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Abstract

Asym ptotic properties of a φ - divergence statistic arising in 
the context o f a two way contingency table are investigated. 
It is shown that the asymptotic distribution o f this statistic 
is either normal or a linear form  in chi square variables de­
pending on whether or not a suitable condition is satisfied. 
Under the assumption o f independence this (asymptotic) dis­
tribution is shown to be chi square. The chi square and 
likelihood ratio test statistics are particular cases o f the φ - 
divergence statistic considered. The Pitman and Bahadur ef­
ficiencies o f tests o f independence based on this statistic are 
obtained. Finally, tests o f equality o f association between 
two or more contingency tables are constructed.
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1 Introduction

Divergence or dissimilarity measures serve as indices of the 
distance or discrepancy between distributions or as indices of 
dissimilarity between populations. A wide class of these mea­
sures, called φ - divergence measures, has been independently 
introduced by Ali and Silvey (1966) and Csiszar (1967). φ - di­
vergence measures satisfy many interesting statistical properties 
(cf. Papaioannou (1985), Zografos et al. (1989)) and have been 
applied in many fields in an extensively widespread manner. 
They are based on a convex function φ and two distributions 
and also express the amount of information supplied by data 
for discrimination between these distributions. Special choices 
of the convex function φ lead to Kullback - Leibler (directed 
divergence), Renyi (order a information), Kagan, Cressie and 
Read power divergence etc.

Given a two way contingency table, denote by ηυ· the fre­
quency in the (z, j )  cell for i =  I , . .. ,k, j  =  1 ,. . . , rn and sup­
pose that the distribution of n^’s is the multinomial with pa­
rameters N and 7ru , . . . , π*™· Let π*, =  and =
Σ ί=1 be the marginal probabilities of π̂ · for i =  1 , . . . ,  k and 
j  =  1 , . . .  ,m and pij =  η^/Ν , pit =  n it/N  and pv- =  n ,j/ N  
the sample estimators of the population proportions π^, 
and n,j respectively where nl+ =  n tJ and =  Σ Ϊ= ιην> 
i =  l , . . . , f c ,  j  =  1 ,.. . ,τη.

Consider the probability distributions Π Γ =  (ttu , . . .  , π*™), 
Ρ Γ =  (piii * · · > Pkm)i n j  =  (ττ^ π ,χ ,,.,,π ^ π ^ ) and =  
(Ρι*Ρ·ΐ) · · · ,Pk*P*m), where boldtype letters are used to denote 
vectors or matrices while the superscript T denotes the trans­
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pose of a vector or a matrix.
The φ - divergence of Π with respect to Πο is given by

k m  / \
(1.1) ί ° ( π . π , ) = Σ Σ · Λ ι * Η - 1

i = i  j = i  \ π » *π * ; /

and its sample estimator, called hereafter φ - divergence statis­
tic, by

k m  t \
(1.2) JC(P, Po) = Σ Σ Ρ ί-Ρ 'ίΦ  -

i = i j = i  \Pi*P*jJ

where φ is a real valued convex function on [0, oo) with 0<p(0/0) =
0 and 0<£(u/0) =  n^oc with φ,χ =  limu_ 00[<?!»(u)/u]. Thus, 
/ c (P ,P o) measures, in a way, the distance between P and Po 
and can serve as a test statistic for testing independence.

If φ{ν) =  u log it, φ{η) =  (1 — u)2, φ[ν) =  (1 -  \/u)2, 
</>(u) =j 1 — xl |Q, q > 1, φ{η) =  sgn(a — l ) « a, a > 0(a φ  1) 
and φ{χι) =  [λ(λ +  l)]-1 [u(uA — 1)], - o o  < λ < oo, φ - diver­
gence yields the Kullback-Leibler, Kagan, Matusita (square), 
Vajda divergences, the affinity (Hellinger distance) and Cressie- 
Read power divergence family between Π and Πο respectively. 
Renyi’s measure is a logarithmic function of affinity. Kullback- 
Leibler’s and Kagan’s divergence statistics, appropriately nor­
malized, are the well known loglikelihood ratio and Pearson 
statistics for testing independence in a two way contingency 
table respectively.

