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TWO-LEVEL TOEPLITZ PRECONDITIONING: APPROXIMATION
RESULTS FOR MATRICES AND FUNCTIONS∗

D. NOUTSOS† , S. SERRA CAPIZZANO‡ , AND P. VASSALOS†

Abstract. Large 2-level Toeplitz systems arise in a variety of applications (see, e.g., [R. H.
Chan and M. Ng, SIAM Rev., 38 (1996), pp. 427–482]) for which efficient numerical methods for
their solution are required. Some successful numerical techniques need the explicit knowledge of the
generating function f of the considered system Tn(f)x = b, an assumption that usually is not fulfilled
in real applications. In this paper we analyze and complete the procedure proposed in [D. Noutsas,
S. Serra Capizzano, and P. Vassalos, Numer. Linear Algebra Appl., 12 (2005), pp. 231–239] for the
2-level case. In such a way, from the knowledge of the coefficients of Tn(f), we determine optimal
preconditioning strategies for the solution of our systems. Finally, some numerical experiments are
performed and discussed in connection with our theoretical analysis.
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1. Introduction. In this paper we consider the preconditioning of 2-level Toeplitz
systems of the form Tn(f)x = b, where n = (n1, n2) have large components, the
symbol f is assumed to be defined on R, real-valued, 2π-periodic, and continuous,
(Tn(f))(j,k)(p,q) = tk−j,q−p with tr,s being the Fourier coefficients of f , i.e.,

tr,s =
1

4π2

∫ π

−π

∫ π

−π

f(x, y)exp(−i(rx + sy))dxdy, i2 = −1.

Here the 2-index notation (Tn(f))(j,k)(p,q), n = (n1, n2), indicates that we are selecting
the block (j, k) of size n2 with j, k ∈ {1, . . . , n1} and, in that block, we are selecting
the entry (p, q), p, q ∈ {1, . . . , n2}.

Such matrices (often also called block Toeplitz with Toeplitz blocks) arise in sev-
eral applications (see, e.g., [6, 11, 13]), such as Markov chains, integral equations, in
the solution of certain partial differential equations (PDEs), and image restoration.
In some contexts the generating function f is explicitly given or can be easily ob-
tained, but in many others, like image processing, Markov chains, and tomography,
the analytic expression of the symbol is not available and, as a consequence, we do
not know crucial properties such as the presence of zeros, their localization, or their
multiplicities. We recall that the considered information is essential to understand the
spectral properties (extreme eigenvalues, ill-conditioning, ill-posedness) of the matri-
ces and therefore to select the most suitable preconditioning methods (see [19, 12]).
The 1-level case has been treated in [23] using band Toeplitz preconditioners and in
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serrac@uninsubria.it, serra@mail.dm.unipi.it).

439



440 D. NOUTSOS, S. SERRA CAPIZZANO, AND P. VASSALOS

[18] using circulant-like preconditioners constructed by positive reproducing kernels.
These circulant preconditioners, as well as those belonging to more general matrix
algebras, possess a natural extension in the 2-level setting. However, a quite general
theory shows that it is impossible to find any of these 2-level extensions preserving
either the superlinear or the optimal behavior: see [31, 25, 32] for negative results
regarding the notion of superlinearity and [14, 15] for negative results regarding the
notion of optimality.

We recall that the spectral properties of the Toeplitz matrices are described very
precisely by the symbol (see, e.g., [3, 16]). For instance, if zero belongs to the range
of f , then the sequence {Tn(f)}n is asymptotically ill-conditioned (for n → ∞, n =
(n1, n2), i.e., for n1, n2 → ∞): more precisely, the problem will be ill-posed in a
discrete sense if f has a nondefinite sign while we have invertibility but asymptotical
ill-conditioning if f is nonnegative (or equivalently nonpositive). In the latter we need
preconditioning and an optimal technique consists in using Tn(g) as a preconditioner
where g is a nonnegative trigonometric polynomial which has the same zeros as f
with the same orders. Any system related to Tn(g) is banded and can be solved,
under suitable assumptions, by multigrid methods [9] or cyclic reduction techniques
[4, 5] in linear time; moreover, the preconditioning sequence is optimal so that only a
fixed number of preconditioned conjugate gradient (PCG) iterations (independent of
n1 and of n2) has to be performed in order to reach the solution within a preassigned
accuracy. In conclusion, we need algorithms for determining analytical information on
the zeros of f . In [17], by extending the proposal in [23], the 2-level case is considered
for generating functions only known through the matrix coefficients (i.e., the Fourier
coefficients of f): the main idea is to approximate f over the grid

Sn =

{(
−π +

2kπ

n1
, −π +

2jπ

n2

)
, k = 1, 2, . . . , n1 , j = 1, 2, . . . , n2

}
(1.1)

on the square Q = (−π, π]2, and then we proceed by looking for the roots of f ,
by estimating their multiplicities, by characterizing the problem (well-conditioned,
ill-conditioned, ill-posed), by choosing the appropriate method, and finally by con-
structing the chosen preconditioner. Since the zeros cannot be computed exactly in
general, we also need to check the robustness of the preconditioning technique with
regard to numerical/approximation errors in the computation of the position of the
zeros. The contribution of this paper relies in giving a theoretical support to the
heuristic proposal given in [17], by using and extending new tools developed in [29],
and in giving a numerical procedure for approximating the polynomial factors of the
symbol in the case of curves of zeros.

The paper is organized as follows. In section 2 we report basic results from the
quoted literature, and in section 3 the proposed approach is theoretically analyzed
and some numerical results are given.

2. Basic theory.

2.1. Results from the literature. In the following when we write inf and sup
we mean the essential infimum and the essential supremum, i.e., up to zero measure
sets (with respect to the Lebesgue measure); when we write f ∼ g we mean that
there exist positive real constants r and R such that rg(x, y) ≤ f(x, y) ≤ Rg(x, y)
for almost every (x, y) in the definition set of f and g. Moreover, when we write
an ∼ bn and {an} and {bn} are sequences, we understand that there exist positive
real constants r and R such that rbn ≤ an ≤ Rbn for every n. (Notice that in both
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the instances, the case R = +∞ is excluded.) A nonnegative function f has a zero at
(x0, y0) if for every neighborhood I of (x0, y0) we have inf(x,y)∈I f(x, y) = 0. A set S
of zeros of f ≥ 0 is isolated if there exists a neighborhood J of S such that for every
neighborhood I ⊂ J, I 	= J of S we have inf(x,y)∈J\I f(x, y) > 0. Furthermore, we
write that a nonnegative function f has a zero of order at least α ≥ 0 at (x0, y0) if
and only if there exist a positive constant c such that f(x, y) ≤ c‖(x, y) − (x0, y0)‖α
in a suitable neighborhood of (x0, y0) and for some norm ‖ · ‖. We write that its order
is +∞ if it is of order at least α for every α > 0 or in other words if

lim
(x,y)→(x0,y0)

f(x, y)

‖(x, y) − (x0, y0)‖α
= 0 ∀α > 0.

For our purpose, we will consider the following general definition for a zero of order
α > 0.

