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INTRINSIC OBSTRUCTIONS TO THE EXISTENCE OF
ISOMETRIC MINIMAL IMMERSIONS

Theodoros Vlachos

S.S. Chern raised the problem to find necessary and suffi-
cient conditions for a given Riemannian manifold to be real-
izable on a minimal submanifold of a Euclidean space. The
aim of this paper is to provide new necessary conditions. For
minimal submanifolds in a Euclidean space we consider the
negative of the Ricci tensor as defining a new metric, which is
nothing but the third fundamental form, and seek curvature
properties of this metric.

1. Introduction.

It is well-known that the Ricci curvature of a minimal submanifold of a
Euclidean space is negative semi-definite. Moreover, there are no compact
minimal submanifolds in a Euclidean space. S.S. Chern [8] asked to search
for further necessary conditions on those Riemannian metrics that admit an
isometric minimal immersion into a Euclidean space. In this paper we deal
with this question. In [10], Chern and Osserman studied the more general
question, namely, to characterize those Riemannian metrics that arise as
the induced metrics on minimal submanifolds of a Euclidean space. This
problem has two quite different aspects, depending on whether or not one
specifies the codimension. The codimension-one case, which plays as usual
a prominent role, has been settled. The well-known Ricci condition provides
a necessary and sufficient condition for a two-dimensional metric to be re-
alized on a minimal surface in the three-dimensional Euclidean space E3.
Chern and Osserman [10] generalized the Ricci condition and answered the
question for higher-dimensional minimal hypersurfaces. Do Carmo and Da-
jczer [5] gave necessary and sufficient conditions for a Riemannian metric to
be minimally immersed as a hypersurface in a space form. A necessary con-
dition for a Riemannian metric to be minimally immersed as a hypersurface
in a Euclidean space was given in [1]. Chen in [7] gave a further neces-
sary condition for a Riemannian manifold to admit an isometric minimal
immersion into a Euclidean space.

The case of higher codimension presents difficulties, even in finding neces-
sary conditions. In the special case of dimension two, and if the codimension
is not specified, a complete answer to the question of Chern was given by
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Calabi [3, 4] (see also Lawson [12]). Although the result of Calabi provides
necessary and sufficient conditions for the realization of a metric on a min-
imal surface, it would be impractical to apply it. Therefore, it is useful to
have conditions that are only necessary, but are easily verified. An impor-
tant example is the following result due to Barbosa and do Carmo [2]: Let
ds2 be the metric induced on a two-dimensional minimal surface in the n-
dimensional Euclidean space En, n ≥ 3, and let K be its Gaussian curvature.
Then K ≤ 0 and whenever K < 0, the metric dŝ2 = −Kds2 has Gaussian
curvature K̂ ≤ 2. The proof of this result relies on the holomorphicity of
the Gauss map. It is worth noticing that the metric dŝ2 is nothing but the
third fundamental form introduced by Obata [14].

In this paper, we deal with Chern’s question in high dimension without
specifying the codimension, and seek necessary conditions for a Riemannian
metric to be minimally immersed in a Euclidean space, in the spirit of the
above result due to Barbosa and do Carmo. We recall that for a submanifold
Mn of the Euclidean space En+p, the generalized Gauss map g is a map
whose domain is Mn, and whose range is the Grassmannian Gn,n+p of n-
planes in En+p. There is a canonical metric dσ2 on the Grassmannian
Gn,n+p. The metric which is induced on Mn by g is called by Obata [14]
the third fundamental form of Mn, and is denoted by III, i.e., III = g∗(dσ2).
Obata [14] proved the following formula relating III to the fundamental
quantities associated with Mn

III = n〈H,B〉 − Ric,

where B is the second fundamental form of Mn, H is the mean curvature
vector, and Ric denotes the Ricci tensor. For minimal submanifolds the
above formula of Obata becomes

III = −Ric.

From this we immediately see that the third fundamental form is intrinsic.
This formula is the key tool for obtaining our results. In fact, what we
are trying to do is to find curvature properties of the metric III = −Ric.
The question of finding curvature properties of this metric was raised by
Osserman [15]. Every property of this metric one finds provides a necessary
condition for a given metric to be realized on a minimal submanifold of a
Euclidean space.

For any Riemannian manifold (M, 〈, 〉) with sectional curvature K, and
any point x ∈ M , we put (inf K)(x) = inf{K(π) : 2-plane sections π ⊂
TxM}. Then inf K is a well-defined function on M . We use this notation
throughout the paper. The aim of the present paper is to prove the following
local results.

Theorem A. Let Mn, n ≥ 3, be an n-dimensional minimal submanifold of
the (n+p)-dimensional Euclidean space En+p with negative Ricci curvature.
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Then the sectional curvature KIII of the third fundamental form III satisfies

inf KIII <
3nτ2 − 2||Ric||2 − (n− 1)∆τ

2(τ2 − ||Ric||2)
,

where τ is the scalar curvature (not normalized) of Mn, ||Ric|| is the length
of the Ricci tensor, and ∆ is the Laplacian operator of Mn.

The following corollary is an immediate consequence of Theorem A.

