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Fluctuating and dissipative dynamics of dark solitons in quasicondensates
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The fluctuating and dissipative dynamics of matter-wave dark solitons within harmonically trapped, partially
condensed Bose gases is studied both numerically and analytically. A study of the stochastic Gross-Pitaevskii
equation, which correctly accounts for density and phase fluctuations at finite temperatures, reveals dark-soliton
decay times to be lognormally distributed at each temperature, thereby characterizing the previously predicted
long-lived soliton trajectories within each ensemble of numerical realizations [S. P. Cockburn et al., Phys. Rev.
Lett. 104, 174101 (2010)]. Expectation values for the average soliton lifetimes extracted from these distributions
are found to agree well with both numerical and analytic predictions based upon the dissipative Gross-Pitaevskii
model (with the same ab initio damping). Probing the regime for which 0.8 kBT < μ < 1.6 kBT , we find average
soliton lifetimes to scale with temperature as τ ∼ T −4, in agreement with predictions previously made for the
low-temperature regime kBT � μ. The model is also shown to capture the experimentally relevant decrease in
the visibility of an oscillating soliton due to the presence of background fluctuations.
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I. INTRODUCTION

As intriguing realizations of quantum objects on a macro-
scopic scale, the existence of solitons within atomic Bose-
Einstein condensates (BECs) have led to much experimental
and theoretical work. Both dark [1–8] and bright solitons
[9–12] have been observed within single-species BECs. The
existence of each can be argued as being linked to the
robustness of the system’s nonlinear waves and ultimately with
the system’s (near) integrabilty. This is chiefly responsible for
the absence of dissipation, for example, during soliton-soliton
collisions [6]. For a decay mechanism to manifest, a substantial
departure from the integrable limit must be enforced.

BEC experiments typically take place within an effec-
tively harmonic three-dimensional (3D) trapping potential,
the introduction of which already lifts the integrability of the
system. In principle, this means that solitons are no longer
protected from decay by the infinite number of conservation
laws, as in the integrable homogeneous one-dimensional
(1D) Gross-Pitaevskii equation (GPE). In order that solitons
be rendered dynamically stable against decay induced by
transverse excitations [4], they should be produced in highly
elongated gases [13], in which phase fluctuations are known to
play an enhanced role [14]. Then, in the absence of a thermal
cloud, they are found to be stable in the special case of a
longitudinal harmonic confining potential [15], which has been
shown to be a direct consequence of the periodic emission
and reabsorbtion of sound waves as the solitons oscillate in a
harmonic potential [16,17].

The first successful observations of dark solitons in BECs
were made by Burger et al. [1] in a somewhat elongated
setup, although the solitons were found to decay rather
rapidly upon reaching the condensate edge, an effect attributed
to thermal decay [13,18]. More recent experiments have
produced solitons with much longer lifetimes allowing for
the observation of head-on collisions between solitons [6,19]
and the dynamics of one or more soliton oscillations [5,6].

In Ref. [5], dark solitons were created by a phase imprinting
technique and found to exist for very long times, with a
clear oscillatory trajectory of the density notch visible in the
experimental data. Interestingly, a strong shot-to-shot variation
in soliton lifetimes was also reported in this work: solitons
were found to exist in single realizations for times an order
of magnitude longer than an average trajectory was obtainable
experimentally [5,20]. While attributed to small preparation
errors in this experiment, phase fluctuations are typically
important in quasi-one-dimensional systems, suggesting that
a similar effect might be expected to occur when introducing
a soliton within a phase-fluctuating condensate [21,22].

Given the competition between fluctuations and dissipation
observed in experiments on dark solitons, in this paper we
perform a detailed numerical and analytical study of the
effect of each of these on the motion of dark solitons within
harmonically trapped, phase-fluctuating BECs.

II. THEORETICAL APPROACH

Given the particle-like behavior already observed for dark
solitons experimentally [5,6,19], the notion of a “heavy”
soliton oscillating within a background of lighter thermal
particles makes it tempting to draw an analogy to the Brownian
motion of a particle moving within a fluid of lighter particles,
undergoing many scattering events. The interaction between a
dark soliton and thermal excitations in a BEC was considered
in [23] by means of a kinetic equation, which was found
to be of Fokker-Planck form under the assumption that the
momentum transfer per soliton-excitation interaction is much
smaller than the soliton momentum. In this work, we adopt a
complementary Langevin approach, which should thus also be
well suited to the study of such systems, having been originally
conceived for just this purpose [24,25], and we now discuss
the pertinent model for weakly interacting gases, known as the
stochastic Gross-Pitaevskii equation (SGPE).
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A. Stochastic Gross-Pitaevskii equation

Since highly elongated trapping potentials are necessary
if a soliton is to be stable against transverse instabilities, the
inclusion of phase and density fluctuations is likely to prove
essential in capturing all the salient aspects of such necessarily
“low-dimensional” systems. The SGPE [26–28], which we
choose to employ here, is a model well suited to this task as it
captures both the dissipative and fluctuating dynamics inherent
in finite-temperature BECs while additionally satisfying the
required balance between these two factors.

Within this scheme, the low-energy modes of our effectively
1D system may be represented by the stochastic differential
equation

ih̄
∂�(z,t)

∂t
= [1 − iγ (z,t)]

[
− h̄2

2m

∂2

∂z2
+ V (z)

+ g|�|2 − μ

]
�(z,t) + η(z,t), (1)

where �(z,t) is a complex parameter describing the occupa-
tion of such low-lying modes, V (z) = (1/2)mω2

zz
2 is the axial

trapping potential, g = 2h̄ω⊥a is the effective 1D interaction
strength [29] (with a being the s-wave scattering length), and
η(z,t) is a complex Gaussian noise term, with correlations
given by the relation 〈η∗(z,t)η(z′,t ′)〉 = 2h̄γ (z,t)kBT δ(z −
z′)δ(t − t ′). The strength of the noise, and damping, due to
contact with higher energy thermal modes, is given by γ (z,t).

While the soliton will reside in the low-lying modes,
in arriving at Eq. (1) it is assumed that the high-energy
thermal atoms in the system may be treated as though at
equilibrium; this should be valid for small perturbations, e.g.,
when introducing a dark soliton into a large system (R 	 ξ ,
where ξ = h̄/

√
mng essentially sets the soliton width), which

would have little effect on the high-lying modes, which
should instead remain close to equilibrium. In this picture,
the high- and low-energy systems are assumed to be in
diffusive and thermal equilibrium with a common temperature
T and chemical potential μ. Moreover, due to the large mode
occupations typical within degenerate Bose gases, we are
well justified in the further assumption that the low-energy
modes are sufficiently highly occupied for the classical field
approximation to be valid [27,30–34].

B. Form of dissipation

Within the formulation of Stoof [26,27], the quantity that
parametrizes the strength of the noise and damping is the
so-called Keldysh self-energy h̄
K (z,t), which may be related
to the dissipation term in Eq. (1) via γ (z,t) = iβh̄
K (z,t)/4
[27,31]. Following the methods of Refs. [31,35] and assuming
the system to be close to equilibrium, the integral to be
evaluated for the dissipation is

γ (z) = 4βma2

πh̄2

∫
dE2

∫
dE3 S(k1,k2,k3)(1 + N1)N2N3,

(2)

where 0 < Ei < ∞ and Ni = (exp{β[Ei + U (z) − μ]} −
1)−1 is a Bose-Einstein distribution. Here U (z) = V (z) +
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FIG. 1. (Color online) Form of the equilibrium dissipation γ (z)
at T = 250 nK when the SGPE density (black solid line) and the
Thomas-Fermi density (blue dot-dashed line) are used in the mean-
field potential U (z). The vertical dotted lines indicate the T = 0
Thomas-Fermi radius R.

2g〈|�(z)|2〉, where 〈· · · 〉 denotes an ensemble average over
many noise realizations, E1 = E2 + E3 + U (z) − μ, and

S(k1,k2,k3) = 1
2 {sgn(k1+ k2 − k3) + sgn(k1 − k2 + k3)

− sgn(k1 + k2 + k3)− sgn(k1 − k2 − k3)},
(3)

with ki =
√

2mEi/h̄
2.