Definition 1. Let f be a nonnegative L1(Q) function having a zero at (x0, y0).
We say that its order is α ∈ (0,∞) if there exists a finite number p of curves Ci,
i = 1, . . . , p, defined by li(x, y) = 0 passing through (x0, y0) and regular in it such that

f ∼ f̆ and

f̆(x, y) =

p∑
i=1

|li(x, y)|α + g(x, y),

where g has a zero at (x0, y0) of order at least β > α.
The above definition is quite general and includes many different cases, such as

f(x, y) = |x − x0|4 + |y − y0|3 (f = f̆ , isolated zero at (x0, y0), p = 1, α = 3, β = 4,
l1(x, y) = y − y0, g(x, y) = |x − x0|4); f(x, y) = |1 − x2 − y2|2 + h(x, y)exp(−1/(1 −
x2 − y2)), h(x, y) ∈ L∞(Q) with positive essential range (f = f̆ , isolated curve
of zeros represented by the circle centered at zero with radius 1, p = 1, α = 2,
β = ∞, l1(x, y) = 1 − x2 − y2, g(x, y) = h(x, y)exp(−1/(1 − x2 − y2))); f(x, y) =

| sin(x2+y4+(x−y)2)|+(x2+y2)4 (f̆(x, y) = x2+y4+(x−y)2+(x2+y2)4, isolated zero
at (0, 0), p = 2, α = 2, β = 4, l1(x, y) = x, l2(x, y) = x− y, g(x, y) = y4 +(x2 + y2)4).

Lemma 1 (see [21, 16]). Let f be a nonnegative L1(Q) function having zeros
expressible as a finite collection of curves and isolated points and having maximal
order α < ∞ (according to Definition 1). Then Tn(f), n = (n1, n2), is positive
definite and its minimal eigenvalue λmin(Tn(f)) is such that λmin(Tn(f)) ∼ ν−α with
n1 ∼ n2 ∼ ν. The same conclusion is true if f = fn depends on n, as long as the
notion of order of zeros (which may depend on n) is well defined and independent of
n according to Definition 1.

For a generic n-by-n matrix X with complex entries we define

‖X‖p =

⎧⎨
⎩

(∑n

j=1
σp
j

n

)1/p

if p ∈ [1,∞),

σ1 if p = ∞

with σ1 ≥ σ2 ≥ · · · ≥ σn denoting the singular values of X. Furthermore, indicating
by m{·} the Lebesgue measure (on Q in the present case), for f ∈ Lp(Q) and p ∈
[1,∞), we define ‖f‖p =

[
1

m{Q}
∫
Q
|f(x)|p dx

]1/p
and ‖f‖∞ = supx∈Q |f(x)| for f ∈

L∞(Q), p = ∞, and sup denoting the essential supremum, i.e., up to zero measure sets.
Lemma 2 (see [30, 26]). Let f be an Lp(Q) function. Then ‖Tn(f)‖p ≤ ‖f‖p and

limn→∞ ‖Tn(f)‖p = ‖f‖p ∀p ∈ [1,∞].
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Finally, for θ Lebesgue measurable over D ⊂ Rk, with k positive integer and
0 < m{D} < ∞, the expression “{An} is distributed as the measurable function θ”
with An of size N(n) is equivalent to writing that for any F ∈ C0 (continuous with
bounded support) it holds

lim
n→∞

1

N(n)

N(n)∑
j=1

F (λj (An)) =
1

m{D}

∫
D

F (θ(x)) dx,

where {λj (An) : j = 1, . . . , N(n)} denotes the complete set of the eigenvalues of
An and where n could be either a positive integer or a positive multi-index. Often
the considered distribution results for the eigenvalues hold for Hermitian sequences,
but there exist many noteworthy exceptions in the complex field (concerning non-
Hermitian sequences): the case of Toeplitz sequences generated by complex-valued
symbols whose range has nonempty interior and for which the complement of the
range is a connected set in the complex field (see [33]), the case of quasi-Hermitian
discretizations of finite difference differential operators (see [10]), and the case of the
preconditioned sequences considered in Lemma 3. In our context we have D = Q,
k = 2, and the matrices An are either Hermitian Toeplitz or preconditioned matrices
(see Lemma 3) which can be turned into Hermitian ones by similarity transformations.

Now we recall a basic result which is the foundation of the band Toeplitz precon-
ditioning.

Lemma 3 (see [8, 27]). Let f and g be two essentially nonnegative functions (not
identically zero) belonging to L1(Q) and such that f/g is not constant. Then

inf f/g < λ(T−1
n (g)Tn(f)) < sup f/g

and moreover {T−1
n (g)Tn(f)} is distributed as f/g.

We explain the band Toeplitz preconditioning approach with an example. Con-
sider the function f(x, y) = x2+y2 which has a unique zero of order two at z0 = (0, 0).
The matrix Tn(f) is full but can be optimally preconditioned by the simple band
Toeplitz matrix

Tn(g) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B −I

−I
. . .

. . .

. . .
. . .

. . .
. . . −I
−I B

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
n1×n1

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

4 −1

−1
. . .

. . .

. . .
. . .

. . .
. . . −1
−1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
n2×n2

with I denoting the n2×n2 identity matrix and with g(x, y) = 4−2 cos(x)−2 cos(y) =
4 sin2(x/2) + 4 sin2(y/2). By Lemma 3 we deduce that the eigenvalues of the precon-
ditioned matrix T−1

n (g)Tn(f) are
1. contained in the interval (1, π2/4), 1 = min f/g, π2/4 = max f/g, and
2. globally distributed as the function f/g.

Therefore, irrespectively of the 2-index n = (n1, n2) and of the size N(n) = n1n2

of the considered linear system, the number of PCG iterations for which we need
to find the solution within a fixed accuracy ε > 0 can be bounded by a universal
constant independent of n (which can be estimated as a function of ε [1]). Moreover,
for the solution of a system with matrix Tn(g), we can use solvers based on fast sine
transforms (see, e.g., [34]) costing O(N(n) logN(n)) arithmetic operations (flops),
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multigrid methods [9], or just classical Poisson solvers (based on the cyclic reduction
idea; see, e.g., [4, 5]) with cost of O(N(n)) flops. In conclusion the associated PCG
method is optimal (in the sense of Axelsson and Neytcheva [2]) since

1. the cost of each iteration is O(N(n) logN(n)) flops, N(n) = n1n2, that is of
the same order as the cost of a matrix vector product, and

2. the number of iterations does not depend on n.
We observe that the main point for deriving such a result does not rely on the

regularity of the function f . Actually, if f(x, y) = x2 + y2 is replaced by f(x, y) =
(x2 +y2)h(x, y), where h(x, y) is any function in L∞(Q) with positive essential range,
then the same Tn(g) is still an optimal preconditioner.

Therefore, the crucial points are the number of the zeros or curves of zeros of f,
which should be finite, and their order, which should be even (for the case where the
order of the zeros is not even, to our knowledge, the best idea is the use of multigrid
strategies [9, 28]).

However, in many practical situations we possess the coefficients {tr,s}, in some
cases we know the positive definiteness of the matrix Tn(f) or even the fact that Tn(f)
is asymptotically ill-conditioned, but very often we do not have an explicit expression
for f . In that cases we have to recover the minimal information for devising an optimal
preconditioning technique, i.e., the position and the order of the zeros of f .

In [23] an economic strategy was devised for the numerical evaluation of the
order and the position of the zeros in the 1-dimensional case. The technique has been
heuristically extended to two dimensions in [17]: in [29] the theoretical explanation
of the goodness of the procedure for the 1-dimensional case was given. Here we
complete the picture by giving theoretical results in the 2-dimensional setting and
giving a numerical procedure for approximating the polynomial factors of the symbol
in the case of curves of zeros. In actuality, under the assumption that the zeros are
even, we can determine exactly the order of the zeros but the position of these zeros
is affected by an error for which we can provide a rough a priori bound.

