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Abstract. If Y is a subset of the space � n
× � n, we call a pair of continuous functions U , V

Y -compatible, if they map the space � n into itself and satisfy Ux ·V y > 0, for all (x, y) ∈ Y

with x · y > 0. (Dot denotes inner product.) In this paper a nonlinear two point boundary
value problem for a second order ordinary differential n-dimensional system is investigated,
provided the boundary conditions are given via a pair of compatible mappings. By using
a truncation of the initial equation and restrictions of its domain, Brouwer’s fixed point
theorem is applied to the composition of the consequent mapping with some projections
and a one-parameter family of fixed points Pδ is obtained. Then passing to the limits as δ

tends to zero the so-obtained accumulation points are solutions of the problem.
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1. Introduction

In this paper we combine continuity properties of the evolution of the second order

ordinary differential equation

(1.1) ẍ = f(t, x, ẋ), t ∈ [−σ, 1 + σ],

with Brouwer’s fixed point theorem to establish existence of a solution x satisfying

conditions of the form

(1.2) x(0) = U(x(1)), ẋ(0) = V (ẋ(1)).

Here σ is a positive real number, the function f satisfies the well known Hartman’s

condition and U , V are Y -compatible, in the sense that they satisfy Ux · V y >
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0 for all (x, y) ∈ Y with x · y > 0, for a certain Y specified in the text. (Dot

denotes inner product.) For instance, if A is an invertible n × n matrix and B is

any positive multiple of the transpose of the inverse A−1, then the pair A, B is Y -

compatible, with Y being the whole space � n × � n . The problem under investigation

has been inspired by the periodic problem concerning (1.1), for which the literature is

voluminous, as well as by the ones presented in [3], [9]. Notice that in [9] the existence

of a Sturm-Liouville boundary value problem is investigated, by transforming the

problem into the equivalent form Lx = Gx and then applying Leray-Schauder’s

continuation theorem. This represents one among the three approaches most widely

used in discussing existence of solutions of (1.1) satisfying additional conditions,

such as boundary value conditions, periodicity, cost functionals, etc. The second

is to examine the existence of a fixed point for an integral operator defined on the

family of functions which satisfy some additional conditions. In this case the well-

known shooting method is usually applied. And the third is to show that the set of

solutions contains an element satisfying the conditions. To follow the last approach

several methods have been developed, as, for example (in case of boundary value

conditions), methods based on upper and lower solutions, or degree theory arguments

(see, e.g., [7], [8] and the references therein), or Ważewski’s topological method (see,

e.g., [4]). In occasion we would like to refer to [4, p. 338], where by using Ważewski’s

method it was shown that if in (1.1) the function f satisfies Hartman’s condition for

all t > 0, x and y 6= 0, then there is a t0 > 0 such that x(t) · x(t) is nonincreasing

for all t > t0, where x(t) is the solution of equation (1.1). In this paper we do use

Hartman’s condition and give more information on the solutions. Also methods based

on the application of fixed point theorems applied to the Poincaré-like mapping give

good results. For a two-point boundary value problem concerning a more general

differential equation in a Hilbert space discussed by the authors in [6] Schauder’s

fixed point theorem is used. Here we have to mention [3], where the existence of

a solution x of a similar problem is discussed with the functions U and V being

replaced by nonsingular n × n-square matrices Q0 and Q1 such that the former

is orthogonal and the pair (Q0, Q1) satisfies the inequalities x · Q0Q
−1
1 y 6 0 and

x · (Q0 +Q−1
1 )y 6 0 for all vectors x, y ∈ � n with x · y 6 0. The proof of the results

are based on a technique of [1], where the degree theory is used.

Our purpose here is to provide sufficient conditions for the existence of solutions

of the problem (1.1)–(1.2). Furthermore, our method, which is analytical (Brouwer’s

fixed point theorem is used), permits us to get information on the location of the

solutions. Indeed, under quite natural conditions we are able to obtain C1 bounds

for the solutions.

