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ABSTRACT

In this work we provide characterizations of two new classes of perfect graphs, namely colinear and linear
graphs. Moreover, we present polynomial-time algorithms or NP-completeness results for various types of
the coloring problem on graphs and polynomial-time algorithms for the longest path problem on perfect
graphs.

In particular, motivated by the definition of linear coloring on simplicial complexes, recently intro-
duced in the context of algebraic topology, we introduce the colinear coloring on graphs, and propose
a polynomial algorithm for colinearly coloring any graph . Based on the colinear coloring, we define
the x-colinear and a-colinear properties and characterize known graph classes in terms of these prop-
erties. In the sequence, we study those graphs which are characterized completely by the y-colinear or
a-colinear property, and conclude that these graphs form two new classes of perfect graphs, which we
call colinear and linear graphs. We provide characterizations for colinear and linear graphs and prove
structural properties. Moreover, we study the harmonious coloring problem on connected permutation
graphs and subclasses of co-chordal and chordal graphs, including colinear and interval graphs, and either
prove NP-completeness results or provide polynomial algorithms for solving the problem.

Furthermore, we study the longest path problem and we first show that it has a polynomial solution
on interval graphs, answering thus a question left open in [63]. Then we extend our results by proposing
a polynomial time algorithm for solving the longest path problem on cocomparability graphs, resolving
the open question for the status of the longest path problem on cocomparability graphs, and also on
permutation graphs. We next describe the problems that we study in this work.

Colinear Coloring and Colinear Graphs

Motivated by the definition of linear coloring on simplicial complexes, recently introduced in the context
of algebraic topology, and the framework through which it was studied, we introduce the colinear coloring
on graphs. The colinear coloring of a graph G is a vertex coloring such that two vertices can be assigned
the same color, if their corresponding clique sets are associated by the set inclusion relation (a clique set
of a vertex u is the set of all maximal cliques containing w); the colinear chromatic number A(G) of G
is the least integer k£ for which G admits a colinear coloring with £ colors. We prove that for any graph
G, MG) > x(G), providing thus an upper bound for the chromatic number x(G) of G, and show that
any graph G can be colinearly colored in polynomial time by proposing a simple algorithm. Based on
the colinear coloring, we define the x-colinear and a-colinear properties and characterize known graph
classes in terms of these properties.

Based on these results and the definition of perfect graphs (a graph G is perfect if and only if
x(Ga) =w(G4), VA C V(G), where w(G) is the clique number of G [37]), we study those graphs which are
characterized completely by the y-colinear or the a-colinear property, and conclude that these graphs form
two new classes of perfect graphs, which we call colinear and linear graphs. A graph G is called colinear if
and only if x(G4) = A(G4), VA C V(G). A graph G is called linear if and only if a(G4) = A(G4), VA C
V(G); note that a(G) is the stability number of G. We provide characterizations for colinear and linear
graphs and prove structural properties in terms of forbidden induced subgraphs. An interesting question
for future work would be to study structural and recognition properties of colinear and linear graphs
and see whether they can be characterized by a finite set, of forbidden induced subgraphs. Moreover, an

vii



obvious though interesting open question would be whether combinatorial and /or optimization problems
can be efficiently solved on the classes of colinear and linear graphs.

This study lead to the following publications:

e K. Ioannidou and S.D. Nikolopoulos, Colinear coloring on graphs, 3rd Annual Workshop on Algo-
rithms and Computation (WALCOM’09), LNCS 5431 (2009) 117-128.

e K. Ioannidou and S.D. Nikolopoulos, Colinear coloring and colinear graphs, Technical Report TR-
2007-06, Department of Computer Science, University of Toannina, 2007 (submitted to journal).

The Harmonious Coloring Problem

A harmonious coloring of a simple graph G is a proper vertex coloring such that each pair of colors
appears together on at most one edge. The harmonious chromatic number is the least integer & for which
G admits a harmonious coloring with & colors. Extending previous work on the NP-completeness of the
harmonious coloring problem when restricted to the class of disconnected graphs which are simultaneously
cographs and interval graphs [8], we prove that the problem is also NP-complete for connected interval
and permutation graphs. We also show that the harmonious coloring problem is NP-complete on split
graphs.

In the sequence we extend our results for the harmonious coloring problem on subclasses of chordal and
co-chordal graphs, by proving that the problem remains NP-complete for split undirected path graphs; we
also prove that the problem is NP-complete for colinear graphs by showing graph class inclusion relations.
Moreover, we provide a polynomial solution for the harmonious coloring problem for the class of split
strongly chordal graphs, the interest of which lies on the fact that the problem is NP-complete on both
split and strongly chordal graphs. In addition, polynomial solutions for the problem are only known for
the classes of threshold graphs and connected quasi-threshold graphs; note that, the harmonious coloring
problem is NP-complete on disconnected quasi-threshold graphs. Since linear graphs form a superclass
of both quasi-threshold graphs and split strongly chordal graphs, the harmonious coloring problem is
NP-complete on disconnected linear graphs, while it still remains open on connected linear graphs.

This work lead to the following publications:

e K. Asdre, K. Ioannidou, S.D. Nikolopoulos, The harmonious coloring problem is NP-complete for
interval and permutation graphs, Discrete Applied Math. 155 (2007) 2377-2382.

e K. Ioannidou and S.D. Nikolopoulos, Harmonious coloring on subclasses of colinear graphs, frd
Annual Workshop on Algorithms and Computation (WALCOM’10), accepted.

The Longest Path Problem

The longest path problem is the problem of finding a path of maximum length in a graph. A well
studied problem in graph theory with numerous applications is the Hamiltonian path problem, i.e., the
problem of determining whether a graph is Hamiltonian; a graph is said to be Hamiltonian if it contains
a Hamiltonian path, that is, a simple path in which every vertex of the graph appears exactly once.
Even if a graph is not Hamiltonian, it makes sense in several applications to search for a longest path, or
equivalently, to find a maximum induced subgraph of the graph which is Hamiltonian. However, finding
a longest path seems to be more difficult than deciding whether or not a graph admits a Hamiltonian
path. The longest path problem is NP-hard on every class of graphs on which the Hamiltonian path
problem is NP-complete. In contrast to the Hamiltonian path problem, there are few known polynomial
time solutions for the longest path problem, and these restrict to trees and some small graph classes. We
show that the longest path problem on interval graphs has a polynomial solution, thus, answering the
question left open by Uehara and Uno in [63]. In particular, the proposed algorithm runs in O(n?) time,
where n is the number of vertices of the input graph, and bases on a dynamic programming approach.
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Moreover, we study the longest path problem on the class of cocomparability graphs, a well-known
class of perfect graphs which includes both interval and permutation graphs. Although the Hamiltonian
path problem on cocomparability graphs was proved to be polynomial almost two decades ago [23], the
complexity status of the longest path problem on cocomparability graphs has remained open until now;
actually, the complexity status of the longest path problem has been open even on the more special class
of permutation graphs. In this work, we present a polynomial-time algorithm for solving the longest
path problem on the class of cocomparability graphs. This result extends our polynomial solution of
the longest path problem on interval graphs, and resolves the open question for the complexity of the
problem on cocomparability graphs, and thus on permutation graphs.

This work lead to the following publications:

o K. loannidou, G.B. Mertzios, and S.D. Nikolopoulos, The longest path problem is polynomial on
interval graphs, 34th International Symposium on Mathematical Foundations of Computer Science
(MFCS’09), LNCS 5734 (2009) 403-414.

e K. Ioannidou and S.D. Nikolopoulos, The longest path problem is polynomial on cocomparability
graphs, Technical Report TR-2009-28, Department of Computer Science, University of Ioannina,
2009 (submitted to journal).
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EKTETAMENH [IEPIAHVH STA EAAHNIKA

Ye auth v gpyaota divouue yoapaxtnptouols yia 800 véeg xhdoelg TEAEWY YRapNUAT®Y, TIG onoleg
ovoudloupe colinear xou linear ypoghuata. Emmiéov, napovoidlovue moiuvmvuixols aryoptBuouc %
anoteréouota NP-mhnpdtnrag yia Stégopo npoAfuota ypouattouol xow ToA@YUULXoUS ahyoptBuous v
TO TPOBANUO UEYLOTOV SOSPOUDY GE TERELNL YPOQTLOTA.

Yuyrexpuéva, moponevoluevol and Tny €vvola tou linear ypwuatiouod oe simplicial complexes,
mou oplotnxe mpdogata ota mhaiola TG ahyeBpuric tomohoyiag, optlouue Tov colinear ypwuatioud
Tvew oe ypaghuato, xat mpoTelvouue éva mohuwvuuxd ohybdelbuo mou ypwuatilel colinearly xdbe
yvedgnuo G. BaowWlduevol otov colinear ypwuatioud, optloupe tig x-colinear xat a-colinear tdidtnteg
%ot YopoxTNEllOUUE YVOOTEC XAAOELS YRUPNUATOVY WG TPOS AUTES TLS LOLOTNTEC. LT GUVEYELX, UEAETOUUE
exelva ta ypagruota ta omola yapoxtrpllovion mhfipws ano tn x-colinear ¥ v a-colinear w.étnta,
o cuunepalvovue GTL aUTA Ta YpaghHuata cLVLETOUV 800 VEEC XAAOELS TEAELWY YPAPNUATOY, TIC OToleg
ovoudloupe colinear xou linear ypogriuota. lHpotelvouue yopaxtnpiopols v ta colinear xou linear
yoaghuato xor anodewxviouue Souxég Widtnteg.  Ilépav toltou, ueketolue 10 TEOBATUL opUOVIXOU
yewuattouol (harmonious coloring problem) ndvew oe ouvextixd petabetind ypagpruota (permutation
graphs) xol og umoxhdoelc TV Tplywwxdy (chordal) xat cuuminpouatix®dy Telyevxdy (co-chordal)
YoopnudTey, ouurtepthauavouévey ey colinear ypa@nudtwy xol ypopnudtey Sotnudtey (inter-
val graphs), xoau elte anodewxvbouue amoteréouata NP-mAnpdtntoc eite mpotelvouue TOALUGOVUULXOUS
aiyopiBuouc yio entAvar Tou npoBAfuaToc.

Emniéov, ueletolue to mpdfinua péyiotov dladpoudy (longest path problem) xa apyixd
anodetxvOouuE 6Tt EMSEYETAL TOAVWVULXT AVOT) 6TNY XAJOT) TV YRIUPNUATWY SWCTHUATWY, ATAVTOVTIS
€toL €vo gpdTua mou agélnxe avowxtd oto [63]. ‘Eneita emextelvoupe ta anotehéouatd Uog
TPOTEVOVTOE TOAUOVUUIXS ohybptBuo enthuong Tou TpoBA UNTOS UEYLETWY SLadpOUGDY OTU CUUTANEWUATIXG
petaPatind (cocomparability) yeaghuota, eTMAVWYTIC £TOL TO AVOLXTE ERGTNUM YLOL TNV TOALTAOXSTYTA TOU
TPOBAAULOTOC UEYLOTWY DASPOUDY OTA CUUTATEWHATLXE PeTaatixd yoaghuata, xot entone oto wetabetind
YoapuaTa. 2Tn CUVEYELD TEPLYPAPOLUE To TEOBAH AT TOU UEAETOUUE OE auTy TNV gpyaoid.

Colinear Xpopatiowds xou Colinear I'pagprpata
IMapoxivoluevol and tnv £vvola Tou linear ypwuatiouol ot simplicial complexes, nou oplotnxe npdogata
ot mAatola The alyeBpunfic Tomohoyiog, xabdg xal o Bewpntind mialolo oto onolo ueietinxe, optlouue
tov colinear ypwyatiouéd mdve oe ypaghuata. O colinear ypwuatiouds evég ypaghuatog G elvat évog
YeWHaTIoUOS ToV X0uBwy Tou G tétolog Gote o dUo xdufous umopel va avatebel o Blo ypdua, edv Ta
avtiotolyo oUvoha xAxdv Toug oyetilovtal e T oxEon Tou LTOGUYEAOL (To GUVOAO XAXGY eVEe x6uBou
u elvo 10 60Voro bhwy twv pellovey xAxdy Tou teptyouy Tov u). O colinear ypwuatxds aptbuds A(G)
Tou G elvan 0 ehdylotog axéponog aptiudg k yio Tov onoto 1o G emdéyetal éva colinear ypwuatiousd ue k
yoouata. Amodeeviouue 6Tt yio x8be ypdonua G, A(G) > x (@), Sivoviac étot éva Téve ©pdyud Yo To
yeouotixd aplBud x(G) tou G, xou Selyvovue bt xdbe ypdgnua G uropel va ypwuatiotel colinearly oe
TOAUWYUULXS YpdVO Tpotelvovtag éva amhd akybplbuo. Baolouevol otov colinear ypwuotioud, optlouue
Tig x-colinear xat o-colinear Wibtntes xon yapaxtnellovue YVOOTEC HAGOELS YPAPNUATOY OS TPOC AUTES
TS LOLOTNTEC.

IMopoxtvoluevol amd auTd T ATOTENEGUATO XaL UG TOV 0PLOUS TWY TEAELWY YPUPNUETWY (Eva Ypdenuo
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G eivon téhero edv xow uévo edv x(Ga) = w(Ga), YA C V(G), érov w(G) etvon o aptude whixac (clique
number) tou G [37]), peretolue exelva ta ypagphuata to onola yapaxtnpeilovtal TAfpws ono ) x-colinear
1 TV a-colinear Wénta, oL oLUTEEALVOUNE OTL AUTE Tal Ypu@rata ouVLETOVY dU0 XaLvolpleg XAAOELS
TEAELOY YPOPNUATWY, Tic omoleg ovoudloupe colinear ot linear ypoghpata. "Evo ypdenua ovoudleta
colinear edv xou pévo edv x(Ga) = AM(Ga), VA C V(G). "Eva ypdonua G ovoudletor linear edv xor uévo
gdv a(Ga) = AMG4a), VA C V(G). Znuetdvovue 61t aG) elvar o euotabiic aptbude (stability number)
toy G. Ilpoteivouye yopoxtnptouols yia ta colinear ot linear ypogriuorta xol anoSetxviouUE SOUIXES
WLOTNTES WS TPOG ATAYOPEUNEYA EnayOUEva Ypophuata. 'Eva evdlagéooy epdtnua yia pelhoviixy| épeuva
ot Atoy 1) HEAETT DoAY BLOTHTWY %ot LLOTATOY avayvdpLone Twy colinear xou linear ypogpnudtwy, xaddg
AL TO EPAOTNUO EQY UTOEOUV VO YULAXTNPLGTOUY aTd €Val TENEPUOUEVO GUVOAO ATy OPEVUEVWY ETOYGUEVLY
yeagnudtwy. Emnpdoleta, éva npogavég arhd evdlagépov avouxtd epdtnua Ou ftav edv ouvduootixd
mpoBMuata /o tpoBiiuota BeAtiotonolnong unopoty va emthuloly anoteheouatixd méve oS XAGOELS
Twv colinear xau linear ypagpnudtwy.

Auth) 1y ueMétn 0d¥ynoe oTic TopoxdTw EpYooiEs:

e K. Toannidou and S.D. Nikolopoulos, Colinear coloring on graphs, 3rd Annual Workshop on Algo-
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e K. Joannidou and S.D. Nikolopoulos, Colinear coloring and colinear graphs, Technical Report TR-
2007-06, Department of Computer Science, University of Toannina, 2007 (submitted to journal).

To mpéBinua Appovixot Xpwuoatiopol
O apuovinde ypwuatiouds evég amhod yeapruatog G elvor €vag xavovinds YewUatiouds Twv xOuBuny Tou
Té€Tol0¢ Wote xdbe Lebyog ypwudtwy eugaviletol o 10 oA wa oaxur. O apuovixds ypwuatinds aptbude
elvor o eAdyLotog axépatog aptbudg k yio Tov onolo 1o Ypdonua G emdéyetal Vo dpUOVIXS YPWHUATLOUO
ue k yoouata. Emextelvovioag mponyolueva anoteréouota NP-tAnpdtntag tou mpoBAfuatog apuovixol
YEWUATIOUOU TAVL OTIC XAACELG TWV UTN-CUVEXTIXOV YPAPNUITGY TOU E(VUL TOUTOYEOVA CUUTATNOWUOTIXG
mapaybueve ypagruota (cographs) xou ypaghuate Staotnudtov [8], amnodetxvioupe 6Tl To mEdBAnUa
nopaével. NP-mAfjpec yia ouvextixnd ypo@riuoato SoThUdTeY ol CUVEXTIXE Uetafetind ypapiuoto.
Emniéov, elyvouue 6Tt 1o mpdfBinua apuovixod ypouatiouol elvar NP-thfipeg xan yia split ypagriuata.
XTh CUVEYELDL ETEXTEIVOUUE TA OMOTEAECUATO UOS YL TO TEOBANUN OPUOVIXOU YOWUATIOUOU TAVE
0E UTOXAAOELS TWV TRLYWVIXGOY X0l CUUTANOWUATIXOY TELYWVIXGOY YRUPNUATLY, anodetxvioviag 6Tl To
npéBinua tapauéver NP-miripeg v split undirected path ypagfuata. Aslyvouue entorng 61 to tpdBinua
elvor NP-mAfjpec yio colinear ypagriuota anodewcvbovtag 6t ta split undirected path ypagruata slvar
umoxidon twv colinear ypagnudtwy. Iépav tobtou, Slvouye Ulo moALwVLULXH AVOT) Ylo TO TEOBANUA
OPUOVIXOU YEWUATLOHOU Yol TNV xhdor Ty split strongly chordal ypagnudtwv, To evdiagépov tng onolog
EYXELTOL OTO YEYOVOG 6T To mpdBAnua elvar NP-mAjpeg yia split ypoagruata, xabde xat yia strongly chordal
yeagruata. Emmnpdoleta, ntohvwvuuixés Aoelg yia 1o TpoBAnue elval YveoTéc uévo yia ¢ XAGOELS TwY
threshold ypagpnudtev ot tov ocuvextxdy quasi-threshold ypagprudtov. Enuewdvouue 61t 10 TEOBANUA
apovixol yowuatiouol elvar NP-mifpec yio un-cuvextixd quasi-threshold ypagruota. E@bécov ta linear
yeaghuato amotehoby unepxhdon Twv quasi-threshold ypagrudtwy xabde xat Twv split strongly chordal
yeapnudteny, 1o TedBAnua apuovixol yewuatiouol eivor NP-thipes yia un-ouvextixd linear ypagruata,
EVEG TAPAUEVEL AVoLxTd Yia ouvexTixd linear ypoagpruata.
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To npéBinua Méyiotwy Aladpopdy

To npéBinua uéytotwy Sladpoudy eival o mpdlinua edpeong eVOC UOVOTATIOU UEYLGTOU UNXOUC OF €va
vedgnua. ‘Eva Waltepa peretnuévo mpdBinua ot Bewpla yeapnudtwy ue ToAAEC eQoapuoyég elvar To
npbBAnua edpeone Hamiltonian yovonatiod, dnhadh to mpdBinue andgoaong edv va yedenua etvar Hamil-
tonian # 6y.. 'Eva ypdenuoa elvor Hamiltonian edv mepiéyer éva Hamiltonian uovondti, dniady éva
anhé povondtt oto onolo xdfe wouBoc Tou ypupuatog eugaviletar axplBE UL gopd. Axduo xal av
éva ypdgnua dev elvor Hamiltonian, éyer vonuoa yio moiréc eqopuoyés v Qdfovue yio €va PEYLOTO
HOVOTdTL, 1 Loodivapua, vo Bpolue £val UEYLOTO ENAYOUEVO UTOYRAPTU TOU Ypaghuatog tou elvar Hamilto-
nian. EvtoUtolg, to npéPinua edpeong evée péyiotou povomatiod galveton mo dUoxoio and to mpdBAnua
anégaone edv éva ypdonua €xer Hamiltonian povondtt % 6yt. To mpdBinua ueylotwy dtadpoudv elvol
NP-80oxoho oe xdbe xhdon ypapnudtwy yia v onola to npdlinua éupeone Hamiltonian povonatiod
elvor NP-mAvpec. Xe avtifeon ue 1o npéBinua éupeong Hamiltonian yovonatiol, undpyouv Alyol yvwotol
TohuevUpLXol ahybpLiuot Yo To TpdBAnUa UEYLETWY dtadpoudy, xat autol Teptoptlovtal ota dévdpa (trees)
ot o€ Uxpéc XAdoews ypopnudtwy. Amodettviouue 6t To mpdBinua ueyiotwv dtadpoudv emdéyeTta
TOALWYUULXH AOOT) 6T YPAPAUAT SACTNUATWY, ATAVTOVTOS £T0L 0TO avoXTd EpOTNUa Tou Télnxe and
toug Uehara and Uno oto [63]. Tuyxexpuuéva, o mpotetvduevos ahydptiuog éyel tohumhoxdtnta ypbvou
O(n*), émov n elvor 0 aptBudc Tev x6uPwy oto Sobéy Ypdenua, xon Bactleton oMY TEYVLXH TOU SUVaULXOY
TPEOYPAULMATIOUOU.

