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1. INTRODUCTION

In the paper we consider the equations with deviating arguments

and

where t € I = [a, b] (a < b) and f: I x (Rn)k -> Rn, f: I x (Rn)k+m+a -> Rn

are continuous functions. Also, the arguments a i , i=1 , . . . , K, gi, j = l,...,m
are continuous real valued functions defined on I and such that the set {t € I:
gj(t) = a or gj(t) = b, j = 1,... ,m} is finite.

We suppose that

and

and we set E(a) = [a0 ,0], E(b) = [b,b0], E(a) = [a,a] and E(b) = [b,b].
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where the constants ao, B0, B1 are nonnegative, a1 > 0 and l = 0.

Here we seek a solution of (E1) (resp. (E2)) which satisfies the following general
type boundary conditions:

where ai, Bi, i = 0,1, are real constants satisfying

Finally we suppose that q1 , q2 are Rn - valued functions defined and differentiable on
E(a), E(b) (resp. E (a), E(b)) respectively.

For the sake of brevity we use the notation B.V.P. (E1)-(BC) (resp. (E2)-(BC))
for the boundary value problem which consists of the equation (E1) (resp. (E2)), the
boundary conditions (BC) and the conditions (1.1), (1.2).

By the term solution of the B.V.P. (E1)-(BC) (resp. (E2)-(BC)) we mean a func-
tion x: E ( a ) U I U E (b) -> Rn (resp. x: E(a) UIUE (b) -> Rn) which is continuous
on its domain, differentiable on E(a), E(b) (resp. E(a), E(b)), twice differentiable
(resp. twice piecewise differentiable) on I and satisfies the equation (E1) (resp. (E2))
and the boundary conditions (BC).

A very interesting method for the proof of existence of solutions for boundary value
problems is based on a simple and classical application of the Leray-Schauder degree
theory. Recently, Fabry and Habets [3], Fabry [4] and Ntouyas and Tsamatos [5]
have used this method to give answers to a series of boundary value problems.

In this paper, we apply this method to our general B.V.Ps (E1)-(BC) and (E2)-
(BC). In a recent paper [9] we gave some results concerning the existence of solutions
of a B.V.P. of the form (E2)-(BC) by applying the topological transversality method
of Granas [2]. More precisely we studied B.V.P.



has no solution x on the boundary dn of n.

Also we need the following lemma from [7] whose basic steps of proof we reproduce
here for the sake of completeness. In this lemma and in the sequel, the symbols <.,.>
and |.| stand respectively for the euclidean product and the euclidean norm in the
space Rn.

Lemma 2.2. Assume that h1 and h2 are continuous real valued functions defined
on I and such that
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Although the problems (E2)-(BC), (E2)'-(BC)' seem to be almost the same, the
method developed in [9] cannot be applied for the B.V.P. (E2)-(BC) (see the proof
of Lemma 3.1 in [9]). On the other hand the method used here ensures the existence
of a solution of the B.V.P. (E2)-(BC) which is bounded by an a priori given positive
function. The remarkable fact is that the assumptions on p (see conditions (3.1),
(3.2) below) do not allow p to be taken as a constant function. (This can be done
only in the case when a1 =B1 = 0.) This does not allow us to conclude that the
results of our paper generalize those of [9]. Nevertheless, the results obtained here
generalize the results of Fabry and Habets [3] and Fabry [4].

It is noteworthy that the present method can be applied also to the B.V.P. (E2)-
(Bc) .

The plan of this paper is as follows: In Section 2 we state some auxiliary lemmas.
Main results are given in Section 3, where sufficient conditions are established for
the existence of solutions of the B.V.Ps (Ei)-(BC), i = 1,2. In Section 4 some results
for smooth solutions of B.V.Ps (Ei)-(BC), i = 1,2 are given. Section 5 includes
applications of the result of Section 3.

2. AUXILIARY LEMMAS

The next Lemma 2.1 is the basic tool of the method which we use in the proof of
existence of solutions for the B.V.Ps (Ei)-(BC), i = 1,2.