We denote by Iσ and I the (so-called time-) intervals [−σ, 1 + σ] and [0, 1] re-

spectively of the real line � . Also we let Eσ and E be the sets Iσ × � n × � n and
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I × � n × � n , respectively. The Euclidean norm in the space � n is denoted by | · |

and the open ball centered at 0 and having radius r > 0 is denoted by B(0, r).

(We write ∂A, intA and clA, respectively, for the boundary, interior and closure of

a set A.) The graph space of the solutions of equation (1.1) is the space Eσ and

Brouwer’s fixed point theorem applies on subsets of the boundary of the set

N(r, q) := clB(0, r) × clB(0, q)

for some positive constants r, q. Also for each τ ∈ I we let Dτ (r, q) be the t = τ

cross-section of the set

D(r, q) := I ×N(r, q),

namely Dτ (r, q) is the set {τ} × N(r, q). If x : Iσ → � n is a function and Z is a

subset of the interval Iσ we use the symbol

G(x|Z)

to denote the set

{(t, x(t), ẋ(t)) : t ∈ Z}.

In the sequel we assume that equation (1.1) admits unique solutions and, if x is

the solution passing through a point P ∈ Eσ which is defined at least on a maximal

(open) interval of the form (αP , βP ) =: JP , we shall denote it by x(t;P ), t ∈ JP .

Let r, q be positive real numbers and consider the set D(r, q). A point (τ, ξ, η) =:

P ∈ ∂D(r, q) is a point of egress (with respect to (1.1) and D(r, q)), if there is a

number ε > 0 such that

G(x(·;P )|(τ − ε, τ)) ⊆ intD(r, q).

Furthermore, if for some ε̄ > 0 we have

G(x(·;P )|(τ, τ + ε̄)) ⊆ Eσ −D(r, q),

then we say that P is a point of strict egress, (see, e.g., [3]). By the basic theorem of

existence of solutions it follows that any point of the set D1(r, q) is a point of strict

egress. The sets of all egress and all strict egress points of the set D(r, q) are usually

denoted by D(r, q)e and D(r, q)se, respectively.

A point (τ, ξ, η) =: P ∈ D(r, q)e is a consequent point of P0 := (τ0, ξ0, η0), if

τ0 < τ , x(τ ;P0) = P and

G(x(·;P0)|(τ0, τ)) ⊆ intD(r, q).
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It is clear that if such a point P exists, then it is unique. The consequent point of P0

is denoted by C(P0) and the so defined mapping C : P0 → C(P0) is the consequent

mapping.

Now we borrow from [5] the following result (after making the necessary adapta-

tions):

Lemma 1.1. If P is an interior point of Dσ(r, q) and the solution x(·;P ) egresses

strictly from D(r, q), then the consequent mapping C is continuous at P .

A point (τ, ξ, η) =: P on the boundary of the set D(r, q) is a point of ingress (with

respect to (1.1)), if there is a number ε > 0 such that

G(x(·;P )|(τ − ε, τ)) ⊆ Eσ − clD(r, q).

Furthermore, if for some ε̄ > 0 we have

G(x(·;P )|(τ, τ + ε̄)) ⊆ intD(r, q),

then we say that P is a point of strict ingress. Again, by the theorem of existence

of solutions it follows that any point of the set D0(r, q) is a point of strict ingress.

2. The main results

Consider a continuous function f : Eσ → � n satisfying the following conditions:

(f1) It guarantees uniqueness of the solutions of equation (1.1).

(f2) The function

g(r, q) := sup{|f(t, x, y)| : t ∈ I, |x| 6 r, |y| 6 q}, r, q > 0

is o(q2) as q → +∞, for each r > 0 fixed.

(f3) There is a real number R > 0 such that

4R 6 g(R, q),

for all q > 0 and moreover Hartman’s condition

x · f(t, x, y) + |y|2 > 0

holds for all (t, x, y) ∈ Eσ with x · y = 0 and |x| = R.
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Lemma 2.1. If the above conditions are satisfied, then the following assertions

hold:

(a) The infimum iR of the set A(R) of all real numbers k > 0 with the property

that, if q > k, then q2 > 4Rg(R, q) is a finite real number.