In this paper, in section 2, we investigate the asymptotic 
distribution of I c (P, Po). Depending on whether or not a suit­
able condition is satisfied the limiting distribution of / C(P, P 0), 
after an appropriate normalization, is either normal or the dis­
tribution of a linear form in chi square variables. This uni­
fies and generalizes the results of Lomnicki and Zaremba (1959) 
and Zvarova (1973) who examined asymptotic distributions of 
sample estimators of Kullback-Leibler and Renyi’s information

7



of order a respectively. Next, a normalization of / c (P ,P o) is 
shown to be asymptotically distributed as a chi square variable 
with (k. -  l)(m  -  1) degrees of freedom, under the assumption of 
independence. This permits the construction of a large sample 
test based on the 0-divergence statistic. Thus the study and 
comparision of Pearson’s and loglikelihood ratio test statistic is 
achieved by linking them through, the probably most general, <p- 
divergence statistic. In section 3, following work of Cressie and 
Read (1984), optimality criteria for test of independence based 
on ^-divergence statistics are studied. It is shown that these 
tests are equivalent in Pitman sense under a sequence of local 
alternatives while the loglikelihood ratio test (0(u) =  u log it) 
obtains maximal Bahadur efficiency among tests based on Φ- 
divergence statistics. In section 4 the problem of statistical de­
pendence in a two way contingency table is discussed and tests of 
equality of association between two or more contingency tables 
are constructed.

In a related work, Gil (1989) has estimated unbiasedly quad­
ratic mutual information and considered its asymptotic distri­
bution. Also, Zografos et al. (1990) investigated the asymptotic 
behaviour of a φ - divergence statistic based on one or two inde­
pendent multinomial populations and constructed multinomial 
goodness of fit and divergence tests.

2. Asymptotic distribution of ^-divergence statistic

Before stating the main results of this section we give the 
notation which will be needed in the sequel. Let F  be the real 
valued convex function on Λ*™ defined for Q =  (<7n , . . . ,  qkm)
by

k m  / \

f  (Q) =  ( ε ^ Μ Σ , ϊ ν ) ) '
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Convexity of F  follows from the equality F (U ) =  /^ (Π ,Π ο) 
and the convexity of I c  in its arguments (cf. Vajda (1989), p. 
271). Assuming that the convex function φ admits continuous 
first and second order derivatives, denote by £>ι(Π) the vector 
D j  (Π) =  ( Wn , W lm, . . . ,  Wkl, . . . ,  Wkm) with Wn =  
for i =  k. j  =  \.. . .  ,m. and by Ζ?2 (Π) the km x km. block,
non negative definite Hessian matrix of the convex function F, 
with elements

D 2( Π) =
d2F { Π)
diTiydTrji

After a little algebra we have

(2.1) w „  =  Σ
r=l

, πίτ ,' ΤΪ*τΦίτ Φίι7Γ i*

3=1
7T Sj -

sjπ +  <t>ij

for i =  1 , . . . ,  k and j  =  1 ,m  and 

<92F(II)(2 .2)
dff ii/dir ji

/ / 2 " 2 
ΦΐΙ "1“ Φ ίν Κ ΐίΦ ιΙ ̂ ίν Φ ]ν  Ή ν^ΐΦ ίΙ "Ί- ^·ήνΦJV'TJ ν

6ij

— <5 vi

1 . II ιι . 1 Γ—ι It
{ ’ΜίΐΦίΙ u jv Φ jv )  ~  2~  /  -  ^ντ^ντΦ ίj

n i*  n i*  r - 1

1 1 k/ i" ±" \ ν '  ,"(ΜϋΦίΙ "I- 2~ ' ■ 3νΦ&

+ 7Γί*7Γ*

*v s=l

Φί!< *. 3 =  1. - - -, k, and v,l =  1 , . . . ,  m

with uiv =  , φ\  ̂ the μ-order derivative of φ at uiv, μ — 1,2
and Siv is Kronecker’s delta for i =  1 , . . . ,  k, v =  1 , . . . ,  m.
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The following theorems investigate the asymptotic distribu­
tion of / C(P, P q)· Depending on whether or not condition (2.6), 
given below, is satisfied the limiting distribution of / C(P ,P 0), 
after an appropriate normalization, is either normal or the dis­
tribution of a linear form in chi square variables.