In conclusion, we would like to study the spectral behavior of

T−1
n (g̃)Tn(f),

where f ∼ g, g is a trigonometric polynomial of fixed degrees and the zeros of g̃ are
an approximation of those of g. A simple example is given by the situation

g(x, y) =

k∏
j=0

(4 − 2 cos(x− xj) − 2 cos(y − yj))
αj ,

g̃(x, y) =

k∏
j=0

(4 − 2 cos(x− x̃j) − 2 cos(y − ỹj))
αj

and (x̃j , ỹj) is an approximation of (xj , yj) ∀j = 0, . . . , k, even if the most challenging
case is the one where the zeros form a curve: in this respect there is the problem of
approximating such a curve by using the zeros of a trigonometric polynomial; since the
symbol f is known only through the set of its Fourier coefficients, a direct fast solution
(requiring only FFTs) can be obtained by considering the zeros of approximations of
f such as the Fourier polynomial of degree n or its Cesaro sum of the same degree.

In the following subsection we furnish some mathematical tools with which to
answer this question and in the subsequent subsection we analyze the spectral features
of (approximate) preconditioned matrix sequences.
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2.2. Theoretical results. We read the first part of Lemma 3 in the following
way: if f and g are two essentially nonnegative functions (not identically zero) such
that f/g is not constant and f ∼ g, then

κp

(
T−1/2
n (g)Tn(f)T−1/2

n (g)
)
< C := (sup f/g)(inf f/g)−1 < ∞

for any p ∈ [1,∞] and with κp(X) = ‖X‖p‖X−1‖p being the condition number of
an invertible matrix X with respect to the (scaled) Schatten norm ‖ · ‖p, p ∈ [1,∞].
In the following we suppose to have a perturbed g, let us say gn, such that gn is
not equivalent to f but it is close in norm to g. We try to see what happens to the
condition numbers of the perturbed symmetrized preconditioned matrix

T−1/2
n (gn)Tn(f)T−1/2

n (gn).

Theorem 1. Let f ∼ g and let fn ∼ gn such that the constants of equivalence
are independent of n = (n1, n2) and suppose that f, fn, g, gn ∈ Lp(Q), p ∈ [1,∞].
Suppose that f has zeros expressible as a finite collection of curves and isolated points
and having maximal order α < ∞ (according to Definition 1); suppose also that fn
has zeros expressible as a finite collection of curves and isolated points and having
maximal order β < ∞ (according to Definition 1). Then there exist proper constants
C1, C2, q1, q2 independent of n such that

κp

(
T−1/2
n (gn)Tn(f)T−1/2

n (gn)
)
≤ [C1 + q1ν

α‖gn − g‖p]
[
C2 + q2ν

β‖fn − f‖p
]

with n1 ∼ n2 ∼ ν.
Proof. From the equivalence relationships fn ∼ gn and f ∼ g, we infer that there

exists constants C1 and C2, independent of n, such that

sup g/f ≤ C1, sup fn/gn ≤ C2.(2.1)

Moreover, from the nonnegativity of f and gn and from the assumption on the max-
imal order of their zeros, by applying Lemma 1, we deduce that λmin(Tn(f)) ∼ ν−α

and that λmin(Tn(gn)) ∼ ν−β . Therefore, there exist absolute constants q1 and q2
independent of n for which we have

‖T−1
n (f)‖∞ ≤ q1ν

α, ‖T−1
n (gn)‖∞ ≤ q2ν

β .(2.2)

Then, by the plain definition of the condition number, we have

κp

(
T−1/2
n (gn)Tn(f)T−1/2

n (gn)
)

= XnYn,

where

Xn = ‖T−1/2
n (gn)Tn(f)T−1/2

n (gn)‖p, Yn = ‖T 1/2
n (gn)T−1

n (f)T 1/2
n (gn)‖p.

Moreover, since σj(XY ) ≤ ‖X‖∞σj(Y ), by definition of ‖ · ‖p norm, it follows that

‖XY ‖p ≤ ‖X‖∞‖Y ‖p,(2.3)

which corresponds to the submultiplicative property if p = ∞. Since fn ∼ gn with
equivalence constants independent of n, by Lemma 3 we deduce that the spectrum of

T
−1/2
n (gn)Tn(fn)T

−1/2
n (gn) is uniformly bounded away from zero and infinity (refer
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to the constant C2 in (2.1)). By invoking Lemma 2, we know that ‖Tn(f − fn)‖p ≤
‖fn − f‖p and by (2.2) we know that ‖T−1

n (gn)‖∞ ≤ q2ν
β . Therefore, by invoking

the triangle inequality and (2.3) applied twice, we have

Xn ≤ ‖T−1/2
n (gn)Tn(fn)T−1/2

n (gn)‖p + ‖T−1/2
n (gn)Tn(f − fn)T−1/2

n (gn)‖p
≤ C2 + q2ν

β‖fn − f‖p.

Moreover, since T
1/2
n (gn)T−1

n (f)T
1/2
n (gn) is positive definite, its spectral norm Yn

coincides with its maximal eigenvalue and since T
1/2
n (gn)T−1

n (f)T
1/2
n (gn) is similar to

Tn(gn)T−1
n (f) and the latter is similar to T

−1/2
n (f)Tn(gn)T

−1/2
n (f) which is positive

definite, it follows that

Yn = ‖T−1/2
n (f)Tn(gn)T−1/2

n (f)‖p
≤ ‖T−1/2

n (f)Tn(g)T−1/2
n (f)‖p + ‖T−1/2

n (f)Tn(gn − g)T−1/2
n (f)‖p

≤ C1 + q1ν
α‖gn − g‖p,

where in last inequality we have made recourse to Lemma 3 with the constant C1 in
(2.1), to Lemma 2, and to relations (2.2) and (2.3).

Finally we conclude that

κp

(
T−1/2
n (gn)Tn(f)T−1/2

n (gn)
)
≤ [C1 + q1ν

α‖gn − g‖p]
[
C2 + q2ν

β‖fn − f‖p
]

and the proof is over.

2.3. The robustness of the inexact band Toeplitz preconditioning. First
we show that the error that we make in the evaluation of the zeros must be infinitesi-
mal: if this is not the case, then the associated “inexact” band Toeplitz precondition-
ing is no longer optimal.

For the sake of simplicity, let us take a nonnegative essentially bounded function
f with a unique zero of order 2α (α positive integer) at (x0, y0) and suppose that
g(x, y) = (2−2 cos(x−x0))

α+(2−2 cos(y−y0))
α and g̃(x, y) = (2−2 cos(x− x̃0))

α+
(2 − 2 cos(y − ỹ0))

α with (x̃0, ỹ0) = (x0, y0) + (δ1, δ2). Here δ1, δ2 are fixed quantities
independent of n = (n1, n2) with ‖(δ1, δ2)‖∞ 	= 0. The following facts hold:

1. limn→∞ λmin(Tn(f)) = 0, λmax(Tn(f)) ≤ ‖f‖∞ < ∞;
2. limn→∞ λmin(T−1

n (g̃)Tn(f)) = 0, limn→∞ λmax(T
−1
n (g̃)Tn(f)) = ∞,

where the claim in 1 is a consequence of Lemma 1 and the claim in 2 follows from
the second part of Lemma 3. In actuality, by Lemma 3, the sequence {T−1

n (g̃)Tn(f)}
is distributed as h = f/g̃ where h has a zero at (x0, y0) which is responsible for the
relation limn→∞ λmin(T−1

n (g̃)Tn(f)) = 0 and has a pole at (x̃0, ỹ0) = (x0, y0)+(δ1, δ2)
which is responsible for the relation limn→∞ λmax(T

−1
n (g̃)Tn(f)) = ∞. In conclusion,

it is self-evident that the associated PCG algorithm cannot be optimal and therefore
we have to determine the root (x0, y0) within an error infinitesimal as n goes to
infinity.