Emniéov, yehetolue to npdBinua u€ytoteny Sladpoudy oTn ¥AdoT TOV CUUTATPOUATIXGOY UETABUTIXOY
YEAPNUATOY, [l YVOOTN XAEoT TEAELWY YPAQNUATWY TOU TEPLEYEL TO YEAUPAUUTO SACTNUATWY
xafdg won tor petalfetnd ypagriwota.  Av xon to mpdPAinua edpeone Hamiltonian yovonatiod oe
OLUTATPOUATE peTaBaTind ypapruota anodelyfnxe otL elval TOAUWYLULXNG TOAUTAOXOTNTAS OYESHY
Tty 800 dexaeties [23], n moAuTAoxSTnTo TOU TEOBAAUATOC UEYLOTOVY SLadpOUdY 0T GUUTANPOUNTIXG
peTafotixd Ypopuoto TapéUeve dyvwoty uéyet ofuepa. KataxpiBeiay, n tohunioxdtnta Tou TeoBARuatog
HEYLOTWY SLOSPOUMY TUPEUEVE GYVWOTN OXOUA XAl OTNV TLO ULXEY) XALOT] TV UETADETIXGY YRopNUAT®Y.
Ye auth) ™ Sovield, mopouotdloupe €va ToALOYUUIXG aAYOplduo enihuonc Tou TEOBARUATOS UEYLOTGY
dtadpoudy 0T *AJOT) TOV CUUTANEOUATIXGY UETOBATXGY YRapNUdTwY. Auté 10 anoTéAeoUo ENEXTELVEL
TNV ToAuwvuutxr Abor Tou TpoTelvae Yo To TEBANUA UEYIOTOY SLISPOUOY OTA Ypa@AUATd SLUCTNUATOY,
oL OTAVTE TO oVOXTO EPATNUA YL TNV TOAUTAOXSTATO TOU TEOBAAUNTOS UEYLOTOV Sladpoudy oTa
GUUTIATPOUOTIXE. UETOBAUTUIXE YROUQTUOTA, XUl GUVETAS 0T UETAOETINE YRophATA.
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CHAPTER 1

INTRODUCTION

1.1 Preliminaries
1.2 Perfect Graphs
1.3 Computability and Complexity

1.4 Coloring and Longest Path Problems

1.1 Preliminaries

We consider finite undirected graphs with no loops or multiple edges. For a graph G, we denote its vertex
and edge set by V(G) and E(G), respectively. An edge is a pair of distinct vertices u,v € V(G), and is
denoted by uv if G is an undirected graph and by wv if G is a directed graph. We say that the vertex u
is adjacent to the vertex v or, equivalently, the vertex u sees the vertex v, if there is an edge wv in G. If
uv ¢ E(G) then we say that the vertex u misses the vertex v or, equivalently, that vertices v and v are
antineighbors in G. For a set A C V(@) of vertices of the graph G, the subgraph of G induced by A is
denoted by G4 or G[A4]. Additionally, the cardinality of a set A is denoted by |A|. For a given vertex
ordering (v1,vs,...,v,) of a graph G, the subgraph of G induced by the set of vertices {v;, vi+1,...,0n}
is denoted by G;.

The set N(v) ={u € V(G) : uv € E(G)} is called the neighborhood of the vertex v € V(@) in G,
sometimes denoted by Ng(v) for clarity reasons. The set N[v] = N(v)U{v} is called the closed neighbor-
hood of the vertex v € V(G). The complement G of a graph G has the same vertex set as G, and distinct
vertices u,v are adjacent in G if and only if they are not adjacent in G. Thus, by Nz (v) we denote the
set of the antineighbors of the vertex v in the graph G. The degree of a vertex x in a graph G is the
number of edges incident on x, and is denoted by deg(x). A clique is a set of pairwise adjacent vertices
while a stable (or independent) set is a set of pairwise non-adjacent vertices.

A simple path (resp. simple antipath) of a graph G is a sequence of distinct vertices vy, va,. .., v such
that v;v;4+1 € E(G) (resp. vjvi41 ¢ E(G)), for each i, 1 <i <k —1, and is denoted by (v1,vz,...,vL);
throughout the paper all paths (resp. antipaths) considered are simple. We denote by V(P) the set
of vertices in the path (resp. antipath) P. We define the length of the path (resp. antipath) P to
be the number of vertices in P, i.e., |P| =|V(P)|; there are case where we consider the length of
a path P to be equal to the number of edges in P, and we explicitly clarify this in the relevant
chapter. We call right endpoint of a path (resp. antipath) P = (v1,va,...,v;) the last vertex vy of
P. Moreover, let P = (v1,v2,...,i—1,Vi, Vit1,---,Vj,Vjt1,Vj42,---, V) and Py = (v, Vi41,...,v;5) be



two paths (resp. antipaths) of a graph. Sometimes, we shall denote the path (resp. antipath) P by
P = (v1,v2,...,vi—1,Po,vj41,Vj42,...,v;). The distance d(v,u) from vertex v to vertex u is the mini-
mum length of a path from v to w; d(v,u) = oo if there is no path from v to w.

A sequence of vertices [vg,v1,...,vk,vo] is called a cycle of length k + 1 if v;—1v; € E(G) for i =
1,2,...,k and vyvo € E(G). A cycle [vo,v1,...,vk,v0] is a simple cycle if v; # v; for i # j. A simple
cycle [vo,v1, ..., vk, 0] is chordless if v;v; ¢ E(G) for every two non-successive vertices v;,v; in the cycle.
A hole of G is an induced subgraph of G which is a chordless cycle C, if n > 5; the complement of a hole
is an antihole.

A partial order will be denoted by P = (V, <p), where V is the finite ground set of elements or vertices
and <p is an irreflexive, antisymmetric, and transitive binary relation on V. Two elements a,b € V are
comparable in P (denoted by a ~p b) if a <p b or b <p a. Otherwise, they are said to be incomparable
(denoted by a || b). An extension of a partial order P = (V,<p) is a partial order L = (V, <r) on the
same ground set that extends P, i.e., a <p b= a <y b, for all a,b € V. The dual partial order P* of
P = (V,<p) is a partial order P? = (V, <pa) such that for any two elements a,b € V, a <pa b if and
only if b <p a. A linear order is a partial order without incomparable elements. A linear extension of a
partial order P = (V, <p) is a linear order L = (V, <) on the same ground set that extends P.

For more basic definitions in graph theory refer to [10, 37, 56].

1.2 Perfect Graphs

The greatest integer r for which a graph G contains an independent set of size r is called the independence
number or otherwise the stability number of G and is denoted by a(G). The clique cover number k(G)
of a graph G is the smallest number of complete subgraphs needed to cover the vertices of G. A proper
vertex coloring of a graph G is a coloring of its vertices such that no two adjacent vertices are assigned
the same color. The chromatic number x(G) of G is the smallest integer k for which G' admits a proper
vertex coloring with k colors. The cardinality of the vertex set of the maximum clique in G is called the
cligue number of G and is denoted by w(G).

Clearly, for the numbers w(G) and x(G) of an arbitrary graph G the inequality w(G) < x(G) holds.
Also, since the intersection of a clique and a stable set of a graph G can be at most one vertex, it follows
that a(G) < k(Q), for any graph G. These two equalities are dual to one another since a(G) = w(G)
and k(G) = x(G).

A graph G is perfect if for every induced subgraph G 4 of G, the chromatic number of G 4 equals the
size of the largest clique of G4, i.e., x(Ga) = w(Ga), VA C V(G). The study of perfect graphs was
initiated by Claude Berge in 1961 [4]. The following three conditions are the perfection properties of a
graph G.

(P1) w(Ga) =x(Ga), VACV(G)
(Pg) a(GA) = Ii(GA), VA Q V(G)
(P3) w(Ga)-a(Ga) = |4], VACV(G)

A graph is called x-perfect if it satisfies (P;) and a-perfect if it satisfies (P). Actually, it was
conjectured by Berge [4], and proven by Lovdsz [53] that for an undirected graph G the perfection
properties Pi, P> and Ps are equivalent. This has become known as the Perfect Graph Theorem [53].
Therefore, it is sufficient to show that a graph satisfies any (P;) in order to conclude that it is perfect,
and a perfect graph will satisfy all properties (P;).

A graph G is Berge if every hole and antihole of G has even length. In 1961 Berge [4] proposed two
celebrated conjectures about perfect graphs. Since the second implies the first, they were known as the
“weak” and “strong” perfect graph conjectures, respectively, although both are now theorems:

Theorem 1.1. The complement of every perfect graph is perfect.



Theorem 1.2. A graph is perfect if and only if it is Berge.

The first theorem was proved by Lovdsz [53] in 1972. The second theorem, which is known as the
Strong Perfect Graph Conjecture, received a great deal of attention over the past 40 years. In 2002, Maria
Chudnovsky and Paul Seymour, extending an earlier joint work with Neil Robertson and Robin Thomas,
announced that they had completed the proof of the Strong Perfect Graph Conjecture which became the
Strong Perfect Graph Theorem. The four joint authors published the 178-page paper in 2006 [16].

Therefore, holes and antiholes have been extensively studied in many different contexts in algorithmic
graph theory and, thus, finding a hole or an antihole in a graph efficiently is an important graph-theoretic
problem, both on its own and as a step in many recognition algorithms. In 2004, Nikolopoulos and Palios
[60] proposed the fastest until today algorithm for the problem of finding a hole or an antihole in a graph,
which runs in O(n +m?) time and requires O(nm) space, where n is the number of vertices and m is the
number of edges in the graph.

Classes of Perfect Graphs

In the case where an optimization problem is NP-complete on general graphs, it makes sense to look
for polynomial solutions of the problem in special graph classes. The subclasses of perfect graphs have
structural properties which allow us to find polynomial solutions for problems which are NP-complete
on arbitrary graphs, such as coloring and path problems. These problems find applications in many
fields of different sciences, from mathematics to philosophy [5, 40]. Throughout this work, several classes
of perfect graph are mentioned, which are studied either in order to derive properties for the two new
classes of graphs we define, namely colinear and linear graphs, or to provide polynomial algorithms or NP-
completeness results for the coloring and longest path problems we study. Next, we give some definitions
for these graph classes.

A graph is called a chordal graph if it does not contain an induced subgraph isomorphic to a chordless
cycle of four or more vertices. Additionally, a graph G is chordal if and only if it admits a perfect
elimination ordering; a perfect elimination ordering of a graph G is an ordering (v1,va,...,v,) of its
vertices such that for every 7, 1 < i < n, v; is a simplicial vertex in Gy, i.e., Ng,[v;] is a clique in G;. A
graph is called a co-chordal graph if it is the complement of a chordal graph [37].

A graph G is a split graph if there is a partition of the vertex set V(G) = K + I, where K induces
a clique in G and I induces an independent set. Split graphs are characterized as those graphs which
do not contain a graph which is isomorphic to a 2K5, a C4 or a C5 graph as an induced subgraph,
i.e., split graphs are characterized as (2K, Cy, Cs)-free; note that, a 2Ks graph is a graph such that
V(2K3) = {v1,v2,vs,v4} and E(2K2) = {v1va, v3v4}. Threshold graphs were introduced by Chvétal and
Hammer [17] and characterized as (2Ka2, Py, Cy)-free. Quasi-threshold graphs are characterized as the
(P4, Cy)-free graphs and are also known in the literature as trivially perfect graphs [37, 59].

We next give definitions and characterizations of some graph classes, on which we study the coloring
and longest path problems and either provide polynomial algorithms or NP-completeness results; the
characterizations mentioned here are used for obtaining some of our results.

Comparability and Cocomparability graphs. The graph G, edges of which are exactly the compa-
rable pairs of a partial order P on V(G), is called the comparability graph of P, and is denoted by G(P).
The complement graph G, whose edges are the incomparable pairs of P, is called the cocomparability graph
of P, and is denoted by G(P). Alternatively, a graph G is a cocomparability graph if its complement
graph G has a transitive orientation, corresponding to the comparability relations of a partial order P
Note that a partial order P uniquely determines its comparability graph G(P) and its cocomparability
graph G(P), but the reverse is not true, i.e., a cocomparability graph G has as many partial orders P=
as is the number of the transitive orientations of G. Furthermore, the class of cocomparability graphs is
hereditary, that is, every induced subgraph of a cocomparability graph G is also a cocomparability graph.

The following representation of comparability graphs is used for obtaining some of our results. Let
G be a comparability graph, and let Ps be a partial order which corresponds to G. The graph GG can



be represented by a directed covering graph with layers Hy, Ho, ..., Hp, in which each vertex is on the
highest possible layer. That is, the maximal vertices of the partial order Py are on the highest layer Hy,,
and for every vertex v on layer H;_; there exists a vertex u on layer H; such that v <p, u; such a layered
representation of G (respectively Pg) is a called the Hasse diagram of G (respectively Pg).

Interval graphs. Interval graphs form an important and well-known class of perfect graphs [37], which
form a subclass of chordal graphs. A graph G is an interval graph if its vertices can be put in a one-to-one
correspondence with a family F' of intervals on the real line such that two vertices are adjacent in G if
and only if the corresponding intervals intersect; F' is called an intersection model for G [1].

Additionally, the class of interval graphs is hereditary, and also a graph G is an interval graph if and
only if it is a chordal graph and the graph G is a comparability graph [37]. Ramalingam and Rangan [61]
proposed the following numbering of the vertices of an interval graph, which we use for obtaining some
of our results: the vertices of any interval graph G can be numbered with integers 1,2, ...,|V(G)| such
that if i < j < k and ik € E(G), then jk € E(G).

Permutation graphs. A graph G is a permutation graph if its vertices can be put in one to one
correspondence with a set of line segments between two parallel lines, such that two vertices are adjacent
if and only if their corresponding line segments intersect. Also, if G and G are comparability graphs,
then G is a permutation graph [37].

Strongly chordal graphs. Strongly chordal graphs form a known subclass of chordal graphs [10, 27]
and were first introduced by Farber [27]. A graph is strongly chordal iff it admits a strong elimination
ordering; a vertex ordering o = (v1,v2,...,0,) I8 a strong elimination ordering of a graph G iff o is
a perfect elimination ordering and also has the property that for each ¢, j, k and £, if i < j, k < ¢,
vk, v¢ € Nv;), and vy € Nv;], then v, € Nlv;] [14, 27].

Also, the following characterization of strongly chordal graphs, due to Farber [27], appears useful
for obtaining some results in this work: strongly chordal graphs are characterized completely as those
chordal graphs which contain no k-sun as an induced subgraph. An incomplete k-sun S (kK > 3) is a
chordal graph on 2k vertices whose vertex set can be partitioned into two sets, U = {u1, ua, ..., u;} and
W = {wi,ws, ..., w}, so that W is an independent set, and w; is adjacent to w; if and only if i = j or
i =7+ 1 (mod k); the graph Sy, (k > 3) is a k-sun if U is a complete graph.

Undirected path graphs. Undirected path graphs form a subclass of chordal graphs. A chordal graph
is an undirected path graph if it is the vertex intersection graph of undirected paths in a tree [35, 57, 62]. In
particular, the following characterization of undirected path graphs given in [35, 57] is used for obtaining
our results; note that, C denotes the set of all maximal cliques of a graph G, and C(v) denotes the set
of all maximal cliques containing v. A graph G is an undirected path graph if and only if there exists a
tree T whose set of vertices is C, so that for every vertex v € V(G), the subgraph T[C(v)] of T induced
by the vertex set C(v), is a path in T. Such a tree will be called characteristic tree of G.

1.3 Computability and Complexity

Let us first underline the differences between computability and computational complexity [37]. Com-
putability addresses itself mostly to questions of existence: Is there an algorithm which solves problem
II? Proving that a problem is computable usually consists of demonstrating an actual algorithm which
will terminate with a correct answer for every input. The amount of resources (time and space) used in
the calculation, although finite, is unlimited. On the contrary, computational complezity deals precisely
with the quantitative aspects of problem solving. It addresses the issue of what can be computed within
a practical or reasonable amount of time and space by measuring the resource requirements exactly or
by obtaining upper and lower bounds.

Algorithms are step-by-step procedures for solving problems. An algorithm is said to solve a problem
IT if it can be applied to any instance I of II and is guaranteed always to produce a solution for that



instance I. The time complexity function for an algorithm expresses its time requirements by giving,
for each possible input length, the largest amount of time needed by the algorithm to solve a problem
instance of that size. A polynomial time algorithm is defined to be one whose time complexity function
is O(p(n)) for some polynomial function p, where n is the input length; an exponential time algorithm
is one whose time complexity function cannot be so bounded. The distinction between the two types of
algorithms is central to the notion of inherent intractability and to the theory of NP-completeness.

1.3.1 Polynomial Transformations and NP-completeness

A problem is called intractable if it is so hard that no polynomial time algorithm can possibly solve it. As
much work has been done for proving problems intractable, so much efforts focus on learning more about
the ways in which various problems are interrelated with respect to their difficulty. The main technique
used for showing that two problems are related with respect to their difficulty is that of "reducing” one
to the other, by giving a constructive transformation that maps any instance of the first problem into an
equivalent instance of the second. Such a transformation provides the means for converting any algorithm
that solves the second problem into a corresponding algorithm for solving the first problem [33].

A reduction captures the informal notion of a problem being at least as difficult as another problem.
For instance, if a problem II; can be solved using an algorithm for I, II; is no more difficult than Is,
and we say that II; reduces to IIs. The most commonly used reduction is a polynomial-time reduction;
this means that the reduction process takes polynomial time.

We say that a problem Il is polynomially transformable to another problem I, denoted II; < Il5,
if there exists a polynomially computable function f mapping the instances of II; into the instances
of Iy such that a solution to the instance f(I) of Il3, gives a solution to the instance I of II;, for all
I. Intuitively this means that II; is no harder to solve than Il up to added polynomial term, for we
could solve II; by combining the transformation f with the best algorithm for solving Ils. Thus, if
IT; < Iy, then COMPLEXITY(II;) < COMPLEXITY(II;) + POLYNOMIAL. If TI; has a polynomial
time algorithm, then so does II;; if every algorithm solving II; requires at least an exponential amount
of time, then the same is true for Ils.

The state of an algorithm consists of the current values of all variables and the location of the current
instruction to be executed. A deterministic algorithm is one for which each state upon execution of the
instruction uniquely determines at most one next state. Virtually all computers run deterministically. A
nondeterministic algorithm is one for which a state may determine many next states and which follows
up on each of the next states simultaneously. We may regard a nondeterministic algorithm as having the
capability of branching off into many copies of itself, one for each next state. Thus, while a deterministic
algorithm must explore a set of alternatives one at a time, a nondeterministic algorithm examines all
alternatives at the same time.

The complexity class P is often seen as a mathematical abstraction modelling those computational
tasks that admit an efficient algorithm. The complexity class NP, on the other hand, contains many
problems that people would like to solve efficiently, but for which no efficient algorithm is known. Strictly
speaking, a problem II is in the class P if there exists a deterministic polynomial time algorithm which
solves II. A problem II is in the class NP if there exists a nondeterministic polynomial time algorithm
which solves II; all the problems in this class have the property that their solutions can be checked
efficiently. Since deterministic Turing machines are special nondeterministic Turing machines, it is easily
observed that each problem in P is also member of the class NP, i.e., P C NP.

A problem II is NP-hard if any one of the following equivalent conditions holds:
(1) II' x I for all II' € NP;
(2) I €P = P=NP;

(3) the existence of a deterministic polynomial time algorithm for II would imply the existence of a
polynomial time algorithm for every problem in NP.



A problem II is NP-complete if it is both a member of NP and it is NP-hard. The NP-complete
problems are the most difficult of those in NP. To prove that II is NP-complete we show that II € NP
and some known NP-complete problem II’ transforms to II.

The foundations for the theory of NP-completeness were laid in a paper of Stephen Cook [19], presented
in 1971. He emphasized the significance of “polynomial time reducibility”, and he focused on the class
of NP of decision problems that can be solved in polynomial time by a nondeterministic computer. He
proved that one particular problem in NP, called the “satisfiability” problem, has the property that
every other problem in NP can be polynomially reduced to it. If the satisfiability can be solved with a
polynomial time algorithm, then so can every problem in NP, and if any problem in NP is intractable,
then the satisfiability problem also must be intractable. Subsequently, Karp [48] presented a collection of
results proving that indeed the decision versions of many well known combinatorial problems, including
the travelling salesman problem, are just as “hard” as the satisfiability problem. Since then a wide variety
of other problems have been proved equivalent in difficulty to these problems, and this equivalence class,
consisting of the “hardest” problems in NP, has been called the class of NP-complete problems.

Cook’s original ideas have provided the means for combining many individual complexity questions
into the single question: Are the NP-complete problems intractable? The question of whether P equals
NP is one of the most important open questions in theoretical computer science because of the wide
implications of a solution.