Theorem 2.1

If <p(ii) is differentiable with φ continuous, then

y/N [ /C(P ,P 0) - / σ (Π ,Π 0)] -  ΑΓ(0 ,σ2),

with

k m  / k m  '  2
(23) ^  =  Σ Σ

1=1 j  =  l \ t = l  j= l

provided σ 2 > 0.
P roof. The first order Taylor expansion of F (P ) around the 
point Π yields

F (P ) =  F (Π) +  D f (Π )(Ρ  — Π) +  cjv || P — Π ||

or in view of F (P ) =  / C(P ,P 0) and F(II) =  / σ (Π ,Π 0)

(2.4) V n  [ /C(P, P 0) -  / σ (Π, Π0)] -  J n d J (Π )(Ρ -  Π)

=  y/NeN || P -  Π ||

where —* 0 in probability, as N —*■ oo. ^From Serfling (1980),
p. 1 0 8 , w e h ave th a t

v ^ (P  -  Π) Λ  ΛΓ(Ο,Σ) 

where Σ  is a block symmetric matrix of order km with elements

(2.5) =  ^ ' ΐ ) ι  J =  1, . . . ,  fc, v , I =  1,. . . ,  m .
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Therefore y/N || P — Π || has an asymptotic distribution as 
N —► oo and || P — Π ||—+ 0 in probability as N —► oo.
From (2.4) we have that the random variable y/N[Ic (P. Po) — 
/ c ( n , n 0)] has the same asymptotic distribution as the linear 
form \/ϊν£>[(Π)(Ρ — Π) which is asymptotically distributed 
according to a normal distribution with zero mean and variance 
σ 2 =  D j (Π)Σ£>ι(Π) which after a little algebra leads to (2.3).

Remark

Special choices of the convex function φ yield analogous 
asymptotic results for the divergence measures mentioned in 
the introduction. From Cauchy-Schwarz inequality it follows 
that the asymptotic variance of the random variable

y/N[Ic (P ,P 0) - I c (n ,U 0)]

given by (2.3) vanishes if and only if

(2.6) TTij(Wij -  c) =  0, for every i =  1 , . . . , fc, j  =  1 , . . . , m

where c is a constant. If condition (2.6) is satisfied then the 
random variable considered tends to zero in probability. When­
ever condition (2.6) is satisfied we have the following theorem. 
Condition (2.6) is satisfied in Theorem 2.3.

Theorem 2.2

If the function φ admits second derivative and condition
(2.6) is satisfied then the asymptotic distribution of the ran­
dom variable 2iV[/c (P, P 0) — I c {Π. Πο)] is the same as that of 
Σ ί=ί aiU?, where r is the number of positive 7rtJ·, Ui are inde­
pendent random variables each having a standard normal dis­
tribution and aj, i =  I , . . .  ,r  — 1 are the non zero eigenvalues 
of the matrix £>2 (Π )Σ , where £>2 (Π) and Σ  are given by (2.2) 
and (2.5) respectively.



P roof. By a Taylor series expansion of F (P ) around Π and in 
view of relations F (P ) =  7c (P ,P o) and F (II) =  /° (Π ,Π ο ) we 
obtain

(2.7) 2iV[/c (P ,P 0) - / c ( n , n 0)]
- i V ( P - n ) r £>2( n ) ( P - I I )

=  2N D j (Π )(Ρ -  Π) +  2NeN || P — Π ||2
where Neχ  || P - Π  ||2—► 0 in probability as N —► oo. From (2.6) 
and the fact that pij =  0 with probability one whenever =  0 
for i =  1 , . . . ,  k, j  =  1 , . . . ,  m we have that D f(II)(P  — Π) =  0 
with probability one. Therefore from (2.7) the asymptotic dis­
tribution of 2iV[/c (P ,P 0) -  / c ( n , n 0)] is the same as that of 
the quadratic form Λ'(Ρ — Π )Τ£>2 (Π )(Ρ  -  Π) as N —> oo. From 
Corollary, p. 25 of Serfling (1980), and Corollary 2.1 of Dik and 
de Gunst (1985), the asymptotic normality of \/~N(P —Π) entails 
that the asymptotic distribution of iV(P -  Π )ΤΖ?2 (Π )(Ρ  -  Π) is 
given by the distribution of oiiUf, where Qit i =  1 , . . . ,  km, 
are the eigenvalues of £>2 (Π )Σ  and Ui, i =  1 , . . . ,  km are inde­
pendent random variables each having a standard normal dis­
tribution. Because of (2.6) let r be the number of positive 
7Tij. From (2.5) we obtain that rank,(Σ ) < r — 1 and then 
ranA!(D2(n )E ) < r — 1. Therefore the nonzero eigenvalues of 
ϋ)2(Π )Σ  are at most r — 1, which complete the proof of the 
theorem.