Corollary A. Let Mn, n ≥ 3, be an n-dimensional Riemannian man-
ifold with negative Ricci curvature and consider the Riemannian metric
〈, 〉∗ = −Ric. A necessary condition for Mn to admit an isometric mini-
mal immersion into a Euclidean space is the following

inf K∗ <
3nτ2 − 2||Ric||2 − (n− 1)∆τ

2(τ2 − ||Ric||2)
,

where K∗ is the sectional curvature of 〈, 〉∗, τ is the scalar curvature of Mn,
||Ric|| is the length of the Ricci tensor, and ∆ is the Laplacian operator of
Mn.

For minimal submanifolds with flat normal bundle we have the following
sharp result.

Theorem B. Let Mn, n ≥ 2, be an n-dimensional minimal submanifold
of the (n + p)-dimensional Euclidean space En+p with flat normal bundle
and negative Ricci curvature. Then the sectional curvature KIII of the third
fundamental form III satisfies

inf KIII ≤ 1

and the equality holds if and only if Mn lies as a minimal hypersurface in
an (n + 1)-dimensional affine subspace of En+p.

Corollary B. Let Mn, n ≥ 2, be an n-dimensional Riemannian man-
ifold with negative Ricci curvature and consider the Riemannian metric
〈, 〉∗ = −Ric. A necessary condition for Mn to admit an isometric minimal
immersion with flat normal bundle into a Euclidean space is the following

inf K∗ ≤ 1,

where K∗ is the sectional curvature of 〈, 〉∗.
The paper is organized as follows: Section 2 is devoted to some notations

and preliminaries. In Section 3, we derive formulas for the Riemannian
connection and the curvature tensor of the third fundamental form of an
arbitrary submanifold of a Euclidean space. In Section 4, we study the
third fundamental form of minimal submanifolds in a Euclidean space and
prove some auxiliary results. The paper ends up with Section 5, where the
proofs of the main results are presented.
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2. Preliminaries.

Let Mn be an n-dimensional submanifold of the (n + p)-dimensional Eu-
clidean space En+p equipped with the induced metric 〈, 〉. Denote the stan-
dard connection of En+p by ∇, the Riemannian connection of Mn by ∇,
and the second fundamental form by B. For any tangent vector fields X
and Y of Mn, we have the Gauss formula

∇XY = ∇XY + B(X,Y )

and the Weingarten formula

∇Xξ = −AξX + ∇⊥
Xξ,

where the (1,1) tensor field Aξ is the shape operator associated with a normal
vector field ξ, and ∇⊥ is the connection in the normal bundle of Mn. It is
well-known that 〈AξX,Y 〉 = 〈B(X,Y ), ξ〉. Using the Gauss and Weingarten
formulas, one can derive the well-known equations of Gauss, Codazzi and
Ricci, which are respectively

〈R(X,Y )Z,W 〉 = 〈B(X,W ), B(Y,Z)〉 − 〈B(X,Z), B(Y,W )〉,
(∇̃XAξ)Y = (∇̃Y Aξ)X

and
R⊥(X,Y )ξ = B(X,AξY ) −B(AξX,Y ),

where R is the curvature tensor of Mn, R⊥ is the normal curvature tensor
given by

R⊥(X,Y )ξ = ∇⊥
X∇⊥

Y ξ −∇⊥
Y ∇⊥

Xξ −∇⊥
[X,Y ]ξ

and by definition

(∇̃XAξ)Y = (∇XAξ)Y −A∇⊥
XξY = ∇X(AξY ) −Aξ(∇XY ) −A∇⊥

XξY.

We denote by S and τ the squared length of the second fundamental form
B and the scalar curvature (not normalized), respectively.

We adopt the following convention on the ranges of indices:

1 ≤ i, j, k, . . . ,≤ n, n + 1 ≤ α, β, γ, ...,≤ n + p.

Let {e1, . . . , en} be a local orthonormal frame field in the tangent bundle of
Mn. The mean curvature vector H is defined by

H =
1
n

∑
i

B(ei, ei),

or equivalently

H =
1
n

∑
α

(trAα)eα,

where {en+1, . . . , en+p} is a local orthonormal frame field in the normal
bundle of Mn, and Aα denotes the shape operator associated with eα. Let
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Ric be the Ricci tensor of Mn. Using the Gauss equation, we find that the
Ricci tensor is given by

Ric(X,Y ) = n〈AHX,Y 〉 −
∑
α

〈A2
αX,Y 〉.

The Gauss map g, which assigns to each point x ∈ Mn the n-plane through
the origin of En+p that is parallel to the tangent space of Mn at x, is a map
from Mn into the Grassmannian Gn,n+p = O(n + p)/O(n) × O(p). There
is a canonical Riemannian metric dσ2 on Gn,n+p. The metric III = g∗(dσ2)
which is induced on Mn by g is called by Obata [14] the third fundamental
form of Mn, and is given by

III(X,Y ) = n〈AHX,Y 〉 − Ric(X,Y ),

or equivalently

(2.1) III(X,Y ) = 〈QX,Y 〉,
where Q is given by

(2.2) Q =
∑
α

A2
α.

In particular, for minimal submanifolds we have

III(X,Y ) = −Ric(X,Y ).

Moreover, III is intrinsic and positive definite at points where the Ricci
curvature is negative.

