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Abstract

In this paper we investigate the existence of solutions to some classes of
boundary value problems for impulsive functional and neutral functional dif-
ferential equations with infinite delay, using the nonlinear alternative of Leray-
Schauder type.

1 Introduction

This paper is concerned with the existence of solutions to first order boundary value
problems for impulsive functional and neutral functional differential equations with
infinite delay. In particular, in Section 3, we will consider the class of first order
functional differential equations with impulsive effects,

y′(t) = f(t, yt), a.e. t ∈ J := [0,∞), t 6= tk, k = 1, . . . , (1)

y(t+k ) − y(t−k ) = Ik(y(t−k )), t = tk, k = 1, . . . , (2)

Ay(t) − y∞ = φ(t), t ∈ (−∞, 0], (3)

where f : J × B → IR
n, Ik : IR

n → IR
n, k = 1, 2, . . . are given functions satisfying

some assumptions that will be specified later, lim
t→∞

y(t) = y∞, A > 1, φ ∈ B and B

is called a phase space that will be defined later. Section 4 is devoted to impulsive
neutral functional differential equations,

d

dt
[y(t) − g(t, yt)] = f(t, yt), t ∈ J, t 6= tk, k = 1, . . . , (4)
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y(t+k ) − y(t−k ) = Ik(y(t−k )), t = tk, k = 1, . . . , (5)

Ay(t) − y∞ = φ(t), t ∈ (−∞, 0], (6)

where f, Ik, y∞, B are as in problem (1)-(3), and g : J × B → IR
n is a given function.

The notion of the phase space B plays an important role in the study of both qualita-
tive and quantitative theory. A usual choice is a semi-normed space satisfying suitable
axioms, which was introduced by Hale and Kato [16] (see also Kappel and Schap-
pacher [18] and Schumacher [26]). For a detailed discussion on this topic we refer the
reader to the book by Hino et al [17]. For the case where the impulses are absent (i.e
Ik = 0, k = 1, . . . ,m), an extensive theory has been developed for the problem (1)–(3).
We refer to Hale and Kato [16], Corduneanu and Lakshmikantham [7], Hino et al [17],
Lakshmikantham et al [20] and Shin [27].
Impulsive differential equations have become more important in recent years in some
mathematical models of real processes and phenomena studied in control, physics,
chemistry, population dynamics, biotechnology and economics. There has been a sig-
nificant development in impulse theory, in recent years, especially in the area of im-
pulsive differential equations with fixed moments; see the monographs of Bainov and
Simeonov [3], Lakshmikantham et al [19] and Samoilenko and Perestyuk [25] and the
papers of Agur et al [1], Ballinger and Liu [4], Benchohra et al [5, 6], Franco et al [9]
and the references therein.
Boundary value problems on infinite intervals appear in many problems of practical
interest, for example in linear elasticity problems, nonlinear fluid flow problems and
foundation engineering (see [2, 10, 11, 21, 22, 23, 24]) and the references therein. Re-
cently the fixed point argument such as the Banach contraction principle, fixed point
index theory and monotone iterative technique were applied to first and second order
impulsive differential equation. We mention here the papers by Guo [12, 13, 14, 15],
Yan and Liu [28] and the references therein.
Our goal here is to give existence results for the above problems by using the nonlinear
alternative of Leray-Schauder type. These results can be considered as a contribution
to the literature.

2 Functional Differential Equations

Let C([0,∞), IRn) be the space of all continuous functions from [0,∞) into IR
n.

L1([0,∞), IRn) denotes the Banach space of measurable functions y : [0,∞) −→ IR
n

which are Lebesgue integrable and normed by

‖y‖L1 =

∫

∞

0

|y(t)|dt for all y ∈ L1([0,∞), IRn).

Definition 2.1 The map f : [0,∞) × B −→ IR
n is said to be L1-Carathéodory if

(i) t 7−→ f(t, y) is measurable for each y ∈ B;
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(ii) y 7−→ f(t, y) is continuous for almost all t ∈ [0, b];

(iii) For each q > 0, there exists hq ∈ L1([0,∞), IR+) such that

‖f(t, y)‖ ≤ hq(t) for all ‖y‖B ≤ q and for almost all t ∈ [0,∞).

In order to define the phase space and the solutions of (1)–(3) we shall consider the
space

B∗ =
{

y : (−∞,∞) → IR
n, such that, y(t−k ), y(t+k ), exist with y(tk) = y(t−k ),

y(t) = φ(t), t ≤ 0, yk ∈ C(Jk, IR
n), k = 1, . . .

