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Abstract

We give a linear-time algorithm to compute the cutwidth of threshold graphs, thereby
resolving the computational complexity of cutwidth on this graph class. Threshold graphs
are a well-studied subclass of interval graphs and of split graphs, both of which are unrelated
subclasses of chordal graphs. To complement our result, we show that cutwidth is NP-
complete on split graphs, and consequently also on chordal graphs. The cutwidth of interval
graphs is still open, and only very few graph classes are known so far on which polynomial-
time cutwidth algorithms exist. Thus we contribute to define the border between graph
classes on which cutwidth is polynomially solvable and on which it remains NP-complete.

1 Introduction

The cutwidth problem asks, given a graph G, and a positive integer k, whether there exists a
linear layout of the vertices of G so that any line inserted between two consecutive vertices of the
layout cuts (intersects with) at most k edges. The cutwidth of the input graph is the smallest
integer for which the question can be answered positively. This important graph layout problem
was first proposed as a model to minimize the number of channels in a circuit [1, 19], and more
recently it has found applications in areas like protein engineering [3], network reliability [15],
automatic graph drawing [21], information retrieval [4], and as a subroutine in the cutting plane
algorithm for TSP [14].

Like many other interesting graph problems, cutwidth is NP-complete [8], even when input
graphs are restricted to planar graphs of maximum degree three [20], unit disk graphs, partial
grids [9], and consequently bipartite graphs.

Coping with the NP-completeness of the problem has been mainly channelled via approx-
imation algorithms and fixed parameter algorithms. There is a polynomial-time O(log2 n)-
approximation algorithm for general graphs [17], and a polynomial-time constant factor approx-
imation algorithm for dense graphs [2]. The best known parameterized algorithm for cutwidth
so far runs in linear time (but of course exponential in the parameter k) [22].

Polynomial-time algorithms for the exact computation of cutwidth are known only for very
few graph classes. For certain trivial graph classes, like meshes or complete p-partite graphs,
there exist closed formulas for their cutwidth [10]. Cutwidth of proper interval graphs has a
trivial solution following an interval ordering of the vertices [25]. The cutwidth of trees can
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be computed in O(n log n) time by a sophisticated and technical algorithm [24] (see also [6]).
The cutwidth of graphs having bounded treewidth and maximum degree, can be computed
in polynomial time by advanced methods [23]. The computational complexity of cutwidth on
threshold graphs has been open until now [10].

In this paper, we present an O(n)-time algorithm for computing the cutwidth of threshold
graphs with n vertices. Threshold graphs are a well-studied graph class with a variety of the-
oretical applications [18], and they are both split graphs and interval graphs [5, 12]. Split and
interval graphs are two unrelated subclasses of the widely-known class of chordal graphs. Be-
fore presenting our algorithm for threshold graphs, we show that the cutwidth problem remains
NP-complete on split graphs (even on a very restricted type of split graphs), and hence also on
chordal graphs. Our findings are summarized in Figure 1.

split
NPC

interval
?

threshold
P

chordal
NPC

Figure 1: The graph classes studied in this paper, and the complexity of cutwidth on each
class according to our results. P means polynomial and NPC means NP-complete. The arrow
represents the subset relation.

The algorithm that we present for threshold graphs is simple and intuitive, and its execution
does not at all depend on properties of threshold graphs; thus it can also be run on general graphs
as a heuristic. Interestingly, while the algorithm correctly computes the cutwidth of threshold
graphs, it does not compute the cutwidth of any known superclass or closely related class,
like trivially-perfect graphs and chain graphs1. For the proof of correctness of this algorithm on
threshold graphs, we study the properties of a possible minimal counterexample through a series
of structural results, and we show that the assumption of the existence of such a counterexample
leads to a contradiction.

2 Preliminaries

We consider labeled undirected finite graphs with no loops or multiple edges. For a graph G =
(V,E), we denote its vertex and edge set by V and E, respectively, with n = |V |. Every vertex
v ∈ V has a distinct label, label(v), between 1 and n. We say that a vertex u is smaller than v
if label(u) < label(v). For a vertex subset S ⊆ V , the subgraph of G induced by S is denoted
by G[S]. Moreover, we denote by G−S the graph G[V \S] and by G− v the graph G[V \ {v}].
In this paper, we distinguish between subgraphs and induced subgraphs. By a subgraph of G we
mean a graph G′ on the same vertex set containing a subset of the edges of G, and we denote it
by G′ ⊆ G. If G′ contains a proper subset of the edges of G, we write G′ ⊂ G. We write G−uv
to denote the graph (V,E \ {uv}).

1For completeness, we give small examples illustrating this fact in an appendix at the end of the paper.
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The neighborhood of a vertex x of G is NG(x) = {v | xv ∈ E}. The closed neighborhood of
x is NG[x] = NG(x) ∪ {x}. The degree of x is ∆G(x) = |NG(x)|. If S ⊆ V , then NG(S) =
⋃

x∈S NG(x) \ S. We define the cut of S to be δG(S) = {uv ∈ E | u ∈ S, v /∈ S}, and the cut
size of S to be dG(S) = |δG(S)|. Vertex x is universal if NG[x] = V and isolated if NG(x) = ∅.
We will omit the subscripts and superscripts when there is no ambiguity. A graph is connected
if there is a path between any pair of vertices. A connected component of a disconnected graph
is a maximal connected subgraph of it. A clique is a set of pairwise adjacent vertices, while an
independent set is a set of pairwise non-adjacent vertices.

Given a graph G = (V,E), a layout L is a one-to-one mapping L : V → {1, . . . , n}. We
will also denote a layout L by 〈v1, v2, · · · vn〉 such that L(vi) = i. For an integer i between 1
and n we define the set Vi to be {v1, · · · , vi}. We say that u is before v in L, or u <L v, if
L(u) < L(v). The cut of G at the ith gap in a given layout L is defined as δL(i) = δG(Vi) and
dL(i) = dG(Vi). The cutwidth of a layout L of G is cwL(G) = max1≤i≤n dG(Vi). The cutwidth of
G is cw(G) = minL{cwL(G)} where the minimum is taken over all layouts of G. In this paper,
an optimal layout of G is a layout L such that cw(G) = cwL(G).

The bisection width of G, denoted by bw(G), is the minimum cut size of any set S ⊂ V on
⌊n

2 ⌋ vertices. Since δ(S) = δ(V \ S) it follows that bw(G) is the minimum cut size of S of any
set S on ⌊n

2 ⌋ or ⌈n
2 ⌉ vertices. It should be clear that bw(G) gives a lower bound for cw(G), that

is, bw(G) ≤ cw(G) [10]. We will use the close connection between cutwidth and bisection width
actively in some of our proofs. A useful observation is that the cutwidth of a subgraph G cannot
exceed the cutwidth of G [10].

A graph is a split graph if its vertex set can be partitioned into a clique C and an independent
set I, where (C, I) is called a split partition. A threshold graph is a split graph whose vertices
can be ordered by neighborhood inclusion [12, 18]. Next we define a partitioning of the vertex
set of a threshold graph that is used throughout the paper.

Definition 1. A threshold partition of a threshold graph G = (V,E) is a partitioning of V into
(I0 . . . Iℓ, C1 . . . Cℓ), with I =

⋃ℓ
i=0 Ii and C =

⋃ℓ
i=1 Ci such that the following properties are

satisfied.

• (C, I) is a split partition of G, that is, C is a clique and I is an independent set.

• Every vertex x in C has a neighbour in I.
• N(I1) ⊂ N(I2) ⊂ . . . ⊂ N(Iℓ) and for every integer i ≤ ℓ and vertices u ∈ Ii, v ∈ Ii,

N(u) = N(v).
• For every integer i between 1 and ℓ, Ci = N(Ii) \ N(Ii−1).

Every threshold graph has a threshold partition - we start with a split partition (C, I) of
G with the largest cardinality of I among all split partitions of G. In such a partition, every
vertex x of C has a neighbour in I, because otherwise (C \ {x}, I ∪ {x}) would also be a split
partition of G with a larger I. Now, let (I0, I1, I2, . . . , Iℓ) be the partitioning of I such that I0

is the set of isolated vertices, and N(I1) ⊂ N(I2) ⊂ . . . ⊂ N(Iℓ), where ℓ is largest possible.
For every integer i between 1 and ℓ define Ci = N(Ii) \ N(Ii−1). Now, I0 . . . Iℓ, C1 . . . Cℓ is a
threshold partition of G. We say that vertices of Cj and Ij belong to the jth level of the clique
and of the independent set, respectively. By construction, the sets Ci and Ii are nonempty for
every 1 ≤ i ≤ ℓ. For a vertex v, define level(v) to be the level that v belongs to. Notice that all
vertices in I at the same level have the same degree, and that all vertices in C at the same level
have the same degree.
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Threshold graphs can be recognized, and their threshold partition can be computed, in
O(n+m) time [12]. Observe that a threshold partition of G completely defines G, since a vertex
u ∈ I and a vertex v ∈ C are adjacent if and only if level(u) ≥ level(v). Our algorithm for
computing the cutwidth of threshold graphs runs in O(n) time if the threshold partition of G is
given as input, and in O(n + m) time if only an adjacency list representation is provided. We
conclude this section with the following lemma.