The damping may be evaluated numerically (e.g., using
Gauss-Legendre quadrature), an example of which is shown
in Fig. 1. The data shown are for T = 250 nK and illustrate two
cases, when the density in the potential U (z) is given by the
SGPE density (black solid line) or the T = 0 Thomas-Fermi
density (blue dot-dashed line) (cf. Fig. 2 of Ref. [31]). A
notable feature in the form of γ (z) is the peak close to the
Thomas-Fermi radius, which indicates that the scattering rate
is largest near the edge of the quasicondensate. Also, the peaks
in γ (z) calculated using the SGPE density (black solid curve)
are noticeably closer to the trap center than for the T = 0
Thomas-Fermi case at the same μ (blue dot-dashed curve) due
to the effects of thermal depletion on the equilibrium density
profile. We also note that the shape of γ (z) is qualitatively
similar to the spatial form of the scattering rates found within
numerical implementations of the Zaremba-Nikuni-Griffin
(ZNG) approach [36,37].

C. Reduction to a dissipative Gross-Pitaevskii equation

Neglecting the noise term of Eq. (1) leads to the following
dissipative GPE (DGPE) for the condensate wave function
(see, e.g., the review of Ref. [38]):

ih̄
∂φ(z,t)

∂t
= [1 − iγ (z,t)]

[
− h̄2

2m

∂2

∂z2
+ V (z)

+ g|φ|2 − μ

]
φ(z,t). (4)

This is expected to be a good model when damping effects are
dominant over diffusion and representative of the mean-field
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soliton dynamics in this case. An advantage of deriving this
model from the SGPE is that the damping may be calculated
in an ab initio manner, via Eq. (2), rather than selected
phenomenologically [39,40].

D. Overview of numerical procedure

Before studying the soliton dynamics, an important pre-
liminary step is to generate a suitable equilibrium state. This
state differs between the DGPE and SGPE approaches: for
the SGPE, the initial condition [of the noisy field denoted by
� in Eq. (1)] is dynamically obtained at each temperature by
equilibration with the higher energy heat bath atoms (see, e.g.,
Refs. [27,41–43]). For the DGPE, we instead use the ground
state of the GPE as the initial state φ(z,0) in Eq. (4), which
is obtained efficiently by imaginary time propagation of the
GPE. We make the latter choice because the imaginary time
solution to the GPE is also the ground state of the DGPE,
the action of which is to drive the system toward this state,
at a rate related to γ . If instead we were to start with the
SGPE initial condition as an input to the DGPE, this would
mean the system was already out of equilibrium, even prior to
introducing a perturbation such as a dark soliton.

To generate a dark soliton in both stochastic and purely
dissipative simulations, we multiply the equilibrium state by
the soliton wave function

ψsol(z) = ζ tanh(ζz/ξ ) + i(v/c), (5)

where ζ =
√

1 − (v/c)2, ξ is the healing length, and c is the
speed of sound. The input soliton velocity vinput is chosen
here such that |vinput| = 0.25c in order to generate a relatively
deep density notch (which is thus clearly identifiable over
the thermal background noise). We focus on this method of
initial state preparation, rather than full phase imprinting, as
we wish to highlight the role of both the initial and dynamical
thermal noise even for a completely reproducible preparation
mechanism.

As φ(z) of Eq. (4) is a mean field, only one realization
of the DGPE is required at each temperature. For the SGPE
simulations, we must instead generate an ensemble of initial
states {�} consisting of several hundred realizations, which
we initially propagate to equilibrium with the higher-energy
thermal cloud. A qualitative comparison between a single
stochastic realization and its counterpart dissipative simulation
is shown in Fig. 2. Although the soliton follows a damped
trajectory in each case, the stochastic approach (upper plot)
additionally incorporates the effect of fluctuations upon soliton
visibility, which is an effect of much relevance to experimental
soliton studies. We will find later that these fluctuations
also lead to a distribution of soliton trajectories and that
some solitons have very long lifetimes relative to the average
behavior captured by the purely dissipative equation of motion.

The equilibrium state is parametrized by the chemical
potential μ and temperature T , and both μ and γ (z; μ,T)
remain the same between the SGPE and DGPE simulations
(the temperature dependence in the DGPE arises only through
γ , while the strength of the noise in the SGPE is also
temperature dependent). In order to probe the strongly phase-
fluctuating regime and unless otherwise specified, we choose
to work for the remainder of this paper with realistic trapping

FIG. 2. (Color online) Illustrative dissipative dark-soliton dy-
namics in the (top) presence or (bottom) absence of stochastically
sampled fluctuations for T ≈ 1.9Tφ ≈ 0.5Tqc. Dissipative effects
lead to the decay of the soliton in each case, while fluctuations
(in the stochastic simulations) additionally lead to reduced soliton
visibility and less regular oscillations. Data here are for 87Rb
atoms with ωz = 2π × 10 Hz, ω⊥ = 2π × 320 Hz, μ = 30h̄ωz,
and T = 104 nK.

frequencies ωz = 2π × 10 Hz and ω⊥ = 2π × 2500 Hz and
set μ = 395h̄ωz, which corresponds to around 20 000 87Rb
atoms (at T = 0). To strike a balance between practical simu-
lations and interesting dynamics due to the interplay between
dissipation and fluctuations, we focus on a temperature range
T = 150–300 nK. This corresponds to 0.16 < T/Tqc < 0.34
and 6 < T/Tφ < 13, where Tqc = Nh̄ωz/ ln(2N )kB [44] and
Tφ = N (h̄ωz)2/μkB [14] respectively define “characteristic”
temperatures for the onset of density and phase fluctuations.
Hence we deal with a partially condensed Bose gas, which is
well within the phase-fluctuating regime.

III. ANALYSIS OF STOCHASTIC DYNAMICS

The link between the quantization of classical theories
permitting soliton solutions and dissipative quantum systems
was discussed in Refs. [45–47]. There, it was highlighted that
just as the motion of a classical particle within a viscous
environment has both damped and fluctuating components, the
situation is the same in the quantum case. The motion of such
a classical particle can then be characterized by two system
properties, a damping due to the systematic force applied to
the particle and a diffusion related to this interaction [48]. This
was shown to be true also in the quantum case [49], in which
the dissipation manifests instead as a damping of the particle
wave packet center of motion, whereas diffusive effects lead
to a spreading of the wave function for the particle [47]. For
a soliton, the former would lead to a damping of the motion
of the soliton center, while the latter would give rise to an
increased uncertainty in the soliton position.

For soliton solutions to integrable, classical one-
dimensional theories, in which case dissipation has no role, the
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propagation in space is undamped, and the soliton dynamics
is essentially captured by knowledge of the soliton center.
However, in the quantized field theory at finite temperature,
not all degrees of freedom “collaborate” in the formation of the
soliton [47], and the result is a residual interaction that is shown
to lead to a Brownian-type motion of the soliton. Therefore,
the dynamics is no longer entirely captured by knowledge of
the center of mass alone, as the diffusive nature also becomes
important.

In Ref. [47], the Brownian nature of the soliton motion
is related to the coupling of the soliton to the other system
modes and excitations due to the presence of the soliton.
Damping and diffusion in the quantum dissipative system must
be temperature dependent since the excitations that scatter
from the soliton are thermally activated. Returning to the BEC
context, there is an obvious analogy between this work and a
soliton propagating within a finite-temperature BEC.