Lemma 2.1 [3, Theorem 1]. Let X be a Banach space, A: X -> X a compact
mapping such that I — A is one to one and n an open bounded subset of X such
that 0 € (I — A)(n). Then a compact mapping T: n -> X has a fixed point in n if
for any A € (0,1) the equation



and

and G = {t e I: h i ( t ) = a or hi(t) = b, i = 1,2} is finite.
Also, let x be a continuous Rn-vaiued function defined on [da, db] which is contin-

uously differentiate on [d0,a], I and [b, db] and piecewise twice differentiate on I.
Let a; be the restriction of x to I, i.e. x|I= x.

Moreover, assume that there exist positive constants R, a,B,a',r and r' with
a < 1, a' < 1(l — a)2 and such that the following relations are valid:

and

where

Then there exits a number M depending only on &|[da, a] U [b, db], b — a, D, a, B,
a', r, r' but not on x such that

P r o o f . We set M = max|x'(t)| = |x'(to)|, where to e I. For every piecewise

twice differentiable on I function o, by a Taylor expansion, we have

provided t0 +u € I. We apply this formula to the function r(t) = fa
t |x'(s)|2 ds, t € I

obtaining

Integrating by parts and using (2.1), (2.2) we have
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for the space of all IR^-valued continuous functions defined on J which have conti-
nuous first derivative on E (a) U E(b) and are also continuously differentiable on I,
endowed with the norms
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for the space of all Rn-valued continuous functions defined on J and

3. EXISTENCE RESULTS FOR THE SOLUTIONS OF THE B.V.P.s
(E1)-(BC) AND (E2)-(BC)

If J = [ao, bo] and J = [a, b] we set

respectively, where M2 = 1\4 [(a'm3 + B'm)(b - a)2 + 2am2(b - a) + 2B(b - a)].
Therefore, in any case we have that M can be bounded independently of x, which

proves the lemma. HI

or

from which, following exactly the same arguments as in [4], we obtain

or

where B' = r + r'.
Therefore

where M1 = max{M,m}, m = sup |x'(t)| and S = |U|.
t€[da,a]U[b,db]

On the other hand, by (2.4), (2.3) and (2.5) we obtain



and

respectively. It is well known that BO and B1 are Banach spaces.
For the sake of simplicity, for every function z e B0 and for every t e | we set

Also, for every function z E B1 and for every t e I we set

The following Theorem 3.1 guarantees the existence of solutions of the B.V.P.
(E1)-(BC) which are bounded by an a priori given function (p.

Theorem 3.1. Assume that p: I -> (0, oo) is a twice continuously differentiable
function such that

and

Also, we suppose that

for any x e Bo with | x ( t ) | = p(t) and < x ( t ) , x ' ( t ) > = | x ( t ) | p ' ( t ) , t e I.
Then the B.V.P. (E1)-(BC) has at least one solution x such that | x ( t ) | < p(t),

tei.
P r o o f . The Green function for the homogeneous B.V.P.
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where K is a constant such that
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and an operator A on B0 by the formula

is a compact operator with values in Bo (see [9]).
We also define an open set in the space BO as

where

It is obvious that w € BO. Hence the operator T defined on B0 by the formula

is given by the formula

where l = aoBo(b - a) + aoB1 - Boa1 = 0 because of (1.1) (see Agarwal [1]). Now
we define a function w: J -> Rn as



Obviously, A is a compact operator.
Now, we observe that the operator I — A is one to one. Indeed, let (I — A)x =

(I - A)y with x, y in Bo. Then (I - A)z = 0, where z = x - y. Thus z = Az and
hence z must be a solution of the B.V.P.

We shall prove that this B.V.P. has the unique solution z = 0.
The general solution of the above equation has the form

On account of the above boundary conditions we take

Since e2(b-a)k >1, K > 0 the last is true for every K > 0 if the left hand side is
less than or equal one. But this is clear from (1.1) and (1.2). Therefore z = 0 or
x = y. Moreover, 0 € (I - A ) ( n ) since 0 € n and (I - A)0 = 0.