Lemma 2.1 ([13]). Let G be a threshold graph with threshold partition (C1, . . . , Cℓ, I1, . . . , Iℓ).
Let uv be an edge such that u ∈ Ij and v ∈ Cj for some j. Then G − uv is a threshold graph.

3 Cutwidth of split graphs

In this section we show that the cutwidth problem is NP-complete on split graphs. In fact the
proof of Theorem 3.1 shows that cutwidth is NP-complete even on split graphs where every
vertex of I in a split partition (C, I) has degree 2.

Theorem 3.1. The cutwidth problem is NP-complete on split graphs.

Proof. The reduction is from an arbitrary instance of the cutwidth problem. Given an arbitrary
graph G = (V,E) with n vertices and m edges, we construct a split graph G′ as follows. To
start with, G′ is a complete graph on V . Let k = n2 + 1. For every edge uv ∈ E we add k more
vertices to G′, making each new vertex adjacent to u and v in G′. We say that these vertices of
G′ correspond to the edge uv of G. Observe that G′ has n + km vertices where the n vertices of
V induce a clique in G′. The remaining km vertices are only adjacent to vertices of this clique.
Hence G′ is a split graph. Moreover the whole construction can be carried out in polynomial
time. We now prove that for any 1 ≤ c ≤ n2 we have cw(G) ≤ c if and only if cw(G′) < c(k+1).
(Note that n2 is a trivial upper bound on the cutwidth of any graph on n vertices.)

If cw(G) ≤ c, then consider a layout L for which cwL(G) ≤ c. We create a layout L′ of
G′ by ordering the vertices in V in the same order that they have in L. Every vertex x of G′

that corresponds to an edge uv of G is placed in an arbitrary position between u and v in L′.
Observe that since x has degree 2 and is placed between its neighbors, dL′(L′(x)−1) = dL′(L′(x)),
and thus, to compute cwL′(G′) it is sufficient to consider maximum dL′(L′(v)) over all v ∈ V .
From the construction of L′ it follows that for every vertex v in V , δL′(L′(v)) contains at most
k · dL(L(v)) edges between vertices in V and vertices corresponding to edges of G, and at most
n2 edges between pairs of vertices in V . Thus

dL′(L′(v)) ≤ k · dL(L(v)) + n2,

k · dL(L(v)) + n2 < kc + k = k(c + 1)

and cw(G′) ≤ cw′
L(G′) < k(c + 1) follows.

Let L′ be a layout of G′ for which cwL′(G′) < k(c + 1). ¿From L′ we construct a layout
L of G by ordering the vertices of V in the same order that L′ orders them. We prove that
cwL(G) ≤ c. For a given vertex x we observe that for every edge uv ∈ δL(L(x)) and vertex y of
G′ corresponding to the edge uv, either the edge yu or the edge yv must be in δL′(L′(x)). Thus,

k · dL(L(x)) ≤ dL′(L′(x)) < k(c + 1).

By dividing both sides by k we obtain dL(L(x)) < c+1. Since we chose x arbitrarily, cwL(G) ≤ c
and the result follows.
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4 Cutwidth of threshold graphs

In this section we give an algorithm that computes the cutwidth of threshold graphs in linear
time. This algorithm constructs a layout L = 〈v1, v2, . . . , vn〉 by appending at step i the vertex
vi that minimizes the cut δ(Vi−1 ∪ {vi}).

For a given graph G = (V,E) and a set S ⊆ V , we define the rank of a vertex v with respect
to S to be rankG

S (v) = |NG(v) \ S| − |NG(v) ∩ S| (superscript G is omitted when not needed).
Observe that if v /∈ S, then d(S∪{v}) = d(S)+rankS(v). At step i, we select a vertex of V \Vi−1

of lowest rank with respect to Vi−1. If there is a tie, the algorithm picks a vertex of highest
degree. If there still is a tie, the algorithm picks the vertex with the smallest label between 1
and n distinctly assigned to each vertex prior to the algorithm. Note that this algorithm can be
applied to arbitrary graphs. When G is a threshold graph with threshold partition (C, I), we
assume that G has been labeled such that every vertex in I has smaller label than every vertex
in C, for every pair u and v of vertices in I, level(u) < level(v) implies label(u) < label(v), and
for every pair u and v of vertices in C, level(u) < level(v) implies label(u) < label(v). This can
be easily achieved through an O(n)-time preprocessing step using the threshold partition of G.

The intuition behind the highest-degree tie-breaking is that when we add v to S, the ranks
of all v’s neighbors with respect to S decrease by 2, while the ranks of v’s non-neighbors remain
unchanged. Since we want the rank of the vertices we pick to be as small as possible, it is good
to decrease the rank of as many vertices as possible. The details of the algorithm called MinCut

are given below.

Algorithm: MinCut

Input: A graph G = (V, E) with distinct labels between 1 and n on its vertices.
Output: A layout L = 〈v1, v2, · · · , vn〉 of G

V0 := ∅;
for i = 1 to n do

vi := the vertex in V \ Vi−1 with smallest label;
for every vertex v in V \ Vi−1 ordered by increasing label do

if rankVi−1
(v) < rankVi−1

(vi) then vi := v
else if rankVi−1

(v) = rankVi−1
(vi) and ∆(v) > ∆(vi) then vi := v

Vi := Vi−1 ∪ {vi};
L(vi) := i;

To illustrate the algorithm by an example, in Figure 2 (a) we depict a threshold graph on
three levels with the corresponding label on each vertex. Execution of the Algorithm MinCut on
this graph is given in Figure 2 (b) while the computed layout is shown in Figure 2 (c).

Before reaching the details of why Algorithm MinCut produces optimal layouts when the
input is a threshold graph, we need to study how the layouts produced by the algorithm look.
Observe first that if G has isolated vertices, then these can be placed in arbitrary positions in
any optimal cutwidth layout, and our algorithm places them in the beginning of the output
layout. For the statements of the following results in this section, we let L = 〈v1, . . . , vn〉 be
the layout computed by Algorithm MinCut when run on a threshold graph G with threshold
partition (C1, . . . , Cℓ, I1, . . . , Iℓ).

One should notice that in a threshold graph, two vertices with the same degree have the
same open neighborhood if they are nonadjacent and the same closed neighborhood if they are
adjacent. Thus, in threshold graphs, the labels of the vertices do not really affect the layout
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produced by Algorithm MinCut, because whether or not there is an edge between vi and vj for
1 ≤ i < j ≤ n is independent of the labels of the vertices, and depends only on which sets of
the threshold partition they belong to. The reason we include the labels in the description of
the algorithm is that the labels simplify the discussions in the proofs. One should note that the
labels do indeed affect the layout produced by the algorithm if the algorithm is run on a graph

v6

v1

v2

v7

v3

v8

v9

v4

v5

C1 I1

C2 I2

C3 I3(a)step rank sele
tion
v1 v2 v3 v4 v5 v6 v7 v8 v9

1 1 1 3 4 4 8 6 6 5 v1

2 1 3 4 4 6 6 6 5 v2

3 3 4 4 4 6 6 5 v3

4 4 4 2 4 4 5 v6

5 2 2 2 2 3 v4

6 2 0 0 1 v7

7 0 -2 -1 v8

8 -2 -3 v9

9 -4 v5(b)
v1 v2 v3 v6 v4 v7 v8 v9 v5(
)

Figure 2: (a) A threshold graph on three levels where each vertex is labeled according to a
preprocessing step. (b) Steps of the Algorithm MinCut applied on the threshold graph. (c) A
layout of cutwidth 9 produced by the algorithm.
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that is not a threshold graph.
Given two vertices u and v of G such that u ∈ I and v ∈ C, we define the vertex set

over(u, v) to contain all vertices x ∈ I such that label(x) < label(u) and all vertices y ∈ C such
that label(y) < label(v). The essence of the following lemma is that the algorithm picks vertices
at lower levels before proceeding to higher levels, and that it starts with a vertex of I.