It follows immediately from the Ricci equation that if the normal connec-
tion ∇⊥ is flat, then at each point there exists an orthonormal basis of the
tangent space which simultaneously diagonalizes all shape operators. We
use the above mentioned notation throughout the paper.

3. Connection and curvature of the third fundamental form.

In this section, we derive formulas for the Riemannian connection and the
curvature tensor of the third fundamental form for submanifolds in a Eu-
clidean space, not necessarily minimal.

Proposition 3.1. Let Mn be an n-dimensional submanifold of the Euclid-
ean space En+p with positive definite third fundamental form III. Then the
Riemannian connection ∇III of III is given by

∇III
X Y =

∑
α

Q−1
(
Aα

(∇X(AαY )
))−∑

α

Q−1
(
Aα

(
A∇⊥

Xeα
Y
))
,

where X,Y are tangent vector fields of Mn.

We need the following auxiliary lemma.
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Lemma 3.2. Let Mn be an n-dimensional submanifold of the Euclidean
space En+p. Then the following holds

∑
α

Aα ◦A∇⊥
Xeα

+
∑
α

A∇⊥
Xeα

◦Aα = 0,

where X is a tangent vector field of Mn.

Proof. Let ωαβ , be the normal connection forms defined by ωαβ(X) =
〈∇⊥

Xeα, eβ〉. Then we have

∑
α

Aα ◦A∇⊥
Xeα

+
∑
α

A∇⊥
Xeα

◦Aα

=
∑
α,β

ωαβ(X)Aα ◦Aβ +
∑
α,β

ωαβ(X)Aβ ◦Aα.

On the other hand, it is obvious that ωαβ = −ωβα. Hence we finally get

∑
α

Aα ◦A∇⊥
Xeα

+
∑
α

A∇⊥
Xeα

◦Aα

=
∑
α,β

ωαβ(X)Aα ◦Aβ −
∑
α,β

ωαβ(X)Aα ◦Aβ = 0,

and this completes the proof of the lemma.

Proof of Proposition 3.1. We use the well-known relation between a metric
and the corresponding Riemannian connection

2III(∇III
X Y,Z) = Y

(
III(Z,X)

)
+ X

(
III(Z, Y )

)− Z
(
III(X,Y )

)
− III([Y,Z], X) − III([X,Z], Y ) − III([Y,X], Z).

By virtue of (2.1) and (2.2), we have

2III(∇III
X Y,Z) =

∑
α

Y 〈AαZ,AαX〉 +
∑
α

X〈AαZ,AαY 〉

−
∑
α

Z〈AαX,AαY 〉 −
∑
α

〈Aα[Y,Z], AαX〉

−
∑
α

〈Aα[X,Z], AαY 〉 −
∑
α

〈Aα[Y,X], AαZ〉,
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or equivalently

2III(∇III
X Y,Z) =

∑
α

〈
(∇Y Aα)Z − (∇ZAα)Y,AαX

〉
+
∑
α

〈
(∇XAα)Z − (∇ZAα)X,AαY

〉
+
∑
α

〈(∇Y Aα)X,AαZ〉 +
∑
α

〈(∇XAα)Y,AαZ〉

+ 2
∑
α

〈Aα(∇XY ), AαZ〉.

Using the Codazzi equation, we obtain

2III(∇III
X Y,Z) = 2

∑
α

〈Aα

(∇X(AαY )
)
, Z〉

+

〈∑
α

Aα ◦A∇⊥
Y eα

(X) +
∑
α

A∇⊥
Y eα

◦Aα(X), Z

〉

−
〈∑

α

Aα ◦A∇⊥
Xeα

(Y ) −
∑
α

A∇⊥
Xeα

◦Aα(Y ), Z

〉

−
〈∑

α

Aα ◦A∇⊥
Z eα

(Y ) +
∑
α

A∇⊥
Z eα

◦Aα(Y ), X

〉
.

Appealing to (2.1) and Lemma 3.2, we get

〈Q(∇III
X Y ), Z〉 =

∑
α

〈Aα

(∇X(AαY )
)
, Z〉 −

∑
α

〈Aα

(
A∇⊥

Xeα
Y
)
, Z〉.

This completes the proof of the proposition.

Proposition 3.3. Let Mn be an n-dimensional submanifold of the Euclid-
ean space En+p with positive definite third fundamental form III. Then the
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curvature tensor RIII of III satisfies

III
(
RIII(X,Y )Y,X

)
=
∑
α

〈R(X,Y )AαY,AαX〉 −
∑
α

〈AR⊥(X,Y )eα
Y,AαX〉

+
∑
α

〈
∇Y (AαY ) −A∇⊥

Y eα
Y,∇X(AαX)

〉
−
∑
α

〈
∇X(AαY ) −A∇⊥

Xeα
Y,∇Y (AαX)

〉
−
∑
α

〈(∇̃XA∇⊥
Y eα

)
Y,AαX

〉
+
∑
α

〈(∇̃Y A∇⊥
Xeα

)
Y,AαX

〉
−
∑
α

〈A∇⊥
Y eα

(∇XY ), AαX〉 +
∑
α

〈A∇⊥
Xeα

(∇Y Y ), AαX〉

−
∑
α,β

〈
Aα ◦Q−1 ◦Aβ

(
∇Y (AβY ) −A∇⊥

Y eβ
Y
)
,∇X(AαX)

