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AN OPERATOR RELATION OF THE USSOR AND THE JACOBI
ITERATION MATRICES OF A p-CYCLIC MATRIX *

DIMITRIOS NOUTSOST

Abstract. Let the Jacobi matrix B associated with the linear system Az = b be a weakly
cyclic matrix, generated by the cyclic permutation ¢ = (o1,02,...,0p) as this is defined by Li and
Varga. The same authors derived the corresponding functional equation connecting the eigenvalues
A of the unsymmetric successive overrelaxation (USSOR) iteration matrix Toz and the eigenvalues
¢ of the Jacobi matrix B extending previous results by Gong and Cai. In this paper, the validity
of an analogous matrix relationship connecting the operators T,,; and B is proved. Moreover, the
«equivalence” of the USSOR method and a certain ‘two-parametric p-step method for the solution of
the initial system is established. The tool for the proof of our main result is elementary graph theory.
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1. Introduction. Let us consider the matrix A € C* and let us suppose that
it is partitioned into p x p blocks where its diagonal blocks are square and nonsingular.
For the solution of the linear system ' . ‘

(1.1) . Az =b,
we consider the unsymmetric successive overrelaxation (USSOR) iterative method
(1.2) zg(m+l) = T, ,z(™) + ¢, m =0, 1, y A

where z(© € Cr is arbitrary, and w and & are the overrelaxation parameters. The
iteration matrix T, is given by

(1.3) Too = (I — GU)~(1 — &) + LI - wL)~1[(1 —w)] + WU},

where L and U are, respectively, the strictly lower and the strictly upper block trian-
gular parts of the block Jacobi matrix B and the vector c is given by

(1.4) c={w+—wd){I —-&U)"1I - wb)—lb.

Let the associated block Jacobi matrix B be a weakly cyclic matrix generated by
the cyclic permutation o = (01,02,...,0p). This definition given by Li and Varga [9]
" is as follows.

DErFINITION. The p x p block matriz B is a weakly cyclic matriz, generated
by the cyclic permutation ¢ = (01,002, ..,0p), if there ezists a permutation ¢ =
(01,02, ...,0p) of the integers {1,2,...,p} such that

(1.5) Boioiy 20,5 =1(1)p, and Bi;; =0 otherwise,
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where opy1 = 01-
We remark here that the well-known definition for the consistently ordered matrix

([16] and [21]) is derived from the one above with o = (p;p— 1,p — 2,...,1), while
that of the (g, p — g)-generalized consistently ordered (g,p — 9)-GCO matrix ([2], [7),"
and [4]) is derived from the permutation ¢ = (01,02, ..., op), where o541 =p—g+0;
or gj+1 =0; —gsuchthat 1 <o; <p,Jj= 1(1)p. So, the definition (1.5) is the most
general for the family of p-cyclic matrices. It is obvious that the graph of the block
matrix B is a cycle as this is also noted in [9]. ‘

" Li and Varga [9] derived the functional equation

ne  P-U-w0-oF | | |
) = (w + @ — W)X Dw + & —w@]EF D +w — wjlul—kpp,
which couples the nonzero eigenvalues X of the USSOR iteration matrix T, with the
eigenvalues p of the Jacobi matrix B. In (1.6) |Cz| and |¢y| are the cardinalities of
the sets (1, and (y, which are the two disjoint subsets of P={1,2,...,p} associated
with the cyclic permutation o = (61,02, ...,0p) as these are defined in [9], i.e.,

(1.7) (L ={oj:05> 0541}, (v ={0j:0j <ojt1}-

The integer k is well defined in {9} as is the number of nonzero block elements of the
matrix product LU. Li and Varga gave also the directed graph interpretation of the
number k. It is obvious that {z U¢y = {1,2,...,p} and (z N¢v = &, consequently,
|¢L] + |¢u| = p. In other words |¢1| and |(y| are the numbers of the nonzero block
elements of the matrices L and U, respectively.