2.3.1. Isolated zeros. We proceed as follows. In full generality, let us suppose
that f has k+ 1 zeros of even order 2α0, 2α1, . . . , 2αk at (x0, y0), (x1, y1), . . . , (xk, yk)
and let us take

gn(x, y) =

k∏
j=0

[(2 − 2 cos(x− xj,n))αj + (2 − 2 cos(y − yj,n))αj ]
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with ‖(xj , yj)− (xj,n, yj,n)‖∞ ≤ εν , n = (n1, n2), n1 ∼ n2 ∼ ν. We wish to determine
εν such that

κ∞

(
T−1/2
n (gn)Tn(f)T−1/2

n (gn)
)
≤ K,(2.4)

where K is a universal constant independent of n = (n1, n2).
By reading Theorem 1 with p = ∞ in our specific case, we obtain that

κ∞

(
T−1/2
n (gn)Tn(f)T−1/2

n (gn)
)
≤
[
C1 + q1ν

2αmax‖gn − g‖∞
]

(2.5) [
C2 + q2ν

2αmax‖fn − f‖∞
]

with n1 ∼ n2 ∼ ν. In the above equation the functions g and fn have to be chosen in
order to minimize ‖gn − g‖∞ and ‖fn − f‖∞ but with the constraint that g ∼ f and
fn ∼ gn. In such a way we hope to obtain a bound like the one in (2.4). An obvious
proposal is represented by

g(x, y) = gn(x + (xj,n − xj), y + (yj,n − yj)),(2.6)

fn(x, y) = f(x + (xj − xj,n), y + (yj − yj,n)).

It is evident that

g(x, y) =
k∏

j=0

[(2 − 2 cos(x− xj))
αj + (2 − 2 cos(y − yj))

αj ],

g ∼ f , and fn ∼ gn; moreover a simple manipulation shows that

‖g − gn‖∞ ≤ ‖∇g‖∞εν and ‖f − fn‖∞ ≤ Lεγν

if f is Hölder continuous with parameter γ ∈ (0, 1] and constant L > 0. (In the
regular case, e.g., if f is continuously differentiable, then f is Lipschitz continuous
and therefore L = ‖∇f‖∞ and γ = 1.) Here when we write ‖∇g‖∞ and ‖∇f‖∞, we
mean the 1-norm of the vector composed by the infinity norms of the two components.

However, we can obtain a better estimate by choosing

g(x, y) =

{
gn(x, y) if A holds true,
gn(x + (xj,n − xj), y + (yj,n − yj)) if B holds true,

(2.7)

fn(x, y) =

{
f(x) if A holds true,
f(x + (xj − xj,n), y + (yj − yj,n)) if B holds true

with δ = 2εν , condition A being ‖(x, y)−(xj,n, yj,n)‖∞ > δ ∀j = 0, . . . , k and condition
B being ∃j ∈ {0, . . . , k} such that ‖(x, y)− (xj,n, yj,n)‖∞ ≤ δ. In this way, due to the
definition of order of zero, we have ‖gn − g‖∞ ≤ z1ε

2αmin
ν and ‖fn − f‖∞ ≤ z2ε

2αmin
ν

for suitable absolute constants z1 and z2: beside the better approximation estimate,
a surprising further advantage, when compared with the proposal in (2.6), is that
we do not have to require any regularity to the function f . Furthermore, to apply
the crucial relation (2.5) we have to verify that f ∼ g and fn ∼ gn. This result is
contained in the following theorem.

Theorem 2. Let us suppose that f has k + 1 zeros of even order 2α0, 2α1, . . . , 2αk

at (x0, y0), (x1, y1), . . . , (xk, yk) and let us take

gn(x, y) =

k∏
j=0

[(2 − 2 cos(x− xj,n))αj + (2 − 2 cos(y − yj,n))αj ]
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with ‖(xj , yj) − (xj,n, yj,n)‖∞ ≤ εν , n = (n1, n2), n1 ∼ n2 ∼ ν. Let fn and g be
defined as in (2.7). Then f ∼ g and fn ∼ gn.

Proof. The proof of f ∼ g is equivalent to writing that f
g and g

f are uniformly
bounded. Setting

g∗(x, y) =

k∏
j=0

[(2 − 2 cos(x− xj))
αj + (2 − 2 cos(y − yj))

αj ] ,

by the assumptions on f , we have max{sup f(x,y)
g∗(x,y) , sup g∗(x,y)

f(x,y) } = C∗ < ∞. Therefore

sup
f(x, y)

g(x, y)
= max

{
sup

(x,y): A holds

f(x, y)

g(x, y)
, sup
(x,y): B holds

f(x, y)

g(x, y)

}

= max

{
sup

(x,y): A holds

f(x, y)

g(x, y)
, sup
(x,y): B holds

f(x, y)

g∗(x, y)

}

≤ max

{
sup

(x,y): A holds

f(x, y)

g(x, y)
, sup

f(x, y)

g∗(x, y)

}

≤ max

{
sup

(x,y): ‖(x,y)−(xj,n,yj,n)‖∞>2εν

f(x, y)

g(x, y)
, C∗

}
.

Now, by exploiting the asymptotical behavior of f and g in a neighborhood of the
roots, we obtain

sup
f(x, y)

g(x, y)
≤ sup

(x,y): ‖(x,y)−(xj,n,yj,n)‖∞>2εν

Ĉ
‖(x, y) − (xj , yj)‖2αmax

∞
‖(x, y) − (xj,n, yj,n)‖2αmax∞

+ C∗

with Ĉ absolute constant independent of n. Hence by triangle inequality we deduce

sup
f(x, y)

g(x, y)
≤ sup

(x,y): ‖(x,y)−(xj,n,yj,n)‖∞>2εν

Ĉ

[
1 +

‖(xj,n, yj,n) − (xj , yj)‖∞
‖(x, y) − (xj,n, yj,n)‖∞

]2αmax

+ C∗

≤ Ĉ(1.5)2αmax + C∗,

where in the last inequality we have made recourse to the relations ‖(xj , yj) − (xj,n,
yj,n)‖∞ ≤ εν and ‖(x, y) − (xj,n, yj,n)‖∞ > 2εν .

A uniform bound (independent of n) is found along the same reasoning lines also

for sup g(x,y)
f(x,y) , sup fn(x,y)

gn(x,y) and sup gn(x,y)
fn(x,y) and therefore the theorem is proven.

Finally, taking into account (2.5), the optimality is maintained i.e. (2.4) is satis-

fied if ε2αmin
ν ν2αmax = O(1) which is equivalent to the relation εν = O(ν

−αmax
αmin ).