The following lemma will be used to establish the asymp­
totic distribution of the ^-divergence statistic under the assump­
tion of independence in Theorem 2.3 below.

Lemma 2.1

The eigenvalues of the km x km block matrix with elements, 
(Sij — Kj*)(Svt -  ττ,ι), i , j  =  l , . . . , k , v , l  =  l , . . . , m  are 1 and 0 
with multiplicities (k — l)(m  — 1) and k +  m — 1 respectively.

The proof of the lemma can be obtained by using elementary 
properties of determinants.
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Theorem 2.3

If the function φ admits second derivative and φ"{ 1) φ  0 
then under the hypothesis Hq : — Trt.Tr.j, i — 1
and j  =  I the statistic 2iV[/c (P, Po) — φ{\)]/φ"{\) is
asymptotically distributed as a chi square random variable with 
(fc — l)(m  — 1) degrees of freedom.
P roof. Under Hq, from (2.2). we obtain that £>2 (Π) =  </>"(l)(A +  
B ) where A and B are block symmetric matrices of order km 
with elements

(2.8)

and

(2.9)

A =

B =

φ"( 1)

Ήί*Ή*υ ΤΓι»
Kl
π .

for i, j  =  1 , . . . ,  fc and v,l =  1 ,.. .  ,m. It is easy to see that (2.6) 
is satisfied. Applying now the previous theorem the asymptotic 
distribution of the ^-divergence statistic above is the distribu­
tion of where Ut are independent random variables
with ΛΓ(0 ,1) distribution and a* are the eigenvalues of (Α + Β )Σ , 
with Σ  defined by (2.5). After a little algebra (A +  Β )Σ  is the 
matrix considered in Lemma 2.1. Therefore its eigenvalues are 
1 and 0 and the distribution of ctiU? is the chi square with 
(fc — l)(m  — 1) degrees of freedom.

3. Pitman and Bahadur efficiencies of tests of indepen­
dence

The asymptotic results of the previous section can be used 
to construct tests of independence in a two way contingency ta­
ble. The test statistics and their asymptotic distribution under 
the assumption of independence, are given in Theorem 2.3 for
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appropriate choices of the convex function φ. For φ(η) =  ?/. log?/ 
and c£>(u) =  (1 — u)2 we obtain the well known loglikclihood ratio 
and Pearson’s tests of independence.

In the following subsections we study optimality criteria for 
tests of independence based on ^-divergence statistic.

3.1 Pitman asymptotic relative efficiency (a.r.e)

For the evaluation of Pitman a.r.e between any two tests 
based on the ^-divergence statistic we need the asymptotic dis­
tribution of 2Ar[/c (P ,P o) -  φ(1)\/φ"(1) under the sequence of 
the local alternatives

(3.1) tfajv : Kij =  -1- N~l/2Cij,
i = l , . . . , k ,  j  =  1 ,.. . ,m

where the vector CT — (C n ,. . . ,  Ckm) satisfies S j= i C*j — 
0.

The following lemma will be used in this direction.

Lemma 3.1

Let the fc-dimensional vector X  be Ν(μ, Σ ) and let G be a 
symmetric non negative definite (n.n.d) matrix of order k. As­
sume that μ G Λ 4(Σ), where Μ  (Σ ) is the linear space generated 
by the columns of the matrix Σ . Then X TG X  has a non central 
chi square distribution if and only if the non zero eigenvalues of 
ΰ Σ  are equal to one. In this case the degrees of freedom are 
trace (Θ Σ ) and the noncentrality parameter is μτ Ομ.

The proof of the lemma can be obtained by using Theorems 
2.1, 3.1 and Remarks 2.2 and 2.3 of Dik and de Gunst (1985).

Theorem 3.1

If the function φ admits second derivative and <£"(1) φ  0 
then under the hypotheses (3.1) the statistic 2Ar[ /c (P ,P o) — 
0(1 )]/<£"(!) is asymptotically non central chi square distributed
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with (k — l)(m  — 1) degrees of freedom and non centrality pa­
rameter <5 =  C TBC, where C and B are given by (3.1) and (2.9) 
respectively.
P roof. Following the steps of the proof of Theorem 2.2, by 
a Taylor series expansion of F (P ) around the point IIq =  
(τγι*7γ*ι, ■ ■ · ,7Tfc«7r*m) we obtain that the statistic considered above 
has the same asymptotic distribution as that of quadratic form 
N (P  — Πο)τ (Α +  B )(P  — Πο) where the matrices A and B are 
given by (2.8) and (2.9) respectively.