Equation (1.6) generalizes the following previous works: (i) The results of Sari-
dakis [12] on the USSOR iteration matrix for consistently ordered weakly p-cyclic
matrices; (ii) the ones of Gong and Cai [5] and of Varga, Niethammer, and Cai 17} on
" the SSOR iteration matrix for p-cyclic matrices; (iii) the well-known results of Young
(19, 21] on the SOR matrix for the two-cyclic case; (iv) the well-known results of Varga
[15, 16] on the SOR iteration matrix for the consistently ordered weakly p-cyclic Ja-
cobi matrix; and (v) the results of Verner and Bernal [18] on the SOR matrix for the
(g, — q)-GCO case. It should be noted that the result in the last case was mentioned
for the first time by Varga in [16]. Finally, a relationship similar in character on the
modified SOR (MSOR) matrix for the (g, p—¢)-GCO case, was derived by Taylor [14].

Our main objective in this work is to derive the matrix analogue of the functional
equation (1.6). More specifically, we show that the identity

(1.8)
Two — (1 —w)(1 —&)JP

= (w + & — W)VRTE [T + (&~ wid) 62 1=*[oTos + (w — wiy)I]ISw|=*Bp

always holds. _ :
Tt is interesting to mention that the matrix analogues of the functional equations

of cases (ii)—(v) were derived by Galanis, Hadjidimos, and Noutsos (see [1-3]), by using
elementary graph theory (Harary (8], Varga [16]). The matrix analogue of the equation
corresponding to the MSOR case was derived by Young and Kincaid [20] for the special
case (p,q) = (2,1), by Hadjidimos and Yeyios [6] for the cases (p,q) = (3,1),(3, 2) by
the straightforward analytic calculations and by Hadjidimos and Noutsos [7] for all
values of p and g, by elementary graph theory. )
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The proof of (1.8) is given in §2. As will be seen, the main tool will be combina-
torics and to guide intuition elementary graph theory will be used. Also by considering
special cases of (1.8) with & = 0 or w = 0, known, other results for the SOR as well as
the backward SOR methods will be obtained. In §3 the “equivalence” of the USSOR
method and a certain two-parametric p-step method in the sense of Niethammer and -
Varga [10] is established. Apart from the theoretical interest presented by the identity
(1.8), it is also of practical importance, since the problem of determination of “good”
or “optimal” parameters w and & for the solution of the linear system (1.1), using the
USSOR. method, is equivalent to that of the determination of the same parameters
of a two-parametric p-step iterative method. This problem, however, still remains an

open one.

2. Main result and preliminary analysis. The statement of our main result
is given in the following theorem. _

THEOREM 2.1. Let B be the weakly cyclic block Jacobi matriz, generated by the
. cyclic permutation o = (01,02,.-.,0p), and Ty in (1.3) be the block USSOR iteration
matriz associated with A in (1.1). Then the matriz relationship (1.8) holds.

The proof of Theorem 2.1 will be given later, where a number of other auxiliary
statements will be stated and proved. First, the background matetial on which these
proofs are based is developed. -

It is noted that (1.8) trivially holds if w = & = 0. So we assume that w # 0 and
& # 0. We will see that this assumption can be made without any loss of generality.

To simplify the proof of Theorem 2.1, we will prove the validity of another simpler
relationship which is produced from (1.8) by setting .

(2.1) T = ~oU)Tue(I —oU)?

in the place of Tig. We then begin our analysis by introducing the directed graphs.
The directed graph G is a pair (V,E) where E C V x V (see [16] or [8]). In
our analysis the vertex set V = P, following [13] or (7], we identify G with the
edge set E. Also for a block partitioned matrix A, the graph of A is defined to be
G(A) = {(i,§) : Aij # 0}. So the directed graph G(B) of the Jacobi matrix B will be

(2.2) G(8) = {(sous1)},

i=1

. where op41 =01. (In the. sequel the node op4+1 Will be denoted as o1.)
An example for p = 5 is given now to demonstrate the analysis. Let

0 0 0 Bu 0
0 0 0 0 Bss
B=| 0 Bsx 0 0 0
0 0 By 0O 0
Bss; 0 0 0 0O

be the Jacobi matrix. From the definition we have ¢ = (2,5,1,4,3),{z = {5,4,3},
and (v = {2,1}. The graph G(B) is shown in Fig. 1. L

From Fig. 1 it is easily seen that G(B) is a cyclic graph. It is also noted that (i)
there are exactly k paths which go from a node of {z to a node of (v corresponding
to the nonzero blocks of LU. We call these paths “backward” paths. (ii) There are

exactly k paths which go from a node of (v to a node of {1 corresponding to the
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Fia. 1.

nonzero blocks of UL. We call these paths “forward” paths. In our example, k = 2
corresponds to the two backward paths (3,2) and (5,1) or to the two forward paths
(2,5) and (1,4).