We let KR be any fixed real number greater than iR.

(b) If P := (0, ξ, η) is a point such that the solution x(·;P ) defined on JP containing

the interval I satisfies

|x(t;P )| 6 R, t ∈ JP ,

then

|ẋ(t;P )| < KR, t ∈ JP .

������� �
. (a) Assume that the set A(R) is empty. Then there is a sequence (qk)

tending to +∞ such that
g(R, qk)

q2k
>

1

4R
,

contradicting (f2).

(b) We let J be a compact subinterval of JP containing I and set

q := sup{|ẋ(t;P )| : t ∈ JP }.

Also we define

s := 2t, y(s) := x(t;P ), t ∈ JP .

Then q is finite and the new function y satisfies the equation

4ÿ(s) = f
(s

2
, y(s), 2ẏ(s)

)

, s ∈ {2t : t ∈ JP } =: 2JP .

Therefore we have

|y(s)| 6 R

and

|ÿ(s)| 6
g(R, q)

4
=: γ

for all s ∈ 2JP , where R 6 γ because of (f3). Now, since the interval 2JP has length

at least equal to 2, we apply Lemma 2 of [2, p. 139] to conclude that

|ẏ(s)|2 6 Rg(R, q)

for all s ∈ 2JP . This implies that q
2 6 4Rg(R, q) and, so, from (a) we get q 6 iR <

KR. This implies statement (b).

Next we let

HR := KR + g(R,KR).

Our main results are given in the following theorem:
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Theorem 2.1. Assume that f is a function satisfying the conditions (f1)–(f3)

and consider a direct product function W := U ⊗ V , where

(a) U maps the closed ball clB(0, R) into itself continuously, it is invertible, it has

no fixed point on the boundary of the ball B(0, R) and there is a δU ∈ (0, R)

such that for all δ ∈ (0, δU ) the inequality |U(u)| 6 R − δ holds for all u with

|u| 6 R− δ;

(b) V maps the closed ball clB(0,KR) into itself continuously, and there is a δV ∈

(0,KR) such that for all δ ∈ (0, δV ) the inequality |V (v)| 6 KR − δ holds for

all v with |v| 6 HR − δ;

(c) the pair U, V is Y -compatible, where Y := {(x, y) : x, y ∈ � n , |x| = R, |y| 6

HR} (see the introduction).

Then there is a solution x(·;P0) of the problem (1.1)–(1.2) for a certain point

P0 ∈ D0(R,KR) defined at least on the interval I . Moreover, this solution satisfies

the inequality |x(t;P0)| 6 R for all t ∈ I , thus, by Lemma 2.1, |ẋ(t;P0)| 6 KR.

������� �
. Consider a function f(t, x, y), (t, x, y) ∈ Eσ as above and define a new

function

F : Eσ → � n

by

F (t, x, y) := f

(

t,min
{

1,
R

|x|

}

x,min
{

1,
KR

|y|

}

y

)

for all (t, x, y) ∈ Eσ . On the set D(R,KR) the function F is identically equal to f

and satisfies the inequality

(2.1) |F (t, x, y)| 6 g(R,KR)

for all (t, x, y) ∈ Eσ . We formulate the ordinary differential equation

(2.2) ẍ = F (t, x, ẋ), t ∈ Eσ .

From (2.1) it follows that solutions of (2.2) with initial values in D0(R,KR) are

defined on the whole interval Iσ and are unique. Moreover, any solution x of the

differential equation (2.2) with G(x|I) in D(R,KR) is also a solution of the original

equation (1.1).