〉
+
∑
α,β

〈
Aα ◦Q−1 ◦Aβ

(
∇X(AβY ) −A∇⊥

Xeβ
Y
)
,∇Y (AαX)

〉
+
∑
α,β

〈
A∇⊥

Xeα
◦Aα ◦Q−1 ◦Aβ

(
∇Y (AβY ) −A∇⊥

Y eβ
Y
)
, X
〉

−
∑
α,β

〈
A∇⊥

Y eα
◦Aα ◦Q−1 ◦Aβ

(
∇X(AβY ) −A∇⊥

Xeβ
Y
)
, X
〉
,

where X,Y are tangent vector fields of Mn.

Proof. In view of (2.1), we see that the curvature tensor RIII satisfies

III
(
RIII(X,Y )Y,X

)
= 〈Q(∇III

X ∇III
Y Y

)
, X〉 − 〈Q(∇III

Y ∇III
X Y

)
, X〉

− 〈Q(∇III
[X,Y ]Y

)
, X〉.

Using Proposition 3.1, we get

III
(
RIII(X,Y )Y,X

)
=
∑
α

〈∇X

(
Aα(∇III

Y Y )
)
, AαX

〉−∑
α

〈∇Y

(
Aα(∇III

X Y )
)
, AαX

〉
−
∑
α

〈
Aα

(
A∇⊥

Xeα
(∇III

Y Y )
)
, X
〉

+
∑
α

〈
Aα

(
A∇⊥

Y eα
(∇III

X Y )
)
, X
〉

−
∑
α

〈∇[X,Y ](AαY ), AαX
〉

+
∑
α

〈
Aα

(
A∇⊥

[X,Y ]
eα
Y
)
, X
〉
,



OBSTRUCTIONS TO MINIMAL IMMERSIONS 499

or equivalently

III
(
RIII(X,Y )Y,X

)
=
∑
α

X
〈
Aα(∇III

Y Y ), AαX
〉−∑

α

Y
〈
Aα(∇III

X Y ), AαX
〉

−
∑
α

〈
Aα

(∇III
Y Y

)
,∇X(AαX)

〉
+
∑
α

〈
Aα

(∇III
X Y

)
,∇Y (AαX)

〉
−
∑
α

〈
Aα

(
A∇⊥

Xeα
(∇III

Y Y )
)
, X
〉

+
∑
α

〈
Aα

(
A∇⊥

Y eα
(∇III

X Y )
)
, X
〉

−
∑
α

〈∇[X,Y ](AαY ), AαX
〉

+
∑
α

〈
Aα

(
A∇⊥

[X,Y ]
eα
Y
)
, X
〉
.

Bearing in mind (2.2), we have

III
(
RIII(X,Y )Y,X

)
= X

〈
Q
(∇III

Y Y
)
, X
〉− Y

〈
Q
(∇III

X Y
)
, X
〉

−
∑
α

〈
Aα

(∇III
Y Y

)
,∇X(AαX)

〉
+
∑
α

〈
Aα

(∇III
X Y

)
,∇Y (AαX)

〉
−
∑
α

〈
Aα

(
A∇⊥

Xeα
(∇III

Y Y )
)
, X
〉

+
∑
α

〈
Aα

(
A∇⊥

Y eα
(∇III

X Y )
)
, X
〉

−
∑
α

〈∇[X,Y ](AαY ), AαX
〉

+
∑
α

〈
Aα

(
A∇⊥

[X,Y ]
eα
Y
)
, X
〉
.

Now using Proposition 3.1, we obtain

III
(
RIII(X,Y )Y,X

)
=
∑
α

X〈∇Y (AαY ), AαX〉 −
∑
α

Y 〈∇X(AαY ), AαX〉

−
∑
α

X〈A∇⊥
Y eα

Y,AαX〉 +
∑
α

Y 〈A∇⊥
Xeα

Y,AαX〉

−
∑
α

〈∇[X,Y ](AαY ), AαX
〉

+
∑
α

〈
Aα

(
A∇⊥

[X,Y ]
eα
Y
)
, X
〉

−
∑
α

〈
Aα

(∇III
Y Y

)
,∇X(AαX)

〉
+
∑
α

〈
Aα

(∇III
X Y

)
,∇Y (AαX)

〉
−
∑
α

〈
Aα

(
A∇⊥

Xeα
(∇III

Y Y )
)
, X
〉

+
∑
α

〈
Aα

(
A∇⊥

Y eα
(∇III

X Y )
)
, X
〉
,
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or equivalently

III
(
RIII(X,Y )Y,X

)
=
∑
α

〈R(X,Y )AαY,AαX〉 −
∑
α

〈∇X(AαY ),∇Y (AαX)〉

+
∑
α

〈∇Y (AαY ),∇X(AαX)〉

+
∑
α

〈A∇⊥
Xeα

Y,∇Y (AαX)〉 −
∑
α

〈A∇⊥
Y eα

Y,∇X(AαX)〉

−
∑
α

〈∇X(A∇⊥
Y eα

Y ), AαX
〉

+
∑
α

〈∇Y (A∇⊥
Xeα

Y ), AαX
〉

+
∑
α

〈
A∇⊥

[X,Y ]
eα
Y,AαX

〉
−
∑
α

〈
Aα

(∇III
Y Y

)
,∇X(AαX)

〉
+
∑
α

〈
Aα

(∇III
X Y

)
,∇Y (AαX)

〉
−
∑
α

〈
Aα ◦A∇⊥

Xeα
(∇III

Y Y ), X
〉

+
∑
α

〈
Aα ◦A∇⊥

Y eα
(∇III

X Y ), X
〉
.