}

,

where yk is the restriction of y to Jk = (tk, tk+1], k = 0, . . . . Here t0 = 0. Set

Bb = {y ∈ B∗ : sup
t∈J

|y(t)| < ∞}.

Let ‖ · ‖b be the seminorm in Bb defined by

‖y‖b = ‖y0‖B + sup{|y(s)| : 0 ≤ s < ∞}, y ∈ Bb.

We will assume that B satisfies the following axioms:

(A) If y : (−∞,∞) → IR
n, and y0 ∈ B, then for every t ∈ [0,∞) the following

conditions hold:

(i) yt is in B;

(ii) ‖yt‖B ≤ K(t) sup{|y(s)| : 0 ≤ s ≤ t} + M(t)‖y0‖B,

where H ≥ 0 is a constant, K : [0,∞) → [0,∞) is continuous, M : [0,∞) →
[0,∞) is locally bounded and H,K,M are independent of y(·).

(A-1) For the function y(·) in (A), yt is a B-valued continuous function on [0,∞).

(A-2) The space B is complete.

Let us define what we mean by a solution of problem (1)–(3).

Definition 2.2 A function y ∈ Bb, is said to be a solution of (1)–(3) if y satisfies
(1)–(3).

In the proof of the existence results for the problem (1)-(3) we need the following
auxiliary lemma.
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Lemma 2.1 Let f : C([0,∞), IRn) → IR
n be continuous and

∫

∞

0

f(s)ds < ∞. Then

y be a solution of the impulsive integral equation

y(t) =



















































φ(0)

A(A − 1)
+

1

A − 1

[

∫

∞

0

f(ys)ds +
∞

∑

k=1

Ik(y(tk))

]

+
φ(t)

A
, t ∈ (−∞, 0],

φ(0)

A − 1
+

1

A − 1

[

∫

∞

0

f(ys)ds +
∞

∑

k=1

Ik(y(tk))

]

+

∫ t

0

f(ys)ds +
∑

0<tk<t

Ik(y(tk)), t ∈ [0,∞),

(7)
where lim

t→∞

y(t) = y∞, if and only if y is a solution of the impulsive boundary value

problem
y′(t) = f(yt); t ∈ [0,∞), t 6= tk, k = 1, . . . , (8)

y(t+k ) − y(t−k ) = Ik(y(t−k )), k = 1, . . . , (9)

Ay(t) − y∞ = φ(t), t ∈ (−∞, 0]. (10)

Proof. Let y be a solution of the impulsive integral equation (7), then for t ∈ [0,∞)
and t 6= tk, k = 1, . . . we have

y(t) =
φ(0)

A − 1
+

1

A − 1

[

∫

∞

0

f(ys)ds +
∞

∑

k=1

Ik(y(tk))

]

+

∫ t

0

f(ys)ds +
∑

0<tk<t

Ik(y(tk)).

Thus y′(t) = f(yt) for t ∈ [0,∞) and t 6= tk, k = 1, . . ..
From the definition of y we can prove that

y(t+k ) − y(t−k ) = Ik(y(tk)), for k = 1, . . . .

Finally we prove that Ay(t) − y∞ = φ(t), t ∈ (−∞, 0]. We have

lim
t→∞

y(t) =
φ(0)

A − 1
+

A

A − 1

[

∫

∞

0

f(ys)ds +
∞

∑

k=1

Ik(y(tk))

]

and

y(t) =
φ(0)

A(A − 1)
+

1

A − 1

[

∫

∞

0

f(ys)ds +
∞

∑

k=1

Ik(y(tk))

]

+
φ(t)

A
, t ∈ (−∞, 0].
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Hence

Ay(t) − lim
t→∞

y(t) =
φ(0)

A − 1
+

A

A − 1

[

∫

∞

0

f(ys)ds +
∞

∑

k=1

Ik(y(tk))

]

+ φ(t)

−
φ(0)

A − 1
−

A

A − 1

[

∫

∞

0

f(ys)ds +
∞

∑

k=1

Ik(y(tk))

]

= φ(t), t ∈ (−∞, 0]..

Let y be a solution of the problem (8)–(10). Then

y′(t) = f(yt) for t ∈ [0, t1].

An integration from 0 to t (here t ∈ (0, t1]) of both sides of the above equality yields

∫ t

0

y′(s)ds =

∫ t

0

f(ys)ds,

or

y(t) − y(0) =

∫ t

0

f(ys)ds.