To derive the graph of the matrix BP we can observe that starting from the node
o;, we return to o; after p paths of B passing through all the nodes 0i+1,0i+2, - - -5 Ti~1:
So BP is a block diagonal matrix which comes from a sum of products of powers of
L’s and U’s. Each product contains totally a number of |¢r|,L’s and [¢ui, U's.
The graph G{(T.) of the matrix Tug is now studied. From (1.3) and (2.1) we get

that
(2.3) T0 = [(1— &) + LI — wL)~Y(1 —w) + U —aU)~*
Obviously the following relations hold:
qL qu
24) ({-wl)l=) (wL)and (I-&U)"* = > @UY,
’ =0 i=0

where gr, and gy are the largest integers such that L9z # 0 and U # 0, respectively,
(in the above example, gz = 2 and qu = 1). By substituting (2.4) in (2.3) and after
simple operations, we obtain that '

Troo=(1—w)(1 =) +(w+& —wd)

gL qu
X {(1 —w) > wimlLi 4 (1 - &) > e

=1 i=1

(2.5)
L qu
+ (w+ & — ww) Z Z wi—tLi@i-1U7 3.

i=1 j=1

It is noted that wI and U are of exactly the same form as L and U. So wL and &U
will be denoted from now on by L and U. Thus, after this convention (2.5} can be

written as
Too=(1-w)(1-d)+{w+w—wd) -

(2.6) X{1_quLL"+1:2’&§U5+w+35WQ§§L"UJ}LW

3
i=1 =1 i=l j=1 "~
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Since in relation (2.6) we have different scalar coefficients for the matrices I, LU,
and LiUJ, we introduce the weighted graph of T,;. Thus we define (i) the paths
weighted by (w + & — wl) =% as single-arrowed paths; (ii) the paths weighted by

w
(w+ @& —w) 152 as double-arrowed paths; (iii) the paths weighted by'ﬁ“ﬂ—;—'ﬁ,ﬂ‘sz as
triple-arrowed paths; and (iv) the paths weighted by (1 — w)(1 — @) as four-arrowed
paths. So from the right-hand side of (2.6) we have the following. The first term of
(2.6) gives the four-arrowed identity paths

[

(2.7) ‘ ' (03, @), i=1(1)p.

The second term, which contains a sum of powers of L, gives the single-arrowed paths

(2.8) . (0i,0045), §=1(L)ars oi €L
where gz ; is an integer such that all the successive nodes ¢, Git1, - - -, Fitgy ;-1 belong

to ¢z, and Giqqr ;. € Cv. (From Fig. 1 we can see that if o; =5 oro; =3 thengr; =1
while if o; = 4 then gz ; = 2.) The third term, which contains a sum of powers of U,
gives the double-arrowed paths

. —

(29) (O'i,a'i-}-j), : J = 1(1)qU,i: o; € CU:

where qy; is an integer such that all the successive nodes i, Gi+1, ..+, Titqy ;-1 belong
to (y and Oitqy, € {r- (Figure 1 gives that gy, = 1 for both cases o; = 1 or 2.)
Finally the last term, which contains a double sum of products of powers of L and U,
gives the triple-arrowed paths '

— e

(2.10) (6i,00+5), F=4qri+1(1)qrvi. & €L,

where gLy = gL + QU,i+qr .« (in our example gry,; = 3 for o; = 4, which corresponds
to the three successive paths (4, 3), (3,2), and (2,5)). It is noted here that o, := 0s—p
if s > pin (2.8), (2.9), and (2.10). The union of all the paths in (2.7), (2.8), (2.9),
and (2.10) gives the graph of T,..