Studies of weakly interacting, 1D homogeneous Bose
gases, considering the purely dissipative dynamics, found
solitons to decay with a lifetime that varies with temperature
as τ ∼ T −4 for kBT � μ [23,50]. For kBT 	 μ, it was
predicted that τ ∼ T −1. (This temperature dependence was
also found in a study on polarons [46] and in the more
general case of the “quantum impurity problem,” applied
in the setting of a heavy particle within a Luttinger liquid
[51].) The parameters in the present study are chosen such
that 0.8μ < kBT < 1.6μ, meaning we probe an intermediate
temperature regime that is hard to treat analytically yet in
which soliton decay can occur on a convenient time scale. Such
a regime has, in fact, been reached in a number of experiments
on an atom chip (see, e.g., Ref. [52] and references therein),
although this type of setup has yet to be used to observe
the interesting soliton dynamics anticipated in such systems.
Despite this, several recent experiments have nonetheless
provided motivation for modeling beyond purely deterministic
dissipative dynamics, with solitons observed to exist for times
much longer than a reproducible average trajectory could be
produced [5]; indeed, preliminary work on thermal decay
with 0.1μ < kBT < 0.5μ already found a significant spread
in single trajectories [20], and such an effect is expected
to be amplified as fluctuations become more important. The
necessity for repeated runs in the SGPE formalism also has a
strong link to the experimental approach of repeatedly creating
successive BECs, which makes it straightforward to closely
follow experimental procedures using the SGPE.

Finally, we note that Ref. [50] discussed the fact that a full
treatment of the soliton dynamics should satisfy a fluctuation-
dissipation theorem, which is not the case in retaining only
the damping aspects of the thermal background. Fluctuations,
however, complicate the analysis of experiments and the
stochastic simulations we have undertaken, as discussed in
the following section.

A. Extracting soliton information

Within the SGPE approach, observables are obtained by
sufficient averaging over many stochastic realizations. For
example, the density for an average over N noise realizations,
�1,�2, . . . ,�N ≡ {�}N , is given by 〈n(z)〉 = 〈�∗(z)�(z)〉 =
(1/N )

∑N
i=1 �∗

i (z)�i(z). In order to extract information on
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FIG. 3. (Color online) (a) Average density profile from an
ensemble of stochastic simulations, with each realization containing
an initially static, black soliton. Thermal diffusion of individual
solitons leads to the initially very deep notch average density
becoming gradually filled. Snapshots are shown at several times
between the initial state (black solid line) and the final state (green
dot-dashed line). (b) Growth of the average central density tends
toward the equilibrium value, as the soliton is lost in the average
density profile, even though the solitons are still present within
individual runs (see Fig. 4).

the soliton present within each stochastic realization, we find
we must extract the soliton trajectory prior to performing any
averaging. If we instead simply average over the set of density
profiles to obtain 〈n(z)〉, the soliton is quickly found to be
“washed out,” despite the fact that a soliton is still present
within each individual realization �1,�2, . . . ,�N ; this may be
understood from the fact that after some time solitons within
different realizations are likely to be at different positions, so
averaging over many such density profiles quickly leads to a
loss of information on the individual soliton positions.

This effect is illustrated for the case of an initially static
soliton in Fig. 3. The average density is plotted in Fig. 3(a),
showing the “average soliton” filling up over time; the
density at the center of the sample, where the soliton is
initially positioned, is shown in Fig. 3(b) and grows toward
the equilibrium value, with a growth in time that goes as
∝ [1 − exp(−�t)], with � (>0) being the growth rate. The
experimental analog of this effect was discussed in Ref. [20],
where it was noted that it is indeed single-shot soliton runs
that should be analyzed to measure decay, rather than averaged
images, as the soliton contrast is quickly found to be smeared
out in the latter. In addition, Dziarmaga analyzed the diffusion
of a soliton due to quantum fluctuations [53], while here it
is thermal fluctuations that cause the diffusion process (see
also [21,22,54–57]).

While soliton depth, or contrast, is quickly lost in average
images due to statistical effects on the motion, we now look
at the fate of the solitons residing within each single SGPE
realization. This is illustrated in Fig. 4, where we instead
consider a moving soliton. The soliton depth nsol is measured
relative to the background density, meaning, for example, nsol
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FIG. 4. (Color online) (a) Average density profile containing a
moving soliton (|vinput| = 0.25c); (b) same data as (a), but focused on
the soliton region. The average density is a sum over many individual
density profiles, each containing a soliton. The notch in the average
density profile becomes filled quickly because the solitons in each of
the individual realizations follow slightly different paths and quickly
end up at different positions. (c) Average of the individual soliton
depths: the soliton is first located within each individual stochastic
realization, and then its depth is measured. The average of these
depths remains nearly constant, which shows a deep soliton remains
within each individual run, despite this information being lost in the
average density profile. Information on the soliton depths is lost in the
average density profile because the individual soliton density notches
in each run are, in general, at different spatial points. This implies that
soliton information should be extracted from each realization prior to
any statistical analysis.

equal to the background density would correspond to the static,
black soliton of Fig. 3. As in the case of a static soliton, the
moving soliton is quickly lost in the average density profile,
as shown by the density snapshots of Figs. 4(a) and 4(b).
However, if we look instead at Fig. 4(c), then we see that
each single stochastic realization in fact still contains a very
deep soliton: this plot shows the result of measuring nsol, the
depth of the soliton relative to the background density, within
each individual realization of the ensemble {�}N . Figure 4(c)
shows the average of this set of depths 〈nsol〉. This average
depth is quite different to that obtained by averaging over the
individual density profiles [i.e., calculating 〈�∗(z)�(z)〉 as in
Figs. 4(a) and 4(b)], as importantly the soliton is first located
within a single realization (and this location generally varies
from realization to realization) before information on its depth
is extracted. Simply averaging the density profiles of individual
runs after some time leads to a smooth profile, as the soliton
density minimum in a particular run becomes outweighed by
the higher number of runs in which there is no soliton at that
particular spatial point. In our analysis, we therefore follow the
density notch associated with the soliton present within each
realization, as found also to be experimentally most consistent
when considering soliton decay [20].

We can only track a soliton until the point where it becomes
indistinguishable over the background density fluctuations,

100 150 200 250 300 350
T (units of nK)

0.15

0.2

0.25

0.3

0.35

v(
t=

0)
/c

FIG. 5. (Color online) Comparison of the average measured
soliton velocity (black circles) to the input velocity (dashed brown
line) for various temperatures. The error bars indicate the standard
deviation of the measured velocities.

which defines the soliton decay time (in an analogous
manner to experimental observations). Carrying this out for
many individual realizations leads to an ensemble of soliton
trajectories and decay times, which we can then analyze.
This means of extracting data from the stochastic simulations
appears consistent with the idea of the soliton center as a good
quantum dynamical variable [47].

B. Spread in initial soliton velocity

As discussed in Sec. II D, we introduce a soliton of
prescribed velocity (|vinput| = 0.25c) in an identical manner
within each simulation. Despite this, one might expect a spread
in initial velocities due to the the fluctuating background
density, n = |�|2, and the formula relating this to the soliton
velocity, v/c = √

1 − nsol/n. Figure 5 shows the mean initial
velocities from a few hundred realizations versus temperature,
with error bars showing the standard deviation. This plot
shows a tendency for the soliton velocity to be lower than
the prescribed value (shown by the dashed horizontal line) for
higher temperatures and, consequently, larger fluctuations.

C. Influence of initial vs dynamical noise

In addition to a variation in initial velocities, fluctuations
due to the dynamical noise term of the SGPE also affect the
solitons throughout their lifetimes (see, e.g., Ref. [58] for
related work on fluctuations during vortex decay). We use
the decay time, i.e., the time at which our tracking algorithm
can no longer distinguish a soliton over the background noise,
as an observable to measure the soliton dynamics.

To study the relative importance of initial versus dynamical
noise, we construct a scatterplot [see Figs. 6(a)–6(e)] showing,
on the x axis, the initial velocity v(t = 0) scaled to the input
velocity used for deterministic soliton creation vinput. On the
y axis, we show the decay time τ scaled to the ensemble
average 〈τ 〉. The vertical dashed red line indicates the velocity
vinput, while the horizontal dashed line indicates the ensemble-
average decay time 〈τ 〉. At all but the lowest temperature
of Fig. 6(a), there are more points to the left of the expected
velocity (vertical dashed line) than the right, suggesting that the
soliton generated within many of the realizations had a velocity
that was lower than the input velocity of Eq. (5) (consistent
with Fig. 5).