Appealing again to Proposition 3.1, we take

III
(
RIII(X,Y )Y,X

)
=
∑
α

〈R(X,Y )AαY,AαX〉 −
∑
α

〈∇X(AαY ),∇Y (AαX)〉

+
∑
α

〈∇Y (AαY ),∇X(AαX)〉

+
∑
α

〈A∇⊥
Xeα

Y,∇Y (AαX)〉 −
∑
α

〈A∇⊥
Y eα

Y,∇X(AαX)〉

−
∑
α

〈∇X(A∇⊥
Y eα

Y ), AαX
〉

+
∑
α

〈∇Y (A∇⊥
Xeα

Y ), AαX
〉

+
∑
α

〈
A∇⊥

[X,Y ]
eα
Y,AαX

〉
−
∑
α,β

〈
Aα ◦Q−1 ◦Aβ

(
∇Y (AβY ) −A∇⊥

Y eβ
Y
)
,∇X(AαX)

〉
+
∑
α,β

〈
Aα ◦Q−1 ◦Aβ

(
∇X(AβY ) −A∇⊥

Xeβ
Y
)
,∇Y (AαX)

〉
−
∑
α,β

〈
Aα ◦A∇⊥

Xeα
◦Q−1 ◦Aβ

(
∇Y (AβY ) −A∇⊥

Y eβ
Y
)
, X
〉

+
∑
α,β

〈
Aα ◦A∇⊥

Y eα
◦Q−1 ◦Aβ

(
∇X(AβY ) −A∇⊥

Xeβ
Y
)
, X
〉
,
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or equivalently

III
(
RIII(X,Y )Y,X

)
=
∑
α

〈R(X,Y )AαY,AαX〉

+
∑
α

〈∇Y (AαY ) −A∇⊥
Y eα

Y,∇X(AαX)
〉

−
∑
α

〈∇X(AαY ) −A∇⊥
Xeα

Y,∇Y (AαX)
〉

+
∑
α

〈A∇⊥
Xeα

(∇Y Y ), AαX〉 −
∑
α

〈A∇⊥
Y eα

(∇XY ), AαX〉

−
∑
α

〈(∇̃XA∇⊥
Y eα

)
Y,AαX

〉
+
∑
α

〈(∇̃Y A∇⊥
Xeα

)
Y,AαX

〉
−
∑
α

〈
A∇⊥

X∇⊥
Y eα

Y,AαX
〉

+
∑
α

〈
A∇⊥

Y ∇⊥
Xeα

Y,AαX
〉

+
∑
α

〈
A∇⊥

[X,Y ]
eα
Y,AαX

〉
−
∑
α,β

〈
Aα ◦Q−1 ◦Aβ

(
∇Y (AβY ) −A∇⊥

Y eβ
Y
)
,∇X(AαX)

〉
+
∑
α,β

〈
Aα ◦Q−1 ◦Aβ

(
∇X(AβY ) −A∇⊥

Xeβ
Y
)
,∇Y (AαX)

〉
−
∑
α,β

〈
Aα ◦A∇⊥

Xeα
◦Q−1 ◦Aβ

(
∇Y (AβY ) −A∇⊥

Y eβ
Y
)
, X
〉

+
∑
α,β

〈
Aα ◦A∇⊥

Y eα
◦Q−1 ◦Aβ

(
∇X(AβY ) −A∇⊥

Xeβ
Y
)
, X
〉
.

Now bearing in mind the definition of the normal curvature tensor, and
using Lemma 3.2, we obtain the desired relation.

4. The third fundamental form of minimal submanifolds.

Lemma 4.1. Let Mn be an n-dimensional minimal submanifold of the Eu-
clidean space En+p with negative Ricci curvature. Let x ∈ Mn, {e1, . . . , en}
be an orthonormal basis of TxM

n, and extend them to orthonormal vector
fields E1, . . . , En in a neighborhood of x such that ∇Ei = 0 at x. Then we
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have at x ∑
i,j

III
(
RIII(ei, ej)ej , ei

)
=
∑
i,j,α

〈R(ei, ej)Aαej , Aαei〉

−
∑
i,j,α

〈AR⊥(Ei,Ej)eα
Ej , AαEi〉 − ||∇̃B||2

+
∑

i,j,α,β

〈
Aα ◦Q−1 ◦Aβ

(
(∇̃EiAβ)Ej

)
, (∇̃EiAα)Ej

〉
,

where ||∇̃B||2 is given by

||∇̃B||2 =
∑
i,j,α

||(∇̃EiAα)Ej ||2.