G(fus) = (U {@135})

i=1
-QL,i . qLu,i et
(2.11) u ( U U {(os,0i45)} {(Giaai+j)}])
oi€Cr | j=1 j=qr:+1
FQU.i N
U ( U U {(O’iﬂa’w‘)}]) :
ci€ly {Jj=1

The subgraphs of G(T.) of our example that contain only the paths that have
the origin node 4 € (z or 1 € (v are illustrated in Fig. 2(a) and Fig. 2(b), respectively.
We distinguish the subset £z of {7 which contains the nodes ¢; such that o1 €
Cv and the subset &y of {y which contains the nodes o; such that o;-1 € Cr. It is
easily seen from Fig. 1 that both {1, and &y contain exactly k nodes. In our example

we have & = {4,5} and &y = {1,2}.
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Fic. 2.

After replacing wL and U by L and U, the matrix relationship (1.8) will be

equivalent to
(2.12)
- . (W+&—wd)2]” = = &(1 - w) Kzl -k
e — — —_— P o= o - i ——
Moo — (L —w)(1 — )] [ — T |Tue + » I
- A [Cui-k 7
X [Tw,;, + f_(_}_(b_w) I] - Bp,

It is noted that in (2.12) we have put BP for wlCL|£;|CUiB;’, since BP constitutes the
sum of products of |¢z|, L’s and [{y|, U’s. '

From (2.6) we can see that the graph of the matrix Too — (1 —w)(1 — &)1 con-
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‘tains no identity paths. So, from (2.11), we have

(2.13) |
: ' qL.i qLu,i
G(Twe — (1 -w)(1-&)) = ( U [U (05,054} U {(Guoz-w)}D
o€l |i=1 j=aqri+1

| QUi
( U [U {(0'"»:0'1+J }]) .
o€y | =1

The graph in (2.13) is derived from G(T..) by simply omitting the identity paths.
1t is easily checked from (2.6) that the matrix Toe + (@(1 —w)/w)I is given by

(2.14)

fwg+w—(£§ilf=(w+ﬁi——w&)
~ QL QU
1 (JJZL —ZU w+w waZL"UJ
=0 fexl i=1 j=1

So the identity paths now become single-arrowed paths and the gra.ph of the matrix
is given by

L 0-0)
G( o+ AL ) (EJ1 {(az,az)})
qu qLu,: ——
(2.15) u ( U U{(%C’aﬂ)} U {(Uz',dz'w')}])

i€ {J=1 j=qr.:+1
qu
U U U {(ahai'h'l } ‘
oi€y {J=

This graph is derived from & (To.c) by simply replacing the four-arrowed identity paths
with single-arrowed paths. Similarly, the matrix Toe + (W(1 — &) /w)I is given by
(2.16)

- 1 — &
Twa+3£—-;jr-“ﬂ1=(w+a—wa)

and its graph by
_— S —+—
G (fww + w_(l_@_w_) I) = (U {(Gi,ai)})
qLU,i

o o[y D T )

oi€¢L [ =1 J=qr i+l

y ( U Lj {(az,%)}D
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which is derived from G (Tw;,) by simply replacing the four-arrowed identity paths with
double-arrowed identity paths. Ny
A lemma is now stated and proved that shows the equivalence of (1.8) and (2.12).

LEMMA 2.2. If the matriz relationship (2.12) holds then so does (1.8) and vice

versa.
Proof. We prove the validity of the matrix relationship (2.12) from that of (1.8)

by replacing at the same time the wL’s and @U’s by L’s and U’s, respectively.
By taking the inverse similarity transformation of (2.1) on both sides of (2.12),

we have

(I = U)-uo — (1 ~w)(1 = &) P = U)

ST S L _ ~f1 _ [Czl—k
— (I -T) [(w-i—w W) ] T [Twcﬁ+ w(lw w) I]

W

. _~ [Sul-k
x [Twa, + “’—(1—5-1) I] Be(I-U)
or from (2.1)

(2.18) , -
- - k -~ ¢ri—
[Two — (1 —w)(1 —@)JP = [(w +c:; wwp} Tk, [Twa; + w_(l_u;_w_)_ I]

_ lKu |-k
X [de‘t + f%_“_’_) I] (I-U)-1Br(I — U).