Looking instead at the vertical trend, we see that at each
temperature there are several solitons that exist for very long
times relative to the ensemble average (horizontal dashed line).
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FIG. 6. (Color online) Scatterplots showing decay times, scaled to the ensemble average (y axis), vs initial soliton velocity, scaled to the
input velocity (x axis), when T is (a) 150 nK, (b) 175 nK, (c) 200 nK (d) 250 nK, and (e) 300 nK. (f) The standard deviation in the decay times
(solid blue line) and initial velocities (dashed green line) vs T .

Two examples of such long-lived trajectories are shown in the
bottom rightmost plots of Fig. 7.

The data of Fig. 6 also allow us to indicate whether it is the
variation in initial velocities or the dynamical noise that has
greatest influence on the variation in soliton dynamics. The
relative variation due to each of these effects is quantified in
Fig. 6(f), which shows the standard deviation for each quantity,
scaled to the relevant mean. It is clear that the relative spread
in the decay times is far greater than the spread in the initial
velocities, indicating that the dynamical noise has a larger
cumulative influence on the observed variation in the soliton
dynamics.

Figure 7 summarizes the large variation in soliton dynamics
that is observed, despite the identical means of soliton
generation employed. The top panel shows a histogram of
soliton decay times, with a selection of representative soliton
trajectories in the panels below. The color and position of the
trajectories in the lower plots correspond to the highlighted
bins of the histogram.

In the case of the leftmost and middle plots, we see the
trajectories are no longer oscillatory after some time and
instead become noisy. This is the point at which the soliton
is lost and defines the decay time (after which the graph
simply represents numerical noise). The middle plots show
trajectories for solitons from the bin containing the mean
decay time (fifth bin from left, highlighted blue), which are
typically very close to the trajectory obtained from the DGPE
simulation at this temperature. Finally, in the rightmost plots,
we consider a bin corresponding to decay times which are
longer than the ensemble mean; their amplitudes are far below
that of the purely dissipative trajectory, shown by the dashed
green line, indicating that the noise can act in some cases

to stabilize a soliton against decay, relative to the purely
dissipative evolution at the same temperature.

D. Distribution of soliton decay times

An example of the distribution of decay times at T =
200 nK is shown in Fig. 8. It is clear that the distribution
of soliton decay times is non-Gaussian, and we instead find it
to be well fitted by a lognormal distribution,

P (τ ) = 1

τσ
√

2π
exp

[−(ln τ − m)2

2σ 2

]
, (6)

where m is the mean and σ is the standard deviation of ln τ . A
lognormal model is often applied to a system where decay
is due to random events, which give rise to a decay rate
proportional to the amount of decay already present, so in other
words a runaway process. For example, Kolmogorov suggested
that for anything that decays in this multiplicative way, the time
to failure should follow a lognormal distribution [59].

This distribution has a long tail at large decay times,
which reflects the finite probability of some long-lived solitons
within a given ensemble of simulations. Interestingly, extreme
cases of long-lived solitons have been observed experimentally
within single runs, while the typical, reproducible decay time
for the experiment was around an order of magnitude lower [5].
That soliton decay times follow a lognormal distribution is a
possible reason for this observed behavior.

It is also interesting to note that a lognormally distributed
soliton amplitude, which we denote S(t ; γ,μ), would solve a
stochastic equation of the form

dS(t ; γ,μ) = mS(t ; γ,μ)dt + σS(t ; γ,μ)dW, (7)
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FIG. 7. (Color online) (top) Histogram of stochastic soliton decay times and (bottom) two representative sets of trajectories from the
highlighted bins. The solid lines in the bottom plots show stochastic trajectories, while the dashed green lines is the purely dissipative result.
The left, middle, and right plots have decay times within the corresponding left, middle, and right highlighted histogram bins. The trajectories
from the middle highlighted bin have a decay time close to the mean value, and we find the trajectories to be qualitatively similar to that of the
dissipative case.

which is the stochastic differential equation defining a geo-
metric Brownian motion (here m is the average growth rate, σ
is the so-called volatility, and dW denotes a Weiner process).
As the soliton depth determines how far from the trap center
the turning point of the motion is, it is therefore directly related
to the amplitude of the oscillations. In turn, as the decay time
is determined by reaching a certain depth, then we expect
the distribution in this variable to display a similar lognormal
distribution. This would imply that the amplitude of the soliton
oscillations undergoes a lognormal random walk.

Equation (7) should also be compared to the subcritical
soliton equation of motion derived in Ref. [21] and also that
discussed in Sec. IV [Eq. (24)]. The latter two predict soliton
oscillations with an exponentially increasing amplitude enve-
lope dependent upon the damping, and the solution to Eq. (7)
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z

-1
)

0
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0.03

P
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)

SGPE data (T=200nK)
lognormal fit

FIG. 8. (Color online) Histogram of soliton decay times for an
ensemble of few hundred SGPE runs (solid black circles) and a fit to
a lognormal distribution (dotted blue line).

would also correspond to such an exponential function in the
limit that σ → 0 (or, equivalently, fluctuations are neglected).
Conversely, fluctuations might be introduced retrospectively
to the dissipative model by allowing the damping to become
a stochastic variable: a similar idea has been applied in
describing the collisions between optical solitons [60], where
it was found that collisions could be described by a nonlinear
Schrödinger equation perturbed by stochastic parameters
obeying strongly non-Gaussian statistics. Interestingly, in this
case the soliton amplitude was also found to be lognormally
distributed.

E. Decay times vs T : Analyzing the distributions

In order to extract meaningful quantities from our results,
we must analyze the distributions of decay times that we obtain
from the stochastic simulations. To do so, we proceed by fitting
a normalized histogram of decay times at each temperature to
Eq. (6). At each temperature, we find that the fit matches the
numerical data well, suggesting that the underlying mechanism
of the soliton decay is multiplicative in nature. The results
of fitting the decay times for all temperatures considered are
shown in Fig. 9; the inset shows the same data with the x axis
on a log scale. We can see from the main plot of Fig. 9 that
the distributions of decay times become increasingly shifted
toward the origin with increasing temperature, as dissipative
effects reduce the soliton lifetimes. The inset highlights that it
is the logarithm of the decay times that is Gaussian distributed.
From the inset it is clear also that the variance of ln(τ ) increases
as temperature is increased.

An analysis of the behavior of the decay time distributions
with temperature is given in Fig. 10. To extract the average
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FIG. 9. (Color online) Lognormal probability distributions ob-
tained from fitting soliton decay time histograms obtained at the
temperatures indicated. The inset shows the same data with a log-scale
x axis; it is the logarithm of the decay time, which is Gaussian
distributed.

soliton behavior, we consider first the expectation value 〈τ 〉,
which for the lognormal distribution of Eq. (6) is given by
〈τ 〉 = exp [μ + σ 2/2]. The variance is instead calculated as
Var(τ ) = [exp (σ 2) − 1] exp (2μ + σ 2), and we use

√
Var(τ )

to generate the error bars in the SGPE data of Fig. 10(a).
Referring to Fig. 10(a), we find that 〈τ 〉 for the SGPE results

(black circles) closely follows a T −4 behavior [55], shown
by the brown dashed line. Therefore the average behavior
follows the same scaling predicted by the models in [23,50]
for kBT � μ. We work instead in the regime where kBT ∼
μ, which is difficult to treat analytically; however, we find
the low-temperature result to extend to this regime as well
(although our numerical method also relies on the classical
field approximation).

In order to compare meaningfully between the current
SGPE analysis and the DGPE soliton dynamics, we must

account for the changing level of background density fluc-
tuations as temperature is varied within the SGPE [21,55].
To do so we have measured the minimum depth at which
solitons can still be resolved in the SGPE runs, at each
temperature [61]. This is then used to extract a soliton decay
time within the DGPE simulations, i.e., the time for the soliton
to decay to the temperature-dependent depth extracted from the
SGPE simulations. The numerical DGPE results are shown by
the solid red diamonds in Fig. 10(a) and display very good
agreement with the ensemble-average stochastic results 〈τ 〉.
We additionally show the results of our analytic model for
the DGPE dynamics (open green squares), which is discussed
in Sec. IV. The decay times obtained within this model also
agree well with the numerical DGPE and SGPE results, when
limits on the soliton visibility due to thermal fluctuations are
accounted for (see Sec. V for details).