Thus for t ∈ [0, t1] we have

y(t) = y(0) +

∫ t

0

f(ys)ds.

If t ∈ (t1, t2], then we have

∫ t

0

y′(s)ds =

∫ t

0

f(yss)ds,
∫ t1

0

y′(s)ds +

∫ t

t1

y′(s)ds =

∫ t

0

f(ys)ds,

y(t1) − y(0) + y(t) − y(t+1 ) =

∫ t

0

f(s)ds,

y(t) − I1(y(t1)) = y(0) +

∫ t

0

f(ys)ds.

Hence for t ∈ (t1, t2] we have

y(t) = y(0) +

∫ t

0

f(ys)ds + I1(y(t1)).

Continue we obtain for t ∈ [0,∞) that

y(t) = y(0) +

∫ t

0

f(ys)ds +
∑

0<tk<t

Ik(y(tk)). (11)
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Since lim
t→∞

y(t) = y∞, we get

y∞ = y(0) +

∫

∞

0

f(ys)ds +
∞

∑

k=1

Ik(y(tk)).

Thus

y(0) = y∞ −

∫

∞

0

f(ys)ds −

∞
∑

k=1

Ik(y(tk)).

By (10) we have y∞ = Ay(0) − φ(0) and hence

y(0) =
φ(0)

A − 1
+

1

A − 1

[

∫

∞

0

f(ys)ds +
∞

∑

k=1

Ik(y(tk))

]

. (12)

We replace (12) in (11), we obtain

y(t) =
φ(0)

A − 1
+

1

A − 1

[

∫

∞

0

f(s)ds +
∞

∑

k=1

Ik(y(tk))

]

+

∫ t

0

f(ys)ds +
∑

0<tk<t

Ik(y(tk)).

From (10) and (12), we have

y(t) =
φ(t)

A
+

1

A

[

y(0) +

∫

∞

0

f(ys)ds +
∞

∑

k=1

Ik(y(tk))

]

=
φ(0)

A − 1
+

1

A − 1

[

∫

∞

0

f(ys)ds +
∞

∑

k=1

Ik(y(tk))

]

+
φ(t)

A
, t ∈ (−∞, 0].

Theorem 2.1 Let f : J × B → IR
n be an L1-Carathéodory function. Assume that:

(H1) There exist positive constants ck, k = 1, . . . , such that

|Ik(y)| ≤ ck, for all y ∈ IR
n, and

∞
∑

k=1

ck < ∞;

(H2) There exists p ∈ L1([0, +∞), IR+) such that

‖f(t, y)‖ ≤ p(t) for a.e. t ∈ [0,∞) and each y ∈ B.

Then the boundary value problem (1)-(3) has at least one solution.
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Proof. Transform the problem (1)–(3) into a fixed point problem. Consider the
operator N : Bb −→ Bb defined by,

N(y)(t) =



















































φ(0)

A(A − 1)
+

1

A − 1

[

∫

∞

0

f(s, ys)ds +
∞

∑

k=1

Ik(y(tk))

]

+
φ(t)

A
, t ∈ (−∞, 0],

φ(0)

A − 1
+

1

A − 1

[

∫

∞

0

f(s, ys)ds +
∞

∑

k=1

Ik(y(tk))

]

+

∫ t

0

f(s, ys)ds +
∑

0<tk<t

Ik(y(tk)), t ∈ [0,∞).

Let x(·) : (−∞, +∞) → IR
n be the function defined by

x(t) =























φ(0)

A − 1
+

1

A − 1

[

∫

∞

0

f(s, xs)ds +
∞

∑

k=1

Ik(x(tk))

]

, if t ∈ [0,∞),

φ(0)

A(A − 1)
+

1

A − 1

[

∫

∞

0

f(s, xs)ds +
∞

∑

k=1

Ik(x(tk))

]

+
φ(t)

A
, if t ∈ (−∞, 0].

Then x0 =
φ(0)

A − 1
+

1

A − 1

[

∫

∞

0

f(s, xs)ds +
∞

∑

k=1

Ik(x(tk))

]

. For each z ∈ C([0,∞), IRn)

with z(0) = 0, we denote by z̄ the function defined by

z̄(t) =

{

z(t), if t ∈ [0,∞),

0, if t ∈ (−∞, 0].