For (2.18) to hold it must be proved that (I — U)~*B?(I -U) = Bror Br(I-U)=
(I — U)B? or simply that ' ‘

(2.19) BPU = UB®.

The proof of (2.19) is given by elementary graph theory. Since the graph G(Br)
contains the identity paths (g3,0:),¢ = 1(1)p which constitute p successive simple
paths of G(B) and the graph G(U) contains the simple paths (0i,0i+1),0: € Cu, the
graph G(BPU) contains the paths (03,0i41);0: € (v which constitute p+ 1 successive
simple paths of G(B). Similarly, the graph G(UBP) contains the same paths. So
these two graphs describe the graphs of the same matrices and the proof is complete.
Moreover, it is noted here that an analogous proof gives that the matrices B and L
also commute. c

Now we have all the necessary tools to prove our main theorem:. _

Proof of Theorem 2.1. Let C and D be the matrices denoting the left- and right-
hand sides of (2.12), respectively. The proof is due to the following simple idea: Since
C and D have been expanded in sums of terms of products of L’s and U’s, we must
prove that if there exists a term of the expansion of C then there exists also such a
term of the expansion of D with the same coefficient and vice versa. This means, in
graph analogue, that if there exists a path (o3, o;) of G(C) then there exists also such
a path of G(D) weighted with the same weight, for all the pairs o:,0; and vice versa.
Each of these paths consists of consecutive subpaths and represents the graph of a
nonidentically zero block of the term in question. Our objective will be accomplished
:f we show that all paths in G(C) and G(D) from o; to o with m backwazd subpaths
(0 < m < p) coincide and are associated with equal overall weights. It is obvious
that any two paths (o3, 0;) of G(C) and (03,0;) of G(D) with a particular number m
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of backward edges correspond to the same expansion in terms of nonidentically zero
products of L’s and U’s. They differ from each other only because of the different
weights of the single-, double-, triple-, or four-arrowed subpaths as they are described
above. For example, let 0; = 4 and ¢; = 5. Then Figs. 1 and 2 give that the
path (4,5) of G(C) constitutes paths associated with three different numbers m of
backward edges. m = 1 corresponds to the matrix product LLU, m = 3 corresponds
to LLULULLU, and m = 5 corresponds to LLULULLULULLU. The union of all
the above paths from ¢; to o; with m backward edges will be considered as one path,
with which an overall weight will be associated. This overall weight will be equal to
the sum of all the weights associated with each individual path. The determination
of this weight constitutes the basic key to the proof of our main result.

We try to find the overall weight of G(C) with k + m backward subpaths (0 <
m < p — k). (The number of ¥ + m backward subpaths is taken since the smallest
number of backward subpaths of the matrix C = [Tue — (1 — w)(1 — &P is k.
This is obtained by considering the path of the smallest possible way, which. contains
p consecutive subpaths of the form (o;,0:41) with their weights.) From the graph
expression (2.13) of the matrix Too — (1 — w)}(1 — &)1, from Fig. 2, and from elemen-
tary graph theory we can see that this path consists of the union of all possible
combinations of p consecutive subpaths of G(7,,5 — (1 — w)(1 — &)I) that go from o;
to ¢; with k + m backward edges. This remark leads us to the conclusion that to
analyze and study the problem at hand, the use of combinatorics theory together with
elementary graph theory must be made.

The analysis requires that we distinguish four cases

(i) 03,05 € CL,

(i) 03,05 € (v,

(iii) o; € (. and o; € (v,

(iv) oy € (v and 05 € (1.
Since the argumentation is quite similar in all the four cases, only the first case is
presented in detail. The others can be found in [11].