As indicated above, the SGPE decay time distributions are
not symmetric (see Fig. 9) and feature a long tail at long soliton
lifetimes for all temperatures considered. Our results suggest
also that the noise stabilizes a certain number of solitons
created within each stochastic ensemble of realizations against
decay, relative to a soliton undergoing purely dissipative
dynamics under the DGPE. This was also apparent from the
decay time histograms shown in Refs. [21,55]. The inset in
Fig. 10(a) shows the cumulative distribution function D(τ ),
which measures the fraction of solitons that have decayed
at any time, based on the P (τ ) curves of Fig. 9. Clearly,
dissipative effects are more dominant in the high-temperature
data, with all solitons found to have decayed at relatively short
times. That the cumulative distribution function has a slow
asymptote toward unity is another way to see that some fraction
of the solitons live for far longer than the average decay time.
It is also interesting to note that, scaling the time axis in each
curve to the average at that temperature 〈τ 〉, we find each graph
collapses down close to a single curve.
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FIG. 10. (Color online) Analysis of the decay time distributions: (a) Expectation value of the SGPE soliton decay time (black circles;
error bars denote one standard deviation) vs temperature. Corresponding DGPE decay times are also shown (solid red diamonds) along with
a fit to the function ∝ T −4 (brown dashed line). Green squares show analytical predictions from the analysis of Sec. IV; the inset shows
the cumulative probability distribution: the fraction of solitons that have decayed vs time for each temperature. (b) SGPE expectation value
(solid black line) compared to the geometric mean [brown (gray) solid line] and modal (green dot-dashed line) values for each temperature;
(c) standard deviation and (d) skewness of τ vs temperature.
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Figure 10(b) compares several different measures of the
distribution function: the arithmetic mean, or 〈τ 〉, the geomet-
ric mean and the modal value. Comparing these, we see that
the modal values give consistently lower decay times than the
expectation value, which is a consequence of the peak in the
distributions of Fig. 9 being located to the left of the mean.

In Fig. 10(c) we measure the standard deviation of τ , scaled
to 〈τ 〉, which shows that the relative spread of the distributions
increases monotonically with T . This is as one might expect,
given that higher temperatures give rise to more fluctuations
and so a wider variation between realizations. This also shows
that while the lowest temperature distribution of Fig. 9 appears
far wider than the highest temperature case, the scaled standard
deviation (s.d.) illustrates that it is actually smaller. Finally,
Fig. 10(d) shows the skewness of the distribution functions,
which is also found to increase with temperature.

Next, we choose to decouple the effects of fluctuations and
damping and consider the dissipative behavior alone through
the mean-field DGPE. A crucial ingredient in both the analytic
and numerical calculations which we present is the form of the
damping term, which we obtain from the SGPE formalism.

IV. ANALYTICAL APPROACH FOR
DISSIPATIVE DYNAMICS

We now consider the DGPE of Eq. (4). In order to proceed
with analytical calculations, we first characterize the form of
γ (z) in terms a simple analytical fitting function. We find the
dissipation γ (z) to be well approximated at all temperatures
considered by the function

γ (z) = a

(z + c)2 + d
+ a

(z − c)2 + d
, (8)

which is the sum of two Lorentzians, centered near the edge
of the quasicondensate. The parameters a, c, and d depend in
general on temperature T , the trapping frequencies, chemical
potential, and atomic species (although all except T remain
fixed in our analysis). Various values of these parameters,
indicating their temperature dependence, are provided in
Table I.

We will make use of the form given by Eq. (8) in the
following section, in which we generalize our previous work
on spatially constant dissipation reported in Ref. [21], by
developing analytic solutions for the more general case of
spatially varying dissipation.

TABLE I. Values of the parameters a, c, and d [cf. Eq. (8)] for
various values of temperature T .

T (nK) a c d

125 0.0137 26.86 2.555
150 0.0219 26.63 3.128
175 0.0330 26.43 3.464
200 0.0511 26.29 4.838
250 0.1031 25.93 7.114
300 0.1812 25.69 9.860

A. Analytical approximations

To perform our analytical work based on perturbation
theory for dark solitons we follow the “routine” procedure
of rescaling the equation in appropriate units. In particular,
the 1D DGPE model may also be written in the following
dimensionless form:

[i − γ (z)]∂tψ = [− 1
2∂2

z + V (z) + |ψ |2 − μ
]
ψ, (9)

where the density |ψ |2, length, time, and energy are respec-
tively measured in units of 2a, a⊥ = √

h̄/mω⊥, ω−1
⊥ , and h̄ω⊥.

In the case of a harmonic trap, the external potential takes
the form V (z) = (1/2)�2z2, where � = ωz/ω⊥ � 1 is the
normalized trap strength, which is a naturally occurring small
parameter of the system. The function γ (z), which accounts
for the dissipation, takes the form given in Eq. (8).

We now seek a solution of Eq. (9) in the form ψ(z,t) =
ψb(z,t) exp[−iθ (t)]υ(z,t), where ψb(z,t) and θ (t) denote the
background amplitude [which can be approximated in the
framework of the Thomas-Fermi (TF) approximation] and
phase, respectively, while the unknown complex function
υ(z,t) represents a dark soliton. Assuming that the condensate
dynamics involves a fast relaxation scale to the ground state
and that the dark soliton evolves on top of this ground state, we
obtain the following perturbed nonlinear Schrödinger equation
for the dark-soliton wave function [21]:

i∂tυ + 1
2∂2

z υ − (|υ|2 − 1)υ = P (υ), (10)

where we have used the rescalings t → μt and z → √
μz. The

total perturbation P (υ) in Eq. (10) has the form

P (υ) = 1

2μ

[
2(1 − |υ|2)V (z)υ + dV

dz
∂zυ + 2μγ (z)∂tυ

]
.

(11)

In the absence of the perturbation [P (υ) = 0], Eq. (10)
is a conventional defocusing nonlinear Schrödinger (NLS)
equation, which possesses a dark-soliton solution of the form
[62]

υ(z,t) = cos ϕ tanh Z + i sin ϕ, (12)

where Z = cos ϕ [x − (sin ϕ)t] and ϕ is the “soliton phase
angle” (|ϕ| < π/2) describing the darkness of the soliton
through the expression |υ|2 = 1 − cos2 ϕsech2Z; note that the
limiting cases ϕ = 0 and cos ϕ � 1 correspond to the so-called
black and gray solitons, respectively [63,64].

The effect of perturbation (11) on the dark soliton will be
treated analytically by means of the adiabatic approximation of
the Hamiltonian approach of the perturbation theory for dark
solitons. This approach was introduced in Ref. [65] for the case
of a constant background density and was subsequently used
for trapped BECs in Ref. [66] (see also the review of Ref. [64]
and our previous work [21]). According to this approach, the
parameters of the dark soliton (12) become slowly varying
functions of time t , but the soliton’s functional form remains
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unchanged. Thus, the soliton phase angle becomes ϕ → ϕ(t),
and as a result, the soliton coordinate becomes Z → Z =
cos ϕ(t)[z − z0(t)], where

z0(t) =
∫ t

0
sin ϕ(t ′)dt ′ (13)

is the soliton center. The evolution of the parameter ϕ is
described by the following equation [63–65]:

dϕ

dt
= 1

2 cos2 ϕ sin ϕ
Re

{∫ +∞

−∞
P (υ)∂tυ

∗dz

}
. (14)

The integral in Eq. (14) involves three terms [cf. Eq. (11)]:
the first two terms (accounting for the Hamiltonian part
of the perturbation) can readily be evaluated upon expanding
the potential V (z) in Taylor series around the soliton’s center
z0; on the other hand, the third term (accounting for the
dissipative part of the perturbation) can be evaluated by
approximating the function γ (z) by its Taylor expansion
around the trap center (z = 0). This expansion reads