Proof. Using Proposition 3.3, and bearing in mind the fact that ∇Ei = 0 at
x, we get at x∑

i,j

III
(
RIII(ei, ej)ej , ei

)
=
∑
i,j,α

〈R(ei, ej)Aαej , Aαei〉

+
∑
i,j,α

〈(∇̃EjAα)Ej ,∇Ei(AαEi)〉 −
∑
i,j,α

〈(∇̃EiAα)Ej ,∇Ej (AαEi)〉

−
∑
i,j,α

〈(∇̃EiA∇⊥
Ej

eα
)Ej , AαEi〉 +

∑
i,j,α

〈(∇̃EjA∇⊥
Ei

eα
)Ej , AαEi〉

−
∑
i,j,α

〈AR⊥(Ei,Ej)eα
Ej , AαEi〉

−
∑

i,j,α,β

〈
Aα ◦Q−1 ◦Aβ

(
(∇̃EjAβ)Ej

)
,∇Ei(AαEi)

〉
+
∑

i,j,α,β

〈
Aα ◦Q−1 ◦Aβ

(
(∇̃EiAβ)Ej

)
,∇Ej (AαEi)

〉
+
∑

i,j,α,β

〈
A∇⊥

Ei
eα

◦Aα ◦Q−1 ◦Aβ

(
(∇̃EjAβ)Ej

)
, Ei

〉
−
∑

i,j,α,β

〈
A∇⊥

Ej
eα

◦Aα ◦Q−1 ◦Aβ

(
(∇̃EiAβ)Ej

)
, Ei

〉
.
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However, the fact that Mn is minimal ensures that∑
i

(∇̃EiAξ

)
Ei = 0,

where ξ is any normal vector field. Hence we take∑
i,j

III
(
RIII(ei, ej)ej , ei

)
=
∑
i,j,α

〈R(ei, ej)Aαej , Aαei〉

−
∑
i,j,α

〈(∇̃EiAα)Ej ,∇Ej (AαEi)〉 −
∑
i,j,α

〈(∇̃EiA∇⊥
Ej

eα
)Ej , AαEi〉

−
∑
i,j,α

〈AR⊥(Ei,Ej)eα
Ej , AαEi〉

+
∑

i,j,α,β

〈
Aα ◦Q−1 ◦Aβ

(
(∇̃EiAβ)Ej

)
, (∇̃EjAα)Ei

〉
.

On the other hand, it is easy to verify that∑
i,j,α

〈(∇̃EiA∇⊥
Ej

eα
)Ej , AαEi〉 = −

∑
i,j,α

〈(∇̃EiAα)Ej , A∇⊥
Ej

eα
Ei〉.

Therefore, we obtain∑
i,j

III
(
RIII(ei, ej)ej , ei

)
=
∑
i,j,α

〈R(ei, ej)Aαej , Aαei〉

−
∑
i,j,α

〈(∇̃EiAα)Ej , (∇̃EjAα)Ei〉 −
∑
i,j,α

〈AR⊥(Ei,Ej)eα
Ej , AαEi〉

+
∑

i,j,α,β

〈
Aα ◦Q−1 ◦Aβ

(
(∇̃EiAβ)Ej

)
, (∇̃EjAα)Ei

〉
,

and appealing to the Codazzi equation, we get the desired relation.

For each matrix A we denote by N(A) the square of the norm of A, i.e.,

N(A) = tr (AAt).

Lemma 4.2. Let Mn be as in Lemma 4.1, and let Hα = (hα
ij) denote the

symmetric matrix of the shape operator Aα with respect to the orthonormal
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basis {E1, . . . , En} for each α. Then we have

inf KIII

(
τ2 − ||Ric||2)

≤ −||Ric||2 − ||∇̃B||2

+
∑
α,β

(
tr(HαHβ)

)2 +
∑
α,β

N(HαHβ −HβHα)

+
∑

i,j,α,β

〈
Aα ◦Q−1 ◦Aβ

(
(∇̃EiAβ)Ej

)
, (∇̃EiAα)Ej

〉
.

Proof. Let x be an arbitrary point in Mn, {e1, . . . , en} be an orthonormal
basis of TxM

n, and extend them to orthonormal vector fields E1, . . . , En in
a neighborhood of x such that ∇Ei = 0 at x. Then we have at x∑

i�=j

III
(
RIII(ei, ej)ej , ei

)
=
∑
i�=j

KIII(ei ∧ ej)
(

III(ei, ei)III(ej , ej) −
(
III(ei, ej)

)2)
,

where KIII(ei ∧ ej) denotes the sectional curvature of III for the 2-plane
spanned by ei and ej . This implies that

inf KIII

∑
i�=j

(
III(ei, ei)III(ej , ej) −

(
III(ei, ej)

)2)
≤
∑
i�=j

III
(
RIII(ei, ej)ej , ei

)
.

On the other hand, we immediately verify that∑
i�=j

(
III(ei, ei)III(ej , ej) −

(
III(ei, ej)

)2)
=
(∑

i,α

〈A2
αei, ei〉

)2 −
∑
i,j

(∑
α

〈A2
αei, ej〉

)2

= S2 −
∑
α,β

tr(A2
α ◦A2

β).