From Fig. 2(a) we see that there are two types of backward edges: the single-

arrowed path with ending node belonging to £y (see path (4-,-.2)) and the triple-arrowed

path with ending node belonging to ((y\fr) U &L (see path ( 4,5 )). If we take r
ending nodes of the first type and k +m — r of the second type we have (™) cases
“to consider. Then let ¢ be the number of consecutive nodes in the way from o; to
g; with k& + m backward edges, with o; being included and f; and iy being the
number of those nodes, respectively, which belong to {z and (y(fL +tv = t). We
consider all possible combinations of ¢ nodes by taking p of them as ending nodes of
G(Tpe — (1 —w)(1 — &)I). In our example, from node 4 to node 5 with three back-
ward edges, we have the consecutive nodes: 3, 2, 5, 1, 4, 3, 2, and 5 as we can see in
Fig. 1. So, t = 8. Five of these nodes (3, 5, 4, 3, and 5) are taken from (;, and three
nodes (2, 1, and 2) from {y. So, tr = 5 and ¢ty = 3. This way corresponds to the
product of blocks BysBszBosBs1 814843832 Bos.

Let o; € £, as in our example o; = 5. The analysis of the case o; € {L\éL is
similar. In the sequel we will see that the way of going from one node of the set (y
to one of {; can be given by means of the nodes of £r, only: So the k +m nodes of
¢ will all be taken (the three nodes 5, 4, and 5 of our example). The number of
- nodes that have been taken so far is r + k + m(r of &y and k +m of £). From the
remaining nodes we take ¢ nodes belonging to (r\ér and s nodes belonging to (£ \&L.
So, r+¢+ s =p—k—m. The g nodes are taken from #y nodes of {iy except the
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" k—+m nodes of £ corresponding to the k-+m backward edges which were taken before.
This gives (*¥ "qk ~m) different ways to consider. In our example we havety = k+m =3
since (v = v = {1,2}. This means that we have only one possible way. The s nodes
are taken from t; nodes of (z except the k + m nodes of 1. Similarly this gives a
number of (*:"¥~™) different ways to consider. Totally, we have

o () )

different ways to consider. The associated weight comes from k+m—7 triple-arrowed
subpaths, from ¢+ k+m — (k+m —~ ) = ¢ + r double-arrowed subpaths (g nodes
of (y\&v plus k +m nodes of £, except the k + m — r triple-arrowed subpaths), and
from the remaining r + s single-arrowed subpaths. So this weight is

(2.21)

(w+ @ — ww)?
ww

11—}t 1—w] ™t
- w4+ & —wd) —;—:l [(w-!-rb—-wu’;) -———-] [
@ w

} k+m—r

By considering all possible values of 7, g, and s such that r+g+s=p—k—m,
we get the total overall weight equal to

Ne =(w -+ — wid)? T (k-l;m) (tU—;c—m) (t;,_,:_.m)

r+g+s=p—k-~m
« 1-817" [1—w T+ — wd ktm=r
@ w ww )

In our example:

Ne = (w+awc;,)szz: (73») (237') [155;]’" [1;wr [w +vi®—m]3“.

(2.22)

=0

Now we try to show that there exists the same path in G(D) with the same
weight. Only the case where 0; € ¢z and o; € £ is studied here.

From (2.12) we note that B is the last factor of the matrix D. The graph G(BP)
consists of the identity paths (0:,0;) containing k backward edges. This means that
in the graph of D, the last path (¢;,0;) containing k backward edges belongs to the
graph of BP and has no weight. So, we must find the overall weight of the path from
o; to o; with m backward edges of the graph '

- - ~(1 — [Cel—k o~ |Cv |~k
(2.23) G (Tfj‘b [Twm + L—d—(lw—wl I} [Twu‘) + M I] ) )

w

From the graph expressions (2.11), (2.15), (2.17), and Fig. 21t is easily seen that this
path exists since the same nodes are used in the way from ¢; to ¢;. The total number
of nodes are ¢ — p(p nodes belong to the graph of Br). In.our example we have the
nodes 3, 2, and 5. However, tyy — |(u| of them belong to ¢y and ¢z — || belong to
¢z. The main difference from the previous case is that now there are identity paths
involved. We can also see that the graph expressions (2.11), (2.15), and (2.17) have
the same paths which differ only in the weight of the identity paths. We then must
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- find all the possible combinations by taking the first k& consecutive paths from (2.11),
the second |(z| — k consecutive paths from (2.15); and the last [(y| — & consecutive