γ (z) ≈ γ0 + γ2z
2 + γ4z

4 + γ6z
6, (15)

where the constant coefficients are given by

γ0 = 2a/(c2 + d),

γ2 = 2a(3c2 − d)/(c2 + d)3,

γ4 = 2a(5c4 − 10c2d + d2)/(c2 + d)5,

γ6 = 2a(7c6 − 35c4d + 21c2d2 − d3)/(c2 + d)7. (16)

Using, as an example, the values of a, c, and d correspond-
ing to T = 150 nK (cf. Table I), in Fig. 11 we compare the
fit to γ (z) given by Eq. (8) with the approximate expansion
of Eq. (15). More specifically, we focus on the spatial interval
of [−R/2,R/2] (where R is the TF radius of the cloud; see
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FIG. 11. (Color online) A comparison of γ (z) as given by
Eq. (2) (solid black line), the fit given by Eq. (8) (dashed brown
line), and the approximation of Eq. (15) (dot-dashed blue line) for
T = 150 nK. The dotted red curve depicts the mean value of γ (z)
over |z|�R/2, while the vertical dotted green lines indicate the points
z = ±R, which define the rims of the TF cloud. The inset shows a
magnification of this figure for the spatial interval [−R/2,R/2]: there,
the agreement between the fit to γ (z) [Eq. (8); dashed brown line]
and the approximate form of this [Eq. (15); dot-dashed blue line]
is excellent, as the corresponding curves essentially coincide and
become indistinguishable.

the inset in Fig. 11): this interval is particularly relevant for
our analytical and numerical considerations (see below), as
we are mainly concerned with solitons moving close to the
trap center. As seen in Fig. 11, in this regime, the approximate
expression is almost identical to the more accurate one, thus
justifying the degree of approximation used in Eq. (15).

To this end, using the approximate expression of Eq. (15),
calculation of the integral in Eq. (14) leads to the following
result:

dϕ

dt
= −1

2
cos ϕ

dV

dz
+ γ0

2

3
μ cos ϕ sin ϕ

+ γ2
(π2 − 6)

18
μ tan ϕ

+ γ4
π2(7π2 − 60)

360
μ tan ϕsec2ϕ

+ γ6
π4(31π2 − 294)

2016
μ tan ϕsec4ϕ. (17)

Next, combining Eqs. (17) and (13), we obtain the following
effective equation of motion for the dark-soliton center:

d2z0

dt2
=

[
γ0

2

3
μ

dz0

dt
−

(
�√

2

)2

z0

] [
1 −

(
dz0

dt

)2
]

+ dz0

dt

{
γ2

(
π2 − 6

18

)
μ

+ γ4

(
π2(7π2 − 60)

360

)[
1 −

(
dz0

dt

)2
]−1

μ

+ γ6

(
π4(31π2 − 294)

2016

)[
1 −

(
dz0

dt

)2
]−2

μ

}
.

(18)

Notice that a variant of Eq. (18), corresponding to γ2 = γ4 =
γ6 = 0, was presented in Ref. [21], where the function γ (z) was
approximated by the constant value γ0 (which is close to the
mean value of γ (z) in the interval [−R/2,R/2]; see Fig. 11).
Nevertheless, here we are going to analyze the more general
problem and investigate the dissipative dynamics of solitons
taking into account the effect of the spatially dependent profile
of γ (z).

Here we should note that there appears to be a singularity
in the solutions of Eq. (18), corresponding to velocity values
dz0/dt = 1, for which Eq. (18) becomes invalid. This is also
consistent with the analysis of Ref. [67], where it is shown
that formal perturbation theory fails for extremely shallow
dark solitons (with phase angles ϕ ≈ π/2). In any case, in
the physically relevant scenarios that we consider in our
simulations below, solitons are observed to decay at the rims
of the condensate at times smaller than the one needed for the
soliton velocity to become dz0/dt = 1.

B. The equation of motion for the soliton center

The equation of motion (18) is evidently nonlinear. Never-
theless, assuming that the dark soliton is close to a black one
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(i.e., ϕ is sufficiently small), Eq. (17) can be reduced to the
following linearized form:

d2z0

dt2
− γ̃0μ

dz0

dt
+

(
�√

2

)2

z0 = 0, (19)

where we have introduced the variable

γ̃0 = 2

3
γ0 + (π2 − 6)

18
γ2 + π2(7π2 − 60)

360
γ4

+ π4(31π2 − 294)

2016
γ6. (20)

Equation (19) is similar to the equation of motion derived
in Ref. [23] by means of a kinetic-equation approach. In the
limiting case of zero temperature (i.e., for γ̃0 = 0), Eq. (19)
recovers the well-known result (see, e.g., Refs. [15,16,23,66–
69]) that a dark soliton oscillates with constant amplitude and
frequency �/

√
2 in the harmonic trap V (z) = (1/2)�2z2. On

the other hand, at finite temperatures (i.e., for γ̃0 �= 0), the
linearized equation of motion (19) additionally incorporates
an antidamping term, ∝ −dz0/dt [with a coefficient that takes
into account the spatial dependence of γ (z)], which describes
the expulsion of the dark soliton due to the interaction with the
thermal cloud.

It is clear that the nature of the solutions of Eq. (19)
depend on whether the roots of the auxiliary equation s2 −
(2/3)γ̃0μs + (�/

√
2)2 = 0 are real or complex. The roots are

given as

s1,2 = 1

3
γ̃0μ ±

(
�√

2

) √
�, � =

(
γ̃0

γcr

)2

− 1, (21)

where γcr = (3/μ)(�/
√

2), and the discriminant � deter-
mines the type of the motion: In the supercritical case of
strong antidamping with � > 0, i.e., for high temperatures
such that γ̃0 > γcr , the soliton trajectory is given by

z0(t) = 1

s2 − s1
{[s2z0(0) − ż0(0)] exp(s1t)

+ [ż0(0) − s1z0(0)] exp(s2t)}. (22)

In the critical case with � = 0, i.e., γ̃0 = γcr , thesoliton
trajectory is given as

z0(t) =
{
z0(0) +

[
ż0(0) − 1

3
γ̃0μz0(0)

]
t

}
exp

(
1

3
γ̃0μt

)
.

(23)

Finally, in the subcritical case of weak antidamping with � <

0, i.e., for sufficiently low temperatures such that γ̃0 < γcr , the
soliton trajectory is given by

z0(t) = exp

(
1

3
γ̃0μt

) {
z0(0) cos(ωosct)

+ω−1
osc[ż0(0) − γ̃0μz0(0)] sin(ωosct)

}
, (24)

where

ωosc =
(

�√
2

) ⎡
⎣1 −

(√
2

3

γ̃0μ

�

)2
⎤
⎦ (25)

is the soliton oscillation frequency.

The above simple analysis shows that in the case of
relatively high temperatures (with γ̃0 � γcr ), the dark soliton
will not “survive” long enough to oscillate in the trap, a result in
qualitative agreement with experimental observations of dark
matter-wave solitons in elongated Bose gases [1]. On the other
hand, when the temperature is relatively low (i.e., γ̃0 < γcr ),
the dark soliton performs oscillations with an increasing
amplitude and period; recall that the oscillation frequency is
downshifted as per Eq. (25) with respect to its value �/

√
2

at zero temperature. These analytical results are in qualitative
agreement with the numerical ones obtained recently in the
framework of the Zaremba-Nikuni-Griffin model [18,70].

C. Nonlinear vs linearized equations of motion

To assess the above model, we now compare analytical
[Eqs. (18)–(20)] and numerical [Eq. (9) with (8)] soliton tra-
jectories, in each case making use of the approximate form for
γ (z) employed in the analytical approach. First, we consider
Eq. (9), with γ (z) given in Eq. (15), with an initial condition
corresponding to a dark (black) soliton, initially placed off
center at z0(0) = 2 (with zero initial velocity, dz0(0)/dt = 0),
on top of a TF cloud, with μ = 1, confined in a trap of
strength � = 0.05. The resulting soliton trajectories, found by
integrating Eq. (9) by means of the split-step Fourier method,
are shown in Fig. 12 for the supercritical (γ̃ /γcr = 1.89,
top plot), critical (γ̃ = γcr = 0.106, middle), and subcritical
(γ̃ /γcr = 0.09, bottom) cases. The black dashed lines in each
plot depict the numerically obtained solutions of Eq. (18),
while the white dashed lines show the corresponding analytical
solutions of Eq. (19).