We can easily see that under (3.1)

\/iV(P — Π 0) -h N(C, Σ*), 

where Σ* is a block covariance matrix of order km, with elements,

^ij,vl =  7Tj*7r*i), Ϊ, j  =  1) ■ · · , k, V, I =  1, . . . , 771.

Also the matrix A  +  B is n.n.d because the matrix 0"(1)(A  +  B) 
is the Hessian matrix of the convex function F (n ). After a 
little algebra (A  -f Β )Σ* is the matrix considered in Lemma 
2.1 and therefore its eigenvalues are 1 and 0 with multiplicities 
(k. — l)(m  — 1) and k 4- m — 1 respectively. Obviously C 6 
Λ^(Σ*) because for the unity vector 1 we have 1ΤΣ* =  0 and 
1TC =  0. Therefore the proof of the theorem is completed as 
an application of Lemma 3.1.

The Pitman a.r.e between any two test statistics obtained 
from 2JV[JC(P, Po) — <£(1)]/0"(1). for the convex functions <pi 
and 0 2 , is given by the ratio of their non centrality parameters 
(cf. Puri and Sen (1971), p. 121) and it is therefore equal to one 
for any pair of φ\ and 02· Thus the 0-divergence test statistics 
are equivalent in the Pitman sense for local alternatives given 
by (3.1).
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3.2 Bahadur efficiency

Another concept of efficiency was introduced by Bahadur 
(cf. Bahadur (1971)). In order to evaluate the exact Bahadur 
efficiency between two ^-divergence tests, we require the exact 
Bahadur slope of these tests. A method for evaluating this slope 
is described by the following theorem, based on Theorem 7.2 of 
Bahadur (1971), p. 27 (see also Cressie and Read (1984), p. 
447). The proof of the theorem is a generalization of Bahadur 
(1971), Example 8.3, p. 31 and is omitted.

Theorem 3.2

Let TN =  {2iV[7c (P ,P 0) -  0 (1 )]/0 "(1 )}1/2 and Δ  =  {Π  : 
π»; > 0, E i j  TTtj =  1, * =  1, · · ·, k, j  =  1, ■ · ·, m }. Then

a) l i m ^  N -^ T n  =  {2[/σ (Π ,Π 0) -  0(1)]/0"(1)}1/2 in 
probability for φ π^π^, i =  1 , . . . ,  k, j  =  1 , . . . ,  m.

b) lim.v^oc iV-1 log P(Tn >  =  -  ίηίν€Α, /^ (v , v 0)
for each t in an open interval, where b(v) =  {2 [ /c (v,vo) — 
0 (1 )]/0 "(1 )}1/2, At =  {v  € Δ  : 6(v) > t) and /£ (v ,v 0) =

Vij logKj/w i.i^j) with v o =  {vu v*i, ■ ■ ■ ,vk*v*m)· This re­
sult holds under the assumption of independence.

c) The exact Bahadur slope of the test based on

2 ^ [ /c (P ,P o) - 0 ( l ) ] / 0 " ( l )

is given by

Οφ{Π) =  inf 2/|f(v, v0), 7Tij φ  π „π ,;· 
v€r>

where B =  {v  € Δ  : / c ( v , v q ) > / c (n ,IIo )}.
The exact Bahadur efficiency, between two tests obtained 

from 0-divergence statistic for two convex functions φχ and 0 2 , 
is equal to the ratio of its exact Bahadur slopes. A straightfor­
ward generalization of Example, p. 448, of Cressie and Read 
(1984) provides that the loglikelihood ratio test (0(u) =  ulog u)
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obtains maximal Bahadur efficiency among all tests based on φ- 
divergence statistic for testing independence in a two way con­
tingency table. This is to be expected in view of Theorem 10.1 
in Bahadur (1971).