2.3.2. Curves of zeros. In the case of curves of zeros we suppose that f has k+1
regular curves of zeros of even order 2α0, 2α1, . . . , 2αk at (x0(t), y0(t)), (x1(t), y1(t)),
. . . , (xk(t), yk(t)), t ∈ [0, 1], where (xj(t), yj(t)), j = 0, . . . , k, is the solution of the
implicit equation lj(x, y) = 0. Let us take

gn(x, y) =

k∏
j=0

(2 − 2 cos(lj,n(x, y)))αj
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with (xj,n(t), yj,n(t)), j = 0, . . . , k, being solution of the (approximate) implicit equa-
tion lj,n(x, y) = 0, ‖(xj(t), yj(t))−(xj,n(t), yj,n(t))‖∞ ≤ εν , n = (n1, n2), n1 ∼ n2 ∼ ν.
As in the case of isolated zeros the goal is to determine εν such that

κ∞

(
T−1/2
n (gn)Tn(f)T−1/2

n (gn)
)
≤ K,(2.8)

where K is a universal constant independent of n = (n1, n2). We consider Theorem
1 with p = ∞ in the latter context and then we have (2.5) with n1 ∼ n2 ∼ ν and
where the functions g and fn have to be chosen in order to minimize ‖gn − g‖∞ and
‖fn − f‖∞ but with the constraint that g ∼ f and fn ∼ gn. In such a way, as in
the case of the isolated zeros, we wish to obtain a bound as in (2.8). We consider the
proposal described by

g(x, y) =

{
gn(x, y) if A holds true,
gn(x + (xj,n − xj), y + (yj,n − yj)) if B holds true,

(2.9)

fn(x, y) =

{
f(x) if A holds true,
f(x + (xj − xj,n), y + (yj − yj,n)) if B holds true

with δ = 2εν , condition A being ‖(x, y) − (xj,n(t), yj,n(t))‖∞ > δ ∀j = 0, . . . , k and
condition B being ∃j ∈ {0, . . . , k}, ∃t̄ ∈ [0, 1] such that ‖(x, y)− (xj,n(t̄), yj,n(t̄))‖∞ ≤
δ. In this way, due to the definition of order of zero, we have ‖gn − g‖∞ ≤ z1ε

2αmin
ν

and ‖fn−f‖∞ ≤ z2ε
2αmin
ν for suitable absolute constants z1 and z2: we stress that no

regularity of the function f is explicitly required. Furthermore, to apply the crucial
relation (2.5) we have to verify that f ∼ g and fn ∼ gn. This result is contained in
the following theorem.

Theorem 3. Let us suppose that f has k + 1 regular curves of zeros of even or-
der 2α0, 2α1, . . . , 2αk at (x0(t), y0(t)), (x1(t), y1(t)), . . . , (xk(t), yk(t)), t ∈ [0, 1], where
(xj(t), yj(t)), j = 0, . . . , k, is the solution of the implicit equation lj(x, y) = 0. Let us
take

gn(x, y) =

k∏
j=0

(2 − 2 cos(lj,n(x, y)))αj

with (xj,n(t), yj,n(t)), j = 0, . . . , k, being solution of the (approximate) implicit equa-
tion lj,n(x, y) = 0, ‖(xj(t), yj(t)) − (xj,n(t), yj,n(t))‖∞ ≤ εν , n = (n1, n2), n1 ∼ n2 ∼
ν. Let fn and g be defined as in (2.9). Then f ∼ g and fn ∼ gn (with essentially the
same constants as in Theorem 2).

Proof. The proof is similar to that of Theorem 2.
In view of (2.5), the optimality of the related PCG method is maintained, i.e., (2.4)

is satisfied if ε2αmin
ν ν2αmax = O(1) which is equivalent to the relation εν = O(ν

−αmax
αmin ).

We remark that a trivial combination of Theorems 2 and 3 implies that the same
conclusions hold in the case of combinations of isolated zeros and (regular) curves of
zeros. Finally we have to emphasize a practical (and serious) difficulty which arises
when curves of zeros are present: indeed, in that case, given the approximate curves
of zeros, the proposed function gn(x, y) is not necessarily a trigonometric polynomial.
Therefore the corresponding matrix Tn(gn) is dense as Tn(f) and a possible but tricky
solution is to approximate gn by a polynomial of fixed degree: in some cases this
idea can be followed but we believe that the answer in the general case is in the
negative since, when we force εν to be small enough, the degree of the polynomial gn
cannot be controlled in general by an absolute constant independent of n = (n1, n2),
n1 ∼ n2 ∼ ν.
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2.4. Comments on the use of the results. In the case where the zero is
unique or in the case where all the zeros have the same order, it is sufficient to
choose εn = ν−1: this is a very reasonable requirement from a practical point of
view. When the ratio αmax

αmin
is high (case of unbalanced zeros), the required precision

on the computation of the zeros becomes very high. We can meet the requirement
with an effort of O(N(n) log(N(n))) flops by evaluating f as the nth Fourier sum,
n = (n1, n2). However, we must emphasize that we are guaranteed to be successful
only if f is regular enough: we recall that the sup norm error of the Fourier sum is, up
to a log ν factor, n1 ∼ n2 ∼ ν, of the same order of the best approximation error and
the latter is o(ν−K) if f is K times continuously differentiable. Therefore in the case
of just continuous functions and in the case where we desire that the approximation
of f maintain the sign of function, then we can use the Rayleigh quotient approach
considered in detail in Theorem 4.

Theorem 4. Let f be a 2π-periodic continuously differentiable 2-variate function
with bounded second derivative. We consider θx = exp(ix), θy = exp(iy) and the
associated unitary vectors

ΘT
x =

1
√
n1

(1 θx θ2
x · · · θn1−1

x ) and ΘT
y =

1
√
n2

(1 θy θ2
y · · · θn2−1

y ).

Let Θxy = Θx⊗Θy be the tensor product of the above vectors. Then, for n = (n1, n2),
we have

rn[f ](x, y) :=
ΘH

xyTn(f)Θxy

ΘH
xyΘxy

= f(x, y) + O
(

max

{
1

n1
,

1

n2

})
.(2.10)

In the more general case where f ∈ L1(Q), if f ≥ 0 almost everywhere, then

rn[f ](x, y) ≥ 0 ∀ (x, y) ∈ Q

and rn[f ] is uniformly strictly positive if, in addition, the essential supremum of f is
positive.

Proof. Since ΘH
xyΘxy = 1 by definition of Θxy, it follows that rn[f ](x, y) =

ΘH
xyTn(f)Θxy. Moreover the map rn[·], as an operator from L1(Q) into the space of

the trigonometric bivariate polynomials, is linear and positive: indeed the linearity
is evident since Tn(αg1 + βg2) = αTn(g1) + βTn(g2) by the linearity of the Fourier
coefficients; moreover if f is real valued, then Tn(f) is Hermitian (see, e.g., [19])
and if f is nonnegative, then Tn(f) is nonnegative definite (see, e.g., [19]). As a
consequence, since Θxy has unit length, we infer that rn[f ](x, y) is real valued if f
is and is nonnegative if f is. Finally (see again [19]), if f is nonnegative and not
identically zero (essential supremum of f strictly positive), then Tn(f) is positive
definite and rn[f ](x, y) is a strictly positive function. (In the terminology of [24] the
latter property means that the operator is linear and strongly positive.)

Now we prove relation (2.10). In what follows it is important to note that (x, y)
is generic but fixed and (s, t) is the pair of dummy variables internal to the operator
rn. For instance, rn[f(s, t)](x, y) is the operator rn applied to the function f and then
evaluated at the point (x, y), while rn[f(x, y)](x, y) = f(x, y) · rn[1](x, y) = f(x, y)
since f(x, y) is a fixed constant and rn is linear. Having this point in mind, we proceed
with the proof.