1.3.2 Polynomial Algorithms

A way of classifying algorithms is by their design methodology or paradigm. There is a certain number
of techniques for the design and analysis of algorithms, such as brute-force or exhaustive search, divide
and conquer, dynamic programming, the greedy method, linear programming, reduction, search and
enumeration, and the probabilistic and heuristic paradigm etc. The algorithms presented in this work for
solving the optimization problems studied base mainly on dynamic programming, the greedy method, or
reduction.

Dynamic programming typically applies to optimization problems in which a set of choices must be
made in order to arrive at an optimal solution. When a problem shows optimal substructure, meaning the
optimal solution to a problem can be constructed from optimal solutions to subproblems, and overlapping
subproblems, meaning the same subproblems are used to solve many different problem instances, a quicker
approach called dynamic programming avoids recomputing solutions that have already been computed.
The difference between dynamic programming and straightforward recursion is in caching or memoization
of recursive calls. When subproblems are independent and there is no repetition, memoization does not
help; hence dynamic programming is not a solution for all complex problems. By using memoization or
maintaining a table of subproblems already solved, dynamic programming transforms exponential time
algorithms into polynomial time algorithms.

Greedy algorithms are similar to a dynamic programming algorithms, since they apply to optimization
problems in which a set of choices must be made in order to arrive at an optimal solution. The difference
is that in a greedy algorithm solutions to the subproblems do not have to be known at each stage; instead
the idea of a greedy algorithm is to make each choice in a locally optimal manner. The greedy method
extends the solution with the best possible decision (not all feasible decisions) at an algorithmic stage
based on the current local optimum and the best decision (not all possible decisions) made in a previous
stage. It is not exhaustive, and and when it works, it will be the fastest method.

The technique of reduction involves solving a difficult problem by transforming it into a better known
problem for which we have (hopefully) asymptotically optimal algorithms. The goal is to find a reducing
algorithm whose complexity is not dominated by the resulting reduced algorithm’s.
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Figure 1.1: Tlustrating a map of some classes of perfect graphs, including the classes of colinear and
linear graphs.

1.4 Coloring and Longest Path Problems

We next describe the problems this work is concerned with. These include providing characterizations
of two new classes of perfect graphs, namely colinear and linear graphs, and presenting polynomial-time
algorithms or NP-completeness results for coloring problems on graphs and polynomial-time algorithms
for the longest path problem on perfect graphs.

1.4.1 Colinear Coloring and Colinear Graphs

A colinear coloring of a graph G is a coloring of its vertices such that two vertices are assigned different
colors, if their corresponding clique sets are not associated by the set inclusion relation; a clique set of a
vertex u is the set of all maximal cliques in G containing u. The colinear chromatic number A(G) of G
is the least integer k for which G admits a colinear coloring with & colors.

Motivated by the definition of linear coloring on simplicial complexes associated to graphs, first
introduced by Civan and Yalgin [18] in the context of algebraic topology, we studied linear colorings on



simplicial complexes which can be represented by a graph. The outcome of this study was the definition
of the colinear coloring of a graph G; the colinear coloring of a graph G is a coloring of G such that
for any set of vertices taking the same color, the collection of their clique sets can be linearly ordered
by inclusion. Recently, Civan and Yalgin [18] studied the linear coloring of the neighborhood complex
N(G) of a graph G and proved that the linear chromatic number of N'(G) gives an upper bound for
the chromatic number x(G) of the graph G. This approach lies in a general framework met in algebraic
topology.

The interest to provide boundaries for the chromatic number y(G) of an arbitrary graph G through the
study of different simplicial complexes associated to G, which is found in algebraic topology bibliography,
drove the motivation for defining the colinear coloring on the graph G and studying the relation between
the chromatic number x(G) and the colinear chromatic number A\(G). We show that for any graph G,
A(G) is an upper bound for x(G). The interest of this result lies on the fact that we present a colinear

coloring algorithm that can be applied to any graph G and provides an upper bound A(G) for the

chromatic number of the graph G, i.e., x(G) < A(G); in particular, it provides a proper vertex coloring
of G using A(G) colors. Additionally, recall that a known lower bound for the chromatic number of any
graph G is the clique number w(G) of G, i.e., x(G) > w(G).

Motivated by these results and the definition of perfect graphs, for which x(G4) = w(G4) holds
VA C V(@) [37], we study those graphs for which the equality x(G) = A(G) holds for every induced
subgraph and characterize known graph classes in terms of the y-colinear and the a-colinear properties.
A graph G has the x-colinear property if its chromatic number x(G) equals to the colinear chromatic
number A\(G) of its complement graph G, and the equality holds for every induced subgraph of G, i.e.,
X(Ga) = A(G4), VA C V(G); a graph G has the a-colinear property if its stability number a(G) equals
to its colinear chromatic number A\(G), and the equality holds for every induced subgraph of G, i.e.,
a(Ga) = MGa), VA C V(G). We show that the class of threshold graphs is characterized by the
x-colinear property and the class of quasi-threshold graphs is characterized by the a-colinear property.

Moreover, it was interesting to study those graphs which are characterized completely by the x-
colinear or the a-colinear property. The outcome of this study was to conclude that these graphs form
two new classes of perfect graphs, which we call colinear and linear graphs, respectively. We also provide
characterizations for colinear and linear graphs and prove structural properties. More specifically, we
show that the class of colinear graphs is a subclass of co-chordal graphs, a superclass of threshold graphs,
and is distinguished from the class of split graphs. Additionally, we infer that linear graphs form a
subclass of chordal graphs and a superclass of quasi-threshold graphs. We also prove that any Ps-free
chordal graph, which is not a linear graph, properly contains a k-sun as an induced subgraph. However,
the k-sun is not a forbidden induced subgraph for the class of linear graphs and, thus, linear graphs form
a superclass of the class of Ps-free strongly chordal graphs. Figure 1.1 depicts a map of some classes of
perfect graphs, including the classes of colinear and linear graphs which we define within this work.

1.4.2 The Harmonious Coloring Problem

A harmonious coloring of a simple graph G is a proper vertex coloring such that each pair of colors
appears together on at most one edge, while the harmonious chromatic number h(G) is the least integer
k for which G admits a harmonious coloring with k colors [13].

Harmonious coloring developed from the closely related concept of line-distinguishing coloring which
was introduced independently by Frank et al. [30] and by Hopcroft and Krishnamoorthy [45] who showed
that the harmonious coloring problem is NP-complete on general graphs. The complexity of the har-
monious coloring problem has been extensively studied on various classes of perfect graphs such as
cographs, interval graphs, bipartite graphs and trees [10, 37]. Bodlaender [8] provides a proof for the
NP-completeness of the harmonious coloring problem for disconnected cographs and disconnected inter-
val graphs. It is worth noting that the problem of determining the harmonious chromatic number of a
connected cograph is trivial, since in such a graph each vertex must receive a distinct color as it is at
distance at most 2 from all other vertices [13]. Bodlaender’s results establish the NP-hardness of the



harmonious coloring problem when restricted to disconnected permutation graphs. Extending the above
results, in this work we show that the harmonious coloring problem remains NP-complete on connected
interval and permutation graphs. In addition, we show that the problem remains NP-complete for the
class of split graphs.

Additionally, the NP-completeness of the problem has been also proved for the classes of trees and
disconnected bipartite permutation graphs [25, 26], connected bipartite permutation graphs [2], and
disconnected quasi-threshold graphs [2]. Since the problem of determining the harmonious chromatic
number of a connected cograph is trivial, the harmonious coloring problem is polynomially solvable on
connected quasi-threshold graphs and threshold graphs.

Since we prove that the harmonious coloring problem is NP-complete on interval , we obtain that the
problem is also NP-complete on the classes of strongly chordal and undirected path graphs. Extending
our results for the harmonious coloring problem on interval graphs and split graphs, in this work we also
study the complexity status of the harmonious coloring problem on two subclasses of colinear graphs.
We first show that the harmonious coloring problem is NP-complete on split undirected path graphs and,
then, we show that the class of split undirected path graphs forms a subclass of colinear graphs; thus, we
obtain the NP-completeness of the harmonious coloring problem on colinear graphs as well.

Moreover, we provide a polynomial solution for the harmonious coloring problem on split strongly
chordal graphs, the interest of which lies on the fact that the problem is NP-complete on both split graphs
and strongly chordal graphs. However, the complexity status of the problem for the class of connected
linear graphs still remains an open question; note that the harmonious coloring problem is NP-complete
on disconnected linear graphs, since it is NP-complete on disconnected quasi-threshold graphs [2] and
quasi-threshold graphs form a subclass of linear graphs.

1.4.3 The Longest Path Problem

The longest path problem, i.e., the problem of finding a path of maximum length in a graph, is a
generalization of the Hamiltonian path problem. The Hamiltonian path problem is the problem of
determining whether a graph is Hamiltonian; a graph is said to be Hamiltonian if it contains a Hamiltonian
path, that is, a simple path in which every vertex of the graph appears exactly once. The longest path
problem or, equivalently, the problem of finding a maximum Hamiltonian induced subgraph of a graph, is
NP-complete on general graphs and, in fact, on every class of graphs that the Hamiltonian path problem
is NP-complete. However, it is interesting to study the longest path problem on classes of graphs where
the Hamiltonian path problem is polynomial, since even if a graph is not Hamiltonian, it makes sense in
several applications to search for a longest path of the graph. Although the Hamiltonian path problem
has received a great deal of attention the past two decades in looking for polynomial solutions for the
problem on special graph classes, only recently did the longest path problem start receiving attention in
this direction.

As we have mentioned, the longest path problem is NP-hard on every class of graphs on which the
Hamiltonian path problem is NP-complete. The Hamiltonian path problem is known to be NP-complete
in general graphs [33, 34], and remains NP-complete even when restricted to some small classes of graphs
such as split graphs [37], chordal bipartite graphs, split strongly chordal graphs [58], circle graphs [22],
planar graphs [34], and grid graphs [46]. However, it makes sense to investigate the tractability of
the longest path problem on the classes of graphs for which the Hamiltonian path problem admits
polynomial time solutions. Such classes include interval graphs [1], circular-arc graphs [24], convex
bipartite graphs [58], and co-comparability graphs [23]. Note that the problem of finding a longest path
on proper interval graphs is easy, since all connected proper interval graphs have a Hamiltonian path
which can be computed in linear time [6]. On the contrary, not all interval graphs are Hamiltonian; in the
case where an interval graph has a Hamiltonian path, it can be computed in linear time [1, 15]. However,
in the case where an interval graph is not Hamiltonian, there is no known algorithm for finding a longest
path on it.



In contrast to the Hamiltonian path problem, the known polynomial time solutions for the longest
path problem are rather recent, and restrict to smaller graph classes. Specifically, a linear time algorithm
for finding a longest path in a tree was proposed by Dijkstra around 1960, a formal proof of which can
be found in [12]. Later, through a generalization of Dijkstra’s algorithm for trees, Uehara and Uno [63]
solved the longest path problem for weighted trees and block graphs in linear time and space, and for
cacti in O(n?) time and space, where n and m denote the number of vertices and edges of the input
graph, respectively. More recently, polynomial algorithms have been proposed that solve the longest
path problem on bipartite permutation graphs in O(n) time and space [64], and on ptolemaic graphs in
O(n’) time and O(n?) space [65]. Furthermore, Uehara and Uno in [63] solved the longest path problem
on a subclass of interval graphs, namely interval biconvex graphs, in O(n3(m + nlogn)) time, and as a
corollary they showed that a longest path on threshold graphs can be found in O(n + m) time and space.
They left open the complexity of the longest path problem on interval graphs.

In this work, we resolve the open problem posed in [63] by showing that the longest path problem
admits a polynomial time solution on interval graphs. In particular, we propose an algorithm for solving
the longest path problem on interval graphs which runs in O(n*) time using a dynamic programming
approach. Thus, not only we answer the question left open by Uehara and Uno in [63], but also improve
the known time complexity of the problem on interval biconvex graphs, a subclass of interval graphs [63].

Moreover, we study the longest path problem on the class of cocomparability graphs, a well-known
class of perfect graphs which includes both interval and permutation graphs. Although the Hamilto-
nian path problem on cocomparability graphs has been proved to be polynomial [23], the status of the
longest path problem on cocomparability graphs is unknown, since no polynomial-time algorithm or
NP-completeness result exists; actually, the status of the longest path problem is unknown even on the
more special class of permutation graphs. In this work, we propose a polynomial-time algorithm for
solving the longest path problem on cocomparability graphs, which extends our polynomial solution of
the longest path problem on interval graphs, and resolves the open question for the status of the problem
on cocomparability graphs, and thus on permutation graphs.
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CHAPTER 2

COLINEAR COLORING AND COLINEAR
(GRAPHS

2.1 Introduction

2.2 Colinear Coloring on Graphs

2.3 An Algorithm for Colinear Coloring

2.4 Graphs having the y-colinear and a-colinear Properties
2.5 Colinear and Linear Graphs

2.6 Structural Properties

2.7 Concluding Remarks

2.1 Introduction

A colinear coloring of a graph G is a coloring of its vertices such that two vertices are assigned different
colors, if their corresponding clique sets are not associated by the set inclusion relation; a clique set of a
vertex u is the set of all maximal cliques in G containing u. The colinear chromatic number A(G) of G
is the least integer k for which G admits a colinear coloring with & colors.

Motivated by the definition of linear coloring on simplicial complexes associated to graphs, first
introduced by Civan and Yalgin [18] in the context of algebraic topology, we studied linear colorings on
simplicial complexes which can be represented by a graph. In particular, we studied the linear coloring
problem on a simplicial complex, namely independence complex Z(G) of a graph G. The independence
complex Z((G) of a graph G can always be represented by a graph and, more specifically, is identical to
the complement graph G of the graph G; indeed, the facets of Z(G) are exactly the maximal cliques of G.
The outcome of this study was the definition of the colinear coloring of a graph Gj; the colinear coloring
of a graph G is a coloring of GG such that for any set of vertices taking the same color, the collection of
their clique sets can be linearly ordered by inclusion. Note that, the two definitions cannot always be
considered as identical since not in all cases a simplicial complex can be represented by a graph; such an
example is the neighborhood complex N (G) of a graph G. Recently, Civan and Yalgin [18] studied the
linear coloring of the neighborhood complex AN (G) of a graph G and proved that the linear chromatic
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number of AV(G) gives an upper bound for the chromatic number x(G) of the graph G. This approach
lies in a general framework met in algebraic topology.

In the context of algebraic topology, one can find much work done on providing boundaries for the
chromatic number of an arbitrary graph G, by examining the topology of the graph through different
simplicial complexes associated to the graph. This domain was motivated by Kneser’s conjecture, which
was posed in 1955, claiming that “if we split the n-subsets of a (2n + k)-element set into k+ 1 classes, one
of the classes will contain two disjoint n-subsets” [50]. Kneser’s conjecture was first proved by Lovész in
1978, with a proof based on graph theory, by rephrasing the conjecture into “the chromatic number of
Kneser’s graph KG,, ;, is k+2” [54]. Many more topological and combinatorial proofs followed, the interest
of which extends beyond the original conjecture [69]. Although Kneser’s conjecture is concerned with the
chromatic numbers of certain graphs (Kneser graphs), the proof methods that are known provide lower
bounds for the chromatic number of any graph [55]. Thus, this initiated the application of topological
tools in studying graph theory problems and more particularly in graph coloring problems [21].

The interest to provide boundaries for the chromatic number x(G) of an arbitrary graph G through the
study of different simplicial complexes associated to G, which is found in algebraic topology bibliography,
drove the motivation for defining the colinear coloring on the graph G and studying the relation between

the chromatic number x(G) and the colinear chromatic number A(G). We show that for any graph

G, A(G) is an upper bound for x(G). The interest of this result lies on the fact that we present a

colinear coloring algorithm that can be applied to any graph G and provides an upper bound A(G) for

the chromatic number of the graph G, i.e., x(G) < A(G); in particular, it provides a proper vertex
coloring of G using A(G) colors. Additionally, recall that a known lower bound for the chromatic number
of any graph G is the clique number w(G) of G, i.e., x(G) > w(G). Motivated by the definition of perfect
graphs, for which x(G 4) = w(G4) holds VA C V(G), it was interesting to study those graphs for which
the equality x(G) = A(G) holds, and even more those graphs for which this equality holds for every
induced subgraph.

In this work, we first introduce the colinear coloring of a graph G and study the relation between
the colinear coloring of G and the proper vertex coloring of G. We prove that, for any graph G, a
colinear coloring of G is a proper vertex coloring of G' and, thus, A(G) is an upper bound for x(G), i.e.,
x(G) < X(G). We present a colinear coloring algorithm that can be applied to any graph G. Motivated
by these results and the Perfect Graph Theorem [37], we study those graphs for which the equality
x(G) = A(G) holds for every induced subgraph and characterize known graph classes in terms of the
x-colinear and the a-colinear properties. A graph G has the x-colinear property if its chromatic number
x(G) equals to the colinear chromatic number A\(G) of its complement graph G, and the equality holds for
every induced subgraph of G, i.e., x(Ga) = AM(GA), VA C V(G); a graph G has the a-colinear property
if its stability number «(G) equals to its colinear chromatic number A(G), and the equality holds for
every induced subgraph of G, i.e., a(G4) = A(G4), VA C V(G). Note that the stability number «(G)
of a graph G is the greatest integer r for which G contains an independent set of size r. We show that
the class of threshold graphs is characterized by the y-colinear property and the class of quasi-threshold
graphs is characterized by the a-colinear property.

Moreover, it was interesting to study those graphs which are characterized completely by the x-
colinear or the a-colinear property. The outcome of this study was to conclude that these graphs form
two new classes of perfect graphs, which we call colinear and linear graphs, respectively. We also provide
characterizations for colinear and linear graphs and prove structural properties. More specifically, we
show that the class of colinear graphs is a subclass of co-chordal graphs, a superclass of threshold graphs,
and is distinguished from the class of split graphs. Additionally, we infer that linear graphs form a
subclass of chordal graphs and a superclass of quasi-threshold graphs. We also prove that any Ps-free
chordal graph, which is not a linear graph, properly contains a k-sun as an induced subgraph. However,
the k-sun is not a forbidden induced subgraph for the class of linear graphs and, thus, linear graphs form
a superclass of the class of Ps-free strongly chordal graphs.

The rest of this chapter is organized as follows. In Section 2.2 we define the colinear coloring on graphs,
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while in Section 2.3 we present a polynomial time algorithm for colinear coloring which can be applied to
any graph G and provides an upper bound for the chromatic number x(G) of the graph G. In Section 2.4
we define the y-colinear and a-colinear properties and characterize known graph classes in terms of these
properties. Based on these results, in Section 2.5 we study the graphs which are characterized completely
by the x-colinear or a-colinear property and, thus, define two new classes of perfect graphs, which we
call colinear and linear graphs. Characterizations and structural properties of linear graphs are proved
in Section 2.6. Some concluding remarks follow.

2.2 Colinear Coloring on Graphs

In this section we define the colinear coloring of a graph G, and we prove some properties of such a
coloring. It is worth noting that these properties have been also proved for the linear coloring of the
neighborhood complex N(G) in [18].

Definition 2.1. Let G be a graph and let v € V(G). The clique set of a vertex v is the set of all maximal
cliques of G containing v and is denoted by Cg(v).

Definition 2.2. Let G be a graph and let k£ be an integer. A surjective map & : V(G) — {1,2,...,k}
is called a k-colinear coloring of G if the collection {Cq(v) : k(v) =i} is linearly ordered by inclusion for
all i € {1,2,...,k}, where Cx(v) is the clique set of v, or, equivalently, for two vertices v,u € V(G), if
k(v) = k(u) then either Cq(v) C Cq(u) or Cg(v) 2 Cq(u). The least integer k for which G is k-colinear
colorable is called the colinear chromatic number of G and is denoted by A(G).

Next, we study the colinear coloring on graphs and its association to the proper vertex coloring. In
particular, we show that for any graph G the colinear chromatic number of G is an upper bound for

X(G).

Proposition 2.1. Let G be a graph. If k: V(G) — {1,2,....k} is a k-colinear coloring of G, then k is
a coloring of the graph G.

Proof. Let G be a graph and let & : V(G) — {1,2,...,k} be a k-colinear coloring of G. From Defini-
tion 4.2, we have that for any two vertices v,u € V(G), if k(v) = k(u) then either C5(v) C Cz(u) or
Cz(v) 2 Cz(u) holds. Without loss of generality, assume that Cz(v) C Cz(u) holds. Consider a maxi-
mal clique C' € Cz(v). Since Cz(v) C Cz(u), we have C' € Cg(u). Thus, both u,v € C' and therefore

wv € E(G) and wv ¢ E(G). Hence, any two vertices assigned the same color in a k-colinear coloring of
G are not neighbors in G. Concluding, any k-colinear coloring of G is a coloring of G. 1

It is therefore straightforward to conclude the following.

