretical input required). An ana-
lytical solution of the dark soliton motion in excellent
agreement with the dissipative Gross-Pitaevskii equation
was given, paving the way for future analytical studies of
other macroscopic excitations in atomic condensates.

We acknowledge discussions with C. F. Barenghi and
funding from EPSRC, NSF and S.A. R.G of U. of Athens.
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