Lemma 4.1. For any i ∈ {1, . . . , n} and k ∈ {1, . . . , ℓ}:

(a) If Vi ∩ Ik 6= ∅, then Ik′ ⊆ Vi, for every 1 ≤ k′ < k.

(b) If Vi ∩ Ck 6= ∅, then Ck′ ⊆ Vi, for every 1 ≤ k′ < k.

(c) If Vi ∩ Ik = ∅, then Vi ∩ Ck = ∅.

Proof. We prove all the statements simultaneously by induction on i. Vertex v1 is of minimum
degree and hence v1 ∈ I1, so for i = 1 the statements are trivially true. Assume now that all
three statements hold whenever i < r and consider the r’th step of the algorithm. We first
prove that (a) must be true for i = r. It suffices to show that if vr ∈ I, then vr is a vertex
with the lowest degree out of the ones that are not in Vr−1. Indeed, consider two vertices u and
v ∈ I \ Vr−1 such that ∆(u) < ∆(v). Since level(v) > level(u), because (c) holds for Vr−1 by
the induction hypothesis, every neighbor of v that is not a neighbor of u is not in Vr−1. Thus
rankVr−1(u) < rankVr−1(v) and (a) follows for i = r.

We prove that (b) is true for i = r; that is, if vr ∈ C, then vr is a vertex with the highest
degree out of the ones that are not in Vr−1. Let t be the largest integer such that Vr−1 ∩ It 6= ∅.
For a vertex u ∈ Ct′ with t < t′, let v be a vertex in It′ . Because (c) holds for Vr−1 by the
induction hypothesis, v /∈ Vr−1 and rankVr−1(v) ≤ rankVr−1(u). Additionally, label(v) < label(u)
and so the algorithm would not pick vr to be u. Furthermore, for every two vertices u and v
in C \ Vr−1 such that level(u) < level(v) ≤ t, it follows that every neighbor of u that is a non-
neighbor of v is in Vr−1, yielding rankVr−1(u) < rankVr−1(v) and completing the proof of (b) for
i = r.

Finally, we prove that (c) is true for i = r. Consider a level t such that It ∩Vr−1 = Ct ∩Vr−1

and let u ∈ It and v ∈ Ct. Since (a) and (b) are true for r − 1, every neighbor of v that is
not a neighbor of u is not in Vr−1. Unless t = ℓ and |Iℓ| = 1, ∆(u) < ∆(v) so rankVr−1(u) <
rankVr−1(v). If t = ℓ and |Iℓ| = 1, then u and v have the same closed neighborhood, but
label(u) < label(v). In both cases u <L v, and so (c) must be true for i = r.

As a direct consequence of Lemma 4.1 (a) and (b), for any i between 1 and n, if u ∈ I ∩ Vi

and v ∈ C ∩ Vi, then over(u, v) ⊆ Vi.

Lemma 4.2. Let u ∈ I and v ∈ C. Then u <L v if and only if u and v are non-adjacent or
rankover(u,v)(u) < rankover(u,v)(v).

Proof. We prove the lemma by showing (i); if u and v are non-adjacent, then u <L v, and (ii);
if u and v are adjacent then u <L v if and only if rankover(u,v)(u) < rankover(u,v)(v). Let u and
v be non-adjacent. Then, clearly level(u) < level(v) and u <L v by Lemma 4.1, proving (i).

Now, suppose u and v are adjacent and u <L v. We prove that rankover(u,v)(u) < rankover(u,v)(v).
Clearly, rankVL(u)−1

(u) < rankVL(u)−1
(v). Furthermore, every vertex in over(u, v)\VL(u)−1 is adja-

cent to both u and v. Thus rankover(u,v)(u) < rankover(u,v)(v). Similarly, if u and v are adjacent
and v <L u, then rankVL(v)−1

(u) ≥ rankVL(v)−1
(v). Now, every vertex in over(u, v) \ VL(v)−1 is

nonadjacent to u. Hence rankover(u,v)(u) ≥ rankover(u,v)(v), proving (ii).
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We say that the algorithm covers a vertex set S if there is an index i such that Vi = S. If
the algorithm covers S, then we also say that S is covered.

Lemma 4.3. Let u, u′ ∈ I with label(u′) = label(u) + 1, and let v, v′ ∈ C with label(v′) =
label(v) + 1. Then over(u′, v′) is covered if and only if u <L v′ and v <L u′.

Proof. If over(u′, v′) is covered, then over(u′, v′) = Vi with L(u) ≤ i, L(v) ≤ i, L(u′) > i and
L(v′) > i so u <L v′ and v <L u′. In the other direction, suppose u <L v′ and v <L u′. Let
S′ = Vi be the smallest covered set that contains both u and v. By Lemma 4.1, over(u′, v′) =
{u, v} ∪ over(u, v) ⊆ S′. Furthermore, since S′ is the smallest covered set that contains both
u and v, either vi = u or vi = v. If vi = u, then vi <L u′ by Lemma 4.1 and vi <L v′ by
assumption, while if vi = v, then vi <L u′ by assumption and vi <L v′ by Lemma 4.1. In both
cases, neither u′ nor v′ can be in S′ which means that S = S′ and that S is covered.

We are now equipped with most of the tools that are necessary to work with layouts produced
by Algorithm MinCut. All that remains before we move on to proving the correctness of the
algorithm are a couple of simple observations.

Observation 4.4. For each integer i ≤ n − 1, rankVi
(vi+1) ≥ rankVi−1(vi)− 2. Furthermore, if

∆(vi+1) > ∆(vi), then rankVi
(vi+1) ≥ rankVi−1(vi) − 1.

Proof. Observe that if vi+1 and vi are adjacent, then rankVi
(vi+1) = rankVi−1(vi+1) − 2; other-

wise, rankVi
(vi+1) = rankVi−1(vi+1). Since the algorithm picked vi and not vi+1 at step i, the

observation follows.

Observation 4.5. For every level k ≤ ℓ and every triple of vertices u, v ∈ Ck and w /∈ Ck,
u <L w if and only if v <L w.

Proof. If w ∈ C the observation follows from Lemma 4.1 (b). If w ∈ I and uw /∈ E, then vw /∈ E
and the observation follows from Lemma 4.2. If w ∈ I and uw ∈ E, then vw ∈ E. Without
loss of generality, label(u) < label(v). Note that every vertex in over(w, v) \ over(w, u) is in Ck

and so rankover(w,u)(w) < rankover(w,u)(u) if and only if rankover(w,v)(w) < rankover(w,v)(v).
Applying Lemma 4.2 completes the proof.

4.1 Correctness of Algorithm MinCut

In this subsection, we show that Algorithm MinCut produces optimal layouts when the input
is a threshold graph. We assume for contradiction that there is a threshold graph G = (V,E)
with threshold partition (C1, . . . , Cℓ, I1, . . . , Iℓ) on which Algorithm MinCut outputs layout L =
〈v1, . . . , vn〉 such that cwL(G) > cw(G). We call such a threshold graph a counterexample, and
we say that a counterexample is minimal if it is has the smallest value of |V | + |E| among all
counterexamples. A bad set of counterexample G is a set S ⊆ V that is covered by the algorithm
and for which d(S) > cw(G). A locally worst bad set is a bad set S = Vi such that d(S) ≥ d(Vi+1)
and d(S) ≥ d(Vi−1). Observe that rankVi−1(vi) must be non-negative and rankVi

(vi+1) must be
non-positive for Vi to be locally worst. Observation 4.4 then implies that rankVi−1(vi) is 2, 1
or 0. This means that if vi ∈ C1, then i is ⌊n

2 ⌋,
n
2 or ⌈n

2 ⌉ respectively. Another thing to notice
about locally worst bad sets is that if both Vi and Vi−1 are bad sets with d(Vi−1) ≥ d(Vi), then
some locally worst bad set is a strict subset of Vi.
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The main idea of the proof is to show that if there is a counterexample G, then there must
be another counterexample G′ that either has at most 2 levels, or exactly 3 levels and a very
specific structure. We complement this result by showing that the algorithm produces optimal
layouts on all graphs with at most 2 levels, and on all graphs with 3 levels and the mentioned
structural properties. This yields that cwL(G) = cw(G) for every threshold graph G.

Lemma 4.6. Let G be a threshold graph on exactly 1 level. Then cwL(G) = cw(G).

Proof. Let (C, I) be a threshold partition of G. Observe that every vertex of I is adjacent to

every vertex of C. The algorithm lays out ⌊ |I|2 ⌋ vertices of I, then all of C, followed by the
remaining vertices of I. By inspection,

cwL(G) =
⌊n

2

⌋

·
⌈n

2

⌉

−
⌊ |I|

2

⌋

·
⌈ |I|

2

⌉

.