Generally, it is observed that the results based on our
analytical approximations, i.e., the solutions of Eqs. (18) and
(19), which were derived by employing the approximate form
of γ (z) [cf. Eq. (11)], are in good agreement with the numerical
results obtained by the DGPE with the exact form of γ (z) [cf.
Eq. (15)]. Nevertheless, the solutions of the nonlinear equation
of motion (18) are more accurate than the analytical solutions
of Eq. (19) in capturing the soliton trajectories obtained by
the DGPE. This behavior is more pronounced for longer
times, where the soliton either decays (top and middle panels
of Fig. 12) or performs large-amplitude oscillations (bottom
panel of Fig. 12): in fact, the solutions of the nonlinear equation
of motion are able to correctly predict the decay time of the
solitons [which is underestimated by the solutions of Eq. (19)]
in the supercritical and critical cases of strong dissipation or
follow quite accurately the DGPE trajectory in the subcritical
case of weak dissipation; notice that, in the latter case, the
analytical solution of Eq. (19) underestimates (overestimates)
the frequency (amplitude) of oscillation for longer times.

We now proceed with a systematic comparison between
analytical approximations, focusing on the more accurate
nonlinear equation of motion (18) and numerical (DGPE and
SGPE) results.

D. Comparison between numerical (SGPE and DGPE) results
and analytical approximations

To ensure long soliton lifetimes for this comparison, we
focus on one of the lower temperatures within our study,
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FIG. 12. (Color online) Spatiotemporal evolution of the density
of a BEC confined in a harmonic trap with � = 0.05 (ωz = 2π ×
10Hz) and μ = 1 [in the scaled units of Eq. (9)], with a dark (black)
soliton initially placed at z0 = 2 for the supercritical case with
γ̃0/γcr = 1.89 (top panel; a = 84.44, c = 21.67, and d = 93.97),
critical case with γ̃0/γcr = 1 (middle panel; a = 43.67, c = 22.19,
and d = 59.16), and subcritical case with γ̃0/γcr = 0.09 (bottom
panel; a = 4.53, c = 23.89, and d = 19.72). Here γcr = 0.106. The
white dashed lines across the soliton trajectories correspond to the
analytical prediction of the linearized equation of motion Eq. (19),
while the black dashed lines are obtained by numerically solving the
nonlinear equation of motion Eq. (18).

T = 150 nK, which nevertheless still corresponds to kBT =
0.8μ. We perform a direct numerical integration of the DGPE,
Eq. (9) [with γ (z) given by Eq. (8)], and compare this to
respective results obtained via the analytic Eq. (18) and SGPE
models.

In Fig. 13, we show the soliton trajectories found via the
DGPE and the SGPE as well the solutions of the nonlinear
equation of motion (18) stemming from our analytical ap-
proximations. The initial condition takes the form of a dark
soliton, initially placed at the trap center z0(0) = 0 with initial
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0.5

1
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: SGPE
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FIG. 13. (Color online) Soliton trajectories as found by the
numerical integration of the DGPE (solid black line), the SGPE
(dash-dotted red line; single run with a decay time from the mean
bin), and the nonlinear ordinary differential equation (ODE), Eq. (18)
(dashed green line) for T = 150 nK. Here a = 0.0219, c = 26.63,
and d = 3.128.

velocity dz0(0)/dt = 0.25 (the other parameters are also the
same as those given at the end of Sec. II D). It is clear that
the numerical solution of the DGPE accurately captures that
of the SGPE (similar to the behavior found in Ref. [21]) and
also that the result of the analytical approximation is in very
good agreement with the numerical results of both the DGPE
and SGPE. The SGPE trajectory shown is from a single run
with a decay time close to the ensemble average; for these
parameters, such trajectories were found to display dynamics
close to the ensemble average in Ref. [21].

A further comparison between the analytical model above
and the SGPE/DGPE can be seen in Fig. 10, where the
predicted average decay times are plotted. In order to make
this comparison, the decay times in the analytical model
must be extracted based on the visibility of the soliton over
the background thermal fluctuations, as we discuss in the
following section.

V. SOLITON VISUALIZATION

A. Single-shot-fluctuation issues

A quantity of relevance to experiments is the so-called
visibility of the soliton. This is defined as [71]

V = nmax − nmin

nmax + nmin
, (26)

where nmax is the maximum BEC density and nmin is the
minimum one, as set by the presence of the dark soliton.
This parameter is a measure of how clearly a soliton can be
seen in experiments. The SGPE accounts for both dissipation
and fluctuations and can therefore be expected to produce
experimentally realistic visibility predictions; two examples of
the visibility of solitons produced by the SGPE are shown in
Fig. 14 (top and middle plots), showing an oscillatory decrease
up to the point (denoted by the vertical dashed lines) when the
soliton can no longer be distinguished from the background
density fluctuations.

In the displayed example trajectories, the solitons are lost
to the background when the visibility decreases below around
50%. For comparison, we note that in the Hannover experiment
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FIG. 14. (Color online) Numerical results for the visibility
as a function of time for two example SGPE single runs (noisy
turquoise curve, top plot, and noisy brown curve, middle plot) vs
the DGPE (smooth red curve in top and middle plots); the insets
show the corresponding soliton trajectories. The bottom plot shows
the analytical result (green squares) vs the average visibility from
the SGPE (black circles) and the visibility from the DGPE (red
diamonds); the latter two data sets correspond to the local minima
of oscillations, which can be seen in the top and middle plots. At
this temperature (T = 175 nK), the analytical prediction is very good
up to the point that the soliton can be tracked, although it uses the
approximate form for γ (z) of Eq. (15) while the SGPE and DGPE use
Eq. (2). The stochastic results are examples of solitons with decay
times close to the ensemble mean, indicated by the vertical dashed
line in all plots.

[1], they reported a contrast in the range 20%–40% throughout
their measurements, and a visibility of 50% in our present
work corresponds to a contrast of nmin/nmax ∼ 33%. The
corresponding DGPE prediction is also shown (red curves)
revealing good agreement in the region where the soliton
can actually be monitored over fluctuations in the stochastic
cases (top and middle plots). Clearly, the results become
meaningless beyond that time, as the soliton is then lost within
that stochastic realization; beyond this time the DGPE soliton
signal remains visible, but this is due to incorrectly neglecting
fluctuations.

The periodic behavior in the DGPE and SGPE visibility
arises because the soliton depth oscillates as the soliton
traverses the harmonic trap. The points at which V = 1
correspond to the turning points of the soliton motion, when
the soliton depth is equal to the background density (or
equivalently nmin = 0). Perhaps a better measure is to look
at the evolution at a specific point in the trap, e.g., the trap
center, which corresponds to the minimum visibility during the
dissipative soliton motion. This is shown in Fig. 14 (bottom)
and reveals quite good agreement between DGPE and SGPE,
up to around the time that, on average, the SGPE solitons were
visible.

We now want to consider the corresponding analytical
prediction based on our model of Sec. IV. As when comparing
the numerical DGPE results to those of the SGPE (see Fig. 10),
we again define the condition for soliton decay based upon the
level of background thermal fluctuations obtained from the
SGPE. Then, calculating an expression for the soliton visibility
analytically, we are able to predict analytically the lifetime
of a soliton within a finite temperature gas, accounting for
both dissipation and background fluctuations. Since nmin ∼
μ − μ cos2 ϕ (recall that the soliton depth is

√
μ cos ϕ), the

visibility can be expressed in terms of the soliton’s phase
angle as

V = cos2 ϕ

1 + sin2 ϕ
. (27)

Thus, 0 � V � 1, with the limiting values V = 0 and V = 1
corresponding, respectively, to a shallow soliton with ϕ →
π/2 and a stationary kink with ϕ → 0. Apparently, since
ϕ = ϕ(t), the visibility is generally a function of time, but
its analytical form can be determined via the time dependence
of ϕ(t), which can be derived numerically by means of Eq. (17)
(see Sec. IV A). Nevertheless, it should be noticed that a simple
analytical expression for the visibility can also be obtained in
the case of sufficiently deep solitons (cos ϕ ≈ 1 and sin ϕ ≈ ϕ)
oscillating in a small region around the trap center [i.e., for
V (z = 0) = 0]: in this case, Eq. (17) becomes dϕ/dt = γ̃oμϕ

and leads to the result ϕ(t) = ϕo(t) ≡ ϕ(0) exp(γ̃oμt)] (here
ϕ(0) is the initial value of the phase angle) and, accordingly,
V|z=0 = cos2 ϕo(t)/[1 + sin2 ϕo(t)].