Using the Gauss equation and the fact that Mn is minimal we find that
S = −τ , and taking (2.2) into account, we obtain∑

i�=j

(
III(ei, ei)III(ej , ej) −

(
III(ei, ej)

)2) = τ2 − ||Ric||2.

Therefore, we finally have

(4.1) inf KIII

(
τ2 − ||Ric||2) ≤∑

i�=j

III
(
RIII(ei, ej)ej , ei

)
.
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Using Lemma 4.1, we shall compute the right hand side of (4.1). The Gauss
equation yields

(4.2)
∑
i,j,α

〈R(ei, ej)Aαej , Aαei〉 =
∑
α,β

(
tr(Aα ◦Aβ)

)2 −∑
α,β

tr
(
Aα ◦Aβ

)2
.

Appealing to the Ricci equation, we get∑
i,j,α

〈AR⊥(Ei,Ej)eα
Ej , AαEi〉

=
∑

i,j,α,β

(
〈Aαei, Aβej〉〈Aαej , Aβei〉 − 〈Aαei, Aβej〉2

)
,

or equivalently

(4.3)
∑
i,j,α

〈AR⊥(Ei,Ej)eα
Ej , AαEi〉 =

∑
α,β

tr
(
Aα ◦Aβ

)2 −∑
α,β

tr
(
A2

α ◦A2
β

)
.

By virtue of Lemma 4.1, (4.2) and (4.3), (4.1) yields

inf KIII

(
τ2 − ||Ric||2)

≤ −||Ric||2 +
∑
α,β

(
tr(Aα ◦Aβ)

)2 − ||∇̃B||2

+ 2
∑
α,β

tr
(
A2

α ◦A2
β

)− 2
∑
α,β

tr
(
Aα ◦Aβ

)2
+
∑

i,j,α,β

〈
Aα ◦Q−1 ◦Aβ

(
(∇̃EiAβ)Ej

)
, (∇̃EiAα)Ej

〉
,

from which we immediately deduce the desired inequality.

5. Proofs of the results.

We need the following result which was proved in [13].

Lemma 5.1. Let H1, . . . , Hp be symmetric (n× n)-matrices. Then

p∑
α,β=1

(
tr(HαHβ)

)2 +
p∑

α,β=1

N(HαHβ −HβHα) ≤ 3
2

(
p∑

α=1

N(Hα)

)2

,

and the equality holds if and only if one of the following conditions holds:

1) H1 = · · · = Hp = 0,
2) only two of the matrices H1, . . . , Hp are different from zero. Moreover,

assuming H1 �= 0, H2 �= 0, H3 = · · · = Hp = 0, then N(H1) = N(H2),
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and there exists an orthogonal (n× n)-matrix T such that

TH1T
t =

√
N(H1)

2



1 0 0 ... 0
0 − 1 0 ... 0
0 0 0 ... 0

.

.

.
0 0 0 ... 0


and

TH2T
t =

√
N(H1)

2



0 1 0 ... 0
1 0 0 ... 0
0 0 0 ... 0

.

.

.
0 0 0 ... 0


.

Proof of Theorem A. Let x be an arbitrary point in Mn. Without loss of
generality, we may choose the orthonormal basis {e1, . . . , en} of TxM

n such
that

Qei = µiei,

for any i. Moreover, we extend the basis {e1, . . . , en} to orthonormal vector
fields E1, . . . , En in a neighborhood of x such that ∇Ei = 0 at x. Then we
have at x

(5.1) µi =
∑
j,α

(hα
ij)

2.

For convenience we set

hα
ijk = 〈(∇̃EiAα)Ej , Ek〉.

Moreover, we get at x∑
i,j,α,β

〈
Aα ◦Q−1 ◦Aβ

(
(∇̃EiAβ)Ej

)
, (∇̃EiAα)Ej

〉
=

∑
i,j,k,r,m,s,α,β

hα
ijkh

β
ijmh

α
krh

β
ms〈Q−1er, es〉

=
∑
i,j,k

1
µk

∑
l,α

hα
ijlh

α
kl

2

.
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Using the Cauchy-Schwarz inequality, we obtain∑
i,j,α,β

〈
Aα ◦Q−1 ◦Aβ

(
(∇̃EiAβ)Ej

)
, (∇̃EiAα)Ej

〉
≤
∑
i,j,k

1
µk

(∑
l,α

(hα
ijl)

2
)(∑

l,α

(hα
kl)

2
)
.

In view of (5.1), we deduce that∑
i,j,α,β

〈
Aα ◦Q−1 ◦Aβ

(
(∇̃EiAβ)Ej

)
, (∇̃EiAα)Ej

〉
≤ n||∇̃B||2,

and bearing in mind Lemma 4.2, we finally get

inf KIII

(
τ2 − ||Ric||2) ≤ −||Ric||2 + (n− 1)||∇̃B||2

(5.2)

+
∑
α,β

(
tr(HαHβ)

)2 +
∑
α,β

N(HαHβ −HβHα).

At this point we recall the well-known formula [9] for the Laplacian of the
squared length S of the second fundamental form of minimal submanifolds
in space forms which states that

1
2

∆S = ||∇̃B||2 −
∑
α,β

(
tr(HαHβ)

)2 −∑
α,β

N(HαHβ −HβHα).