Since all non-edges of G are between vertices in I,

bw(G) =
⌊n

2

⌋

·
⌈n

2

⌉

−
⌊ |I|

2

⌋

·
⌈ |I|

2

⌉

.

Thus cwL(G) = bw(G) ≤ cw(G) ≤ cwL(G) and cwL(G) = cw(G) follows.

Already for threshold graphs with 2 levels, the correctness proof for Algorithm MinCut is
more complicated. Before we go on to this proof we need more tools to work with locally worst
bad sets.

For the statements of all the remaining results and definitions in this section, whenever we
mention a counterexample G, we let (C1, . . . , Cℓ, I1, . . . , Iℓ) be its threshold partition. Recall
that the output of Algorithm MinCut is always denoted by L = 〈v1, . . . , vn〉.

Lemma 4.7. Every locally worst bad set S of a counterexample G satisfies

(i) C1 ∩ S 6= ∅, (ii) I1 ⊆ S, (iii) Cℓ ∩ S = ∅, and (iv) Iℓ \ S 6= ∅.

Proof. (i) If S ∩ C1 = ∅ and vi+1 ∈ I, then rankVi
(vi+1) = ∆(vi+1) > 0 contradicting that

S is locally worst. If S ∩ C1 = ∅, vi+1 ∈ C and rankVi
(vi+1) > 0, then S is not locally

worst, so rankVi
(vi+1) ≤ 0. Since vi ∈ I and rankVi−1(vi) = ∆(vi) > 0, Observation 4.4

implies that rankVi
(vi+1) = 0 and that rankVi−1(vi) = 1 = ∆(vi). This means n is odd, and

i = ⌊n
2 ⌋. Hence d(S) = ⌊n

2 ⌋ and since vi+1 is a universal vertex of G, ⌊n
2 ⌋ ≤ bw(G). Thus

d(S) = ⌊n
2 ⌋ ≤ bw(G) ≤ cw(G) contradicting that S is a bad set. We can conclude that

S ∩ C1 6= ∅.

(ii) Suppose for contradiction that I1 \S 6= ∅. By Lemma 4.1, S ⊂ I1∪C1. By the discussion
in the previous paragraph, S ∩ C1 6= ∅. If vi ∈ I1, then Observation 4.5 implies C1 ⊆ Vi−1 so
rankVi−1(vi) = −∆(vi) < 0, contradicting that S is locally worst. Thus vi ∈ C1.

Let If be the subset of I1 that L puts before C1, and Cf be the ⌈ |C1|
2 ⌉ vertices of C1 with

smallest labels. Observation 4.5 guarantees that the set S′ = If ∪ Cf is covered, so S′ = Vj.
We prove that S′ is a bad set. Let x be the vertex of C1 with the smallest label and let
k = L(x). Since the algorithm chose x over a vertex in I1 in step k, rankVk−1

(x) ≤ |C1|. By
Observation 4.4, rankVk−1

(x) ≥ |C1|−1. Now, for every k ≤ t < k + |C1| we have rankVt−1(vt) =
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rankVk−1
(x) − 2(t − k). Note that since vi ∈ C1, i < k + |C1|. Since |Cf | = ⌈ |C1|

2 ⌉, we have

1 + (j − k) = ⌈ |C1|
2 ⌉. Thus

rankVj−1(vj) = rankVk−1
(x) − 2(j − k) = rankVk−1

(x) − 2(
⌈ |C1|

2

⌉

− 1).

This in turn implies

|C1| + 1 − 2
⌈ |C1|

2

⌉

≤ rankVj−1(vj) ≤ |C1| + 2 − 2
⌈ |C1|

2

⌉

.

Simplifying the bounds yields 0 ≤ rankVj−1(vj) ≤ 2. Therefore, for every t with k ≤ t < j,
rankVt−1(vt) ≥ 0, while for every t such that j < t ≤ i, rankVt−1(vt) ≤ 0. Thus d(S′) ≥ d(S).

Let G′ be the graph obtained from G by removing all edges that do not have at least one
endpoint in C1. The threshold partition of G′ is (C1, V \ C1) where every vertex of C1 is

universal. S′ contains ⌈ |C1|
2 ⌉ vertices of C1 and exactly ⌊n−|C1|

2 ⌋ vertices of the independent set
of the threshold partition of G′. Furthermore, none of the removed edges have one endpoint in
S′ and one outside of S′, hence dG′

(S′) = d(S′). Now, since all non-edges of G′ are between
vertices in V \ C1 we have that

dG′

(S′) =
⌊n

2

⌋

·
⌈n

2

⌉

−
⌊n − |C1|

2

⌋

·
⌈n − |C1|

2

⌉

= bw(G′).

Thus d(S) ≤ d(S′) = dG′
(S′) = bw(G′) ≤ cw(G′) ≤ cw(G) contradicting that S is a bad set.

We can conclude that I1 ⊆ S.

(iii) Suppose for contradiction that S ∩ Cℓ 6= ∅. By Lemma 4.6 G has at least two levels.
If |Iℓ| = 1, then all edges of δ(S) are between vertices of C ∪ Iℓ which induces a clique in
G. In that case d(S) ≤ cw(G[C ∪ Iℓ]) ≤ cw(G) contradicting that S is a bad set. Thus,
|Iℓ| > 2. If vi ∈ Iℓ, Lemma 4.5 implies that Cℓ ⊆ Vi−1 which in turn implies C ⊆ Vi−1. Then

rankVi−1(vi) = −∆(vi) < 0, contradicting that S is locally worst. Let If be the set of the ⌊ |Iℓ|
2 ⌋

vertices of Iℓ with smallest labels. Let u be the vertex in If with the largest label, u′ be the
vertex in Iℓ with label(u′) = label(u) + 1 and v be the vertex in Cℓ with the smallest label.

We wish to show that u <L v <L u′. Notice that v is the only neighbor of u and u′ that is a
non-neighbor of v and that v /∈ over(u, v) and v /∈ over(u′, v). Among the neighbors of v, apart
from u, that are non-neighbors of u, there are

⌊ |Iℓ|

2

⌋

− 1 in over(u, v) and Iℓ −
⌊ |Iℓ|

2

⌋

≥
⌊ |Iℓ|

2

⌋

outside.

Thus by Lemma 4.2, u <L v. Similarly, among the neighbors of v, apart from u′, that are
non-neighbors of u′, there are

⌊ |Iℓ|

2

⌋

in over(u, v) and Iℓ −
⌊ |Iℓ|

2

⌋

− 1 ≤
⌊ |Iℓ|

2

⌋

outside.

Since ∆(u′) < ∆(v) by Lemma 4.2, v <L u′. Thus S ∩ Iℓ = If .
Notice that all the edges of δ(S) are between vertices in Iℓ∪C. Thus, if we let S′ = If∪(C∩S),

we have d(S) = dG[Iℓ∪C](S′). Now G[Iℓ ∪ C] has threshold partition (C, Iℓ) and every vertex of

C is adjacent to every vertex of Iℓ. S′ contains exactly ⌊ |Iℓ|
2 ⌋ vertices of Iℓ and thus

dG[Iℓ∪C](S′) ≤
⌊ |Iℓ ∪ C|

2

⌋

·
⌈ |Iℓ ∪ C|

2

⌉

−
⌊ |Iℓ|

2

⌋

·
⌈ |Iℓ

2

⌉

= bw(G[Iℓ ∪ C]).
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Hence d(S) ≤ dG[Iℓ∪C](S′) ≤ bw(G[Iℓ ∪ C]) ≤ cw(G[Iℓ ∪ C]) ≤ cw(G) contradicting that S is a
bad set. Thus S ∩ Cℓ = ∅.

(iv) Suppose for contradiction that Iℓ ⊆ S. If |Iℓ| = 1, let u be the vertex with the smallest
label in Iℓ and let v be the vertex with the largest label in Cℓ−1. Every neighbor of v apart
from u that is a non-neighbor of u lies in over(u, v), thus by Lemma 4.2, v <L u and C1 ⊂ S.
Then every edge of δ(S) is between vertices of C ∪ Iℓ. Since C ∪ Iℓ induces a clique in G this
contradicts that S is a bad set. Thus |I2| > 1.

If |I2| > 1 let u be the vertex with the highest label in Iℓ and v be the vertex with the highest
label in Cℓ. Every vertex that is neighbor of v apart from u that is a non-neighbor of u lies in
over(u, v) thus, by Lemma 4.2 v <L u and Cℓ ⊂ S. This contradicts that any locally worst bad
set S of a counterexample G contains no vertices of Cℓ.