If y(·) satisfies the integral equation,

y(t) =
φ(0)

A − 1
+

1

A − 1

[

∫

∞

0

f(s, ys)ds +
∞

∑

k=1

Ik(y(tk))

]

+

∫ t

0

f(s, ys)ds+
∑

0<tk<t

Ik(y(tk)),

we can decompose y(·) as y(t) = z̄(t) + x(t), 0 ≤ t < ∞, which implies yt = z̄t + xt, for
every 0 ≤ t < ∞, and the function z(·) satisfies

z(t) =

∫ t

0

f(s, z̄s + xs)ds +
∑

0<tk<t

Ik(z̄(tk) + x(tk)). (13)

Set
C0 = {z ∈ Bb : z(0) = 0}.

Let the operator P : C0 → C0 be defined by

(Pz)(t) =











0 t ≤ 0,
∫ t

0

f(s, z̄s + xs)ds +
∑

0<tk<t

Ik(z̄(tk) + x(tk)), t ∈ [0,∞).
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Obviously, that the operator N has a fixed point is equivalent to P has a fixed point,
and so we turn to proving that P has a fixed point. We shall use the Leray-Schauder
alternative to prove that P has a fixed point.

Claim 1: P is continuous.

Let {zn} be a sequence such that zn → z in C0. Then

‖(Pzn)(t) − (Pz)(t)‖ ≤

∫

∞

0

‖f(s, z̄ns
+ xs) − f(s, z̄s + xs)‖ds

+
∞

∑

k=1

‖Ik(zns
+ xs) − Ik(zs + xs)‖.

On the other hand, for any ε, we can choose a positive integer m such that
∞

∑

k=m+1

ck < ε.

Then, choose an integer n0 such that

m
∑

k=1

‖Ik(z̄n(tk) + x(tk)) − Ik(z̄(tk) + x(tk))‖ < ε, ∀n > n0 (k = 1, . . . ,m). (14)

From (14) we have

∞
∑

k=1

‖Ik(z̄n(tk) + x(tk)) − Ik(z̄(tk) + x(tk))‖ < ε +
∞

∑

k=m+1

ck < 2ε,∀n > n0.

Thus

lim
n→∞

∞
∑

k=1

‖Ik(z̄n(tk) + x(tk)) − Ik(z̄(tk) + x(tk))‖ = 0. (15)

Since f is L1-Carathéodory, we have

‖P (zn) − P (z)‖∞ ≤ ‖f(·, z̄n(·)
+ x(·)) − f(·, z̄(·) + x(·))‖L1

+
∞

∑

k=1

‖Ik(z̄n(tk) + x(tk)) − Ik(z̄(tk) + x(tk))‖ → 0 as n → ∞.

Claim 2: P maps bounded sets into bounded sets in C0.

Indeed, it is enough to show that for any q > 0, there exists a positive constant ℓ

such that for each z ∈ Bq = {z ∈ C0 : ‖z‖∞ ≤ q} one has ‖P (z)‖∞ ≤ ℓ. Let z ∈ Bq.

By (H2) we have for each t ∈ [0,∞)

‖(Pz)(t)‖ ≤

∫

∞

0

p(s)ds +
∞

∑

k=1

ck := ℓ.
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Claim 3: P maps bounded sets into equicontinuous sets of C0.

Let l1, l2 ∈ [0,∞), l1 < l2 and Bq be a bounded set of C0 as in Claim 2. Let z ∈ Bq.

Then for each t ∈ [0,∞) we have

‖(Pz)(l2) − (Pz)(l1)‖ ≤

∫ l2

l1

‖f(s, z̄s + xs)‖ds +
∑

0<t<l2−l1

‖Ik(z̄(tk) + x(tk))‖

≤

∫ l2

l1

p(s)ds +
∑

0<t<l2−l1

ck.

We see that ‖(Pz)(l2)− (Pz)(l1)‖ tend to zero independently of z ∈ Bq as l2 − l1 → 0.
As a consequence of Claims 1 to 3 together with the Arzelá-Ascoli theorem we can
conclude that P : C0 −→ C0 is continuous and completely continuous.

Claim 4: A priori bounds on solutions.

Let z be a possible solution of the equation z = λP (z) and z0 = λφ for some
λ ∈ (0, 1). Then

‖z(t)‖ ≤

∫ t

0

‖f(s, z̄s + xs)‖ds +
∑

0<tk<t

|Ik(z̄(tk) + x(tk))|

≤

∫ t

0

p(s)ds +
∞

∑

k=1

ck.

This implies that for each t ∈ [0,∞)

‖z‖∞ ≤ ‖p‖L1 +
∞

∑

k=1

ck := K1.

Set
U = {z ∈ C0 : sup{‖z(t)‖ : 0 ≤ t ≤ b} < K1 + 1}.