From the regularity assumptions we know that

f(s, t) = f(x, y) + [∇f ]T (x, y)

(
sin(s− x)
sin(t− y)

)
+ C(s, t, x, y),
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where |C(s, t, x, y)| ≤ K
[
sin2((s− x)/2) + sin2((t− y)/2)

]
with K pure constant only

depending on the infinity norms of ∇f and Hf and with Hf denoting the Hessian of
f . (For this kind of Taylor-style theorem in the periodic setting see [7] and references
therein.) Now we perform the main step for proving the desired result which makes
use (1) of the linearity and positivity of the operator, (2) of the above Taylor style
representation, (3) of the simple identities (related to the Korovkin test; see subsection
4.1.1 in [22]) rn[1](x, y) ≡ 1, rn[sin(s)](x, y) ≡ sin(x) + O( 1

n1
), rn[sin(t)](x, y) ≡

sin(y) + O( 1
n2

), rn[cos(s)](x, y) ≡ cos(x) + O( 1
n1

), rn[cos(t)](x, y) ≡ cos(y) + O( 1
n2

),
and (4) of the boundedness of the second derivative Hf : indeed calling En,f (x, y) =
|rn[f(s, t)](x, y) − f(x, y)| the approximation error, we have

En,f (x, y) =(3) |rn[f(s, t)](x, y) − rn[f(x, y)](x, y)|

=linearity |rn[f(s, t) − f(x, y)](x, y)|

=(2)

∣∣∣∣rn
[
[∇f ]T (x, y)

(
sin(s− x)
sin(t− y)

)
+ C(s, t, x, y)

]
(x, y)

∣∣∣∣
=linearity

∣∣∣∣∂f∂x (x, y)rn[sin(s− x)](x, y) +
∂f

∂y
(x, y)rn[sin(t− y)](x, y)

+ rn [C(s, t, x, y)] (x, y)|

≤positivity

∣∣∣∣∂f∂x (x, y)

∣∣∣∣ |rn[sin(s− x)](x, y)| +
∣∣∣∣∂f∂y (x, y)

∣∣∣∣ |rn[sin(t− y)](x, y)|

+ rn [|C(s, t, x, y)|] (x, y)

≤regularity ‖∇f‖∞ [|rn[sin(s− x)](x, y)| + |rn[sin(t− y)](x, y)|]

+ Krn
[
sin2((s− x)/2) + sin2((t− y)/2))

]
(x, y).

Finally the claimed thesis is equivalent to proving that

|rn[sin(s− x)](x, y)| + |rn[sin(t− y)](x, y)|

+ rn
[
sin2((s− x)/2) + sin2((t− y)/2))

]
(x, y) = O

(
max

{
1

n1
,

1

n2

})

and, taking into account the identities sin2((s− x)/2) = (1− cos(s− x))/2, sin2((t−
y)/2)) = (1 − cos(t− y))/2, the latter is proven if we prove that

|rn[sin(s− x)](x, y)| = O
(

max

{
1

n1
,

1

n2

})
,(2.11)

|rn[sin(t− y)](x, y)| = O
(

max

{
1

n1
,

1

n2

})
,(2.12)

rn[1 − cos(s− x)](x, y) = O
(

max

{
1

n1
,

1

n2

})
,(2.13)

rn[1 − cos(t− y)](x, y) = O
(

max

{
1

n1
,

1

n2

})
.(2.14)

By the explicit computation in the banded case (taking into account that rn[f ] is the
Césaro sum of f [23, 22]), it is easy to verify that relationships (2.11)–(2.14) hold.
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Here, for the sake of completeness, we just give a detailed look at the last one:

rn[1 − cos(t− y)](x, y) =trigonometric identity rn[1 − cos(t) cos(y) − sin(t) sin(y)](x, y)

=linearity rn[1](x, y) − cos(y)rn[cos(t)](x, y)

− sin(y)rn[sin(t)](x, y)

=(3) 1 − cos(y)

[
cos(y) + O

(
1

n2

)]

− sin(y)

[
sin(y) + O

(
1

n2

)]
= O

(
1

n2

)
.

Regarding the Fourier expansion Fn1−1,n2−1(f) of f of degree n1 − 1 and n2 − 1,
we observe that the latter approximation is much faster when f is very smooth (due
to its Lebesgue constant of order log(n1) + log(n2)), but may fail to converge when f
is only continuous. On the other hand, thanks to the Korovkin theory, the Rayleigh
quotient approximation always converges when f is continuous and preserves the sign
of f , but its order of approximation is not sensitive to the regularity of f . We point
out that these two types of approximation have been the main theoretical tools for
the construction of our banded preconditioners (see [17]).

3. Numerical examples and related discussions. As a preliminary step, we
consider two numerical examples which give evidence of the main ideas described in
Theorem 2 and Theorem 3 (whose result was essentially conjectured in Proposition 1
of [17]): a good approximation of the “exact” trigonometric polynomial g(x, y) leads
to a controlled number of spectral outliers laying outside the main clustering mass
described by the range of f

g .

Numerical example 1. We consider the Toeplitz matrix Tn(f) produced by the
generating function f(x, y) = (1+x2 + y2)(2 cos(x)− sin(x+2y))2. It is obvious that
the trigonometric polynomial g(x, y) = (2 cos(x)−sin(x+2y))2 has an infinite number
of roots which form a curve of roots. For the solution of the system Tn(f)x = b by a
PCG iteration we use as preconditioner the 2-level band Toeplitz matrix Tn(g̃) instead
of Tn(g), where g̃(x, y) = (2 cos(x−ε)−sin(x+2y+ε))2 is an approximation of g(x, y).
In Table 3.1 we show the strict relation existing between the approximation error and
the number of outlying eigenvalues. It is observed that, only when n1ε = n2ε exceeds
1, there exist eigenvalues of the preconditioned matrix that lie outside the range of f

g .

Numerical example 2. We consider the Toeplitz matrix Tn(f) generated by
f(x, y) = (3 + cos(x))(4 − 2 cos(x) − 2 cos(y))(2 − 2 cos(x − π))2. It is obvious that
it has a zero of order 2 at (0, 0) and a line of zeros at x = π of order 4. We
make a theoretical check on the use of the preconditioner Tn(g̃), where g̃(x, y) =
((4 − 2 cos(x + ε) − 2 cos(y + ε))(2 − 2 cos(x− π − ε))2 is an approximation of g(x, y)
with g(x, y) = (4 − 2 cos(x) − 2 cos(y))(2 − 2 cos(x − π))2. In Table 3.2 we report
the tight relationship between the approximation error and the number of outlying

Table 3.1

Number of outliers for T−1
n (g̃)Tn(f), range

(
f
g

)
= [1 , 20.73921].

ε n1 = n2 out εn1 = εn2 λmin λmax ε out εn1 = εn2 λmin λmax

8 0 .4 < 1 1.26 18.83 0 .08 < 1 1.21 17.9
.05 16 0 .8 < 1 1.11 20.2 .01 0 .16 < 1 1.03 19.3

32 9 1.6 > 1 1.07 27.43 0 .32 < 1 1.02 19.91
64 61 3.2 > 1 0.52 60.18 0 .64 < 1 1.01 20.5
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Table 3.2

Number of outliers for T−1
n (g̃)Tn(f) , range

(
f
g

)
= [2 , 4].