Lemma 4.8. Let G be a threshold graph on exactly 2 levels. Then cwL(G) = cw(G).

Proof. Suppose for contradiction that G is a counterexample on two levels with minimum value of
|V |+|E| among all counterexamples on two levels. Lemma 4.6 ensures that G is a counterexample
with minimum value of |V |+ |E| among all counterexamples on at most two levels, but G is not
necessarily a minimal counterexample. Since G is a counterexample, G has a locally worst bad
set S = Vi. Let S be the smallest locally worst bad set of G. We distinguish between two cases:

(i) |C1| < |C2| and (ii) |C1| ≥ |C2|.

(i) We first consider the case that |C1| < |C2| and S ∩ I2 = ∅. By Lemma 4.1, S ∩ C2 = ∅. By
Lemma 4.7, S ∩ C1 6= ∅. If vi ∈ I1, then Observation 4.5 implies C1 ⊆ Vi−1, so rankVi−1(vi) =
−∆(vi) < 0, contradicting that S is locally worst. Thus vi ∈ C1. Furthermore, by Lemma
4.7, I1 ⊆ S. If vi+1 ∈ I2, by assumption, we have |C1| < |C2|. In this case rankVi

(vi+1) > 0,
contradicting that S is locally worst. Therefore vi+1 must be in C1.

Let u be the vertex of I1 with highest label, u′ be the vertex of I2 with smallest label, v = vi

and v′ = vi+1. Observe that S = over(u′, v′). Let x be the vertex in C2 with highest label. By
Lemma 4.2, v <L u′ if and only if rankover(u′,v)(u

′) ≥ rankover(u′,v)(v). Now

rankover(u′,v)(u
′) − rankover(u′,v)(v) = 1 + |I1| − |I2|.

Suppose 1 + |I1| > |I2|. Then rankover(u′,v)(u
′) > rankover(u′,v)(v). We make a new graph

G′ from G by deleting all edges between x and vertices in I2 and relabeling the vertices such
that the labeling order of all vertices is the same as in G, with the exception of x which gets the
highest label among the vertices of the independent set of the threshold partition of G′. Observe
that G′ is a threshold graph on at most 2 levels, and that G′ is a proper subgraph of G. In
addition rankover(u,v′)(u), rankover(u,v′)(v

′) and rankover(u′,v)(v) remain unchanged from G to

G′ while rankG′

over(u′,v)(u
′) = rankG

over(u′,v)(u
′) − 1. In G we had

rankover(u,v′)(u) < rankover(u,v′)(v
′) and rankover(u′,v)(u

′) > rankover(u′,v)(v).

Hence in G′ we know that

rankG′

over(u,v′)(u) < rankG′

over(u,v′)(v
′) and rankG′

over(u′,v)(u
′) ≥ rankG′

over(u′,v)(v).
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Lemma 4.2 yields u <L′ v′ and v <L′ u′. By Lemma 4.3, S is covered also by L′. Since we did
not delete any edges in δ(S) it follows that S is a bad set also in G′. This contradicts that G is
a counterexample on at most 2 levels with the smallest value of |V | + |E|.

To conclude the case where |C1| < |C2| and S ∩ I2 = ∅, suppose that 1 + |I1| = |I2|. Then
S ⊆ I1∪C1, |I1| < |I2| and |C1| < |C2| together imply that |S| ≤ |V \S|+2. But rankVi−1(vi) ≤ 2
implies |S| ≥ ⌊n

2 ⌋, which is a contradiction.
Now, consider the case where |C1| < |C2| and S ∩ I2 6= ∅. If |I2| = 1, then I2 ⊆ S,

contradicting Lemma 4.7. Thus |I2| > 1. Suppose C1 \ S 6= ∅. Let u be the vertex in I2 ∩ S
with highest label and x be the vertex in C1 with lowest label. By Lemma 4.7, x ∈ S. Since
C1 \S 6= ∅, Observation 4.5 implies that u <L x. Since u is the vertex in I∩S with highest label
and x be the vertex in C ∩S with lowest label, L(x) = L(u) + 1 and vi+1 ∈ C1. By Observation
4.4, rankVL(x)−1

(x) ≥ |C| − 1. Thus

rankVi
(vi+1) ≥ |C| − 1 − 2(|C1| − 1) = |C2| + 1 − |C1| > 0,

contradicting that S is locally worst. Thus C1 ⊆ S.
If vi+1 ∈ I2, then by Lemma 4.7, rankVi

(vi+1) ≥ |C2| − |C1| > 0 contradicting that S is
locally worst. Thus vi+1 ∈ C2. Furthermore as S ∩ C2 = ∅ this means that vi+1 is the vertex of
C2 with lowest rank and that |S ∩ I2| = ⌊ I2

2 ⌋. Thus,

d(S) ≤ dG[I2∪C]((S ∩ I2) ∪ (S ∩ C)) ≤ cw(G[I2 ∪ C]) ≤ cw(G),

contradicting that S is a bad set. This concludes the case that |C1| < |C2|.

(ii) If |C1| ≥ |C2|, then vi ∈ C1 because otherwise C1 ⊆ Vi−1 and rankVi−1(vi) ≤ |C2|− |C1| ≤ 0
contradicting that S is the smallest locally worst bad set. Let u be the vertex in I1 with the
highest label, and let v = vi. Lemma 4.7 implies I1 ⊆ S and hence u <L v. By applying Lemma
4.2 on u and v we conclude that rankover(u,v)(v)− rankover(u,v)(u) = |I2|+ |C2| − (|I1| − 1) > 0,
so |I1| ≤ |I2| + |C2|. Furthermore, since S is the smallest locally worst bad set, rankVi−1(v) is
either 1 or 2, so |S| = ⌊n

2 ⌋.

Now, let S′ be a set of vertices in G maximizing dG(S′). Notice that

bw(G) ≥
⌊n

2

⌋

·
⌈n

2

⌉

− dG(S′).

We will use this fact to show that S can not be a bad set and obtain a contradiction. Since
δG(S′) = δG(V \ S′), without loss of generality we assume |I1 ∩ S′| ≥ |I1 \ S′|. In G all the
neighbours of a vertex in C2 are in I1. Thus every vertex in C2 has at least as many neighbours
as non-neighbours in S′ in G. Hence dG(S′ \ C2) ≥ dG(S′) and so we assume that C2 ∩ S′ = ∅.

Also, if x ∈ I1 \ S′ and y ∈ I2 ∩ S′, observe that dG(S′ ∪ {x} \ {y}) > dG(S′), contradicting
the choice of S′. Therefore, if I2 ∩ S′ 6= ∅, then I1 ⊆ S′. Suppose now that x ∈ I1 \ S′. Then

I2 ∩ S′ = ∅ and since |I1| ≤ |I2| + |C2|, dG(S′ ∪ {x}) > dG(S′), contradicting the choice of S′.
Therefore we conclude that I1 ⊆ S′ and C2 ∩ S′ = ∅.

If |I2| ≤ |I1| + 1, then every vertex x in I2 has at least as many neighbours in I1 as in I2

in G. Hence dG(S′ \ {x}) ≥ dG(S) and so without loss of generality S′ ∩ I2 = ∅ and S′ = I1.
Let x be the vertex of I2 with lowest label and y be the vertex of C1 with highest label. Now,
rankover(x,y)(y)− rankover(x,y)(x) = |I2| − 1− |I1| ≤ 0 and hence by Lemma 4.2, y <L x. Since
vi ∈ C1 it follows that S ⊆ I1 ∪ C1. Recall that by Lemma 4.7, I1 ⊆ S. Since vertices in C1 are
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isolated in G it follows that dG(S) = dG(S′), so bw(G) ≥ ⌊n
2 ⌋ · ⌈

n
2 ⌉ − dG(S). In addition, since

|S| = ⌊n
2 ⌋ we have ⌊n

2 ⌋ · ⌈
n
2 ⌉ − dG(S) = d(S). This implies bw(G) ≥ d(S), contradicting that S

is a bad set.
If |I2| > |I1| + 1, by Lemma 4.2 applied to the vertex of I2 with lowest label and the vertex

of C1 with highest label, S contains at least one vertex of I2. By Lemma 4.7 S does not contain
all of I2 so we can apply Lemma 4.2 again to obtain that |S ∩ I| = ⌊ |I|2 ⌋. Furthermore, if

|S′ ∩ I| > ⌊ |I|2 ⌋, let y ∈ S′ ∩ I. Then dG(S′ \ {y}) ≥ dG(S′), so without loss of generality

|S′ ∩ I| ≤ ⌊ |I|2 ⌋. Similarly, if |S′ ∩ I| < ⌊ |I|2 ⌋, let y ∈ I \ S′. Then dG(S′ ∪ {y}) ≥ dG(S′), so

without loss of generality |S′ ∩ I| ≥ ⌊ |I|2 ⌋. Thus, without loss of generality |S′ ∩ I| = ⌊ |I|2 ⌋. Since

vertices in C1 are isolated in G it follows that dG(S) = dG(S′). As in the previous paragraph,
this implies bw(G) ≥ d(S), contradicting that S is a bad set.