Corollary 2.1. For any graph G, A\(G) > x(G).

In Figure 2.1 we depict a colinear coloring of the well known graphs 2K,, Cy and Py, using the
least possible colors, and show the relation between the chromatic number y(G) of each graph G €

{2K>5,C4, Py} and the colinear chromatic number A(G).

Proposition 2.2. Let G be a graph. A coloring k : V(G) — {1,2,...,k} of G is a k-colinear coloring
of G if and only if either Ng[u] C Nglv] or Nglu] 2 Nglv] holds in G, for every u,v € V(G) with
k(u) = k(v).

Proof. Let G be agraph and let k : V(G) — {1,2,...,k} be a k-colinear coloring of G. We will show that
either Ng[u] € Ng[v] or Nglu] O Nglv] holds in G for every u,v € V(G) with s(u) = x(v). Consider
two vertices v,u € V(G), such that x(u) = k(v). Since s is a colinear coloring of G, we have either
Ca(u) CCq(v) or Ca(u) 2 Cq(v) holds. Without loss of generality, assume that Cq(u) C Ce(v). We will
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Figure 2.1: Tllustrating a colinear coloring of the graphs 2Ky, C4 and P, with the least possible colors.

show that Ng[u] C Ng[v] holds in G. Assume the opposite. Thus, a vertex z € V(@) exists, such that
z € Nglu] and z ¢ Ng[v] and, thus, zu € E(G) and zv ¢ E(G). Now consider a maximal clique C' in G
which contains z and u. Since zv ¢ E(G), it follows that v ¢ C. Thus, there exists a maximal clique C' in
G such that C € Cg(u) and C ¢ Ci(v), which is a contradiction to our assumption that Cax(u) C Ca(v).
Therefore, Ng[u] C Ng[v] holds in G.

Let G be a graph and let « : V(G) — {1,2,...,k} be a coloring of G. Assume now that either
Nglu] € Nglv] or Nglu] 2 Ng[v] holds in G, for every u,v € V(G) with k(u) = k(v). We will show that
the coloring & of G is a k-colinear coloring of G. Without loss of generality, assume that Ng[u] C Ng[v]
holds in G, and we will show that Cg(u) C Cq(v). Assume the opposite. Thus, a maximal clique C exists
in G, such that C € Cg(u) and C ¢ Cg(v). Consider now a vertex z € V(G) (2 # v), such that z € C
and zv ¢ E(G). Such a vertex exists since C' is maximal in G and C ¢ Cg(v). Thus, zv ¢ E(G) and
either zu € E(G) or z = u, which is a contradiction to our assumption that Ng[u] C Ngv]. 1

2.3 An Algorithm for Colinear Coloring

In this section we present a polynomial time algorithm for colinear coloring which can be applied to any
graph G, and provides an upper bound for x(G). Although we have introduced colinear coloring through
Definition 4.2, in our algorithm we exploit the property proved in Proposition 4.11, since the problem of
finding all maximal cliques of a graph G is not polynomially solvable on general graphs. Before describing
our algorithm, we first construct a directed acyclic graph (DAG) D¢ of a graph G, which we call DAG
associated to the graph G, and we use it in the proposed algorithm.

The DAG D¢ associated to the graph G. Let G be a graph. We first compute the closed neigh-
borhood Ng[v] of each vertex v of G and, then, we construct the following directed acyclic graph D,
which depicts all inclusion relations among the vertices’ closed neighborhoods: V(D) = V(G) and
ED) = {zy : z,y € V(D) and Ng[z] C Ng[y]}, where zy is a directed edge from x to y. In the
case where the equality Ng[z] = Ngly] holds, we choose to add one of the two edges so that the re-
sulting graph D is acyclic. To achieve this, we consider a partition of the vertex set V(G) into the
sets S1,52,...,8, such that for any ¢ € {1,2,..., ¢} vertices  and y belong to a set S; if and only if
Nglz] = Ngly]. For vertices x and y belonging to the same set S; we add the edge zy if and only if
x < y. For vertices z and y belonging to different sets S; and S; respectively, we add the edge zy if and
only if Ng[z] C Ngly]. Tt is easy to see that the resulting graph D is unique up to isomorphism.

Additionally, it is easy to see that D is a transitive directed acyclic graph. Indeed, by definition
D is constructed on a partially ordered set of elements (V(D), <), such that for some z,y € V(D),
z <y < Nglz] € Ngly].- Throughout this work we refer to the constructed directed acyclic graph as the
DAG associated to the graph G and denote it by D .

The proposed algorithm, namely Algorithm 1, computes a colinear coloring and the colinear chromatic
number of a graph G.

Correctness of the algorithm. Let G be a graph and let Dg be the DAG associated to the graph
G, which is unique up to isomorphism. Consider the value k(v) for each vertex v € V(Dg) returned by
the algorithm and the size p(D¢) of a minimum path cover of Dg. We show that the surjective map
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Algorithm Colinear_Coloring

Input: a graph G.
Output: a colinear coloring and the colinear chromatic number of G.

(i) compute the closed neighborhood set of every vertex of G and, then, find the inclusion relations
among the neighborhood sets and construct the DAG D¢ associated to the graph G.

(ii) f£ind a minimum path cover P(Dg), and its size p(Dg), of the transitive DAG D¢ (e.g. see [9, 44]).

(iii) assign a color k(v) to each vertex v € V(Dg), such that vertices belonging to the same path of
P(Dg) are assigned the same color and vertices of different paths are assigned different colors; this
is a surjective map & : V(D¢g) — [p(Dg)]-

(iv) return the value x(v) for each vertex v € V(D¢) and the size p(Dg) of the minimum path cover
of Dg; k is a colinear coloring of G and p(Dg) equals the colinear chromatic number A(G) of G.

Algorithm 1: Algorithm Colinear_Coloring

k : V(Dg) — [p(Dg)] is a colinear coloring of the vertices of GG, and prove that the size p(D¢g) of a
minimum path cover P(D¢) of the DAG Dy is equal to the colinear chromatic number A(G) of the graph
G.

Proposition 2.3. Let G be a graph and let Dg be the DAG associated to the graph G. A colinear coloring
of the graph G can be obtained by assigning o particular color to all vertices of each path of a path cover
of the DAG D¢g. Moreover, the size p(Dg) of a minimum path cover P(Dg) of the DAG D¢ equals to
the colinear chromatic number A\(G) of the graph G.

Proof. Let G be a graph, Dg be the DAG associated to G, and let P(Dg) be a minimum path cover of Dg.
The size p(Dg) of the DAG D¢, equals to the minimum number of directed paths in Dg needed to cover
the vertices of D and, thus, the vertices of G. Now, consider a coloring & : V(Dg) — {1,2,...,k} of the
vertices of D¢, such that vertices belonging to the same path are assigned the same color and vertices of
different paths are assigned different colors. Therefore, we have p(D¢g) colors and p(Dg) sets of vertices,
one for each color. For every set of vertices belonging to the same path, their corresponding closed
neighborhood sets can be linearly ordered by inclusion. Indeed, cousider a path in Dg with vertices
{v1,v2,...,v} and edges v;0;51 for i € {1,2,...,m}. From the construction of D¢, it holds that
Vi, j € {1,2,...,m}, vu; € E(Dg) < Nglvi] € Nglv;]. In other words, the corresponding neighborhood
sets of the vertices belonging to a path in Dy are linearly ordered by inclusion. Thus, the coloring x of
the vertices of D¢ gives a colinear coloring of G.

This colinear coloring & is optimal, uses k = p(Dg) colors, and gives the colinear chromatic number
A(G) of the graph G. Indeed, suppose that there exists a different colinear coloring &’ : V(Dg) — [K']
of G using k' colors, such that k' < k. For every color given in x’, consider a set consisted of the
vertices assigned that color. It is true that for the vertices belonging to the same set, their neighborhood
sets are linearly ordered by inclusion. Therefore, these vertices can belong to the same path in Dg.
Thus, each set of vertices in G corresponds to a path in Dg and, additionally, all vertices of G' (and
therefore of D¢) are covered. This is a path cover of Dg of size p'(Dg) = k' < k = p(D¢), which is
a contradiction since P(D¢) is a minimum path cover of Dg. Therefore, we conclude that the colinear
coloring k : V(Dg) — [p(Dg)] is optimal and, hence, p(Dg) = A(G). 1

Complexity of the algorithm. Let G be a graph, V(G) = n, E(G) = m, and let Dg be the DAG
associated to the graph G. Step (i) of the algorithm, which includes the construction of the DAG D¢,
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takes O(nm) time. In particular, it takes O(nm) time to compute the closed neighborhood set of every
vertex of G, O(nm) time to find the inclusion relations among the neighborhood sets, and O(n +m) time
to construct the DAG D¢. Note that, we only need to check pairs of vertices that are connected by an
edge in G. Step (ii) computes a minimum path cover in the transitive DAG Dg; the problem is known
to be polynomially solvable, since it can be reduced to the maximum matching problem in a bipartite
graph formed from the transitive DAG [9]. The maximum matching problem in a bipartite graph takes
O((m + n)y/n) time, due to an algorithm by Hopcroft and Karp [44]. Finally, both Steps (iii) and (iv)
can be executed in O(n) time. Therefore, the complexity of the algorithm is O(nm + n\/n).

2.4 Graphs having the y-colinear and a-colinear Properties

In Section 2.2 we showed that for any graph G, the colinear chromatic number A(G) of the graph G is
an upper bound for the chromatic number x(G) of G, i.e., x(G) < A(G). Recall that a known lower
bound for the chromatic number of G is the clique number w(G) of G, i.e., x(G) > w(G). Motivated by
the Perfect Graph Theorem [37], in this section we exploit our results on colinear coloring and we study
those graphs for which the equality x(G) = A(G) holds for every induced subgraph. The outcome of this
study was the definition of the following two graph properties and the characterization of known graph

classes in terms of these properties.

o x-colinear property. A graph GG has the y-colinear property if for every induced subgraph G 4
of the graph G, x(G4) = A(G4), A CV(G).

o a-colinear property. A graph G has the a-colinear property if for every induced subgraph G 4
of a graph G, a(Ga) =XGa), A CV(QG).

Next, we show that the class of threshold graphs is characterized by the y-colinear property and the class
of quasi-threshold graphs is characterized by the a-colinear property. We also show that any graph that
has the x-colinear property is perfect; actually, we show that any graph that has the y-colinear property
is a co-chordal graph. We first give some definitions and show some interesting results.

Definition 2.3. An edge uv of a graph G is called actual if neither Ng[u] C Ng[v] nor Nglu] 2 Ng[v].
The set of all actual edges of G will be denoted by E,(G).

Definition 2.4. A graph G is called quasi-threshold if it has no induced subgraph isomorphic to a Cy4 or
a Py or, equivalently, if it contains no actual edges.

More details on actual edges and characterizations of quasi-threshold graphs through a classifica-
tion of their edges can be found in [59]. The following result directly follows from Definition 2.3 and
Proposition 4.11.

Proposition 2.4. Let k : V(G) — {1,2,...,k} be a k-colinear coloring of the graph G. If the edge
wv € E(G) is an actual edge of G, then k(u) # k(v).

Based on Definition 2.3, the y-colinear property, and Proposition 5.1, we prove the following result.

Proposition 2.5. Let G be a graph and let F be the graph such that V(F) = V(G) and E(F) =

E(G)U EL(G). The graph G has the x-colinear property if x(Ga) = w(Fa), VA CV(QG).

Proof. Let G be a graph and let F be a graph such that V(F) = V(G) and E(F) = E(G)UE,(G), where
E.(G) is the set of all actual edges of G. By definition, G has the y-colinear property if x(G4) = A(G4),
VA C V(G). Tt suffices to show that A(G4) = w(F4), YA C V(G). From Definition 4.2, it is easy to
see that two vertices which are not connected by an edge in G 4 belong necessarily to different cliques
and, thus, they cannot receive the same color in a colinear coloring of G 4. In other words, the vertices
which are connected by an edge in G 4 cannot take the same color in a colinear coloring of G 4. Moreover,
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from Proposition 2.4 vertices which are endpoints of actual edges in G 4 cannot take the same color in a
colinear coloring of G 4.

Next, we construct the graph Fy with vertex set V(F4) = V(G 4) and edge set E(F4) = E(G4) U
E.(G ), where E, (G ) is the set of all actual edges of G 4. Every two vertices in Fj4, which have to take
a different color in a colinear coloring of G 4 are connected by an edge. Thus, the size of the maximum
clique in F4 equals to the size of the maximum set of vertices which pairwise must take a different color
in G4, ie., w(F4) = AMG4) holds for all A C V(G). Concluding, G has the y-colinear property if
X(Ga) =w(Fa), VACV(G). 1

Taking into consideration Proposition 2.5 and the structure of the edge set E(F) = E(G) U E,(G) of
the graph F, it is easy to see that E(F) = E(G) if G has no actual edges. Actually, this will be true for
all induced subgraphs, since if G is a quasi-threshold graph then G 4 is also a quasi-threshold graph for
all A CV(G). Thus, x(Ga) =w(F4), VA CV(G). Therefore, the following result holds.

Corollary 2.2. Let G be a graph. If G is quasi-threshold, then G has the x-colinear property.
Using Corollary 2.2 we can prove a more interesting result.
Proposition 2.6. Any threshold graph has the x-colinear property.

Proof. Let G be a threshold graph. It has been proved that an undirected graph G is a threshold graph
if and only if G and its complement G are quasi-threshold graphs [59]. From Corollary 2.2, if G is quasi-
threshold then G has the y-colinear property. Concluding, if G is threshold, then G is quasi-threshold
and thus G has the x-colinear property. I

We note that the proof that any threshold graph G has the x-colinear property can be also obtained
by showing that any coloring of a threshold graph G is a colinear coloring of G by using Proposition 4.11,
Corollary 3.1, the fact that Ng(u) = V(G) \ Ngu], and the property that N(u) € N[v] or N(v) C Nu]
for any two vertices u,v of G. However, Proposition 2.5 and Corollary 2.2 actually give us a stronger
result, since the class of quasi-threshold graphs is a superclass of the class of threshold graphs.

The following result is even more interesting, since it shows that any graph that has the x-colinear
property is a perfect graph.

Proposition 2.7. Any graph that has the x-colinear property is a co-chordal graph.

Proof. Let G be a graph that has the y-colinear property. It has been shown that a co-chordal graph is
(2K2, antihole)-free [37]. To show that any graph G that has the x-colinear property is a co-chordal graph
we will show that if G has a 2K or an antihole as induced subgraph, then G is does not have the y-colinear
property. Since by definition a graph G has the y-colinear property if the equality x(G 1) = A(G 4) holds
for every induced subgraph G4 of G, it suffices to show that the graphs 2K5 and antihole do not have
the x-colinear property.

The graph 2K3 does not have the y-colinear property, since x(2K32) = 2 # 4 = A(Cy); see Figure 2.1.
Now, consider the graph G = C,, which is an antihole of size n > 5. We will show that x(G) # A(G).
It follows that A(G) = A(C,)) = n > 5, i.e., if the graph G = C,, is to be colored colinearly, every vertex
has to take a different color. Indeed, assume that a colinear coloring % : V(G) — {1,2,...,k} of G = C,
exists such that for some u;,u; € V(G), i # j, 1 <4,j < n, k(u;) = k(u;). Since u;,u; are vertices of a
hole, their neighborhoods in G are Nu;] = {u;—1,u;,ui41} and Nlu;] = {uj_1,uj,uji1}, 2 <i,j5 <n—1.
Fori=1ori=n, Njui] = {up,u2} and Nuy,] = {un—1,u1}. Since k(u;) = £(u;), from Proposition 4.11
we obtain that one of the inclusion relations Nu;] C Nu;] or Nu;] 2 N[u;] must hold in G. Obviously
this is possible if and only if ¢ = j, for n > 5; this is a contradiction to the assumption that i # j.
Thus, no two vertices in a hole take the same color in a colinear coloring. Therefore, A\(G) = n. It
suffices to show that x(G) < n. It is easy to see that for the antihole C,,, deg(u) = n — 3, for every
vertex u € V(G). Brook’s theorem [11] states that for an arbitrary graph G and for all u € V(G),
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Figure 2.2: A graph G which is a split graph but it does not have the y-colinear property, since x(G) = 4

and \(G) = 5.

x(G) <maz{d(u)+1} = (n —3) + 1 = n — 2. Therefore, x(G) <n —2 <n = A(G). Thus the antihole
C,, does not have the y-colinear property.

We have showed that the graphs 2Ks and antihole do not have the y-colinear property. It follows
that any graph that has the y-colinear property is (2K5, antihole)-free and, thus, any graph that has the
x-colinear property is a co-chordal graph. 1§

Since graphs having the y-colinear property are perfect, it follows that any graph G having the x-

colinear property satisfies x(G4) = w(G4) = a(G4), VA C V(G). Therefore, the following result holds.

Proposition 2.8. A graph G has the a-colinear property if and only if the graph G has the x-colinear
property.

From Corollary 2.2 and Proposition 2.8 we can obtain the following result.
Proposition 2.9. Any quasi-threshold graph has the a-colinear property.

In this section we defined the y-colinear and a-colinear properties and characterized known graph
classes in terms of these properties. Based on these results, we next study the graphs which are charac-
terized completely by the y-colinear or a-colinear property.

2.5 Colinear and Linear Graphs

In Section 2.4 we showed that any threshold graph has the x-colinear property and any quasi-threshold
graph has the a-colinear property. In this section we study the graphs that are characterized completely
by the x-colinear property or the a-colinear property. We call these graphs colinear and linear graphs
and as we next show they constitute two new classes of perfect graphs.

Definition 2.5. A graph G is called colinear if and only if G has the x-colinear property, i.e., x(Ga) =
MGa), VA C V(G). A graph G is called linear if and only if G has the a-colinear property, i.e.,
a(Ga) = AGa), VA CV(QG).

From Proposition 2.6 we know that any threshold graph is a colinear graph. However, not any
colinear graph is a threshold graph. Indeed, Chvatal and Hammer [17] showed that threshold graphs are
(2K3, Py, Cy)-free and, thus, the graphs Py and Cy are colinear graphs but they are not threshold graphs
(see Figure 2.1). Therefore, we directly obtain the following result concerning the class of colinear graphs.

Proposition 2.10. Colinear graphs form a superclass of threshold graphs.

Moreover, from Proposition 2.7 we have that any colinear graph is a co-chordal graph. However, the
reverse is not always true. For example, the graph G in Figure 3.4 is a co-chordal graph but it is not a
colinear graph. Indeed, x(G) = 4 and A\(G) = 5. It is easy to see that this graph is also a split graph.
Moreover, not any colinear graph is a split graph, since the graph Cy is colinear but it is not a split graph.
However, there exist split graphs which are also colinear graphs; an example is the graph C5. Recall that

a graph G is a split graph if there is a partition of the vertex set V(G) = K + I, where K induces a
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Figure 2.3: Illustrating the graph Pg which is not a colinear graph, since x(Pg) # A(Ps).

clique in G and I induces an independent set; split graphs are characterized as (2Ks, Cy, Cs)-free graphs.
Thus, the following result holds.

Proposition 2.11. Colinear graphs form a subclass of co-chordal graphs.

We have proved that colinear graphs do not contain a 2K5 or an antihole. Note that, since C5 = C5
and also the chordless cycle C), is not 2Ks-free for n > 6, it is easy to see that colinear graphs are hole-
free. In addition, the graph Pg is not a colinear graph (see Figure 2.3). Thus, we obtain the following
result.

Proposition 2.12. If a graph G is colinear, then G is a (2K2, antihole, Pg)-free graph.

From Proposition 2.9 we obtain that any quasi-threshold graph is a linear graph. Again, the reverse
is not always true; an example is the graph P4, which is a linear graph but not a quasi-threshold graph.
Therefore, the following result holds.

Proposition 2.13. Linear graphs form a superclass of quasi-threshold graphs.

From Propositions 2.12 and 2.8 we obtain that linear graphs are (Cy, hole, Ps)-free graphs. Therefore,
it follows that any linear graph is chordal. However, the reverse is not always true, i.e., not any chordal
graph is linear; an obvious example is the graph Ps. Another interesting example is the complement G

of the graph illustrated in Figure 3.4, which is a chordal graph but not a linear graph. Indeed, «(G) = 4
and A(G) = 5. It is easy to see that this graph is also a split graph. Moreover, not any linear graph is
a split graph, since the graph 2K is linear but it is not a split graph. However, there exist split graphs

that are linear graphs; an example is the graph Cs5. Therefore, the following result holds.
Proposition 2.14. Linear graphs form a subclass of chordal graphs.

Proposition 2.14 implies that linear graphs are perfect graphs and, thus, it follows that any linear

graph satisfies a(G4) = w(Ga) = x(Ga), VA C V(G). Therefore, from Corollary 3.1 we obtain the
following characterization.