ε n1 = n2 out εn2
1 = εn2

2 λmin λmax ε out εn2
1 = εn2

2 λmin λmax

8 13 3.2 > 1 1.9 4.42 0 .06 < 1 2.28 3.96
16 52 12.8 > 1 1.42 5.15 0 .25 < 1 2.1 3.99

.05 32 225 51.2 > 1 0.95 5.5 .001 8 1.02 > 1 2.01 4.03
64 931 204.8 > 1 0.64 8.87 177 4.09 > 1 1.95 4.01

eigenvalues. It can be noted that, only if n2
1ε = n2

2ε exceeds 1, then there exist eigen-
values of the preconditioned matrix that lie outside the range of f

g : we stress that

this case falls into the one of nonbalanced zeros for which we should expect εν ∼ ν−2,
ν = n1 = n2 since αmax

αmin
= 2. Therefore the suggestion from this example is that the

bounds found in Theorems 2 and 3 cannot be improved in general. (Possibly, a local
analysis of the Toeplitz operators could help refine the analysis in the case of special
sets of symbols with nonbalanced zeros.)

In the rest of the section we follow a procedure proposed in [17] which, starting
from the knowledge of the entries of Tn(f), is able to determine an approximation of
the generating function f (with its zeros and related orders) and consequently gives
all the necessary information for determining the appropriate preconditioner. We first
present and complete a sketch of this procedure and then we discuss various numerical
experiments to test the effectiveness of the proposed method.

The outline of the procedure in [17] (which was based on a general scheme pro-
posed and analyzed in [23, 29], respectively) is given in the following steps:

• Step 1: Approximate the function f from the coefficients of the matrix.
• Step 2: Search for the possible roots of f .
• Step 3: Estimate the multiplicities of each root.
• Step 4: Categorize the roots and choose the appropriate preconditioner.

We observe that these steps can be regarded as a collection of ideas that eventually
have the potential to lead to a real black-box procedure for the analysis, the detection
and the effective preconditioning of ill-conditioned 2-level Toeplitz systems. Here we
go in this direction by describing in detail a part of Step 4 concerning the case of
curves of zeros, i.e., how to construct a polynomial factor having approximately the
same zeros of f (curves of zeros and isolated zeros). We stress that this subroutine
(i.e., Algorithm 1 reported on the next page) is essential for the effectiveness of the
whole procedure and has been ignored so far in the relevant literature. Indeed, look-
ing at Theorem 3, we see that the approximation of the curves of the zeros is not
sufficient for determining the symbol of the precondition since what we really need
is the approximation lj,n(x, y) of every implicit function lj(x, y), j = 0, . . . , k, which
(implicitly) defines the right curve of zeros (xj(t), yj(t)), t ∈ [0, 1], j = 0, . . . , k.

However, as emphasized in the remarks following Theorem 3, the approximate
factor 2 − 2 cos(lj,n(x, y)) and even the theoretical one 2 − 2 cos(lj(x, y)) in general
are not trigonometric polynomials. Therefore, that nontrigonometric symbol 2 −
2 cos(lj,n(x, y)) or 2 − 2 cos(lj(x, y)) would correspond to a useless preconditioner
owing to the denseness of preconditioner itself (which would make the method not
optimal according to Axelsson and Neytcheva [2], since the cost of every iteration
would be much higher than the cost of a matrix-vector product). As a consequence, in
Algorithm 1, we follow a computational approach described in the following pseudo-
code (written in a pseudo high-level language) for the direct computation of the
(approximate) polynomial factor (if any) containing all the zeros of f . To estimate
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the polynomial factor we use least-square approximation (LSA). Since we want to
have good approximation on the selected roots, we choose the information of all the
points of the set

Gn =
{

(x
(n1)
j , y

(n2)
j ) ∈ Sn, computed roots of f on Sn, j = 1, . . . , θ̃n

}
,

Sn being a n1 × n2 uniform gridding on Q = (−π, π]2 (see (1.1)). It is well known
from the above theory that the computed values of f on these points, by Rayleigh
quotient, are O(max{ 1

n1
, 1
n2

}) instead of 0. So, these values contain a significant
error. We could correct those by putting 0 but then the LSA procedure would give us
a polynomial which takes negative values. To avoid this, we give positive values for f
of order O(max{ 1

n1
, 1
n2

}) (the same values for all points are acceptable). In addition,
it is not sufficient to apply LSA only on the points of Gn. It is necessary to choose
some points which give enough information for the reconstruction of the shape of f .
For this we choose a coarse grid Sn̂, n̂ = (n̂1, n̂2), where n̂1 << n1 and n̂2 << n2

(n̂1 ≈ √
n1, n̂2 ≈ √

n2 are enough), and create all the points of Sn̂ which are added
to the points of Gn for the LSA method. Let θn be the number of the selected points
(θn = |Gn|+ |Sn̂|) and f̂ be the θn−dimensional vector of the approximated values of
f , as these are described before. Let also q = (q1, q2), q1, q2 ≥ 0, q1 + q2 ≥ 1 be the
pair of orders of the trigonometric polynomial that we have to approximate in each
direction. Then, we have to solve the LSA problem mint ‖f̂ − Vqt‖2

2, where Vq is the
rectangular Vandermonde matrix defined by

((Vq)j,k)j=1,...,θn,k=1,...,(2q1+1)(2q2+1)

with (Vq)j,k = ψk(x
(n1)
j , y

(n2)
j ) and ψk(x, y) = exp(iαx + iβy). Here the relation be-

tween the index k ∈ {1, . . . , (2q1+1)(2q2+1)} and the 2-index (α, β) ∈ {−q1, . . . , q1}×
{−q2, . . . , q2} is defined through the bijection k := k(α, β, q) = (α + q1)(2q2 + 1) +
β + q2 + 1, q = (q1, q2). To apply LSA it is necessary to have θn ≥ (2q1 + 1)(2q2 + 1);
otherwise we choose additional points on the fine grid, near the estimated roots, in
order to have more information about the roots, until the above inequality is satisfied.

Algorithm 1. Approximating factor.

1: b :=false;
2: for q1 = 1 : qmax

1 do
3: for q2 = 1 : qmax

2 do

4: Minimize ‖f̂ − Vqt‖2
2;

5: construct the polynomial pt(x, y) =
∑

k tkψk(x, y);
6: if max(x,y)∈Gn

|pt(x, y)| < εν then
7: b :=true;
8: end if
9: end for

10: end for
11: if b =true then
12: write: “The approximating factor is optimal”;
13: else
14: write: “The approximating factor does not insure optimality”;
15: end if
16: factor: pt(x, y);
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Here given qmax
1 > 0, qmax

2 > 0, the procedure will compute a mask t = t(q) of
Fourier coefficients with q = (q1, q2), 0 ≤ q1 ≤ qmax

1 , 0 ≤ q2 ≤ qmax
2 , q1 + q2 ≥ 1.