paths from (2.17).
Let us consider r, nodes from £y, g1 nodes from {y\&r and go nodes from (L \éL
of the path in the way from o; to o; with m backward edges. This gives a number of

e ()T

different ways. Let us also take s; four-arrowed identity paths from the k paths of
the graph (2.11), s single-arrowed identity paths from the |(z| — & paths of the graph
(2.15), and s3 double-arrowed identity paths from the |(y| — & paths of the graph
(2.17). So we must first distribute the number of times of the above 51 identity paths
to the k — 1 + 1 nodes (the first o; node being included). This gives the number of

combinations with repetitions of ¥ — s1 + 1 chosen s;, that is
k—s1+1+s1—-1Y _ k _(k
(2.25) ( k—s1+1-1 )’—(k—sl)—(sl)'

Similarly we obtain a number of ([CLi; k) different cases because of the identity paths of

(2.15) and a number of (!Cvsl;- k) diifefent cases because of the identity paths of (2.17).

After these considerations are made it is obvious that there is a number of

2.0) (z) (tu—lil—m) (tL—Ig§| --m) (skl) (|CLL;k) (ICUs';k)_ |

different ways. The associated weight comsists of 71 + g2 + s2 single-arrowed paths
of r1 + q1 + s3 double-arrowed paths, of m — r; triple-arrowed paths, and of s four-
arrowed paths. This gives a weight of

X A 11— T1+q1-+s3 X X | 1—w r1+gz+s2
(w+w—ww)—-{5— (w+w—ww)-—w——

« (w+ & —ww)?
W@

(2.27)

] - @) - o)

The total number of subpaths of (2.23) is k + (|¢z] — k) + (|¢v| — k) = p — k. Since
the m subpaths with ending nodes in £z must be taken, the integers 1, g1, g2, 51, 82,
and s3 vary but satisfy the relationship 1 +¢1 + g2 +s1 +s2+s3=p— k —m. From
(2.26), and (2.27) we have the total weight of the path of the graph (2.23) from o3 to
o; with m backward edges, which is :

Z . (m)(tu-—lCu|—m) (tL-[CLI—m)(k)
r+q14q2+s1+s2+s3=p—k—m ™ Q qz2 51
@2 (18 7F) (W18 ) o - wapes [ 152

S2 w

1 —w T1+g2+sz+s1 w + C:) _ (JJ{:J mMm-—=T3—51
X _— .
(/303

:’ Qa+ri+3s3t+sy

W
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(2.30)

By considering g1 +53 = ¢, 2 + 82 = 5, and r1 -+ 83 = r, the sum (2.28) takes the
form
s (o @EETETES <)
r4gts=p—k—-m 1 51 w L - - . W |
_ _ _ 1-— gzt+sz
% ( Z (tL ¢z m) (lCLl k) [ w] ) (w + & — )Pk,
, qz 82 w
. qz+32=38 ‘ _
By applying combinatorics theory, (2.29) gives
) r4g+s=p~k—m
g I~ -] (o —we]™
@ w w®
G(D) is given by multiplying (2.30) with the coefficient
[(w-+ W — wd;)zr

(2.29)
1-w
ri+8s1=" w
Fq _ ~j01tEs
y ( 5 (tu—icul~m) (lCUl—k) 1-9 )
q1 53 w
q1+83=g - -
. . k+m ty—k—m tr—k—m
- ~k
(w+ @ —wd)P Z ( , )( g )( . )
The total weight Np of the path from o; to o; with £ +m backward edgeé of
W

of the right-hand side of (2.12). This gives exactly the quantity N¢ of (2.22). So
(2.31) N¢c = Np.

Obviously (2.31) is satisfied for all pairs (i,04),4,5 = 1(1)p and the proof of our
theorem is complete. a :
Based on the analysis so far, it is easy to prove the following statement.
THEOREM 2.3. Under the assumptions of Theorem 2.1 there holds

(2.32) BrT.; =T.oBP,

that is, the matrices BP and T,.; commute.