Proposition 2.15. Linear graphs are those graphs G for which the colinear chromatic number achieves
its theoretical lower bound in every induced subgraph of G.

From the results proved in this section, we conclude that colinear and linear graphs form two new
classes of perfect graphs. The inclusion relations among the classes of colinear graphs, linear graphs, and
other subclasses of co-chordal and chordal graphs are depicted in Figure 3.3.

In the next section we prove structural properties of linear graphs by studying the relation between
the class of strongly chordal graphs, which is a known subclass of chordal graphs [10, 27], and the class
of linear graphs.

2.6 Structural Properties

In this section we prove structural properties of linear graphs, by investigating the structure of their
forbidden induced subgraphs. In particular, we prove that any Ps-free chordal graph which is not a
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Figure 2.4: Tllustrating the inclusion relations among the classes of colinear graphs, linear graphs, and
other classes of perfect graphs.

linear graph properly contains a k-sun as an induced subgraph. Let us give the definitions of a k-sun and
an incomplete k-sun. An incomplete k-sun Sj (k > 3) is a chordal graph on 2k vertices whose vertex
set can be partitioned into two sets, U = {u1,uz,...,ux} and W = {w,ws, ..., wg}, so that W is an
independent set, and w; is adjacent to w; if and only if ¢ = j or i = j + 1 (mod k). A k-sun is an
incomplete k-sun Sy in which U is a complete graph.

The following definitions and results on strongly chordal graphs given in [14, 27], turn up to be useful
in proving structural properties of linear graphs.

Definition 2.6. (Farber [27]) A vertex ordering o = (v1,v2,...,v,) is a strong elimination ordering of
a graph G iff o is a perfect elimination ordering and also has the property that for each i, j, k and £, if
i <j, k<t v,v € N[v], and vy, € N[vj], then v, € Nv;]. A graph is strongly chordal iff it admits a
strong elimination ordering.

A vertex v of a graph G is called simple if {N[z] : € N[v]} is linearly ordered by inclusion. It has

been proved that a strong elimination ordering of a graph G is a vertex ordering (v1,v2, . .., v,) such that
for every i € {1,2,...,n} the vertex v; is simple in G; and also Ng, [v¢] C N¢, [vx] whenever i < £ < k and
vg, v € Ng, [v;] [14]; recall that for a given vertex ordering (v1,va, ..., v,) of a graph G, we denote by G;

the subgraph of G induced by the set of vertices {v;,vi41,...,v,}. Additionally, a graph G is strongly
chordal if and only if every induced subgraph of G has a simple vertex. Actually, if G is a non-trivial
strongly chordal graph, then G has at least two simple vertices [27].

The following characterization of strongly chordal graphs was proved by Farber [27].

Proposition 2.16. (Farber [27]) A chordal graph G is strongly chordal if and only if it contains no
induced k-sun.

We next prove the main result of this section. Let F be the family of all the minimal forbidden
induced subgraphs of the class of linear graphs, and let F; be a member of F which is a Ps-free chordal
graph. We show that F; properly contains a k-sun (k > 3) as an induced subgraph. It is easy to see that,
due to Proposition 3.2, it suffices to show both that any Ps-free strongly chordal graph is a linear graph,
and that the k-sun (k > 3) is a linear graph.

The proof that a k-sun (k > 3) is a linear graph is given in Lemma 2.3. In order to show that a
Ps-free strongly chordal graph G is a linear graph, we will prove that «(G4) = M(G4), VA C V(G). The
proof is completed in the following four parts:

(I) we construct a strong elimination ordering ¢ and a maximum independent set I of G with special
properties,
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(IT) we compute a vertex coloring & for the graph G using a(G) = |I| colors,
(IIT) we show that % is an optimal colinear coloring of G, and
(IV) we show that the equality A(G4) = a(G4) holds for every induced subgraph G 4 of G.

Next, we present our proof in detail. Throughout this section we denote by L the set of all the simple
vertices of G and by S the set of all the simplicial vertices of G; note that L C .S since a simple vertex is
also a simplicial vertex.

Part (I): Construction of I and o. Let G be a Ps-free strongly chordal graph, and let L be
the set of all the simple vertices in G. From Definition 2.6, G admits a strong elimination ordering.
Using a modified version of the algorithm given by Farber in [27] we construct a strong elimination
ordering ¢ = (v1,v2,...,v,) of the graph G having specific properties. Our algorithm also constructs
the maximum independent set I of G; since G is a chordal graph and ¢ is a perfect elimination or-
dering, we can use a known algorithm (e.g. see [37]) to compute a maximum independent set of the
graph G. Throughout the algorithm, we denote by GG; the subgraph of G induced by the set of vertices
V(G)\{v1,v2,...,vi—1}, where v1,vs,...,v;—1 are the vertices which have already been added to the
ordering o during the construction. Moreover, we denote by I'* the set of vertices which have not been
added to o yet and additionally do not have a neighbor already added to ¢ which belongs to I.

Algorithm 2 is a modified version of the algorithm given by Farber [27] for constructing a strong
elimination ordering ¢ and a maximum independent set I of G. Our algorithm in each iteration of Steps
3-5 adds to the ordering o all the vertices which are simple in GG;, while Farber’s algorithm selects only
one simple vertex of G; and adds it to o. We note that L; is the set of all the simple vertices of G;, and
also vy for & = i is that vertex of L; which is added first to the ordering o. It is easy to see that the
constructed ordering ¢ is a strong elimination ordering of G, since every vertex which is simple in G is
also simple in every induced subgraph of G. Clearly, the constructed set [ is a maximum independent
set of G.

From the fact that G is a Ps-free strongly chordal graph and from the construction of I and o we
obtain the following properties. Recall that the distance d(v,u) from vertex v to vertex u is the minimum
length of a path from v to u (note that within this chapter we consider length of a path the number of
edges in the path); d(v,u) = oo if there is no path from v to u.

Property 2.1. Let G be a Ps-free strongly chordal graph and let L be the set of all the simple vertices of
G. For each vertex v, ¢ L, there exists a chordless path of length at most 4 connecting v, to any vertex
v € L.

Property 2.2. Let G be a Ps-free strongly chordal graph, let L be the set of all the simple vertices of
G, and let I and ¢ = (v1,v2,...,v,) be the mazimum independent set and the ordering, respectively,
constructed by our algorithm. Then,

(i) ifvi ¢ L and i < j, thenv; ¢ L;
(ii) for each vertex v, ¢ I, there exists a vertex v; € I, i < x, such that v, € Ng,[vi].

Next, in Part, (IT) we describe an algorithm for computing a vertex coloring  of G using exactly a(G)
colors and, then, in Part (III) we show that x is a colinear coloring of G.

Part (II): The coloring k of G. Let G be a FPs-free strongly chordal graph, and let L (resp. S) be
the set of all the simple (resp. simplicial) vertices in G. We consider a maximum independent set I and
a strong elimination ordering o of G, as constructed in Part (I). Now, in order to compute the colinear
chromatic number A(G) of G, we compute a vertex coloring s of G using a(G) colors and, then, we show
that & is a colinear coloring of G. Actually, in Parts (IT)-(III) we show that we can compute a colinear
coloring of any Ps-free strongly chordal graph with A(G) = a(@) colors, by using the constructed strong
elimination ordering o of G.

21



Algorithm Strong_Elimination_Ordering

This algorithm is a modified version of Farber’s algorithm for constructing a strong elimination ordering
o and a maximum independent set I of a strongly chordal graph G.

Input: a strongly chordal graph G,

Output: a strong elimination ordering ¢ and a maximum independent set I of G;
1.set I=0,I*=V(G), 0 =0, n=|V(G)|, and Vo = V(G);

2. Let (Vp, <o) be the partial ordering on V; in which v <g « if and only if v = w.
set V1 =V(G) and i = 1;

3. Let G; be the subgraph of G induced by V;, that is, V; = V(G;).
construct an ordering on V; by v <; w if v <;_1 u or Ng,[v] C Ng, [u];

4. Let L; be the set of all the simple vertices in G;.
k =1;
while L; # () do
o construct an ordering on Vi, by v <y u if v <gx_1 u or Ng, [v] C Ng, [ul;
choose a vertex vy, which belongs to L; and is minimal in (Vj, <j), and add it to o;
set Vk+1 = Vk\{vk} and L; = L,-\{vk};
oif vy € I" then
set I =TU{v,} and I* = I"\{u };
delete all neighbors of v from I*;
oset k=k+1;
end-while;

i =k;

5. if i =n+1 then output the ordering ¢ = (v1,va,...,v,) of V(G) and stop;
else go to step 3;

Algorithm 2: Algorithm Strong_Elimination_Ordering

First, we compute a vertex coloring « of G using a(G) colors as follows:

1. Successively visit the vertices in the ordering o from left to right, and assign the color x(v;) to the
first vertex v; € I which has not been assigned a color yet.

2. For every uncolored vertex v, € Ng,(v;), if the collection {Ng[v;] : v; € Ng,[v;] and k(v;) =
k(v;)} U{Ng[vk]} is linearly ordered by inclusion, then assign the color k(vg) = k(v;) to the vertex
Vk -

3. Repeat steps 1 and 2 until there are no uncolored vertices v; € I in G.

Based on this process, we obtain that every vertex v; belonging to the maximum independent set
I of G is assigned a different color in step 1, and for each such vertex v; the collection {Ng[v;] : v; €
Ng,[vi] and k(v;) = k(v;)} is linearly ordered by inclusion. Therefore, we have assigned «(G) colors to
the vertices of G. Now, if we show that there is no vertex in ¢ which has not been assigned a color, then
it follows that « is a colinear coloring of G with a(G) colors, since by the computation of & the collection
{Ng|ve] : k(ve) = j} is linearly ordered by inclusion for all j € {1,2,...,a(G)}.

The following property will be used for proving Lemma 2.1. The property holds, since simple vertices
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are simplicial vertices, and for every simple vertex v € L the set {Ng[v,] : v € Ng,[v]} is linearly ordered
by inclusion.

Property 2.3. For every simple vertex v; € LN I of G, every uncolored vertex v, € Ng,[v;] i3 assigned
the color k(v;) = k(v;) during the coloring k of G. Additionally, for each vertex v, ¢ L, if there exists
a vertex v € L such that vv, € E(G), then v, is assigned the color k(v,) = k(v') from a simple vertex
v e L, v <w.

Note that x is not a proper vertex coloring of G. Actually, since Lemma 2.1 holds, from Proposi-
tion 4.10 it follows that & is a proper vertex coloring of G.

Part (III): The coloring « is a colinear coloring of . In this part we prove the following result,
by showing that there is no vertex in ¢ which has not been assigned a color during the coloring «.

Lemma 2.1. The coloring & is a colinear coloring of G.

Proof. Let G be a Ps-free strongly chordal graph, and let L (resp. S) be the set of all the simple (resp.
simplicial) vertices in G. We consider a maximum independent set I, a strong elimination ordering o,
and a coloring x of G, as computed above. Hereafter, for two vertices v; and v; in the ordering o, we say
that v; < v; if the vertex v; appears before the vertex v; in o.

Next, we show that there is no vertex in ¢ which has not been assigned a color during the coloring «,
and since the collection {Ng[vg] : k(vy) = j} is linearly ordered by inclusion for all j € {1,2,..., a(G)},
from Proposition 4.11 it follows that & is a colinear coloring of G.

Assume that there exists at least one uncolored vertex v; in G. It follows that v; ¢ I, since otherwise
v; would have been assigned a color in step 1 of the coloring k. Therefore, from Property 2.2(ii) v; has a
neighbor to its left in ¢ which belongs to the independent set I. Let v; be the leftmost vertex in o which
belongs to the independent set I and did not color all its neighbors to its right in o, and let v; be the
leftmost such uncolored neighbor of v; in o. Next, we distinguish two cases regarding the vertex v; € I;
in the first case we consider v; to be a simplicial vertex, i.e., v; € S, and in the second case we consider
v; ¢ S. In both cases we show that our assumptions come to a contradiction.

Case 1: The vertex v; € I and v; € S. Since ¢ is a strong elimination ordering, each vertex v; € [ is
simple in G; and, thus, {Ng,[vg] : v, € Ng,[vs]} is linearly ordered by inclusion. Also, by definition, if
v; € L then the collection {Ng[vg] : v € Ng,[v;]} is linearly ordered by inclusion. Thus, v; € TN S and
v; ¢ L, since otherwise v; could have been assigned the color k(v;) = k(v;).

Therefore, there exists a neighbor v, of v; such that v; < vy < vj, k(vr) = k(v;), and neither
Nglvk] € Nglvj] nor Nglvg) 2 Nglvj]; recall that Ng,[vg] € Ng,[v;]. In the case where the equality
N, [vr] = Ng,[v;] holds, without loss of generality, we may assume that the degree of vy, in G is less
than or equal to the degree of v; in G (note that in this case o is still a strong elimination ordering).

Since neither Nglvi] € Ng[vj] nor Nglvr] 2 Nglvj], there exist vertices vo and v in G such that
vg € Ngluvgl, va ¢ Nglvj], vs € Nglv;], and vs ¢ Nglvg]. Since Ng, [vi] € Ng,[v;], it is easy to see that
ve < v; in 0. By the assumption that v; is the leftmost vertex in ¢ which belongs to the independent set
I and has not colored all its neighbors to the right, and since x(vg) = s(v;) it follows that ve ¢ I. Thus,
from Property 2.2(ii) there exists a vertex vgy € I, such that vg < v2 and vy € Ng[vg]. Additionally, since
k(vg) = k(v;) and G is chordal it holds that vy, v; ¢ Ng[vs]. Hence, the subgraph of G induced by the
vertices {va, v2, vk, vj,v3} is a Ps. Concerning now the position of the vertex vz in the ordering o, we can
have either v3 < v; or vg > v;. We will show that in both cases we come to a contradiction to our initial
assumptions; that is, either it results that G has a Ps as an induced subgraph or that the vertices should
be added to ¢ in an order different than the one originally assumed.

Case 1.1. vz < v;. Assume that v; has a neighbor v3 < v;. Since v; is the leftmost vertex in ¢ which
belongs to the independent set I and has not colored all its neighbors to the right, it follows that vs ¢ I,
since otherwise v; would have taken the color k(v;) = k(vs) during the coloring & of G. Thus, similarly
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Figure 2.5: Tllustrating Case (A) and Case (B.a)

to the above, from Property 2.2(ii) there exists a vertex vy € I, such that vs < vs and vz € Nglvs].
Therefore, the vertices {v4, v2, vg,vj,v3,v5} induce a Ps in G, which is also chordless since G is chordal.

Case 1.2. v3 > v;. Assume that v; does not have a neighbor v3 < v;, i.e., it has a neighbor vz > v;.
Since v; ¢ L, from Property 2.2(i) it follows that vs ¢ L. Thus, from Property 2.1 we obtain that there
exists a chordless path of length at most 4 connecting vs ¢ L to any vertex v € L. The vertex vq may be
a simple vertex or not. However, we know that in a non-trivial strongly chordal graph there exist at least
two non adjacent simple vertices [27]. Thus, there exists a vertex v € L, v # vy, such that the distance
d(v,v3) of vg from v is at most 4, due to Property 2.1. Let d,,(vs,v) = max{d(vs,v): Yv € L, v # v4}.
Since vs ¢ L and G is a FPs-free graph, it follows that 1 < d, (v, vs) < 4.

Next, we distinguish four cases regarding the maximum distance d,(vs,v) and show that each one
comes to a contradiction. In each case we have that {v4,v2, v, v;,v3} is a chordless path on five vertices.
We first explain what is illustrated in Figures 2.5 and 2.6. Let G, be the induced subgraph of G, such
that during the construction of ¢ the vertex v; becomes simple in G, i.e., v; € Ly and vy < v;. In the
two figures, the vertices are placed on the horizontal dotted line in the order that appear in the ordering
o. For the vertices which are not placed on the dotted line, we are only interested about illustrating the
edges among them. The vertices which are to the right of the vertical dashed line belong to the induced
subgraph G, of G. The dashed edges illustrate edges that may or may not exist in the specific case.
Next, we distinguish the four cases, and show that each one of them comes to a contradiction:

Case (A): dp,(v3,v) = 1.

It is easy to see that v;v ¢ F(G), since otherwise v; would have been assigned the color k(v) due
to Property 2.3, and would not be an uncolored neighbor of v; as assumed. Thus, in this case there
exists a Ps in G induced by the vertices {v4, v2, vg, v}, vs,v}; since G is a chordal graph, other edges
among the vertices of this path do not exist. This is a contradiction to our assumption that G is a
Ps-free graph.

Case (B): d,,,(vs,v) = 2.

In this case there exists a vertex vs such that {vs,vs,v} is a chordless path from vs to v. It follows
that there exists a P7 induced by the vertices {va,vs, vk, vj,v3,v5,v}. Having assumed that G is
a Ps-free graph, the path {v4,vs, vy, v;,v3} is chordless and v;,v;, ¢ Ng[v] due to Property 2.3,
we obtain that vjus € E(G) and vivs € E(G). Next, we distinguish three cases regarding the
neighborhood of the vertex vs in G and show that each one comes to a contradiction.

(B.a) The vertex w3 does not have neighbors in G other than vs and v;. We will show that vs
becomes simple before v; becomes simple. Assume otherwise that v; becomes simple not after
v3 becomes simple. Since by assumption v < v; we know that v, becomes simple not after
v; becomes simple. Therefore, v, becomes simple not after vs becomes simple. Assume that
vy, becomes simple in a subgraph G’ of G. We have assumed that vo < v; < v and, thus,
v9 and v; have been already added to o. It follows that vs has not been already added to o,
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Case(B.b) Case(B.c)
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Figure 2.6: Tllustrating Cases (B.b) and (B.c) of the proof.

(B.c)

since it cannot become simple before at least one between v, and vs is added to o. Therefore,
when vy, becomes simple in G, it follows that either Ng,[vs] C Ng,[v;] or Ng, [vs] D Ng, [v;].
Therefore, since we have assumed that vz does not have neighbors in GG other than vs and vj,
it follows that v3 becomes also simple in G’, along with v;,. However, v; is not simplicial in G’
since vivs ¢ E(G) and, thus, v; is not simple in G’. Therefore, vs will be added to o before
v; will be added to o.

Additionally, since vs sees the simple vertex v, from Property 2.3 it follows that vs will be
assigned a color from a simple vertex and vs ¢ I. Moreover, by assumption v; ¢ I. Therefore,
v3 € I and since we have showed that vs < v;, it follows that v; is the only uncolored neighbor
of w3 to its right in ¢ and, thus, v; will be assigned the color k(vj) = k(v3). This is a
contradiction to our assumption that v; has not been assigned a color.

So far, we have shown that if the vertex vz does not have neighbors in G other than vs and v,
then we come to a contradiction to our assumptions. Since we initially assumed that vg > v;
in o, i.e., that vs does not become simple before v; becomes simple, we continue by examining
the cases where v3 has neighbors in Gy other than vs and v;.

The vertex vs has two neighbors vs and vf in Gy, such that vsvy ¢ E(G). Since we have
assumed that the maximum distance of the vertex vz from v in G, for any vertex v € L,
v # vy, 18 dp(vs,v) = 2, and vs has no neighbor belonging to L since G is a Ps-free graph,
it follows that vs,vf ¢ L and there exist vertices v,v’ € L such that the vertices {vs,vs,v}
induce a chordless path from vz to v and {vs,vl, v’} induce a chordless path from vs to v'. Tt
is easy to see that v # v’ and vv’ ¢ E(G) since G is a chordal graph. Therefore, from Case
(B.a) we have vy,v; € Ng[vs| and vy, v; € Ng[vg]. However, in this case there exists a Cy4 in
G induced by the vertices {vs,vs, v§, vy}, since by assumption vsv} ¢ E(G) and vsvy, ¢ E(G).
Concluding, the vertex vs cannot have two neighbors vs and v{ in G, such that vsvf ¢ E(G).
Thus, vz € S.

The vertex vz has two neighbors vs and vi (where vs # v; and vy # v;) in Gy, such that
vsvs € E(G), but neither Ng, [vs] € Ng, [v5] nor Ng, [vs] € Ng, [vs]; thus, there exist vertices
ve and vg in Gy such that vsvs € E(G) and vsvg ¢ E(G) and, also, vivg € E(G) and
vive ¢ E(G). Since v € S, it follows that ve, vg ¢ Nglvs]. Since dy,(vs,v) = 2, there exists
a vertex v € L such that {vs,vs,v} is a chordless path from vs to v. Similarly, there exists
a vertex v’ € L such that {vs,vs,v’} is a chordless path from v3 to v'. We have that v # v/,
vl ¢ E(G) and v'vs ¢ E(G), since otherwise v and v” would not be simple in G. Additionally,
w' ¢ E(G), vug ¢ E(G), and v'vg ¢ E(G), since G is a chordal graph. Therefore, from Case
(B.a) we have vy, v; € Ng[vs] and vg,v; € Ng[vs]. Assume that there exist vertices v”, 0" € L,
such that vev”" € E(G) and vgv” € E(G). It is easy to see that at least one of the equivalences
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v =" and v’ = v” holds, otherwise G has a Ps induced by the vertices {v"’, ve, vs, v§, vg, v" }.