P : U → C0 is continuous and completely continuous. From the choice of U , there
is no z ∈ ∂U such that z = λP (z), for some λ ∈ (0, 1). As a consequence of the
nonlinear alternative of Leray-Schauder type [8], we deduce that P has a fixed point z

in U. Hence N has a fixed point y which is a solution to problem (1)–(3).

3 Neutral Functional Differential Equations

This section is concerned with the existence of solutions for boundary value problems
for first order impulsive neutral functional differential equations with infinity delay
(4)-(6).
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Theorem 3.1 Let f : J×B → IR
n be an L1-Carathéodory function. Assume (H1), (H2)

and the condition:

(B1) The function g is continuous and completely continuous and for any bounded
set Q ⊆ C((−∞,∞), IRn) the set {t → g(t, xt) : x ∈ Q} is equicontinuous in
C([0,∞), IRn) and there exist constants c1, c2 ≥ 0 such that

|g(t, u)| ≤ c1‖u‖B + c2, t ∈ [0,∞), u ∈ B and c1K∞ < 1,

where K∞ = sup{|K(t)| : t ∈ [0,∞)} < ∞,

are satisfied. Assume also that M∞ = sup{|M(t)| : t ∈ [0,∞)} < ∞, Then the
boundary value problem (4)-(6) has at least one solution.

Proof. In analogy to Theorem 2.1, we consider the operator P ∗ : C0 → C0 defined by

(P ∗z)(t) =























0, t ≤ 0,

g(0, φ) − g(t, zt + xt) +

∫ t

0

f(s, zs + xs)ds

+
∑

0<tk<t

Ik(z̄(tk) + x(tk)), t ∈ [0,∞).

In order to use the Leray-Schauder nonlinear alternative, we shall obtain a priori esti-
mates for the solution of the integral impulsive equation

z(t) = λ

[

g(0, φ) − g(t, zt + xt) +

∫ t

0

f(s, zs + xs)ds +
∑

0<tk<t

Ik(z̄(tk) + x(tk))

]

,

where z0 = λφ for some λ ∈ (0, 1). Then

‖z(t)‖ ≤ ‖g(0, φ(0))‖ + ‖g(t, z̄t + xt)‖ +

∫ t

0

p(s)ds

+
∑

0<tk<t

‖Ik(z̄(tk) + x(tk))‖

≤ ‖g(0, φ)‖ + c1‖z̄t + xt‖B + c2 +

∫ t

0

p(s)ds +
∞

∑

k=1

ck.

(16)

But
‖z̄s + xs‖B ≤ ‖z̄s‖B + ‖xs‖B

≤ K(s) sup{‖z(τ)‖ : 0 ≤ τ ≤ s} + K(s)‖z0‖B

+K(s) sup{‖x(τ)‖ : 0 ≤ τ ≤ s} + M(s)‖x0‖B.

By the definition of x we have

sup{‖x(τ)‖ : 0 ≤ τ ≤ s} ≤
‖φ‖B

A − 1
+

1

A − 1

[

∫

∞

0

p(s)ds +
∞

∑

k=1

ck

]

:= K∗,
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and

‖x0‖B ≤
‖φ‖B

A − 1
+

1

A − 1

[

∫

∞

0

p(s)ds +
∞

∑

k=1

ck

]

.

Then

‖z̄s + xs‖B ≤ K(s) sup{‖z(τ)‖ : 0 ≤ τ ≤ s} + K(s)K∗ + M(s)K∗

≤ K∞ sup{‖z(τ)‖ : 0 ≤ τ ≤ s} + K∞K∗ + M∞K∗,

Hence (16) implies that

‖z(t)‖ ≤ ‖g(0, φ)‖ + c1K∞K∗ + c1M∞K∗ + c2 +
∞

∑

k=1

ck

+c1K∞ sup{‖z(s)‖ : 0 ≤ s ≤ t} +

∫

∞

0

p(s)ds.

Then

‖z‖∞ ≤
1

1 − c1K∞

[

‖g(0, φ)‖ + c1K∞K∗

+ c1M∞K∗ + c2 +
∞

∑

k=1

ck +

∫

∞

0

p(s)ds
]

:= K∗∗.

Set
U1 = {z ∈ C0 : ‖z‖∞ < K∗∗ + 1}.

From the choice of U1, there is no z ∈ ∂U1 such that z = λP ∗(z), for some λ ∈ (0, 1).
As a consequence of the nonlinear alternative of Leray-Schauder type [8], we deduce
that P ∗ has a fixed point z in U1.
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