From the above lemma it follows that any counterexample has at least 3 levels. Over the
next few lemmas, we show how any counterexample can be transformed into a counterexample
with exactly 3 levels. The first observation is that in every minimal counterexample all parts of
the graph participate in making the graph a counterexample.

Definition 2. A counterexample has the extremal property if it has a bad set S such that
I \ Iℓ ⊆ S and S ∩ C ⊆ C1. In this case, S is called an extremal bad set.

Lemma 4.9. Every minimal counterexample G has the extremal property, and every locally
worst bad set of G is an extremal bad set.

Proof. Suppose for contradiction that G has a locally worst bad set S that is not an extremal
bad set. By Lemma 4.7 the sets I ∩ S, I \ S, C ∩ S and C \ S are non-empty. Let u and v be
the vertices in I ∩S and C ∩S with the highest labels, and let u′ and v′ be the vertices in I \ S
and C \ S with the lowest labels respectively. Now, S = over(u′, v′) so by Lemma 4.3 u <L v′

and v <L u′

If S contains non-universal vertices in C, let x be the vertex of I with the smallest label. We
show that G − x also is a counterexample. Furthermore, since S contains non-universal clique
vertices, by Lemma 4.1 S contains at least one vertex of I2, so x is distinct from u,u′,v and v′.
Also, since x ∈ I1 and v /∈ C1, it follows that x is not adjacent to v or v′. Thus the rank of
u,u′,v and v′ with respect to any set X in G is the same as the rank with respect to X \ {x} in
G′ for each of these vertices. Let L′ be the layout output by the algorithm when executed on
G − x. By Lemma 4.3 S \ {x} is covered by L′. Thus, since δG−x(S \ {x}) = δ(S), S \ {x} is a
bad set for G− x contradicting that G is a minimal counterexample. Thus S ∩ C ⊆ C1 follows.

If not I \ Iℓ ⊆ S, then let x be the vertex in Iℓ with lowest label, and let y be the vertex in C
with highest label. We show that G′ = G − xy also is a counterexample. First, observe that by
Lemma 2.1 G′ is a threshold graph. Furthermore, by the assumption that I \ (Iℓ ∪ S) 6= ∅, x is
distinct from u and u′. Also, since S ∩C ⊆ C1 and G has at least three levels, y is distinct from
v and v′. Let L′ be the layout output by the algorithm when executed on G′. Since over(u, v′)
and over(u′, v) are the same sets in G and G′, and the deleted edge xy is not incident to any of
u,u′, v or v′, u <L′ v′ and u′ <L′ v and so S is covered by L′. But δG′

(S) = δ(S) contradicting
that G is a minimal counterexample.

Lemma 4.10. If there is a counterexample, then there is a counterexample with the extremal
property and at most 3 levels.
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Proof. We start by showing that if there is a counterexample G on at least 4 levels with an
extremal bad set S such that the sets I ∩ S, I \ S, C ∩ S and C \ S are non-empty, then there
is a counterexample G′ with G ⊂ G′, such that (C, I) is a threshold partition of G′ and S is an
extremal bad set of G′.

Let u and v be the vertices in I ∩ S and C ∩ S with the highest labels, and let u′ and v′ be
the vertices in I \ S and C \ S with the lowest labels respectively. Now, S = over(u′, v′) so by
Lemma 4.3 u <L v′ and v <L u′. We choose x to be the vertex of I2 with highest label and y to
be the vertex if C3 with the lowest label. We add the edge xy to G to obtain a new threshold
graph G′. (C, I) is a threshold partition of G′ and G ⊂ G′. Furthermore δG′

(S′) = δ(S) ∪ {xy},
implying that

dG′

(S) = d(S) + 1 > cw(G) + 1 ≥ cw(G ∪ {xy}).

Also, in G′ u′ is adjacent to all vertices of C and v is a universal vertex. Let L′ be the layout
produced by Algorithm MinCut when run on G′. To prove that S is an extremal bad set of G′

it is sufficient to show that L′ covers S. However, S = over(u′, v′) both in G and G′ and none
of u, u′, v and v′ are incident to the new edge xy so u <L′ v′ and v <L′ u′. By Lemma 4.3 L′

covers S.
We can now proceed to prove the lemma. Without loss of generality, G is a minimal coun-

terexample. By Lemma 4.9 G has an extremal locally worst bad set S. By Lemma 4.7 the
sets I ∩ S, I \ S, C ∩ S and C \ S are non-empty. Thus, if G has at most 3 levels we are
done, otherwise by the discussion in the previous paragraph, there is a counterexample G′ with
G ⊂ G′, such that (C, I) is a threshold partition of G′ and S is an extremal bad set of G′. If
G′ has at most 3 levels we are done, otherwise we can again apply the discussion above to G′

and S to get yet another counterexample G′′ with G ⊂ G′ ⊂ G′′, such that (C, I) is a threshold
partition of G′′ and S is an extremal bad set of G′′. Reiterating this argument we can continue
producing counterexamples on more and more edges. Since the clique is not a counterexample,
this process must stop at some point. The graph at hand at this point is a counterexample with
at most 3 levels and with S as an extremal bad set.

Definition 3. A counterexample has the super extremal property if it has an extremal bad set
S, such that either Iℓ ∩ S 6= ∅ or S ∩ C ⊂ C1. Then S is called a super extremal bad set.

Lemma 4.11. There are no counterexamples with the super extremal property.

Proof. We show that if there is a counterexample G with the super extremal property, then
there is a counterexample G′ with at most 2 levels. This would contradict Lemmas 4.6 and 4.8.
The proof that if there is a counterexample G with the super extremal property, then there is a
counterexample G′ with at most 2 levels is similar to the proof of Lemma 4.10.

We start by showing that if there is a counterexample G on at least 3 levels with a super
extremal bad set S such that the sets I ∩ S, I \ S and C \ S are non-empty, then there is a
counterexample G′ with G ⊂ G′, such that (C, I) is a threshold partition of G′ and S is a super
extremal bad set of G′.

If C ∩ S is nonempty, let u and v be the vertices in I ∩ S and C ∩ S with the highest labels,
and let u′ and v′ be the vertices in I \ S and C \ S with the lowest labels respectively. Now,
S = over(u′, v′) so by Lemma 4.3 u <L v′ and v <L u′. If S∩C ⊂ C1 we choose x to be the vertex
of I1 with highest label and y to be the vertex if C2 with the lowest label. If S∩C ⊂ C1 does not
hold, then I3 ∩ S 6= ∅ and we choose x to be the vertex of I2 with highest label and y to be the
vertex if C3 with the lowest label. We add the edge xy to G to obtain a new threshold graph G′.
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(C, I) is a threshold partition of G′ and G ⊂ G′. Furthermore δG′
(S′) = δ(S) ∪ {xy}, and in G′

u′ is adjacent to all vertices of C and v is a universal vertex. Furthermore, if S ∩ C ⊂ C1, then
v′ is a universal vertex both in G and G′ while if I3 ∩ S 6= ∅, then u is adjacent to all vertices
of C both in G and in G′. Let L′ be the layout produced by Algorithm MinCut when run on
G′. To prove that S is a super extremal bad set of G′ it is sufficient to show that L′ covers S.
However, S = over(u′, v′) both in G and G′ and none of u, u′, v and v′ are incident to the new
edge xy so u <L′ v′ and v <L′ u′. By Lemma 4.3 L′ covers S.