Without loss of generality, assume that v = v"”’ holds.

Since v € L, vs,v6 € Ng[v], v € Nglvs], and v§ ¢ Nglvs], it follows that Ng(vs] C Ng(vs].
In the case where vg,v; ¢ Nglvg] we have vg € L and, thus, vg would be added to o in
the first iteration which is a contradiction to our assumption that v € G,. Assume that
vjve € E(G); it follows that vive € E(G), since otherwise G has a Ps induced by the vertices
{v4,v2, vk, vj,v6,v}. If v/ = 0", the same arguments hold for vg too and, thus, if vjvs € E(G)
then vpvg € E(G). In the case where v/ # v” we have vjvy, € E(G), since otherwise G has a
Ps induced by the vertices {v4,va, vk, v, vg,v"}. Thus, in any case vg, vg € Ng[vg], and G has

a 3-sun induced by the vertices {uvy, vs, v5, vg, v6, v3}. Since other edges between the vertices

59
of the 3-sun do not exist, it follows that at least one of the vertices vg and v does not belong
to the neighborhood of vj and, thus, of v; in G. Without loss of generality, let v be that
vertex. Thus, vg € L and, subsequently, vg will be added to ¢ during the first iteration. Thus,
vs is simple and will be added to ¢ during the second iteration, along with vs, while v; will
be added to o after the second iteration (i.e., vs < v, < v;). This is a contradiction to our

assumption that vg > v;.

Using similar arguments, we can prove that vs will be added to ¢ before v;, even if there
exist edges between vy and the vertices vs, vf, ve, and vg. Actually, it easily follows that
vovg ¢ E(G), since vgvy ¢ E(G) and G is a chordal graph. Additionally, vovs ¢ E(G),
since we know that vsv§ ¢ E(G), vyvs ¢ E(G) and ve is simple in Ga. Therefore, whether
vk, vovg € E(QG) or not, it does not change the fact that vs becomes simple after the first
iteration and, thus, vs is added to ¢ before v;. Note, that even in the case where v = vy or
v’ = vy (in the case where vy € L), it similarly follows that vg € L or vg € L respectively and,
thus, vz becomes simple after the first iteration and is added to o before v;.

Case (C): d,,(vs,v) = 3.

In this case there exist vertices vs and vg such that {vs,vs,vs,v} is a chordless path from vs to v.
Since now G has a P, it follows that vsv; € E(G) and, additionally, some other edges must exist
among the vertices vy, vy, v;, vs, and vg. In any case, we will prove that either Ng([vs] € Ngv;] or
N¢lv;] € Nglus] and, thus, v € L. Similarly to Case (B), we distinguish three cases regarding the
neighborhood of the vertex v3 in G and show that if vs ¢ L then each one comes to a contradiction.

(C.a) The vertex vs does not have neighbors in G other than vs and v;. Since vsv; € E(G)
then some other edges must exist, since otherwise G has a P; induced by the vertices
{04,112701“0;‘705,06,”}

e Consider the case where vpvs € E(G). Then either vavs € E(G) or vpvg € E(G), since G
has a Ps. In the case where vovs € E(G) then v;vs € E(G). In the case where vivg € E(G)
then either v;v5 € E(G) or v;us € E(G). For both cases, assume that v;u5 € E(G). Since
vs and v; are adjacent to v and vs, and vyvs ¢ E(G), it follows that vs and v; cannot be
added to o unless at least one of v, and vz is added to o. Additionally, by assumption,
v; < v < vj and v; < vz. Thus, when v; is added to o it follows that v and vz have not
been added to o yet and, thus, vs and v; have not been added to o yet neither, i.e., v,
vs, s, and v; belong to G;. Thus, Ng, [vs] D Ng, [v;].

If vovs € E(G) then Ng,[vs] 2 Ng,[vg]. Then, since in Case 1.2 we have assumed that
there exists no vertex v, such that v, < v;, v,v; € E(GQ), and vyvy, ¢ E(G); thus, for every
neighbor v, of v; such that vy < v, < v, it follows that v,vs € E(G). Also, there exists
no vertex v, such that v, < vy and v,v; € E(G). Indeed, if we assume otherwise then
vV € E(G), and since vovy € E(G), it follows from Definition 2.6 that vov; € E(G).
This is a contradiction on the choice of vy. Summarizing, there exists no vertex v, such
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(C.b)

(C.c)

that v, < v, vpv; € E(G), and vyvs ¢ E(G). Therefore, since Ng,[vs] 2 Ng,[v;], it
follows that Ng[vs] 2 Ng[v;]. Thus, vs € L which is a contradiction.

Consider now the case where vovs ¢ E(G). In other words, vs does not have a neighbor
vy in o such that v, < v, v,up € E(G) and v,v; ¢ E(G). Then vivg € E(G) and
either v;vs € F(G) or vius € E(G). We now show that in both cases vjug € E(G). If
v;vs € E(G) then either v < v; or vgv; € E(G), since Ng,[vi] € Ng,[v;]. However,
even if vs < v; then again vsv; € E(G), since we have proved that vs does not have a
neighbor v, in o such that v, < v;, v, € E(G) and vv; ¢ E(G). Also, if vivs € E(G)
then again vev; € E(G), since v; € S. Therefore, in both cases vsv; € E(G). We now
show that vs does not have a neighbor v, such that v, < v; and v,v; ¢ E(G). Indeed,
if such a vertex v, exists then also v,v, ¢ E(G). If v, € L then k(vs) = k(v); thus,
we can prove similarly to Case (B.a) that vs < v; and k(vj) = k(v3). In the case where
v, ¢ L, then d(v,,v;) > 1 for any vertex vy € L; in this case it follows that G has a
Ps induced by the vertices {v4, va, v, V5,05, v¢}, since vyvp ¢ E(G). Therefore, we have
showed that vs does not have a neighbor v, such that v, < v; and vyv; ¢ E(G). Assume
that vs has a neighbor v, such that v, > v; and v,v; ¢ E(G). Then vyvy, ¢ E(G) since
Ng, [vi] C Ng,[v;]. Similarly to the above it follows that if v5 has such a neighbor v, then
either v, € L or G has a Ps. Therefore, we have showed that Ng[vs] C Ng[v;] and, thus,
vy € L which is a contradiction.

e Consider now the case where vivs ¢ E(G). Then vy,v; € Nglug, since otherwise G has
a Ps. Assume that vs has a neighbor v,, such that v,v; ¢ E(G). Since vgus ¢ E(G), it
follows similarly to the above that in this case G has a Ps. Therefore, we have showed
that Ng(vs] € Ng(v;] and, thus, v3 € L which is a contradiction.

The vertex vs has two neighbors vs and v in Gy, such that vsvg ¢ E(G). Using the same
arguments as in Case (B.b), we obtain that in this case G has a Cy which is a contradiction
to our assumptions.

The vertex vz has two neighbors vs and vy (where vs # v; and vy # v;) in Gy, such that
vsvg € E(G), and neither Ng, [vs] C Ng, [vs] nor Ng, [vs] € Ng, [vs]; that is, there exist
vertices vg and vg in Gy such that vsve € E(G) and vsvg ¢ E(G) and, also, vivg € E(G) and
vive ¢ E(G). Similarly to Case (B.c), we can prove that this case comes to a contradiction as
well. Note that, in this case d,,, (vs,v) = 3 and, thus, there exists a chordless path {vs,vs5,v7,v}
from v3 to v. Again, at least one of v = v/ and v/ = v” must hold, since otherwise G has a
Ps induced by the vertices {v"”’, vg, vs, v, vg, v’ }. Using the same arguments as in Case (B.c),
we obtain that if v = v" then vy, v; ¢ Nglvg]. However, now, we must additionally have
vevy € E(G), since otherwise G has a C4 induced by the vertices {v,v7,vs,vs}. Therefore, as
in Case (B.c) we obtain vg € L, which is a contradiction to our assumption that the vertex v;
appears in the ordering before the vertices vg, vg, vs, and v§.

Case (D): dy,(vs,v) = 4.

In this case there exist vertices vs, vg and vy such that {vs,vs,ve,v7,v} is a chordless path from vg

to v. Since now G has a Py, it follows that vsv; € E(G) and, additionally, some other edges must

exist. Similarly to Cases (A) and (B), we distinguish three cases regarding the neighborhood of the

vertex vs in G and show that if vs ¢ L then each one comes to a contradiction.

(D.a)

The vertex vz does not have neighbors in G other than vs and v;. If we assume that vz ¢ L,
then vs has a neighbor in G which is not a neighbor of v; and, additionally, v; has a neighbor
in G which is not a neighbor of vs. Thus, we can have one of the following three cases, each
of which comes to a contradiction:

e vy € Ng[vs] and v7 € Ng[v;]. Now, we have that vovs € E(G), since otherwise G has a P
induced by the vertices {v4, v2,vs, vg, v7,v}. However, in this case v would not be simple
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in G, where (G5 is the subgraph of G induced by the vertices to the right of vs in o, since
v7 € Nglvg] and vr ¢ Ng(vs] and, also, vs € Nglus] and vs ¢ Ngve]. Indeed, it suflices
to show that the vertices vs, vg, v7, and v3 belong to the induced subgraph G5 of G.

We know that vs,vs € Ng [vj] and, thus, vs > v; and vs > v; since we have assumed
that v; does not have a neighbor v,, such that v, < v;. Additionally, from v7 € Ng [vj] it
follows that v € Ng[v;], since otherwise G has a Cy induced by the vertices {v;, vs,ve, v7}.
Therefore, ve,v7 € Ng[v;] and, thus, v; < vs and v; < v7. Therefore, the vertices vs, ve,
vr7, and vs belong to the induced subgraph G5 of G, and thus, the vertex vy is not simple
in o, which is a contradiction to our assumption that o is a strong elimination ordering.

o v ¢ Nglus| and vg ¢ Ng[v;]. From vy ¢ Nglvs| we obtain that v, v; ¢ Ng[us]. In this
case G has a Py induced by the vertices {v4, v2, vk, v}, 5, v6,v7, v}. This path is chordless
since G is a chordal graph.

o v; ¢ Nglvs] and vs ¢ Ng[v;]. In this case, we have a Pg in G induced by the ver-
tices {v4,v2, vk, v}, 05,06, v7,v}; thus, vyvs € E(G). From v; ¢ Nglvs| we obtain that
ve ¢ Nglvs] and, thus, vevy € E(G). Now, G has a 3-sun induced by the vertices
{vs, vk, vj,v6,v;,v3}, since we have assumed that v,us ¢ E(G), vev; ¢ E(G), and other
edges do not exist by assumption. This is a contradiction to our assumption that G is a
strongly chordal graph.

Using similar arguments as in Case (B.a) and Case (C.a), we can prove that either Ng[vs] C
Nglvj] or Nglvj] € Nglvs] and, thus, vz € L. Similarly to Cases (B) and (C), we distinguish
three cases regarding the neighborhood of the vertex vs in G and can show that each one
comes to a contradiction.

(D.b) The vertex vs has two neighbors vs and vf in G, such that vsvf ¢ E(G). Using the same
arguments as in Case (B.b), we obtain that in this case G has a Cy4 which is a contradiction
to our assumptions.

(D.c) The vertex vg has two neighbors vs and vf (where vs # v; and v # v;) in Gy, such that vsvf €
E(G), and neither Ng, [vs] € Ng, [vs] nor Ng, [v5] € Ng, [vs]. Using the same arguments as
in Cases (B.c) and (C.c), we can prove that this case comes to a contradiction.

Case 2: The vertex v; € [ and v; ¢ S. Since o is a strong elimination ordering, each vertex v; € T
is simple in G; and, thus, {Ng,[vr] : vr € Ng,[v;]} is linearly ordered by inclusion. Since v; is not
a simplicial vertex in G, there exist at least two vertices v1,v2 € Ng(v;) such that vivs ¢ E(G) and
vy < v; < wva. If there exists a neighbor vy, of v; such that v; < vy < v; and neither Ng[vi] € Ng[v;] nor
Nglvk] 2 Nglvj], then as we showed in Case 1, we come to a contradiction; recall that we have assumed
that »; is the uncolored vertex.

Assume that such a vertex vy does not exist. Therefore, since k(v;) # x(v;) it follows that neither
Nglvi] € Nglv;] nor Nglv;] 2 Nglvj] and, thus, there exists a vertex vs such that va < v; < vj,
vov; € E(G), and vpv; ¢ E(G). Additionally, there exists a vertex vs in ¢ such that vsv; ¢ E(G) and
v3v; € E(G). Thus, {vs,v;,vj,vs} is a chordless path on 4 vertices. Additionally, since v, is a neighbor
of v; € I it follows that ve ¢ I, and from Property 2.2(i) it follows that there exists a vertex v4 € [ in o
such that vy < v2 and vqvy € E(G). Therefore, {v4,v2,v;,v;,v3} is a chordless path on 5 vertices. Using
the same arguments as in Case 1, we can come to a contradiction by substituting vy by v; in the proof
of Case 1.

From Cases 1 and 2 we conclude that using the constructed strong elimination ordering o of G, we
have proved that there is no uncolored vertex in o, and since the set {Ng[vg] : k(vr) = 7} is linearly
ordered by inclusion for every j € {1,2,...,a(G)}, it follows that & is a colinear coloring of G. Thus, the
lemma holds.

1
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Part (IV): The equality \(G4) = a(G4) holds for every A C V(G). It is easy to see that, in
Parts (I)—(III), we have showed that we can assign a colinear coloring with A(G) = «(G) colors to any
Ps-free strongly chordal graph, by using the constructed strong elimination ordering o of G.

From Corollary 3.1, we have that A(G) > a(G) holds for any graph G. Since & is a colinear coloring of
G using a(@) colors, it follows that the equality A(G) = «(G) holds for GG. Since every induced subgraph
of a strongly chordal graph is strongly chordal [27], we can construct a strong elimination ordering o as
described above for every induced subgraph G4 of G, VA C V(G); thus, we can assign a coloring & to
G4 with a(G4) colors. Concluding, the equality AM(G4) = a(G 4) holds for every induced subgraph G 4
of a strongly chordal graph G and, therefore, any strongly chordal graph G is a linear graph.

Therefore, in Parts (I)-(IV) we have proved the following result.
Lemma 2.2. Any Ps-free strongly chordal graph is a linear graph.
From Lemma 2.2, we obtain the following result.
Lemma 2.3. If G is a k-sun graph (k > 3), then G is a linear graph.

Proof. Let G be a k-sun graph. It is easy to see that the equality «(G) = A(G) holds for the k-sun G.
Since a k-sun constitutes a minimal forbidden subgraph for the class of strongly chordal graphs, it follows
that every induced subgraph of a k-sun is a strongly chordal graph and, thus, from Lemma 2.2 we obtain
that G is a linear graph. 1

From Lemmas 2.2 and 2.3, we also derive the following results.
Proposition 2.17. Linear graphs form a superclass of the class of Ps-free strongly chordal graphs.

We have proved that any Pgs-free chordal graph which is not a linear graph has a k-sun as an induced
subgraph; however, the k-sun itself is a linear graph. The interest of these results lies on the following
characterization that we obtain for the class of linear graphs in terms of forbidden induced subgraphs.

Theorem 2.1. Let F be the family of all the minimal forbidden induced subgraphs of the class of linear
graphs, and let F; be a member of F. The graph F; is either a C,, (n > 4), or a Ps, or it properly contains
a k-sun (k > 3) as an induced subgraph.

In light of the above result, it would be interesting to investigate whether or not linear graphs are
characterized completely by a finite set of forbidden induced subgraphs. To this end, we need to investigate
the Ps-free chordal graphs which are forbidden subgraphs for linear graphs; as we have shown these
graphs properly contain a k-sun. An example of such a graph is the complement of the graph depicted
in Figure 3.4; this graph is a Pg-free chordal graph on 9 vertices which properly contains a 4-sun, and is
not a linear graph.

In general, an example of a forbidden induced subgraph of linear graphs is a graph H on 2k-+1 vertices
which properly contains a k-sun Sy, (k > 4) such that H = {v} U {u1,u2,...,up} U{wr,we,...,wi} and
v is adjacent to every vertex of the clique W = {w1, w2, ..., w;} and to exactly two vertices, say, u; and
u; (j < i) of the independent set U = {uy,usg,...,ur} such that i # j + 1 (mod k); recall that U is
the independent set and W is the clique of the sun Sj. We claim that the Ps-free chordal graphs which
are forbidden subgraphs for linear graphs do not restrict to graphs with such a structure and, also, that
linear graphs are characterized completely by a finite set of forbidden induced subgraphs.

A finite set of forbidden subgraphs could lead to a recognition algorithm for linear graphs. Such an
algorithm would require the detection of graphs of a specific structure which properly contain a k-sun. It
is worth noting that finding a k-sun in a general graph has been recently proved to be NP-complete [43].
However, one can answer the question whether or not a chordal graph G contains a k-sun by using
Farber’s algorithm [27]; if G contains a k-sun as an induced subgraph, Farber’s algorithm reports that
G is not a strongly chordal graph and, also, returns an induced subgraph of G which contains a k-sun.
However, there is no known polynomial algorithm for detecting and reporting a k-sun in a chordal graph.
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Investigating an algorithm for detecting and reporting a k-sun in a chordal graph is of great interest,
since it could be a step toward the recognition of the class of linear graphs. Additionally, such an
algorithm along with a minimal set of forbidden induced subgraphs could help us to characterize and
provide properties of linear graphs which could be used for finding polynomial solutions for problems on
linear graphs, which are NP-complete on chordal graphs.

2.7 Concluding Remarks

In this work we introduced the colinear coloring on graphs, and proposed a colinear coloring algorithm
that can be applied to any graph G. Based on the colinear coloring we defined two graph properties,
namely the y-colinear and a-colinear properties, and characterized known graph classes in terms of
these properties. We also studied the graphs that are characterized completely by the x-colinear or the
a-colinear property, which form two new classes of perfect graphs, namely colinear and linear graphs.

An interesting question would be to study structural and recognition properties of colinear and linear
graphs and see whether they can be characterized by a finite set of forbidden induced subgraphs. More-
over, an obvious though interesting open question would be whether combinatorial and/or optimization
problems can be efficiently solved on the classes of linear and colinear graphs. In addition, it would be
interesting to study the relation between the colinear chromatic number and other coloring numbers such
as the harmonious number and the achromatic number on classes of graphs.

30



CHAPTER 3

THE HARMONIOUS COLORING PROBLEM

3.1 Introduction

3.2 Connected Interval and Permutation Graphs

3.3 Harmonious Coloring on Split Graphs

3.4 Harmonious Coloring on Colinear Graphs

3.5 Harmonious Coloring on Split Strongly Chordal Graphs

3.6 Concluding Remarks

3.1 Introduction

A harmonious coloring of a simple graph G is a proper vertex coloring such that each pair of colors
appears together on at most one edge, while the harmonious chromatic number h(G) is the least integer
k for which G admits a harmonious coloring with k colors [13].

Several NP-complete problems on arbitrary graphs admit polynomial solutions when restricted to the
classes of strongly chordal graphs, undirected path graphs, and interval graphs (see e.g. [1, 7, 20, 28,
38, 49, 51, 52]). However, the pair-complete coloring problem, which is NP-hard on arbitrary graphs
[67], remains NP-complete when restricted to graphs that are simultaneously interval and cographs [8].
A pair-complete coloring of a simple graph G is a proper vertex coloring such that each pair of colors
appears together on at least one edge, while the achromatic number 1(QG) is the largest integer & for which
G admits a pair-complete coloring with % colors. The achromatic number was introduced in [41, 42].

Bodlaender [8] provides a proof for the NP-completeness of the pair-complete coloring problem for
disconnected cographs and interval graphs and extends his results for connected such graphs. His proof
also establishes the NP-hardness of the harmonious coloring problem for disconnected interval graphs
and cographs. Note that the problem of determining the harmonious chromatic number of connected
cographs is trivial, since in such a graph each vertex must receive a distinct color as it is at distance at
most 2 from all other vertices [13]. On the contrary, although the harmonious coloring problem is NP-
complete for disconnected interval graphs, the complexity of the problem for connected interval graphs is
not straightforward. Moreover, the NP-hardness of the pair-complete coloring problem for cographs also
establishes the NP-hardness of the pair-complete coloring problem for the class of permutation graphs,
and, also, the NP-hardness of the harmonious coloring problem when restricted to disconnected permu-
tation graphs. However, the complexity of the harmonious coloring problem for connected permutation
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graphs has not been studied. Motivated by these issues we prove that the harmonious coloring problem is
also NP-complete for connected interval and permutation graphs. In addition, we show that the problem
remains NP-complete for the class of split graphs.