In order to apply Lemma 2.1, it remains to prove that no solutions of the equation

belong to dfi.
To this end assume the contrary. Thus, let x be a solution of (3.4) on dn. Then

there exists a £ € [a, 6] such that the function

assumes its maximum value, which is zero, for t = £. Then, if £ e (a, b), we have the
relations

and
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or
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Hence

Prom the second boundary condition we obtain

imply

which contradicts (3.1). Therefore £ = a as required.
Finally, we show that £ = b. If, on the contrary, we assume that £ = b, then

or

Hence

Then |x(a) | = p(a) and |x'(a)| < p ' ( a ) . But, by the first boundary condition, we
have

since |x'(e)|2-p(e)2 = |x'(e)|2- <x(e)x(e)>2> 0, by the Cauchy-Schwarz inequality.

Consequently L > 0, y e [0,1), since K > p(t), t e (a, b), contradicting (3.8).
Next we show that e = a. If e = a then the following must hold:

Now assume that x is a solution of (3.4). Then by (3.3), (3.6) and (3.7) we obtain



contradicting (3.2).
Hence, by Lemma 1, the operator T has a fixed point in n or, otherwise, there

exists a solution x of the B.V.P. (E1)-(BC) such that

completing the proof of the theorem. D

The next Theorem 3.2 gives an analogous result for the B.V.P. (E2)-(BC). Under
appropriate conditions we can obtain solutions x of the B.V.P. (E2)-(BC) which, as
in the previous theorem, are bounded by a function p and, moreover, the derivative
of x is bounded by an a priori given constant.

Theorem 3.2. Assume that p: I -> (0,oo) is a function satisfying the conditions
(3.1) and (3.2). Also, assume that

for any x e B1 with | x ( t ) | = p(t) and < x ( t ) , x ' ( t ) > = | x ( t ) | p ' ( t ) , t e I.
Moreover, for any ( t ,u ,u 1 , . . . , U k , v , v 1 , . . . ,vm) € I x (Rn)k+m+2 with |u| < p(t)

and |Ui| < p(Oi(t)), i — 1,2, . . . , k, when O i ( t ) e I, there are T and U, in {0,1,..., m}
with Vo = v such that

where the positive numbers a, B, a' ,r , r ' are such that

Then the B.V.P. (E2)-(BC) has at least one solution such that

and

where Q is an appropriate constant non depending on x|I .

P r o o f . For a positive constant K such that K > max p(t) and for arbitrary

A € (0,1) we consider the equation
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with Q = M + 1. Thus the proof of the theorem is complete.
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First of all we shall prove, by using Lemma 2.2, that there exists a constant M
such that for every A € (0,1) and every solution of (3.12) we have |x'(t)| < M, t e I.

Indeed, let x be a solution of (3.12). Then, taking into account (3.10), we get

Also, by (3.11), using the same argument we obtain

with r = r' + Kd.
Thus, by Lemma 2.2, there exists M such that

Now, we define operators T and A as in the proof of Theorem 3.1 (with / in the
place of /) and we let n1 be an open subset of B1 given by

We observe that T is a compact operator defined on B1 with values in B1.
Next, for an arbitrary A 6 (0,1) we suppose that x is a solution of the equation

(3.4). Then, the following situation occurs:
The equation (3.12) has a solution x satisfying the boundary conditions (BC) and

either there exists £ E (a,b) such that the function g(t) = |x( t ) | — p2(t) assumes its
maximum value 0 at t = £ (since f = a and f = b by (3.1) and (3.2)) or there exists
£1 € [a,e] such that |a'(f1)| = M + 1. As we have proved in Theorem 3.1 the first
of these two cases leads to a contradiction. But, since x is a solution of (3.12) for
some A e (0,1), the computation following (3.12) shows that |x ' ( t ) | < M and hence
|x'(t)| < M + 1 for every t e [a,b]. Consequently, the second case cannot occur,
either.