Then (5.2) is written

inf KIII

(
τ2 − ||Ric||2) ≤ −||Ric||2 +

1
2

(n− 1)∆S

(5.3)

+ n
∑
α,β

(
tr(HαHβ)

)2 + n
∑
α,β

N(HαHβ −HβHα).

From the Gauss equation and the fact that Mn is minimal, we get S = −τ .
Appealing to Lemma 5.1 and bearing in mind the hypothesis that the Ricci
curvature is negative, we deduce that∑

α,β

(
tr(HαHβ)

)2 +
∑
α,β

N(HαHβ −HβHα) <
3
2
τ2.

Then (5.3) yields the desired inequality and this completes the Proof of
Theorem A.

Proof of Theorem B. Let x be an arbitrary point in Mn. Because of the
flatness of the normal bundle, we may choose a local orthonormal frame
field {en+1, . . . , en+p} in the normal bundle, such that ∇⊥eα = 0, for any α
(cf. [6]). Moreover, we choose an orthonormal basis {e1, . . . , en} of TxM

n

which simultaneously diagonalizes all shape operators at x, i.e., hα
ij = λα

i δij ,
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where λα
1 , . . . , λ

α
n are the eigenvalues of Aα, and extend them to orthonormal

vector fields E1, . . . , En in a neighborhood of x such that ∇Ei = 0 at x. Then
from Lemma 4.2 we have

inf KIII

(
τ2 − ||Ric||2)(5.4)

≤ −||Ric||2 − ||∇̃B||2 +
∑
α,β

(
tr(HαHβ)

)2
+
∑

i,j,α,β

〈
Aα ◦Q−1 ◦Aβ

(
(∇̃EiAβ)Ej

)
, (∇̃EiAα)Ej

〉
.

On the other hand, using (2.2), we easily see that at x we have

Qei = µiei,

where µi is given by

(5.5) µi =
∑
α

(λα
i )2.

Moreover, setting
hα

ijk = 〈(∇̃EiAα)Ej , Ek〉,
we have at x ∑

i,j,α,β

〈
Aα ◦Q−1 ◦Aβ

(
(∇̃EiAβ)Ej

)
, (∇̃EiAα)Ej

〉
=

∑
i,j,k,m,α,β

hα
ijkh

β
ijmλ

α
kλ

β
m〈Q−1ek, em〉

=
∑
i,j,k

1
µk

(∑
α

hα
ijkλ

α
k

)2

.

Now using the Cauchy-Schwarz inequality, we obtain∑
i,j,α,β

〈
Aα ◦Q−1 ◦Aβ

(
(∇̃EiAβ)Ej

)
, (∇̃EiAα)Ej

〉

≤
∑
i,j,k

1
µk

(∑
α

(hα
ijk)2

)(∑
α

(λα
k )2
)
,

and bearing in mind (5.5), we finally get

(5.6)
∑

i,j,α,β

〈
Aα ◦Q−1 ◦Aβ

(
(∇̃EiAβ)Ej

)
, (∇̃EiAα)Ej

〉
≤ ||∇̃B||2.

On the other hand, we have∑
α,β

(
tr(HαHβ)

)2 =
∑
α,β

(∑
i

λα
i λ

β
i

)2

.
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Using the Cauchy-Schwarz inequality, we take∑
α,β

(
tr(HαHβ)

)2 ≤
∑
α,β

(∑
i

(λα
i )2
)(∑

i

(λβ
i )2
)
,

or equivalently

(5.7)
∑
α,β

(
tr(HαHβ)

)2 ≤ τ2.

Then from (5.4), (5.6) and (5.7), we deduce that inf KIII ≤ 1.
Now we assume that inf KIII = 1. Then inequality (5.7) becomes equality.

Without loss of generality we may assume that An+1 �= 0. Hence we have

(5.8) Aα = fαAn+1,

where fα is a function and α > n + 1. From this and the fact that each eα

is parallel in the normal bundle, we see that

(∇̃XAα)Y = X(fα)An+1Y + fα(∇̃XAn+1)Y.

Then, using the Codazzi equation, we derive that

X(fα)An+1Y = Y (fα)An+1X,

for any tangent vector fields X,Y , and α > n + 1. In particular, at x we
have

ei(fα)λn+1
j ej = ej(fα)λn+1

i ei,

for i �= j. In view of (5.8) and the hypothesis that the Ricci curvature is
negative, we infer that λn+1

i �= 0 for each i. Then the above relation yields
ei(fα) = 0, for any i, and consequently each fα is constant. By virtue of
(5.8), the second fundamental form B satisfies

B(X,Y ) =
∑
α

〈AαX,Y 〉eα = 〈An+1X,Y 〉
(
en+1 +

∑
α>n+1

fαeα

)
for any tangent vector fields X,Y . From this we infer that the first normal
space, which is spanned by the image of B, is one-dimensional and invariant
under parallel translation with respect to the normal connection. Appealing
to the well-known reduction theorem of Erbacher [11], we deduce that Mn

lies in an (n+ 1)-dimensional totally geodesic submanifold of En+p, and the
Proof of Theorem B is complete.
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