Additionally, the NP-completeness of the problem has been also proved for the classes of trees and
disconnected bipartite permutation graphs [25, 26], connected bipartite permutation graphs [2], and
disconnected quasi-threshold graphs [2]. Since the problem of determining the harmonious chromatic
number of a connected cograph is trivial, the harmonious coloring problem is polynomially solvable on
connected quasi-threshold graphs and threshold graphs.

Since we prove that the harmonious coloring problem is NP-complete on interval graphs, we obtain
that the problem is also NP-complete on the classes of strongly chordal and undirected path graphs.
Extending our results for the harmonious coloring problem on interval graphs and split graphs, in this
work we also study the complexity status of the harmonious coloring problem on two subclasses of colinear
graphs; for definitions and results on colinear and linear graphs see Chapter 2. We first show that the
harmonious coloring problem is NP-complete on split undirected path graphs and, then, we show that
the class of split undirected path graphs forms a subclass of colinear graphs; thus, we obtain the NP-
completeness of the harmonious coloring problem on colinear graphs as well. Moreover, we provide a
polynomial solution for the harmonious coloring problem on split strongly chordal graphs, the interest of
which lies on the fact that the problem is NP-complete on both split graphs and strongly chordal graphs.
However, the complexity status of the problem for the class of connected linear graphs still remains an
open question; note that the harmonious coloring problem is NP-complete on disconnected linear graphs,
since it is NP-complete on disconnected quasi-threshold graphs [2] and quasi-threshold graphs form a
subclass of linear graphs.

The rest of this chapter is organized as follows. In Section 3.2 we we prove that the harmonious
coloring problem is NP-complete on connected interval and permutation graphs, while in Section 3.3 we
prove the NP-completeness of the problem on split graphs. In Section 3.4 we prove that the problem
remains NP-complete for split undirected path graphs; we also prove that the problem is NP-complete
for colinear graphs by showing that split undirected path graphs form a subclass of colinear graphs.
Moreover, in Section 3.5 we provide a polynomial solution for the harmonious coloring problem for the
class of split strongly chordal graphs. Some concluding remarks follow.

3.2 Connected Interval and Permutation Graphs

The formulation of the harmonious coloring problem in [13] is equivalent to the following formulation.

Harmonious Coloring Problem

Instance: Graph G, positive integer K < |V(G)].

Question: Is there a positive integer k¥ < K and a proper coloring using & colors such that each pair of
colors appears together on at most one edge?

We next prove our main result of this section, that is, the harmonious coloring problem is NP-complete
for connected interval graphs.

Theorem 3.1. Harmonious coloring is NP-complete when restricted to connected interval graphs.

Proof. Harmonious coloring is obviously in NP. In order to prove NP-hardness, we use a transformation
from a strongly NP-complete problem, that is, the 3-PARTITION problem. The formulation of the
3-PARTITION problem [33] is presented below.

3-PARTITION

Instance: Set A of 3m elements, a bound B € ZT, and a size s(a) € ZT for each a € A, such that
1B < s(a) < 3B, and such that >, s(a) = mB.

Question: Can A be partitioned into m disjoined sets Ai, As,..., Ay such that, for 1 < ¢ < m,
Y e A, s(a) = B (note that each A; must therefore contain exactly three elements from 4)?
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Figure 3.1: Illustrating the constructed connected interval and permutation graph G.

Let aset A = {a1,...,as,} of 3m elements, a positive integer B and let positive integer sizes s(a;) for
each a; € A be given, such that {B < s(a;) < 3B, and such that > a,ca5(a;) =mB. We may suppose
that, for each a; € A, s(a;) > m (if not, then we can multiply all s(a;) and B with m + 1).

Extending the result of Bodlaender [8], we construct the following connected graph which is an interval
and a permutation graph: Consider a clique with m vertices, a clique with B vertices, and add a vertex
v that is connected to every vertex in the two cliques; let (G1 be the resulting graph. Next we construct
for every a; € A a tree T; of depth one with s(a;) leaves and root x;, that is, every leaf is adjacent to the
root; note that there are 3m such trees Th,Ts, ..., T5y,. Then we construct a path P = [v1,va,...,v3m]
of 3m vertices, and we connect each vertex v; of the path P to all the vertices of the tree T;, 1 < i < 3m.
Additionally, for each vertex v; € P, we add m —1+4 B —s(a;) +¢— 1 vertices and connect them to vertex
v;; let G5 be the resulting graph. Note that the graph G; U G5 is disconnected. Finally, we add an edge
to the graph G1 U G5 connecting vertices v; and v and let G be the resulting graph. The graph G is a
connected graph and it is illustrated in Fig. 3.1.

One can easily verify that G is an interval graph. A clique can be represented as a number of
intervals that share at least one point in common. Two cliques sharing a vertex u can be represented as
a number of intervals such that one of them, which corresponds to u, shares at least one point with the
intervals corresponding to the vertices of each clique. Thus, the vertices of G can be put in one-to-one
correspondence with a family of intervals on the real line such that two vertices are adjacent in G if and
only if their corresponding intervals intersect.

It is easy to see that the total number of edges in G is

3m
(5)+(2) et S (222
i=1

For every harmonious coloring of G and every pair of distinct colors i, j, i # j, there must be at most
one edge with its endpoints colored with i and j. Thus, it follows that the harmonious chromatic number
cannot be less than 4m + B + 1, and if it is equal to 4m + B + 1 then we have, for every pair of distinct
colors 7,7, 1 <14,5 <4m + B+ 1, a unique edge with its end-points colored with ¢ and j. Thus, we have
an exact coloring of G; an ezact coloring of G with k colors is a harmonious coloring of G with & colors
in which, for each pair of colors i, j, there is exactly one edge (a,b) such that a has color ¢ and b has
color j.

We now claim that the harmonious chromatic number of G is (less or equal to) 4m + B + 1 if and
only if A can be partitioned in m sets Ay,..., A, such that ZaeAj s(a) =B, forall j,1<j<m.
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(«<=) Suppose now a 3-partition of A in A;,..., A, such that Vj : ZaeAj s(a) = B exists. We
show how to find a harmonious coloring of G' using 4m + B + 1 colors. We color the vertices of the
first clique with colors 1,2,...,m, the vertices of the second clique with m + 1,m + 2,...,m + B, and
vertex v with m + B + 1. For convenience and ease of presentation, let M be the set containing colors
1,2,...,m, let B be the set containing colors m + 1,m + 2,...,m + B, and let K be the set containing
colorsm+ B +2,m+B+3,...,4m+ B+ 1. If a; € A; then we color the vertex x; with color j. Each
color j € M is assigned to the three vertices corresponding to three a; that have together exactly B
neighbors of degree 2. We assign to each one of these B neighbors a different color from B, and next we
assign to each vertex v; of the path P a distinct color from K. Recall that each vertex v;, 1 < i < 3m,
is connected to two other vertices of P, i.e., v;—1 and v;y1, and m + B + ¢ — 1 more vertices, vertex v; is
connected to vs, v and m + B other vertices, while vertex vs,, is connected to v3,;,—1 and m+ B+3m —1
more vertices (see Fig. 1).

Next, we color the rest m — 1+ B — s(a;) + i — 1 neighbors of each v;. We assign a distinct color
from the set M\c; to m — 1 neighbors of v;, where ¢; is the color previously assigned to the vertex x;.
We next assign a distinct color from the set B\C; to B — s(a;) neighbors of v;, where C; is the set of the
colors previously assigned to s(a;) neighbors of the vertex x;. Finally, we assign a different color to the
rest ¢ — 1 neighbors of v;, 3 <4 < 3m, using color m + b + 1 and the colors assigned to the vertices v;,
1 < j <i—2. Note that, in order to color the m + B — s(az) neighbors of v2, we only need to use color
m + B+ 1 and colors from M and B, while for the m — 1 + B — s(a1) neighbors of v; we only use colors
from M and B. A harmonious coloring of G using 4m + B + 1 colors results, and thus, the harmonious
chromatic number of G is 4m + B + 1.

(=) We next suppose that the harmonious chromatic number of G is (less or equal to) 4m + B + 1.
Consider a harmonious coloring of G using 4m + B + 1 colors. Without loss of generality we may suppose
that the m vertices of the first clique have distinct colors from M, while the B vertices of the second
clique have distinct colors from B. Also, without loss of generality, we color vertex v with color m+ B +1
since v is adjacent to all the vertices of the two cliques. Since vs,, is the vertex having the maximum
degree, that is, 4m + B, it has to take a color from K. Indeed, if it takes a color from M, then none of
its neighbors can take a color from M and we cannot color 4m + B vertices using only 4dm + B +1—m
colors. Using similar arguments, we cannot color vertex vs,, using a color from B or the color m + B + 1.
Thus, without loss of generality, we assign to vs,, the color 4m + B + 1. We color all its neighbors with
distinet colors from MUBU{m+ B+ 1} UK\{4m + B +1}. Note that, vertex vs,,_1 takes a color from
K\{4m + B + 1}; let 4m + B be this color. Indeed, using similar arguments, it cannot take a color from
MUBU{m+ B+ 1}U{4m + B + 1}. Note that, color 4m + B + 1 cannot be assigned to any other
vertex of G since any pair of colors (4m + B +1,5), 1 < j < 4m + B, already appears in the harmonious
coloring. Recall that, for every pair of distinct colors 7,7, 1 < 4,5 < 4m + B + 1, there is a unique edge
with its end-points colored with ¢ and 7. Recursively, as can easily be proved by induction on i, the same
holds for all v; € P, 1 < i < 3m — 2, that is, v; takes a color from K\L, where £ is the set containing
colorsm+B+1+i+1m+B+1+i+2,...,4m + B + 1, which are the colors already assigned to
vertices v;, i < j < 3m.

Note that pairs (u, v), p € M, v € B, have not appeared yet. Since every pair of colors must appear,
we assign these pairs to the mB edges that have both endpoints uncolored. Note that these edges are
the edges (a:i,y;:), 1 <i<3m,1<j < s(a;), where z; corresponds to a; and yj- corresponds to the
j-th neighbor of z; having degree 2. The vertices x; cannot take a color from B, otherwise its s(a;) > m
uncolored neighbors yj- cannot be colored with m colors from M. Thus, vertices z; are assigned a color
from M and vertices y; are assigned a color from B (recall that £ < s(a;) < £). Note that the only
uncolored vertices are m — 1 + B — s(a;) + ¢ — 1 neighbors of each v;, 1 < i < 3m. In order to color
m—14 B —s(a;) of the uncolored neighbors of v;, we use distinct colors from (M UB)\F, where F is the
set containing all colors already assigned to the s(a;) + 1 neighbors of v;. In order to color the last ¢ — 1
uncolored neighbors of v;, i > 1, we can only use colors from K\L\{m + B+ 1+1i,m + B + i} because
the only unused pairs are (m+ B +1+14,5), where m+ B+1<j<m+B+1+i—2.
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Finally, let a; € A; if and only if the vertex x; (with neighbors y;) is colored with color j € M. We
claim that for all j, ZaeAj s(a) = B. Indeed, each color j must be adjacent to some colors from B, and
each color from B is assigned to exactly one vertex which is adjacent to all x; colored with j. Hence, a
correct 3-partition exists.

The theorem follows from the strong NP-completeness of 3-PARTITION, since the transformation
can be done easily in polynomial time. 1

We can easily show that the interval graph G illustrated in Fig. 3.1 is also a permutation graph. The
graph G is an interval graph if and only if it is a chordal graph and the graph G is a comparability graph
[37]. Moreover, one can easily verify that G admits an acyclic transitive orientation and, thus, it is a
comparability graph. Since G and G are comparability graphs, it follows that G is a permutation graph
[37]. Consequently, we can state the following theorem.

Theorem 3.2. Harmonious coloring is NP-complete when restricted to connected permutation graphs.

We have shown that the connected interval graph G presented in this section, which is also a permu-

Am A+ B+ 1> edges and h(G) = 4m + B + 1. In [25] it was shown that if G is a graph

tation graph, has ( 5

with exactly < 2) edges, then a proper vertex coloring of G with k colors is pair-complete if and only if

it is a harmonious coloring. Thus, if G is a graph with <§> edges, then (G) = k if and only if h(G) = &

[13]. Consequently, for the graph G, which is simultaneously an interval and a permutation graph, we
have that ¢/(G) = 4m + B + 1 and, thus, our results could be also used to prove that the achromatic
number is NP-complete for connected interval and permutation graphs.

3.3 Split Graphs

We next show that the harmonious coloring problem is NP-complete for split graphs, by exhibiting a
reduction from the chromatic number problem for general graphs, which is known to be NP-complete

Let G be an arbitrary graph with n vertices v1,va,...,v, and m edges e1,¢ea,...,¢e,. We construct
in polynomial time a split graph @, where V(@) = K + I, as follows: the independent set I consists of
n vertices 01, Uo, ..., 0, which correspond to the vertices vy, vs, ..., v, of the graph G and the clique K
consists of m vertices u1, s, ..., Uy which correspond to the edges eq,ea, ..., ey, of G. A vertex 1y € K,
1 <t <'m, is connected to two vertices v;,v; € I, 1 <1, j < n, if and only if the corresponding vertices v;
and v; are adjacent in G. Note that, every u; € K sees all the vertices of the clique K and two vertices
of the independent set I; thus, |E(G)| = w + 2m.

We claim that the graph G has a chromatic number x(G) if and only if the split graph G has a
harmonious chromatic number h(G) = x(G) + m.

Let ¢; € {1,...,x(G)} be the color assigned to the vertex v; € G, 1 < i < n, in a minimum
coloring of G. We assign the color ¢; to the vertex ¥; of the set I and a distinct color from the set
{x(G) +1,...,x(G) + m} to each vertex of the clique K. Since two adjacent vertices of G receive
a different color, the neighbors of each u; € K belonging to the independent set have distinct colors.
Moreover, every vertex v; € I sees |Ng(v;)| vertices of the clique K, where Ng(v;) is the neighborhood
of the vertex v; in GG. Thus, every pair of colors appears in at most one edge. In addition, the number
of colors assigned to the set I is equal to x(G) and the number of colors assigned to the clique is equal
to m. This results to a harmonious coloring of G using x(G) + m colors, which is minimum since the
vertices of the set I cannot receive a color assigned to a vertex of the clique K.

Conversely, a harmonious coloring of G using h(@) = x(G@) +m colors assigns m colors to the vertices
of the clique K and x(G) colors to the vertices of the set I. Note that, y(G) is the minimum number of
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Figure 3.2: The complexity status of the harmonious coloring problem for some graph subclasses of

permutation and chordal graphs. A — B indicates that class A contains class B.

colors so that vertices ¥;,v; having a neighbor in common are assigned different colors. Since v;,v; are
adjacent in G, it follows that we have a minimum coloring of G using x(G) colors.
Thus, we have proved the following result.

Theorem 3.3. Harmonious coloring is NP-complete for split graphs.

Figure 3.2 shows a diagram of class inclusions for a number of graph classes, subclasses of permutation
and chordal graphs, and the current complexity status of the harmonious coloring problem for connected
graphs of these classes; for definitions of the classes shown, see [10, 37].

3.4 Harmonious Coloring on Colinear Graphs

In this section we show that the harmonious coloring problem remains NP-complete when restricted to
the class of colinear graphs, which is a subclass of co-chordal graphs and a superclass of threshold graphs.
The problem is NP-complete on co-chordal graphs, since in Section 3.3 we proved that it is NP-complete
on split graphs, and also it has a polynomial solution on threshold graphs. Therefore, it is interesting to
study the complexity of the problem on colinear graphs.

We first show that the problem remains NP-complete even when restricted to graphs which are
simultaneously split graphs and undirected path graphs. Then, we show that every split undirected path
graph is a colinear graph, thus, proving that the problem is NP-complete on colinear graphs.

We first give some definitions and results which were introduced or proven in Chapter 2 and will be
used for obtaining some results in the rest of this chapter.

Definition 3.1. Let G be a graph and let v € V(G). The clique set of a vertex v is the set of all maximal
cliques of G containing v and is denoted by Cg(v).

Definition 3.2. Let G be a graph and let &k be an integer. A surjective map  : V(G) — {1,2,...,k}
is called a k-colinear coloring of G if the collection {Cq(v) : k(v) = i} is linearly ordered by inclusion for
all i € {1,2,...,k}. Equivalently, for two vertices v,u € V(G), if k(v) = k(u) then either Ce(v) C Ca(u)
or Cg(v) D Cq(u). The least integer k for which G is k-colinear colorable is called the colinear chromatic
number of G and is denoted by A(G).
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Figure 3.3: Illustrating the complexity status of the harmonious coloring problem, and the inclusion
relations, for the classes of colinear graphs, linear graphs, and other subclasses of co-chordal and chordal
graphs.

In Chapter 2 we presented a polynomial time algorithm for colinear coloring which can be applied to
any graph GG and, also, we proved the following results.

Proposition 3.1. For any graph G, A\(G) > x(G).

Definition 3.3. A graph G is called colinear if and only if x(G4) = AM(G ), VA C V(G). A graph G is
called linear if and only if a(G4) = A(Ga), VA C V(G).

In Chapter 2 we also showed inclusion relations between the classes of colinear and linear graphs
and other subclasses of co-chordal and chordal graphs. More specifically, the class of colinear graphs is a
subclass of co-chordal graphs, a superclass of threshold graphs, and is distinguished from the class of split
graphs. Additionally, linear graphs form a subclass of chordal graphs and a superclass of quasi-threshold
graphs. We also proved that any Pgs-free strongly chordal graph is a linear graph.

The inclusion relations among the classes of colinear graphs, linear graphs, and other subclasses of
co-chordal and chordal graphs are depicted in Figure 3.3. Note that since any Pg-free strongly chordal
graph is a linear graph, it follows that split strongly chordal graphs form a subclass of linear graphs.
Then, we can easily obtain that any split strongly chordal graph is a colinear graph, since if a graph G
is strongly chordal then G is also a strongly chordal graph.

The following characterization of undirected path graphs will be used for obtaining our results. Note
that, C denotes the set of all maximal cliques of a graph G; recall that, C'(v) denotes the set of all maximal
cliques containing v.

Theorem 3.4. (35, 57]) A graph G is an undirected path graph if and only if there exists a tree T whose
set of vertices is C, so that for every vertex v € V(QG), the subgraph T|C(v)] of T induced by the vertex
set C(v), is a path in T. Such a tree will be called characteristic tree of G.

We next show that the harmonious coloring problem is NP-complete for split undirected path graphs
by exhibiting a reduction from the chromatic number problem for general graphs, which is known to be
NP-complete [33].

Let G be an arbitrary graph with n vertices vy,v2,...,v, and m edges e1,es,...,e,. We construct
in polynomial time a split graph @, where V(@) = K + I, as follows: the independent set I consists of
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n vertices ©1, Us, .. ., 0 which correspond to the vertices vy, vs, ..., v, of the graph G and the clique K
consists of m vertices w1, U2, ..., Uy which correspond to the edges e1,ea,...,en, of G. A vertex u; € K,
1 <t < m, is connected to two vertices v;,0; € I, 1 <i,j < n, if and only if the corresponding vertices v;
and v; are adjacent in G. Note that, every u; € K sees all the vertices of the clique K and two vertices
of the independent set I; thus, |E(G)| = W + 2m.

Moreover, we claim that the constructed split graph G is also an undirected path graph. Indeed, we
prove this by showing that the graph G has a characteristic tree. Let C be the set of all maximal cliques
of G. Note that K is a maximal clique for G, thus, we have |C| = |I| + 1. Every vertex 0; € I belongs to
exactly one maximal clique, i.e., |C(7;)] = 1. Additionally, every vertex u; € K belongs to exactly three
maximal cliques, one of which is maximal clique K, i.e., |C(@;)| = |N[u;]| — |K|+ 1= 3.

Consider now a tree T with vertex set C, such that the maximal clique K is connected by an edge
to every maximal clique C(v;) for every v; € I, i.e., T is a star. We now show that T is a characteristic
tree for G. Indeed, for every vertex 0; € I, the subgraph 7[C(3;)] induced by C(%;) is a path on one
vertex, and also for every vertex u; € K, the subgraph T[C(u;)] is a path on three vertices. Therefore,
the constructed graph G has a characteristic tree and, thus, from Theorem 3.4 it follows that Gisa split
undirected path graph.

We claim that the graph G has a chromatic number x(G) if and only if the split undirected path
graph G has a harmonious chromatic number h(G) = x(G) +m. Note that the same arguments are used
in Section 3.3 for proving the NP-completeness of the problem for split graphs.