Let δ > 0 be a sufficiently small fixed number with δ 6 min{δU , δV } and consider

a point P0 := (0, ξ, η) in D0(R − δ,KR − δ) ⊆ D0(R,HR). As we have remarked

earlier, such a point is a strict ingress point of the set D(R,HR). Since D(R,HR)

is a compact subset of Eσ , by the extendability property of the solution x(·;P0)

there is a time s > 0 such that the point P := (s, x(s;P0), ẋ(s;P0)) is a egress point
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of the set D(R,HR) and thus it belongs to the boundary. We can assume that

s is the smallest time with this property. It is clear that s > 0, since in a small

neighborhood J of 0 the set G(x(·;P0)|J) lies in the interior of Iσ ×N(R,HR). Then

we must have

G(x|(0, s)) ⊆ intD(R,HR),

and either

(2.3) |x(s;P0)| 6 R, |ẋ(s;P0)| = HR,

or

(2.4) |x(s;P0)| = R, |ẋ(s;P0)| 6 HR.

We claim that the point P is a strict egress point of the set D(R,HR), thus the

consequent mapping is well defined and (by Lemma 1.1) it is continuous at P0. This

fact is obvious in case s = 1, so we discuss the case s < 1.

Assume that the relations (2.3) hold. From inequality (2.1) and equation (2.2) it

follows that for each t ∈ [0, s] we have

|ẍ(t)| 6 g(R,KR),

hence

|ẋ(s)| 6 |ẋ(0)| + sg(R,KR) < KR + sg(R,KR) < HR,

a contradiction. Recall that ẋ(0) = η ∈ clB(0,KR − δ). Therefore only the rela-

tions (2.4) hold. Define the function

mP0
(t) :=

1

2
[|x(t;P0)|

2 −R2], t ∈ Iσ ,

and observe that mP0
(s) = 0. It is clear that, if ṁP0

(s) > 0, then P ∈ D(R,HR)se.

Assume that ṁP0
(s) = 0, hence x(s;P0) · ẋ(s;P0) = 0. Then (f3) implies that

m̈P0
(s) = x(s;P0) · f(s, x(s;P0), ẋ(s;P0)) + |ẋ(s;P0)|

2 > 0,

which guarantees that P ∈ D(R,HR)se. Our claim is proved.

Next consider the continuous functions J , Q, M defined by

J(u, v) := (0, u, v), Q(t, u, v) := (u, v),

and

M(u, v) :=
(R− δ

R
u,
HR − δ

HR

)
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for all u, v ∈ � n and t ∈ I . For the direct product function W := U⊗V observe that

∣

∣

∣
U

(R− δ

R
x(s; (0, ξ, η))

)∣

∣

∣
6 R− δ

and
∣

∣

∣
V

(HR − δ

HR
ẋ(s; (0, ξ, η))

)∣

∣

∣
6 KR − δ.

Consequently, the composition

T := W ◦M ◦Q ◦ C ◦ J

maps the generalized interval Vδ := N(R − δ,KR − δ) into itself continuously. Now

we apply Brouwer’s fixed point theorem and get the existence of a point

(uδ, vδ) ∈ Vδ

such that

(2.5) U
(R− δ

R
x(s; (0, uδ, vδ))

)

= uδ

and

(2.6) V
(HR − δ

HR
ẋ(s; (0, uδ, vδ))

)

= vδ

for some sδ ∈ I . Assume that sδ < 1. Then

(2.7) |x(sδ ; (0, uδ, vδ))| = R.

Suppose that this relation holds for a sequence of δ’s converging to zero. Then, since

the interval [0, 1] and the product N(R,HR) are compact sets, it follows from the

continuity of x(t, P ) and ẋ(t, P ) on the initial point P , uniformly for all t, that there

is a time s′ ∈ [0, 1] and a pair (u, v) ∈ N(R,HR) such that

(2.8) U(x(s′; (0, u, v))) = u

and

V (ẋ(s′); (0, u, v)) = v.

If s′ = 0, then x(s′; (0, u, v)) = u and (2.8) gives that u is a fixed point of U on

the boundary of the ball B(0, R), contradicting our hypothesis. Thus we must have

s′ > 0. If |u| < R, then it follows, from (a) that

R = |x(s′; (0, u, v))| = |U−1(u)| 6 sup
|u′|6|u|

|U−1(u′)| 6 |u| < R,
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a contradiction. Let us, finally, assume that |u| = R. Since

G(x(·; (0, uδ , vδ))|(0, sδ)) ⊆ intD(R,HR),

from continuity we get

(2.9) G(x(·; (0, u, v)|[0, s′]) ⊆ D(R,HR).