Following the above arguments, we may estimate the
soliton lifetime and the relevant results of the semi-analytical
approximation, Eq. (27), are shown in Fig. 10.

We can also calculate the soliton visibility versus time
analytically, an example of which is shown in Fig. 14 (bottom),
alongside the numerical DGPE and average SGPE results at
the same temperature. The SGPE results in this case are an
average over the visibility from a few hundred runs, which
smears out the oscillatory behavior but yields a bulk behavior
consistent with that of the single realizations above. The
agreement is very good between all approaches during the
period that the soliton is visible over the background noise,
beyond which time (vertical dashed lines), the SGPE visibility
(black circles) plateaus. Here we have chosen to compare
the analytical data to the minima of both the DGPE and
average SGPE oscillations. A departure of the numerical
DGPE results from the SGPE data occurs close to the average
soliton decay time, at which point many of the SGPE solitons
have decayed, leaving a visibility reading in many single runs
which corresponds to the background noise signal. The DGPE
soliton signal instead persists for much lower visibility values
as the physical effects of fluctuations are not included, as
also evident from the comparison of stochastic and dissipative
“carpet plots” of Fig. 2. The analytical results are based on
the Taylor expansion for γ (z) given by Eq. (15), which for
large z is somewhat smaller than the full form of γ (z) used
in the numerical DGPE and SGPE simulations (see Fig. 11).
This difference becomes apparent for times close to and after
the average decay time (vertical dashed line), for which the
numerical and analytical results deviate slightly for this reason.
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Nonetheless, based on the level of background noise within
the SGPE and the analytical formula for the visibility, it should
be possible to predict realistic lifetimes for solitons within
experiments based on this approach.

B. Comments on related work

The study of dark solitons using stochastic and classical
field methods has received significant attention recently
[21,55,72–75]. In particular, the SGPE was applied initially
in parallel, independent works [21,73] and recently also in
Ref. [76]. The analysis presented in Ref. [73] considered dark
solitons as relics due to a quench of the system parameters
within a homogeneous, periodic 1D Bose gas. Notably, the
distribution reported in Ref. [73] describing the number of
solitons with time (Fig. 3 of Ref. [73]) has a form that is
qualitatively similar to the decay time distributions of Refs.
[21,55] and in the present work.

More recently, Wright and Bradley [76] performed a study
that is more closely related to Ref. [21] and our current
analysis based on the stochastic projected Gross-Pitaevskii
equation (SPGPE) [28,77]. (This method is a variant of the
SGPE [38] that features a projector into low-energy modes.)
They found that the stochastic simulations yielded average
velocities that were lower than those found within dissipative
GPE simulations, implying that the solitons have longer
lifetimes, on average, in the stochastic case, i.e., that the
noise prolongs the solitons’ existence. This is in agreement
with the long tails in the decay time distributions of both
Refs. [21,55] and the current work. A similar conclusion
was reached by Martin and Ruostekoski, who studied the
dynamics of dark solitons using a truncated Wigner approach,
again finding that phase fluctuations led to a reduction in the
soliton speed relative to the classically predicted value [74,75].
For truncated Wigner simulations, noise is added only at the
initial time step, and we similarly find that fluctuations in the
SGPE initial state lead to a spread in initial soliton speeds.
As can be seen from Fig. 5 (and also in Ref. [55]), these
speeds have a tendency to be lower than the input velocity
would suggest. Beyond the initial time, simulations based on
the SGPE also indicate that the soliton dynamics is further
affected by the addition of dynamical noise at each time
step.

Furthermore, the analytical findings of Ref. [76], and in
particular Eq. (18) of Ref. [76], arise as a special case of our
previously reported results [21] (see sentence preceding Eq. (6)
in [21]) and, by extension, also of this work, which additionally
treats a spatially dependent dissipative term. This can be seen
from Eq. (17) above by setting V = 0 (for a homogeneous
system) and replacing γ (z) → γ0 (i.e., γ2 = γ4 = γ6 = 0 for
a spatially constant dissipation) and multiplying through by
cos(φ) [78].

Beyond this, it is not straightforward to give a more
direct comparison to their findings for several reasons:
(i) We consider a harmonically trapped system, while they
focused on soliton propagation within a homogeneous sample.
(ii) They measure the increase in velocity as the soliton
decays, which is straightforward without a trap, while in
our case the soliton velocity is constantly changing as it
oscillates; an upshot of this is that the soliton depth does

not change monotonically as it decays but has an additional
oscillatory component, complicating the velocity analysis.
(iii) We analyze the ensemble of solitons via their decay
times and therefore effectively sample members of the SGPE
ensemble at different times, while they consider equal time
measurements of the velocity via an ensemble measurement
at a particular time.

VI. CONCLUSIONS

We have characterized the dynamics of dark solitons prop-
agating within a partially condensed, harmonically trapped
Bose gas in the presence of phase fluctuations. Our analysis
was based on a stochastic Gross-Pitaevskii equation, which
reduces to a dissipative Gross-Pitaevskii equation upon ne-
glecting the additive noise term.

Stochastic simulations allowed us to perform a statistical
analysis on the soliton decay times. Our results showed
that to study soliton decay, information should be extracted
from single soliton realizations prior to performing such an
analysis, in agreement with related experimental findings
[20]. In doing so, we found dark-soliton lifetimes to be
approximately lognormally distributed, which implies that
some solitons within a number of realizations may have
very long lifetimes relative to the ensemble mean, an effect
already observed in experiments [5]. We found the standard
deviation and skewness of these distributions to increase
monotonically and approximately linearly with temperature.
Extracting expectation values from the decay time distribution
obtained at each temperature showed the purely dissipative
results matched these stochastic expectation values well once
the effects of background fluctuations were taken into account.

Considering the interplay between noise in the initial
conditions (used, e.g., in some simpler approximate models)
and the dynamical noise at each temporal step of the stochastic
Gross-Pitaevskii equation, which loosely corresponds to a
stochastic random kick to the soliton position, we found the
dynamical noise to play an important role in determining the
final decay time.

We also presented results for the experimentally relevant
visibility of the soliton and found the soliton decay to be
related to the visibility in our numerical simulations reaching
a plateau (at which point our soliton tracking algorithm breaks
down). The value of the plateau is set by the strength of
the background fluctuations, which is a direct measure of
temperature in these systems.

In the purely dissipative case, we derived analytical
expressions describing the dynamics of the soliton density
notch, with good agreement found between these and the
numerical solution to the dissipative Gross-Pitaevskii equa-
tion, generalizing our earlier work [21] to the case of a
spatially dependent damping, as obtained ab initio within
the stochastic Gross-Pitaevskii formalism. The average soliton
decay times were found to scale as T −4; this has been previ-
ously obtained for homogeneous systems at low temperatures
kBT � μ, but our numerics indicates that (at least within
the classical field approximation for the low-lying modes of
the system) this can be extended to the trapped case and to the
regime for which kBT � μ, even in the presence of phase
fluctuations.
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Observing the dynamics of dark solitons within phase-
fluctuating condensates offers an intriguing opportunity to ob-
serve a macroscopic quantum object undergoing a Brownian-
like motion. We hope that the fluctuating aspects of this
behavior, and especially the dependence on temperature, may
be further analyzed in experiments on ultracold gases in the
near future.
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