4. Measures of association and tests of equality of as­
sociations between contingency tables

Measures of association i.e. numerical assessments of the 
strength of the statistical dependence between two or more ran­
dom variables play an important role in statistics. φ-divergence 
(suitably normed) of the joint distribution of two random vari­
ables with respect to the product of their marginal distributions 
is an appropriate measure of association between the random 
variables, [cf. Ali and Silvey (1965), Csiszar (1967), Zvarova 
(1974), Vajda (1989, Chapter 10)]. Therefore the concept of 
«^-divergence 7σ (Π ,Π ο ) ,  defined by (1.1), can be used also to 
define a class of measures of association for cross classified ran­
dom variables tabulated in a two way contingency table. From 
/ ° ( Π , Π 0) can be obtained, for φ(η) =  (1 -  u)2, Pearson’s mean 
square contingency, for φ(η) =  u log u, Linfoot’s (1957) informa­
tional measure of dependence, for φ(υ.) =| 1 — u | /2, Hoffding’s 
coefficient of statistical dependence while for 0(u) =  sgn(a — 
l)u Q, a > 0(α φ  1), the quantity (a -  I )-1 log | 7σ ( Π ,Π ο )  | is 
the informational measure of correlation of order a, introduced 
by Pessoa and Dial (1988).

Asymptotic results stated previously provide ώ-divergence 
association measures with useful sampling properties. They can 
also be used to construct tests of equality of association be­
tween one or more pairs of cross classified random variables or 
contingency tables.

Following the notation given in the introduction denote by 
n·^ the frequency in the (i ,j)  cell of the .s =  l , . . . , r  con-
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tingency table for i =  1 ,k s and j  =  1, . . .  ,m s. Suppose 
that the distribution of n ^ ’s is the multinomial with parame­
ters Ns and TlJ =  , jrjjm.)· Let =  ΣΤ=ιπ^  and

=  Σ2?=ι ni f  are the marginal probabilities of and p [f — 
n\f /N3, p·^ =  n\sJ/Ns and p ^  =  n[Sj /Ns the sample estimators 
of the population proportions π ^ , π,·̂  and π[*· respectively 
where n j? =  ET=inif  and n?  =  s =  L . . . , r ,
i =  1 , . . . ,  ks and j  =  1 , . . . ,  ms. Let also =  ( p f f , . . . ,  p j^ J ,
ttT _  /_(*)_(») _(»)_(*) \ΟΓΙΑτ>τ -  „(s) „(s) ΊXI q 5 [n u  , . . . ,  itka*TT*m9) a n d  ir q 5 \Pi* P*i ? * · · > P k9*P*rn )̂ j
5 =  1 , . . .  , r .

^-divergence statistic / C(P S, Po,s), s =  1, . . .  ,r, defined as 
in (1.2), can be used to test the following hypotheses:

i ) i i o : / C( n l ino,i) =  /o·
0-divergence association of the attributes of a contingency table 
is of certain magnitude I q.

ii) / ί ο : / σ (Π 1,Πο,ι) =  / £7(Π 2,Πο,2 ).
The pairs of the attributes of two contingency tables are equally 
associated.

iii) H q : ^ (Π χ,Π ο,ι) =  ··· =  7c ( n r)n 0,r) =  J0.
The pairs of the attributes of r contingency tables are equally 
associated to a certain magnitude I q .

To test the hypotheses i) and ii) we can use the statistics

y/ivr[/c (P i; P o ,i ) - /o ]
<fi

and
/ c (P 1;Po,1) - J c (P 2lPo,2)

ν [ ( σ ϊ/Νι) +  Wi/Nt))
respectively with, by Theorem 2.1, iV(0,1) distribution under 
H q. The standard deviations are obtained from (2.3) by replac­
ing population parameters by their sample estimators.
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To test hypothesis iii) we can use the statistic

i ^ V i [ f c ( P i , P o , 0 - / o ] '  
2Σ

i = i  σ

which, as Ni —* oo, i =  1 , . . . ,  r, is distributed as χ2T under Hq. 
The variances af, i =  1 , . . . ,  r are obtained as above.

To test the hypothesis

H0 : Ic {U u Πο,ι) =  · · · =  Ic {Π Γ, n 0,r) 

we can use the statistic

r ,V , [ /c ( P ,  P 0i,) -  / f 'fΣ
where

2 i=i

rO E L i[jV i/c (P ..Po, i) / ” !Ί

As Ni —> oo, i =  Ι , , . , , γ  we can easily see that the above 
considered test statistic is distributed as χ^_χ under Hq.
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