Hence no solutions of the equation (3.4) belong in 9ft1 and so, by Lemma 2.1, the
equation x = Tx has at least one solution in 9fi1. Namely, there exists a solution x
of the B.V.P. (E2)-(BC) such that
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(resp. x e C( J, Rn) n C1 ([a, b], Rn) n C1 (E(a), Rn) and x is piecewise twice differ-
entiable on I) and satisfies the equation (E1) (resp. (E2)) for t £ I and the boundary
conditions (BC) for t £ E(a) U E(b) (resp. t e E(a) U E (b)).

iii) A function x is called a right-side smooth solution of B.V.P. (E1)-(BC)
(resp. (E2)-(BC)) if

Remark 3.3. It is obvious from the proof of Theorem 3.1 that the conditions
(1.2) on the constants ai, Bi, i = 0,1, are suggested because of the choice of the
operator A. More precisely, the conditions (1.2) are such that the B.V.P. (*) which
follows as an equivalent to the equation z = Az, z € C2(I, Rn), has the zero solu-
tion as its unique solution. Clearly, a different choice of the operator A implies a
modification on these conditions.

4. SMOOTH SOLUTIONS

The first derivatives of solutions of B.V.P. (Ei)-(BC), i = 1,2 have in general
discontinuities at the ends a and b of the interval /. This occurs because the equations
(E1), i = 1,2 are equations with deviating arguments. If we have x'(a—0) = x'(a+0)
and x'(b — 0) = x'(b + 0) (in addition to the obvious relations x(a — 0) = x(a + 0)
and x(b — 0) = x(b + 0)) then this solution x is called a smooth solution for the
B.V.P. (Ei)-(BC), i = 1,2, otherwise it is called a non-smooth solution. Usually, for
boundary value problems involving equations with deviating arguments smoothness
of solutions at the points a and b is not required. Therefore it is interesting to
examine when a B.V.P. with deviating arguments has smooth solutions.

For a discussion concerning such problems we refer to our recent paper [6] and the
references given therein.

In the following we give a result in this direction for the B.V.P. (Ei)-(BC), i = 1,2.
To this end it is necessary to introduce the following definition.

Definition 4.1. i) A function x is called a smooth solution of the B.V.P. (E1)-
(BC) (resp. (E2)-(BC)) if a; € C 1 ( I , Rn) n C2(I, Rn) (resp. x e C 1 ( J , Rn) and x is
piecewise twice differentiate on I) and satisfies the equation (E1) (resp. (E2)) for
t e I and the boundary conditions (BC) for t e E(a)UE(b) (resp. t € E(a)UE(b)).

ii) A function x is called a left-side smooth solution of B.V.P. (E1)-(BC)
(resp. (E2)-(BC)) if



(resp. x € C(J, Kn) n C1 (E(a), Rn) n C1 ([a, b], Rn) and x is piecewise twice differ-
entiable on I) and satisfies the equation (E1) (resp. (E2)) for t € I and the boundary
conditions (BC) for t € E(a) U E(b) (resp. t e E(a) U e(b)).

In the sequel we consider the space C1(J. Rn) (resp. C 1 ( J , Rn)) endowed with the
norm

The main result in this section is the following:

Theorem 4.2. Assume that the hypotheses of Theorem 3.1 (resp. 3.2) are satis-
fied. Then, if a1= 0=^ B1 the B.V.P. (E1)-(BC) (resp. (E2)-(BC)) has at least one
smooth solution x such that

(resp. |z(t)| < p ( t ) and |x ' ( t ) | < g, t € I, where g is an appropriate constant not
depending on x | I ) .

P r o o f . The proof can proceed along the established lines of reasoning of the
proof of Theorem 3.1 (resp. 3.2). So, we omit the details. It is noteworthy that the
restriction a1= 0=B1 guarantees that

and

As an immediate consequence of the above theorem we have the following corollary,
which concerns left or right-side smooth solutions.