If C ∩ S = ∅, let u be the vertex in I ∩ S with the highest label, and let v′ be the vertex in
C with the lowest label. Let u′ be the vertex of I \ S with the smallest label. Observe that u′

exists, as we assumed that I \ S is nonempty. Now, u <L v′ and S = over(u′, v′). We choose x
to be the vertex of I1 with highest label and y to be the vertex of C2 with the lowest label. We
add the edge xy to G to obtain a new threshold graph G′. (C, I) is a threshold partition of G′

and G ⊂ G′. Furthermore δG′
(S′) = δ(S) ∪ {xy}, and in G′, u is adjacent to all vertices of C

and v′ is a universal vertex. Let L′ be the layout L′ produced by Algorithm MinCut when run
on G′. To prove that S is a super extremal bad set of G′ it is sufficient to show that L′ covers
S. However, S = over(u′, v′) both in G and in G′, and none of u, u′ and v′ are incident to the
new edge xy so u <L′ v′. Thus L′ covers S.

We can now proceed to show that if there is a counterexample G with the super extremal
property, then there is a counterexample G′ with at most 2 levels. If G has at most 2 levels we
are done, so assume that G has at least 3 levels. Let S = Vi be the largest super extremal bad
set of G. By the definition of the extremal property I ∩ S and C \ S are nonempty. Also, if a
is the vertex of I with the largest label and b is the vertex of C2 with highest label, then by
Lemma 4.2 b <L a. Since b /∈ S we have a /∈ S which implies I \ S 6= ∅.

By the discussion in the first paragraphs of the proof, there is a counterexample G′ with
G ⊂ G′, such that (C, I) is a threshold partition of G′ and S is a super extremal bad set of
G′. If G′ has at most 2 levels we are done, otherwise we can again apply the discussion above
to G′ and S to get yet another counterexample G′′ with G ⊂ G′ ⊂ G′′, such that (C, I) is a
threshold partition of G′′ and S is a super extremal bad set of G′′. Reiterating this argument
we can continue producing counterexamples on more and more edges. Since a clique is not a
counterexample, this process must stop at some point. The graph G∗ we are considering at this
step is a counterexample with at most 2 levels, contradicting Lemmas 4.6 and 4.8.

Lemmas 4.9, 4.10, and 4.11 allow us to concentrate on counterexamples on exactly 3 levels
with the extremal property, but without the super extremal property.

Definition 4. We say that a counterexample with 3 levels and the extremal property has the
snake property if (i) u <L v, where u is the vertex of I2 with highest label and v is the vertex of
C1 with highest label, and (ii) u′ <L v′, where u′ is the vertex of I3 with lowest label and v′ is
the vertex of C2 with lowest label.

Lemma 4.12. If there is a counterexample with 3 levels with the extremal property, then there
is a counterexample with 3 levels with the extremal and the snake properties.

Proof. Let G be a counterexample with the extremal property, with 3 levels. Let S be an
extremal bad set of G. By Lemma 4.11 S is not super extremal. Thus S = I1 ∪ I2 ∪ C1. Let
u be the vertex of I2 with highest label and v be the vertex of C1 with highest label. Now, let
u′ and v′ be the vertices of I3 and C2 with lowest labels respectively. If u <L v and u′ <L v′
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we are done, so either v <L u or v′ <L u′ must hold. We choose x to be the vertex of I1 with
lowest label, and let G′ = G − x. Let L′ be the layout constructed by the algorithm when run
on G′. We show that L′ covers S′ = S \ {x}. Since x is nonadjacent to both u and v′, Lemma
4.2 implies u <L′ v′.

Suppose that v′ <L u′. Since x is nonadjacent to both u′ and v′, Lemma 4.2 implies
v′ <L′ u′. Since v <L′ v′ it follows that v <L′ u′. By Lemma 4.3, L′ covers S′. Suppose
now that v <L u. Then in G, rankover(u,v)(v) ≤ rankover(u,v)(u). Since u is adjacent to
v but not to u′ and all neighbors of u′ that are non-neighbors of u are in C3, we have that
rankover(u′,v)(v) + 2 ≤ rankover(u,v)(v) ≤ rankover(u,v)(u) ≤ rankover(u′,v)(u

′). Deleting x
increases the rank of v by one and does not decrease the rank of u′, so by Lemma 4.2, v <L′ u′.
By Lemma 4.3, L′ covers S′

Now, δG′
(S′) = δ(S) so S′ is a bad set of G′. By Lemma 4.8 G′ has 3 levels. Also S′ is

an extremal bad set of G′. If G′ does not have the snake property, we can apply the argument
above to get a counterexample G′′ on 3 levels with the extremal property and even fewer vertices
than G′. Reiterating this argument we can continue producing counterexamples on fewer and
fewer vertices. Since the single vertex graph is not a counterexample, this process must stop at
some point. The graph G∗ we are considering at this step is a counterexample with 3 levels and
the extremal and snake properties.

Lemma 4.13. In a counterexample with 3 levels with the extremal and snake properties, n is
even, |C| and |I| are odd, |C1| = |C2|+ |C3|+ 1, |I3| = |I1|+ |I2|+ 1, and |I1|+ |I2|+ |C1| = n

2 .

Proof. Let G be a counterexample with 3 levels with the extremal and snake properties. Let S
be an extremal bad set of G. By Lemma 4.11, S is not super extremal, so S = Vi = I1 ∪ I2 ∪C1.
Let u and v be the vertices of I2 and C1 with highest labels, and let u′ and v′ be the vertices of
I3 and C2 with lowest labels respectively. Since S has the snake property, v = vi and u′ = vi+1.
If rankVi−1(v) ≤ 0, then Vi−1 is a super extremal bad set, contradicting Lemma 4.11. Similarly,
if rankVi

(u′) ≥ 0, then Vi+1 is a super extremal bad set, contradicting Lemma 4.11. Thus
rankVi−1(v) > 0 and rankVi

(u′) < 0. By Observation 4.4 rankVi−1(v) = 1 and rankVi
(u′) = −1.

Since v is a universal vertex this implies that n is even and that |S| = |I1| + |I2| + |C1| =
n
2 . Since u′ is adjacent to all vertices of the clique, rankVi

(u′) = |C2| + |C3| − |C1| = −1 so
|C1| = |C2| + |C3| + 1 and |C| is odd. Since |I| + |C| = n is even, |I| is odd. Finally, since
|I1|+ |I2|+ |C1| = |I3|+ |C2|+ |C3| and |C1| = |C2|+ |C3|+ 1 we have |I3| = |I1|+ |I2|+ 1.

At this point all that remains is to analyze how a counterexample on 3 levels and the extremal
and snake properties looks, and to show that in such a graph G, cwL(G) ≤ bw(G) ≤ cw(G).
Now we are ready to show our main result.

Theorem 4.14. For any threshold graph G, cwL(G) = cw(G).

Proof. Suppose for contradiction that there is a counterexample. Then, by Lemmas 4.6, 4.8, 4.9,
4.10 and 4.12 there is a counterexample G on 3 levels with the snake and extremal properties.
Since Lemma 4.11 implies that G does not have the super extremal property, I1∪I2∪C1 is a bad
set of G. By Lemma 4.13, n is even, |C| and |I| are odd, |C1| = |C2|+|C3|+1, |I3| = |I1|+|I2|+1,
and |I1| + |I2| + |C1| = n

2 .
Let S be a vertex set on n

2 vertices that minimizes d(S), that is, with d(S) = bw(G). Notice

that δ(S) = δ(V \ S). Thus, without loss of generality |S ∩ I| > |I|
2 . We view the set S as a set
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of n
2 pebbles that have been placed on distinct vertices of G. We can move pebbles from I3 to

C1 and keep optimality of S, unless one of the following is true:

(i) there are no pebbles on vertices of I3,

(ii) all vertices of C1 have pebbles on them,

(iii) moving a pebble from a vertex in I3 to a vertex in C1 increases d(S).

Moving a pebble from a vertex x to a vertex y increases d(S) by rankS\{x}(y)−rankS\{x}(x).
Thus, if there is a pebble on a vertex x in I3 and a free spot on a vertex y in C1, moving a
pebble from x to y does not increase d(S) if and only if

rankS\{x}(y) − rankS\{x}(x) = 1 − (|C \ S| − |C ∩ S|) ≤ 0.

Rearranging terms yields that moving a pebble from x to y does not increase d(S) if and only
if |C ∩S| < |C \S|. In addition, one should notice that if there are no pebbles on vertices of I3,
then |C ∩ S| > |C \ S| because |I3| = |I1| + |I2| + 1. Similarly, if all vertices of C1 have pebbles
on them, then |C ∩ S| > |C \ S| because |C1| = |C2| + |C3| + 1.

By our choice of S, before we start moving any pebbles, |I ∩ S| > |I \ S|. Since |S| = n
2

this means that |C ∩ S| < |C \ S|. Therefore, by the discussion in the previous paragraph we
can move pebbles from I3 to C1, preserving minimality of d(S) until the inequality flips from
|C ∩ S| < |C \ S| to |C ∩ S| > |C \ S|. At this point,

|C ∩ S| =
⌈ |C|

2

⌉

= |C1| and |I ∩ S| = |I1| + |I2|.