Proof. The proof is obvious from Lemma 2.2, since the matrix B? is commutative
with the matrices U and L. O : '

The above result gives a more general matrix relationship than (1.8). In fact, it
is not necessary that the factor B? of the right-hand side be put as the last factor of
the product. It can be put as its first factor or as any intermediate one.

Based on the main result already obtained, we can obtain some similar results
for the SSOR, the SOR, and the backward SOR methods. These are presented in the
following corollary. 7

COROLLARY 2.4. Let B be the weakly cyclic block Jacobi matriz, generated by the
cyclic permutation o = {o1,02,-..,0p). Letalso S., be the block SSOR,, Ly, be the block
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SOR, and U, be the block backward SOR iteration matm'cés, respectively, associated
with A in (1.1). Then the following matriz relationships

(2.33) [Sw — (1 = w)2I]P = wP(2 — w)2*SE[S, + (1 — w)I|P~2*B?,
(2.34) | (Lo —(1- ;J)I]p = wrLl$* By,

and .

(2.35) o= Q=) =wr ulsv! Ba

hold. |

Proof. 1t is easily proved that the analysis of the proof of our main result above
holds when w = @ or w = 0 or & = 0; see also {11]. Puttingw = @ or @ = 0 or
w = 0 (and using w instead of @) in T,y in (1.3) reduces this matrix to the SSOR
matrix S, the SOR matrix L, or to the backward SOR matrix Uu, respectively.
Consequently, putting w = & or & = 0 or w = 0 (and using w instead of @) in (1.8)
reduces the relationship in question to the matrix relationships (2.33), (2.34), or (2.35),

respectively. 0 }
The first result generalizes the previous result by Galanis, Hadjidimos, and Nout-

sos [3] for the p-cyclic consistently ordered case and the second result generalizes the
previous one by Galanis, Hadjidimos, and Noutsos {2] for the (g,p — g)-generalized
consistently ordered case. It is noted here that the proof of Corollary 2.4 can be ob-
tained independently of the result (1.8) by using an analogous analysis and elementary
graph theory in each particular case.

3. Equivalence of the USSOR and a two-parametric p-step method. To
show that the USSOR method, used for the solution of (1.1), is equivalent to a certain
two-parametric p-step method we proceed in a way analogous to that in [1-3]. For
this let z(m—?) be the (m — p)th iteration of (1.2) with m =p,p+1,p+2,.... From
(1.8) we have
(3.1)

Nwo — (1 —w)}(1 - oNIjpem=pP) = (w+ & ~ w"b)2kT¢fQ[wTwé +(@- wi)I]Ge 1k
x [T s + (w — wd) v |-k Brg(m=p),

By expanding both sides of (3.1)' in terms of T, and by successively applying (1.2},
after some modest amount of algebra takes place (see [11]), we get the following two-
parametric p-step iterative scheme: :

2m) = _g (—1)7(1 = w)i(L — &) G) 2m=3)

_ lerlzkiulok ey

Y i) 2k -
_ + (w+ @ —wd)2*Br 2—: Z ( ; )
(3.2) =0 j=0

b ( |CUL._ k) (@ —wd)w — wa)jWICLI_k“icbiCUl—'ff-jm(m—k_f;_j)

_ .
+ (w+ & - wd)P (Z Bi) b,

1==0
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where () € C»,j = 0(1)p — 1 are arbitrary.

In the sense explained above, the USSOR method (1.2) and (3.2) are equivalent
and the study of (1.2) can be made by studying (3.2) and vice versa.

We must remark here that by putting w =@ or@w =0o0orw = 0 in (3.2), we
recover the monoparametric p-step schemes related to the SSOR, SOR, or backward
SOR iterative methods, respectively. These schemes can also be obtained from the
matrix relationships (2.38), (2.34), or (2.35), respectively. '

One may also observe that because of the special cyclic nature of B, scheme (3.2)
can be split into p simpler and smaller-dimension p-step iterative methods provided
that all the vectors involved are partitioned in accordance with B. Each of these p
simpler p-step methods has the same convergence rate, in the way considered in [10}, -
as that of (3.2). So the solution of any one of these simpler methods provides us with
the corresponding vector component of the solution x of (1.1), and from (1.1) all the
other components of . Therefore z itself can be readily obtained.
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