Numerical example 3. In order to test our procedure we solve

Tn(f)x = b,

where the generating function is f(x, y) = (x2+y2+1/4)(cos(x+y)+sin(2x))2 and has
five curves of roots in the domain Q = (−π, π]2 as is shown clearly in Figure 3.1(a).
The knowledge of the generating function has been used only for the computation of
the coefficients of Tn(f). In what follows we calculate the grid Gn and we estimate
the possible roots of f as well as their multiplicities. According to the reasoning in
the previous sections, we set εν as .06, .03, .015, 7.5 ∗ 10−3, 3.75 ∗ 10−3 for ν = n1 =
n2 = 16, 32, 64, 128, 256, respectively. For ν = 8 we do not have enough information
(points) to set up a reasonable good LSA scheme. We mention here that the cost of
LSA is dominated by that of PCG since the number of columns of the overdetermined
problem depends on the partial degrees q1, q2 of the desired trigonometric polynomial
rather the dimensions n1, n2 of the original problem. The maximum permitted order
of the approximated trigonometric polynomial is restricted by the dimension of the
problem. More specifically, knowing that the cost of the solution of a band block
Toeplitz system of size ν2 (n1 = n2 = ν) and total bandwidth l can be done in
O(ν2l2) arithmetic operations, the total degree, which roughly speaking coincides with
the total bandwidth, cannot exceed O(log ν). The stopping criterion of our algorithm
is pt(xi, yi) < εν , where (xi, yi) are the estimated roots and εν = O( 1

ν ) or the degree
of the approximated polynomial is larger than c log ν with suitable c. In practice, and
for various examples, the second condition happens more often. This occurrence may
lead to some eigenvalues which lay outside the range of f

g , where g is the trigonometric
polynomial of minimal order which just raises the roots of f . On the other hand, by
using LSA not only in the points that have been estimated as roots, we obtain a
global approximation of the unknown function f and therefore we can gain a better
clustering of the preconditioned system than that achieved by g. This observation
is confirmed in Table 3.3, where we denote by I the unpreconditioned CG method,
by P̂ the PCG method derived from our procedure, and by P the optimal PCG
method. Although the algorithm stopped because the second criterion was satisfied,
the required iterations by the optimal preconditioner and the ones needed by our
proposal are almost the same, and for some dimensions the global behavior is even
better. We mention that the comparison with the optimal preconditioner has only
theoretical meaning since, in the practical situation, we do not know the generating
function and, as a consequence, the generating function of the exact preconditioner
is not available. For the PCG method we used as an initial guess the null vector, as

b the vector of all ones, and ‖rk‖2

‖r0‖2
≤ 10−5 as a stopping criterion, where rk is the

residual vector after k iterations.

Table 3.3

Iterations of the PCG method for f(x, y) = (x2 + y2 + 1/4)(cos(x + y) + sin(2x))2.

ν = n1 = n1 I P̂ P

8 48 - 25
16 146 22 37
32 396 41 44
64 978 52 50
128 * 56 54
256 * 59 57
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Fig. 3.1. The function f and its approximated trigonometric polynomial in [0, 2] and [0, 20].

In Figure 3.1 we give two snapshots of the graphs of the unknown generating
function f and the trigonometric polynomial p̂ that we have estimated using our
algorithm when ν = 32 and the order of pt is (5, 5). More precisely, in Figures 3.1(a)
and 3.1(b) we observe the global approximation features of our scheme, while in 3.1(c)
and 3.1(d) we concentrate our attention on comparing the exact generating function
f and the approximate polynomial pt in the domains where they attain small values:
we recall that is the good approximation in such domains, which is crucial for a good
performance of the associated preconditioner. In both cases, it is clear that a very
good approximation has been achieved by the procedure.

Remark 1. For functions like x2 + (y − 1)4 that need different treatment in each
variable, our four-step algorithm can estimate very accurately the root (0, 1) as well
as the multiplicities 2 in the x direction and 4 in the y direction (see Example 3 in
[17]).

Remark 2. Furthermore, it is worth commenting on the case where f has zeros
of not even orders (not integer as well): in that case even the exact band Toeplitz
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Table 3.4

Maximum, minimum eigenvalues and iterations of the four possible preconditioned schemes.

n1 = n2 λmax(P−1
2,4 T ) λmin(P−1

2,4 T ) Iter2,4 λmax(P−1
2,6 T ) λmin(P−1

2,6 T ) Iter2,6

8 13.9 .72 15 6.23 .8 10
16 15.9 .34 28 6.88 .38 17
32 17.4 .16 56 7.26 .18 33

n1 = n2 λmax(P−1
4,4 T ) λmin(P−1

4,4 T ) Iter4,4 λmax(P−1
4,6 T ) λmin(P−1

4,6 T ) Iter4,6

8 14 .98 15 3.63 .99 8
16 15.9 .8 24 4.04 .97 11
32 17.8 .5 39 4.76 .96 15

preconditioning (error free with respect to the position of the zeros) is no longer
optimal. However, in the 1-dimensional setting, it has been proved that in the worst
case (refer to [20]) the number of PCG iterations can grow at most as ν1/2, ν being
the size of the 1-level Toeplitz matrix, which can be reasonably good for very ill-
conditioned positive definite Toeplitz systems. It is remarked here that the proof
of the 1-level case can be extended in the 2-level case. The obtained result is that
in the worst case the number of PCG iterations can grow at most as ν1/2, ν ∼
n1 ∼ n2. To show this we consider f(x, y) = |x|3 + |y|5 which has the isolated zero
(0, 0) with multiplicities (3, 5). By applying our four-step algorithm we will get an
isolated zero (x0, y0) ≈ (0, 0) with the associated multiplicities (k1, k2) ≈ (3, 5). If
we approximate k1 and k2 by the closest even integers we could get four possible
choices: (2, 4), (2, 6), (4, 4), or (4, 6). We describe in detail the first possibility (2, 4).
The associated trigonometric polynomial is 2 − 2 cos(x) + (2 − 2 cos(y))2 and the
condition number of the preconditioned matrix can be estimated by studying the

limit of |x|3+|y|5
2−2 cos(x)+(2−2 cos(y))2 as (x, y) → (0, 0). In this case a simple analysis in polar

coordinates implies that κ(T−1
n (g)Tn(f)) = O(ν). By using the tools introduced in

this paper, we get κ(T−1
n (g̃)Tn(f)) = O(ν), where g̃ = 2−2 cos(x+ε1)+(2−2 cos(y+

ε2))
2, ε1 ∼ ε2 ∼ 1

ν . Hence the number of PCG iterations grows as ν1/2. This is shown
in Table 3.4, where we consider the above four choices. We can observe in this table
that the choice (4, 6) is better than the one of (4, 4); then (2, 6) follows and the
worst choice is (2, 4). An explanation of the aforementioned phenomenon is contained
in the classical PCG convergence theory due to Axelsson and Lindskög [1]. In the
overestimated choices, the eigenvalues of the preconditioned matrix are far away from
zero but some of them grow to infinity since f

g is far away from zero but unbounded
while in the underestimated ones, they are uniformly bounded but some of them tend
to zero since f

g is bounded but has a zero at (0, 0). Now, from [1], it is well known
that small eigenvalues disturb the PCG convergence more than big eigenvalues and,
as a consequence, it is a general recommendation to overestimate the multiplicities of
the roots rather than underestimate them when the involved numbers are not even
integers.

Remark 3. As a conclusion, we remark here that the above theory could be
extended in the d-dimensional case where d ≥ 3. The difference is that we may
have isolated roots, curves of roots, surfaces of roots, or hypersurfaces of roots. It is
possible to state and prove spectral properties for the d-dimensional case analogous
to the ones given in this paper for the 2-dimensional case. The difficulty is on the
practical side. It is more complicated to construct an efficient algorithm which would
recognize the roots, their nature (isolated, curves, surfaces, or hypersurfaces), and
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their multiplicities. On the other hand, concerning the applications, d-level (d ≥ 3)
Toeplitz systems arise from several discretization schemes for elliptic d-dimensional
PDEs. In that case, the symbol f is known (or at least the position and the order of
the zeros is known) and therefore the exact trigonometric polynomial which deletes
the roots can be determined analytically.
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