Let α, β and γ be the ranks of a vertex in I1, I2 and I3 with respect to S.
If α ≤ γ and β ≤ γ we can move pebbles from I3 to I1 and I2 keeping optimality of S. Since

exactly |I1| + |I2| pebbles are placed on vertices of I, after the move every vertex of I1 ∪ I2 has
a pebble on it, and no pebbles are on vertices in I3. Now we can safely move all pebbles in C2

and C3 to C1, keeping optimality of S. Since exactly |C1| pebbles are placed on vertices of C,
after the move every vertex of C1 has a pebble on it, and no pebbles are on vertices in C2 ∪C3.
But this means that S = I1 ∪ I2 ∪C1 and d(S) ≤ bw(G) ≤ cw(G) contradicting that I1 ∪ I2 ∪C1

is a bad set of G.
If α ≥ γ and β ≥ γ we can move all pebbles from I1 and I2 to I3 keeping optimality of S.

Since exactly |I1| + |I2| pebbles are placed on vertices of I, after this move all but one vertex of
I3 has a pebble on it, and no pebbles are on vertices in I1 ∪ I2. Now we can safely move pebbles
in C1 to C2 and C3, keeping optimality of S. Since exactly |C1| pebbles are placed on vertices of
C, after this move exactly one vertex of C1 has a pebble on it, and all vertices of C2 ∪ C3 have
pebbles on them. Let x be the vertex in I3 without a pebble and y be the vertex in C1 with a
pebble. After the moves, rankS\{y}(x) = rankS\{y}(y) = 1, so we can move the pebble on y to
x, keeping optimality of S. However d(I1 ∪ I2 ∪ C1) = d(V \ S) = d(S) ≤ bw(G) contradicting
that I1 ∪ I2 ∪ C1 is a bad set of G.

If α ≤ γ ≤ β we can move pebbles from I2 and I3 to I1 maintaining optimality until each
vertex of I1 has a pebble on it. If any pebbles remain in I2 we can move these pebbles to I3.
Since there are |I1| + |I2| pebbles in I there are exactly |I2| vertices in I3 that have pebbles on
them. Now, we can move all pebbles in C2 to C3 and C1 maintaining optimality until there
are no pebbles left in C2. If |I1| ≥ |I2| we can move all pebbles from C3 to C1 maintaining
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optimality. After this move, the set of vertices in C with pebbles on them is exactly C1. Thus
we can move all pebbles in I3 to I2 maintaining optimality. In this case, S = I1 ∪ I2 ∪ C1, but
d(S) ≤ bw(G) contradicting that I1 ∪ I2 ∪ C1 is a bad set of G.

If |I1| < |I2| we can move pebbles from C1 to C3 until all vertices of C3 have pebbles on
them. After this move there are exactly |C1| − |C3| pebbles on vertices in C1. We consider d(S)
and compare it to

d(I1 ∪ I2 ∪ C1) = |C1|(|C2| + |C3|) + |I2||C2| + |I3||C1|.

Counting the edges of d(S) we obtain

d(S) = |C1|(|C2| + |C3|) + |I1||C3| + |I2|(|C1| − |C3|) + (|I3| − |I2|)|C1| + |I2|(|C2| + |C3|).

Simplifying yields

d(S) = |C1|(|C2| + |C3|) + |I1||C3| + |I3||C1| + |I2||C2|.

But this means that d(I1 ∪ I2 ∪ C1) < d(S) ≤ bw(G) contradicting that S is a bad set of G.
Finally, suppose α ≥ γ ≥ β. Since d(S) = d(V \ S) we can move all pebbles over to

vertices that do not have pebbles and preserve optimality. There are now exactly |I3| pebbles
in I and |C2| + |C3| pebbles in |C|. Since |I3| > |I1| + |I2| there is a pebble on a vertex x
in I3. Also, since |C1| > |C2| + |C3| there is a vertex y with no pebble in C1. At this point,
rankS\{x}(x) = rankS\{x}(y) = 1, so we can move a pebble from x to y and again obtain a set
S with pebbles on |I1|+|I2| vertices in I and |C1| vertices in C. In addition if α′, β′ and γ′ are
the ranks of a vertex in I1, I2 and I3 with respect to S, then

α′ = −α − 2, β′ = −β − 2 and γ′ = −γ − 2.

Thus α′ ≤ γ′ ≤ β′ and the discussion in the previous paragraphs applies. This concludes the
proof.

Theorem 4.15. The cutwidth of a threshold graph G on n vertices can be computed in O(n)
time if the threshold partition of G is given as input, and O(n + m) time if the adjacency list
representation of G is given.

Proof. Given the adjacency list representation of G, a threshold partition can be computed in
O(n+m) time [12]. We now describe an implementation of Algorithm MinCut that runs in O(n)
time if the threshold partition of G is given. Let (C1 ∪ C2 · · · ∪ Cℓ, I1 ∪ I2 · · · ∪ Iℓ) be the given
threshold partition of G. By Lemma 4.1 we know that Algorithm MinCut picks vertices of I by
increasing label and the vertices of C by increasing label. Therefore we keep track of the not
yet picked vertices u ∈ I and v ∈ C with the lowest labels. We also keep track of the ranks of
u and v with respect to over(u, v), that is ru = rankover(u,v)(u) and rv = rankover(u,v)(u). At
each step of the algorithm we pick the one of u and v with the lowest rank (and highest degree
if their rank is equal, lowest label if both rank and degree is equal). We now need to update the
variables u, v, ru and rv. Lemma 4.1 guarantees that u and v are adjacent, so if we pick u we
reduce rv by 2 and if we pick v we reduce both ru and rv by 2. Finally, if we picked u, we need to
correct ru for the fact that the next vertex in I could be in a higher level, and similarly we need
to correct rv. If the algorithm picked u, let u′ be the vertex in I with label(u)+1 = label(u′). If
level(u′) > level(u) we increase ru by |Clevel(u′)| because Lemma 4.1 guarantees that no vertices
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of Clevel(u′) have been picked yet. Similarly, if the algorithm picked v, let v′ be the vertex in C

with label(v) + 1 = label(v′). If level(v′) > level(v) we increase rv by |Ilevel(v)| because Lemma
4.1 guarantees that all vertices of Ilevel(v) have already been picked. For each new vertex to be

picked the algorithm does O(1) work so the total time complexity is O(n).

5 Concluding remarks: cutwidth of interval graphs

A natural open question and a future research direction is resolving the computational complex-
ity of cutwidth on interval graphs. A graph is interval if sets of consecutive integers (intervals)
can be assigned to its vertices such that two vertices are adjacent if and only if their intervals
overlap. Some inherently difficult graph problems, like bandwidth, are polynomially solvable
on interval graphs [16], whereas others, like optimal linear arrangement, are NP-complete [7].
Optimal linear arrangement can be seen as sum-bandwidth or sum-cutwidth, equivalently (see
[10] for definitions).

A subclass of interval graphs and a superclass of threshold graphs is the class of trivially
perfect graphs. Extending our results even to trivially perfect graphs seems to be a non-trivial
open problem.

Simple examples exist to show that Algorithm MinCut can produce a layout with cutwidth
that is a factor of O(n) larger than cw(G) when G is an interval graph, or even a proper interval
graph. An interval graph is proper interval if it has an interval model where no interval properly
contains another. Interestingly, for proper interval graphs an ordering of the vertices of the
input graph by increasing right endpoint of their corresponding intervals is a minimum cutwidth
layout [25]. Note that an increasing right endpoint order is not necessarily an optimal layout
for a threshold graph; a star is a simple counterexample.
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Appendix

Here we give two examples of the Algorithm MinCut when applied on graphs relative to threshold
graphs. More precisely we present a chain graph in Figure 3 and a trivially-perfect graph in
Figure 4; proper definitions of such families related to threshold graphs can be found in [12].
In both cases we give two layouts: one layout that the algorithm produces and another one
of strictly smaller cutwidth. Therefore our algorithm cannot be directly applied on larger or
related classes of threshold graphs.
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a1 a2 c a3 a4 b1 b2 d b3 b4
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Figure 3: (a) A chain graph, (b) a layout of cutwidth 4 computed by the Algorithm MinCut,
and (c) a layout of cutwidth 3.
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Figure 4: (a) A trivially-perfect graph, (b) a layout of cutwidth 7 computed by the Algorithm
MinCut, and (c) a layout of cutwidth 5.
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