Corollary 4.3. Assume that the hypotheses of Theorem 3.1 (resp. 3.2) are satis-
fied. Then, if a1 = 0 the B.V.P. (E1)-(BC) (resp. (E2)-(BC)) has at least one left-
side smooth solution satisfying the conclusion of Theorem 4.2. Similarly, if B1 = 0
the B.V.P. (E1)-(BC) (resp. (E2)-(BC)) has at ieast one right-side smooth solution.

Examples of B.V.P. which have smooth or non-smooth solutions were given in [6].
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has a strictly positive solution p such that

5. APPLICATIONS

For a given B.V.P. of the form (Ei)-(BC) i = 1,2, it is important to know about the
existence of functions p for which the B.V.P. has a solution x such that | x ( t ) | < y(t),
t € I. Much more, we are interested in more information about the properties of p
or about the formula for (p. Since the conditions on p appearing in Theorems 3.1 and
3.2 are rather complicated, this can be done only for special cases of the equation
(Ei),i = l,2.

Here we suppose that h: I -> I is a so called (see [8]) involution mapping. That
is, h is different from the identity mapping and such that

Now, we n insider the vector linear equation

where p, q and r are continuous real valued functions defined on I and s: I -> Rn is
also a continuous function.

Since Range (h) C I, the boundary conditions (BC) yield the boundary conditions

where ai, Bi, i = 0,1 are real constants satisfying the conditions (1.1), (1.2) and 71,
72 are constants in Rn.

We set P = supp(t), Q = sup q(t), R =sup r(t), S = sup | s ( t ) | and formulate the
tei teI ieI teI

next proposition.

Proposition 5.1. If there exist real constants m, n with n > P, m> max{Q,
R, S}, such that the inequality
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where A = (P + Q)d2 + dS and B = Rd,d = sup p(t).
teI

Now, we observe that if |u| > 1, then we have

and

then the B.V.P. (L)-(bc) has at least one solution x such that

Moreover, there exists a reaJ constant g, nondepending on x, such that

P r o o f . It is enough to check the conditions of Theorem 3.2 for the function

Indeed, for every x € B1 with |x( t ) | - p ( t ) and < x ( t ) , x ' ( t ) > = |x(t)|p(t), t € I,
we have

This relation together with (5.1) implies condition (3.9).
Moreover, for every (t,u,w,v) € I x Rn with |u| < p(t) and |w| < p (h( t ) ) we have
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and hence the relation (3.10) is satisfied.
If |v| < 1, then, for every B1 > 0, we have

Hence the relation (3.10) is satisfied in any case.
Prom the relation (3.11) we have

We again consider two cases.
If |v| > 1 then, obviously,

i.e. we take (3.11).
If \v\ < 1, we get

for every N > 0, where C1 = |p|d + |Q|d + S. Hence, we have again (3.11).
We can assume that the conditions a < 1 and a' < §^(1 - a)2 appearing in

Theorem 3.2 are fulfilled for an appropriate choice of the constants which are involved
in the expressions for a and a'.

Thus, the proof of the proposition is complete. D

Example 5.2. We give an example of a B.V.P. which involves a differential
equation with reflection of the arguments, which is a particular case of a functional
differential equation whose arguments are involutions. Such equations have applica-
tions in the study of differential-difference equations. B.V.P. for such equations were
studied for the first time by Wiener and Aftabizadeh in [10].

More precisely, we consider the B.V.P.
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where the functions p, q, r and s are as in equation (L) and such that

In order to apply Proposition 5.1 we must prove that inequality (5.1) has a strictly
positive solution satisfying (5.2) and (5.3). It is easy to check that the function
(p(t] = <2 + l, t e [-1,1] is a solution of the inequality (5.1) (with h(t) = -t) because
of (*). Thus, if we assume that the constants ao, oti, /?o, Pi are such that

and

then the B.V.P. (Lr)-(bc)r has at least one solution x such that
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