On the other hand, we have

x(sδ ; (0, uδ, vδ)) · ẋ(sδ ; (0, uδ, vδ)) > 0

and so x(s′; (0, u, v)) · ẋ(s′; (0, u, v)) > 0. Hence by the compatibility of the functions

U , V we get

u · v = U(x(s′; (0, u, v))) · V (ẋ(s′; (0, u, v))) > 0.

This inequality combined with the condition (f3) means that the point (u, v) is a

strict egress point, so (2.9) cannot be true.

The previous arguments show that in (2.7) we have s = 1 for all small δ’s. Now,

from (2.5), (2.6), the compactness of the set D0(R,KR), the continuity of the func-

tionW and the continuity of the solutions with respect to the initial values, it follows

that there exists a point (0, u, v) ∈ D0(R,KR) such that (u, v) satisfies the relation

(U(x(1; (0, u, v))), V (ẋ(1; (0, u, v)))) = (u, v),

which is the same as (1.2). Also, for each δ the solution x(·; (0, uδ , vδ)) of equa-

tion (2.2) egresses strictly from D(R,HR) at s = 1. Thus we have

|x(t; (0, uδ, vδ))| 6 R

for all t ∈ I . Therefore

|x(t; (0, u, v))| 6 R

for all t ∈ I and so, from Lemma 2.1,

|ẋ(t; (0, u, v))| 6 KR

for all t ∈ I . Hence |v| 6 KR and, so, x(·; (0, u, v)) is also a solution of equation (1.1).

The proof of the theorem is complete. �
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Some Applications

(a) Consider Van der Pol’s equation

ẍ+ F (x)ẋ +G(x) = 0,

where the continuous functions F , G are such that

lim sup
r→+∞

r−1 sup
|x|6r

|G(x)| > 4

and

lim sup
|x|→+∞

xG(x) < 0.

Also consider two functions U , V defined by U(x) := −x and V (x) := ϕ(x), where

ϕ is a bounded continuous real valued function such that xϕ(x) 6 0 for all large |x|.

In this case the function g(r, q) is defined by

g(r, q) := F1(r)q +G1(r),

where

F1(r) =: sup
|x|6r

|F (x)|

and

G1(r) =: sup
|x|6r

|G(x)|.

Choose a certain R > 0 with G1(R) > 4R, RG(R) < 0 and ±Rϕ(±R) 6 0. In this

case our theorem above applies where KR is any number such that

KR > 2RF1(R) + 2R
√

F 2
1 (R) +G1(R)

and it guarantees the existence of a solution x of Van der Pol’s equation such that

x(0) = −x(1), ẋ(0) = ψ(ẋ(1)).

(b) Consider the differential equation

(2.10) ẍ = Ax+ |ẋ|γ(x · ẋ)b(t), t ∈ [0, 1]

where 0 6 γ < 1, the matrix A is strictly positive definite with |A| =: a > 4 and the

vector valued continuous function b(·) has sup-norm equal to |b|. Assume that we are
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interested in solutions of equation (2.10) satisfying the boundary conditions (1.2),

where the functions U , V are defined by

U(u) := (p− |u|)e− u, |u| 6 p

and

U(u) := −u, |u| > p

for some p > 1
8 and also

V (v) := −kv,

where e is the vector (1, 0, . . . , 0) and k is any positive real number such that

k < K[K + aR+ |b|RK1+γ ]−1

with R := 2p and

K := [4(a+ |b|)R2]1/(1−γ).

In this case the function g is given by

g(r, q) := ar + r|b|q1+γ .

Thus the conditions (f1)–(f2) are satisfied. Also observe that, whenever q > K, then

q2 > 4Rg(R, q), so we can set KR := K.

The conclusion is that there is a (nonzero) solution x defined on [0, 1] such that

x1(0) + x1(1) > 0

and

xj(0) + xj(1) = 0

for all indices j = 2, 3, . . . , n, as well as

ẋ(0) + kẋ(1) = 0.
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