Let ¢; € {1,...,x(G)} be the color assigned to the vertex v; € G, 1 < i < n, in a minimum
coloring of G. We assign the color ¢; to the vertex v; of the set I and a distinct color from the set
{x(G) +1,...,x(G) + m} to each vertex of the clique K. Since two adjacent vertices of G receive
a different color, the neighbors of each u; € K belonging to the independent set have distinct colors.
Moreover, every vertex v; € I sees |Ng(v;)| vertices of the clique K, where Ng(v;) is the neighborhood
of the vertex v; in GG. Thus, every pair of colors appears in at most one edge. In addition, the number
of colors assigned to the set I is equal to x(G) and the number of colors assigned to the clique is equal
to m. This results to a harmonious coloring of G using x(G) + m colors, which is minimum since the
vertices of the set I cannot receive a color assigned to a vertex of the clique K.

Conversely, a harmonious coloring of G using h(@) = x(G@) +m colors assigns m colors to the vertices
of the clique K and x(G) colors to the vertices of the set I. Note that, y(G) is the minimum number of
colors so that vertices ¥;,v; having a neighbor in common are assigned different colors. Since v;,v; are
adjacent in G, it follows that we have a minimum coloring of G using x(G) colors.

Thus, we have proved the following result.

Theorem 3.5. The harmonious coloring problem is NP-complete for split undirected path graphs.
Next, we show the following result.
Theorem 3.6. Any split undirected path graph is a colinear graph.

Proof. Let GG be a split undirected path graph. Assume that G is not a colinear graph. Then, from Defini-
tion 3.3 there exists an induced subgraph G 4 of G such that A\(G 4) # x(G4); thus, due to Proposition 3.1,
AGa) > x(Ga).

From Theorem 3.4, we obtain that split undirected path graphs are hereditary, that is, every induced
subgraph G 4 of G is a split undirected path graph. Let V(G 4) = K + I be a partition of the vertex set
of G4 into a maximal clique K and an independent set I. Also, from Theorem 3.4 we have that G 4 has
a characteristic tree T' with vertex set C, where C is the set of all maximal cliques of G 4, such that for
every vertex v € V(G 4), the subgraph T[C(v)] of T induced by the vertex set C'(v) is a path in T.

In particular, since G4 is a split graph, for every vertex v € I, the subgraph T[C(v)] of T induced by
the vertex set C'(v) is a vertex in T that corresponds to the unique maximal clique of G 4 that v belongs to;
we will denote this clique by Cy, i.e., C, = Ng, [v] and C(v) = {C,} for every vertex v € I. Also, for every
vertex v € K, the path (Cy,...,Cy, K,Cy,...,C;) of T induced by the vertex set C(v), always passes
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from the vertex K equivalently, for every vertex v € K, the subgraph of 7" induced by the vertex set
C(v), corresponds to the vertex K and to at most two vertex disjoint paths (Cy,...,C.) and (Cy,...,Cy)
where C, and C, are adjacent to K in T. Moreover, observe that for any path (K, Cy,,Cy,,...,Cy,) of
the characteristic tree T' of G4, we have C,, \ {v1} D Cp, \ {v2} 2 ... 2 Cy, \ {vr}, since Cy, \ {vi} =
Ng, (v;) C K, where v; € I for every i, 1 <i < k.

Let k: V(Ga) — {1,2,...,\(Ga)} be a colinear coloring of G 4. In order to see how a colinear coloring
can be assigned to the vertices of G 4 we refer to the colinear coloring algorithm presented in Chapter 2.
Recall that, the algorithm first constructs the directed acyclic graph (DAG) Dg , associated to the graph
(G4 and, then, finds a minimum path cover of the transitive DAG Dz, . The size of the minimum path
cover of D, equals the colinear chromatic number A(G 4). Also, the algorithm assigns a colinear coloring
K to the vertices of G4 such that a set of vertices are assigned the same color in « if and only if they
belong to the same path of the minimum path cover of Dg, . Moreover, the DAG Dz, associated to
the graph G 4 is constructed as follows: V(Dg,) = V(Ga) and E(Dg,) = {zy : z,y € V(Dg,) and
Nz, lz] € Nz, [y]}, where zy is a directed edge from z to y. Note that Dz, is a transitive DAG. For
simplicity, throughout the proof we will denote the DAG Dz, associated to the graph G4 by D.

The following observations will be useful in the rest of this proof. Two vertices u,v € V(D) are not
adjacent in D if and only if neither Nz [v] C Nz, [u] nor Nz [v] 2 Ng [u]; we call two sets with this
property incompatible. In G4 the vertices of I form a clique, therefore, for two vertices u,v € I, u and v
are not adjacent in D if and only if the sets Nz [u]N K and Nz, [v]N K are incompatible. Note that, for
any two vertices u,v of Ga, Nz, [u] C Ng, [v] if and only if Ng, (u) 2 Ng, (v). Additionally, for every
vertex u € I, we have Ng, (u) C K.

Having assumed that A(G4) > x(G4) = |K]|, there exists a minimum path cover of D with size
MG 4) > |K|+1. The size of a minimum path cover of D equals the cardinality of a maximum independent
set Ip of D [37]; thus, |Ip| > |K|+ 1. Moreover, the independent set Ip corresponds to a collection C of
mutually incompatible sets Nz [v], for all v € Ip, that is, C = {Ng, [v] : v € Ip}. Thus, |C| > [K|+1
and the sets of C' contain at most |K| vertices of K. Also, recall that for any two vertices u,v € V(D)
such that v € K and v € I, if uv € E(G4) then Nz, [u] C Ng, [v]; thus, for any two vertices u,v € V(D)
such that v € K and v € I, v and v are adjacent in G 4 if and only if u and v are adjacent in D.

Agsume that K C Ip. Then, no vertex v € I can belong to Ip since every vertex of I is adjacent
to at least one vertex of K in G4 and, thus, in D, due to our assumption that K is a maximal clique
of G4. Thus, not every vertex of K can belong to Ip, since [Ip| > |K|+ 1. Assume that a vertex
u € K belongs to Ip. Then, no vertex v € I that is adjacent to « in D and, thus, in G 4, belongs to
Ip; equivalently, u ¢ Nz, [v], for every vertex v € Ip. Therefore, if we delete the vertex u € K from the
set Ip, we obtain an independent set I, = Ip \ {u} and a collection C" = C'\ {Ng, [u]} of at least |K]|
mutually incompatible sets, which contain at most |K| — 1 vertices of K. Using the same arguments, if
we delete every vertex of K from the independent set Ip, we obtain an independent set 7, such that
Iy €1 and |I})| > k+1 (where k < |K]), which corresponds to a collection C" of at least k + 1 mutually
incompatible sets Nz [v], v € I, which contain at most k vertices of K.

A collection C" of at least k + 1 mutually incompatible sets Nz, [v], v € I, corresponds to a collection
F of at least k + 1 mutually incompatible sets N¢g, (v), v € I. Since, for every vertex v € I we have
Ng, (v) = Cy \ {v}, it follows that a collection F of at least k + 1 mutually incompatible sets Ng, (v),
v € I, corresponds to a collection of at least k + 1 maximal cliques C, of G4, v € I, each of which must
belong to a different path (K, Cy,,Cy,,...,Cy, ) of a characteristic tree T of G4. However, every vertex
z € K belongs to at most two such paths, therefore, every vertex z € K belongs to at most two sets of
the collection F. Thus, every vertex z € K belongs to at least |C"'| — 2 sets of the collection C”.

Summarizing, we have a collection C” of at least k + 1 mutually incompatible sets Nz [v], v € I,
which contain at most k vertices of K and, also, every vertex z € K belongs to at least |C”| — 2 sets of
the collection C". Recall that for two vertices u,v € I, the sets Nz [u] and Ng [v] are incompatible if
and only if the sets N, [u] N K and Ng [v] N K are incompatible. Therefore, we have a collection of at
least k + 1 mutually incompatible vertex sets on k vertices. It is easy to see that it is impossible to find
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Figure 3.4: A split graph G which is not a colinear graph, since x(G) = 4 and A(G) = 5. Also, G is not
an undirected path graph.

a collection of at least k& 4+ 1 mutually incompatible sets on k vertices, if every vertex belongs to at least
k sets of the collection. This is a contradiction to our assumptions. Therefore, G is a colinear graph. B

Note that, not any split graph is a colinear graph (for example see Fig. 3.4). From Theorems 3.5
and 3.6, we obtain the following result.

Corollary 3.1. The harmonious coloring problem is NP-complete on the class of colinear graphs.

3.5 Harmonious Coloring on Split Strongly Chordal Graphs

In this section we show that the harmonious coloring problem admits a polynomial solution on the class
of split strongly chordal graphs. Strongly chordal graphs form a known subclass of chordal graphs [10, 27]
and were first introduced by Farber [27]. A graph is strongly chordal iff it admits a strong elimination
ordering; a vertex ordering ¢ = (v1,v2,...,0,) is a strong elimination ordering of a graph G iff ¢ is
a perfect elimination ordering and also has the property that for each ¢, 7, k and ¢, if ¢ < j, k < ¢,
vk, v¢ € Nv;), and vy € Nv,], then v, € Nv;] [14, 27].

Let us now give the definitions of a k-sun and an incomplete k-sun. An incomplete k-sun Sy (k > 3)
is a chordal graph on 2k vertices whose vertex set can be partitioned into two sets, U = {u1,us,...,ug}
and W = {w1,wa, ..., wg}, so that W is an independent set, and w; is adjacent to u; if and only if i = j
ori=j+1 (mod k); the graph Si (k¥ > 3) is a k-sun if U is a complete graph.

The following characterization of strongly chordal graphs was proved by Farber [27] and turns up
to be useful in obtaining a polynomial solution for the harmonious coloring problem on split strongly
chordal graphs.

Proposition 3.2. (Farber [27]) A chordal graph G is strongly chordal if and only if it contains no induced
k-sun.

Note also that a bipartite graph G is chordal bipartite if and only if the split graph obtained from G
by making one of its two color classes complete is strongly chordal [56].

Next, we present a polynomial solution for the harmonious coloring problem on split strongly chordal
graphs. Before describing our algorithm, we first construct a graph H¢ from a split graph G, which we
call neighborhood intersection graph of G, and we use it in the proposed algorithm.

The neighborhood intersection graph Hg of a split graph G. Let G be a split graph, and let
V(@) = K+1 be a partition of its vertex set, where K induces a clique in G and I induces an independent
set. We first compute the open neighborhood Ng(v) of each vertex v € I and, then, we construct the
following graph Hg, which depicts all intersection relations among the vertices’ open neighborhoods:
V(Hg) =1 and E(Hg) ={zy : =,y € I and Ng(xz) N Ng(y) # 0}. It is easy to see that the resulting
graph H¢ is unique up to isomorphism.

The following result is important for proving the correctness of our algorithm.

Lemma 3.1. The neighborhood intersection graph Hg of a split strongly chordal graph G is a chordal
graph.
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Proof. Let G be a split strongly chordal graph and let Hs be the neighborhood intersection graph of
G. We will show that Hg is a chordal graph, i.e., that Hg is a Cj-free graph, for every k > 4. Since
G is a split graph, there exists a partition of its vertex set V(G) = K + I, where K induces a clique
and 7 induces an independent set in G. By the construction of H¢, there is a one to one correspondence
between the vertices of V(H¢g) and the vertices of V(G) N 1I.

Assume that Hg is not a chordal graph and let Cy = (v1,v2,...,v;) be a chordless cycle of Hg
on k vertices, k > 4; thus, v;v; € E(Hg) if and only if j = i + 1 (mod k). Therefore, we have
that Ng(vi) N Ng(vj) # 0 if and only if j = i + 1 (mod k) or, equivalently, there exists at least one
vertex w; € K in G such that w; € Ng(v;) N Ng(v;) if and only if j =i + 1 (mod k); note that, the set
W = {w;,wa,. .., w} consists of distinct vertices, since C}, is a chordless cycle. Thus, U = {v1,va, ..., v}
induces an independent set in G, W = {w1,ws, ..., w;} induces a clique in G, and w; is adjacent to v,
if and only if j =i or j =i+ 1 (mod k). Therefore, the subgraph of G induced by the vertices U UW is
a k-sun, k > 4. It follows that G is a split graph and, thus, it is a chordal graph, which contains a k-sun
as an induced subgraph. This is a contradiction to our assumption that G is a strongly chordal graph
due to Proposition 3.2. Therefore, we conclude that Hq is a chordal graph. I

The algorithm for a harmonious coloring of a split strongly chordal graph. The proposed
algorithm computes a harmonious coloring and the harmonious chromatic number h(G) of a split strongly
chordal graph GG, and works as follows:

Algorithm Harmonious_Coloring

Input: a split strongly chordal graph G, and a partition of its vertex set V(G) = K + I, where I induces
an independent set in G and K induces a clique.

QOutput: a harmonious coloring of G.
(i) construct the neighborhood intersection graph Hg of G.

(ii) compute a minimum proper vertex coloring k : V(Hg) — {1,2,...,x(Hg)}, and the chromatic
number x(Hg), of the chordal graph H¢ (see e.g. [37]).

(iii) compute a coloring &' : V(G) — {1,2,...,h(G)} of G, by assigning x'(v) = k(v) to each vertex
v € I, and a distinct color «/'(v) from the set {x(Hg) + 1,x(Hg) + 2,...,x(Hg) + | K|} to each
vertex v € K.

(iv) return the value k’(v) for each vertex v € V(G) and the size x(Hg) + | K| of the number of
different colors used in ’; the coloring %’ is a harmonious coloring of G, and x(Hg) + | K| equals
the harmonious chromatic number h(G) of G.

Algorithm 3: Algorithm Harmonious_Coloring

Correctness of the algorithm. Let G be a split strongly chordal graph, and let V(G) = K + I be a
partition of its vertex set, where I induces an independent set in G and K induces a clique. Let Hg be
the neighborhood intersection graph of G.

We claim that the split strongly chordal graph G has a harmonious chromatic number A(G) = | K|+,
where r equals the chromatic number x(Hg) of the graph Hg. Indeed, a harmonious coloring of G, using
h(G@) = |K| +r colors, assigns a distinct color from the set {1,2,...,|K|} to each vertex of the clique K,
and also assigns r colors to the vertices of the set I. Note that, r is the minimum number of colors so that
vertices v;,v; € I having a neighbor in common are assigned different colors. Since v;,v; are adjacent in
Hg, it follows that 7 is the minimum number of colors for which a proper vertex coloring of Hg exists,
ie, r=x(Hg).
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Therefore, the split strongly chordal graph G has a harmonious chromatic number h(G) = |K|+x(Hg),
where y(Hg) is the chromatic number of the neighborhood intersection graph Hg of G. Additionally,
it is easy to see that the coloring ' computed by the algorithm is a harmonious coloring of G using
h(G) = |K|+ x(Hg) colors.

Complexity of the algorithm. Let G be a split strongly chordal graph on n vertices and m edges.
Let V(G) = K + I be a partition of its vertex set into a clique K and an independent set I, and let Hg
be the neighborhood intersection graph of G. Step (i) of the algorithm, which includes the construction
of the graph Hg, takes O(n?) time. Step (i) computes a minimum proper vertex coloring of Hg; since
from Lemma 3.1, H¢ is a chordal graph, the problem is solvable in O(n +m’) time (see e.g. [37]), where
m' = |E(Hg)| = O(n?). Finally, both Steps (iii) and (iv) can be executed in O(n) time. Therefore, the
complexity of the algorithm is O(n?) time.
Therefore, the following result holds.

Theorem 3.7. The harmonious coloring problem has a polynomial solution on split strongly chordal
graphs.

3.6 Concluding Remarks

In this work we first show that the harmonious coloring problem is NP-complete on connected interval
and permutation graphs. Also we prove the NP-completeness of the problem on the class of split graphs.
Extending our results, we then prove that the harmonious coloring problem is NP-complete on the classes
of split undirected path graphs and colinear graphs. We also present a polynomial solution for the same
problem on the class of split strongly chordal graphs. The interest of this result lies on the fact that the
harmonious coloring problem is NP-complete on split graphs and strongly chordal graphs. In addition,
polynomial solutions for the problem are only known for the classes of threshold graphs and connected
quasi-threshold graphs; note that, the harmonious coloring problem is NP-complete on disconnected
quasi-threshold graphs. Since linear graphs form a superclass of both split strongly chordal graphs and
quasi-threshold graphs, the harmonious coloring problem is NP-complete on disconnected linear graphs,
while it still remains open on connected linear graphs.
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CHAPTER 4

TTHE LONCGEST PATH PROBLEM ON
INTERVAL GRAPHS

4.1 Introduction

4.2 Theoretical Framework

4.3 Interval Graphs and the Longest Path Problem
4.4 Correctness and Time Complexity

4.5 Concluding Remarks

4.1 Introduction

A well studied problem in graph theory with numerous applications is the Hamiltonian path problem,
i.e., the problem of determining whether a graph is Hamiltonian; a graph is said to be Hamiltonian
if it contains a Hamiltonian path, that is, a simple path in which every vertex of the graph appears
exactly once. Even if a graph is not Hamiltonian, it makes sense in several applications to search for a
longest path, or equivalently, to find a maximum induced subgraph of the graph which is Hamiltonian.
However, finding a longest path seems to be more difficult than deciding whether or not a graph admits a
Hamiltonian path. Indeed, it has been proved that even if a graph has a Hamiltonian path, the problem
of finding a path of length n — n® for any ¢ < 1 is NP-hard, where n is the number of vertices of
the graph [47]. Moreover, there is no polynomial-time constant-factor approximation algorithm for the
longest path problem unless P=NP [47]. For related results see also [29, 31, 32, 66, 68].

It is clear that the longest path problem is NP-hard on every class of graphs on which the Hamiltonian
path problem is NP-complete. The Hamiltonian path problem is known to be NP-complete in general
graphs [33, 34], and remains NP-complete even when restricted to some small classes of graphs such as
split graphs [37], chordal bipartite graphs, split strongly chordal graphs [58], circle graphs [22], planar
graphs [34], and grid graphs [46]. However, it makes sense to investigate the tractability of the longest
path problem on the classes of graphs for which the Hamiltonian path problem admits polynomial time
solutions. Such classes include interval graphs [1], circular-arc graphs [24], biconvex graphs [3], and co-
comparability graphs [23]. Note that the problem of finding a longest path on proper interval graphs
is easy, since all connected proper interval graphs have a Hamiltonian path which can be computed in
linear time [6]. On the contrary, not all interval graphs are Hamiltonian; in the case where an interval
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graph has a Hamiltonian path, it can be computed in linear time [1, 15]. However, in the case where an
interval graph is not Hamiltonian, there is no known algorithm for finding a longest path on it.

In contrast to the Hamiltonian path problem, there are few known polynomial time solutions for the
longest path problem, and these restrict to trees and some small graph classes. Specifically, a linear time
algorithm for finding a longest path in a tree was proposed by Dijkstra around 1960, a formal proof of
which can be found in [12]. Later, through a generalization of Dijkstra’s algorithm for trees, Uehara
and Uno [63] solved the longest path problem for weighted trees and block graphs in linear time and
space, and for cacti in O(n?) time and space, where n and m denote the number of vertices and edges of
the input graph, respectively. More recently, polynomial algorithms have been proposed that solve the
longest path problem on bipartite permutation graphs in O(n) time and space [64], and on ptolemaic
graphs in O(n®) time and O(n?) space [65].

Furthermore, Uehara and Uno in [63] introduced a subclass of interval graphs, namely interval biconvex
graphs, which is a superclass of proper interval and threshold graphs, and solved the longest path problem
on this class in O(n®(m + nlogn)) time. As a corollary, they showed that a longest path of a threshold
graph can be found in O(n + m) time and space. They left open the complexity of the longest path
problem on interval graphs.

In this work, we resolve the open problem posed in [63] by showing that the longest path problem
admits a polynomial time solution on interval graphs. Interval graphs form an important and well-known
class of perfect graphs [37]; a graph G is an interval graph if its vertices can be put in a one-to-one
correspondence with a family of intervals on the real line, such that two vertices are adjacent in G if
and only if their corresponding intervals intersect. In particular, we propose an algorithm for solving
the longest path problem on interval graphs which runs in O(n') time using a dynamic programming
approach. Thus, not only we answer the question left open by Uehara and Uno in [63], but also improve
the known time complexity of the problem on interval biconvex graphs, a subclass of interval graphs [63].

Interval graphs form a well-studied class of perfect graphs, have important properties, and admit
polynomial time solutions for several problems that are NP-complete on general graphs (see e.g. [1, 37,
49, 15]). Moreover, interval graphs have received a lot of attention due to their applicability to DNA
physical mapping problems [36], and find many applications in several fields and disciplines such as
genetics, molecular biology, scheduling, VLSI circuit design, archaeology and psychology [37].

The rest of this chapter is organized as follows. In Section 4.2, we review some properties of interval
graphs and introduce the notion of normal paths, which is central for our algorithm. In Section 4.3, we
present, our algorithm for solving the longest path problem on an interval graph, which includes three
phases. In Section 4.4 we prove the correctness and compute the time complexity of our algorithm.
Finally, some concluding remarks are given in Section 4.5.

4.2 Theoretical Framework

For basic definitions in graph theory refer to [10, 37, 56]. Recall that by V(P) we denote the set of
vertices in a path P, and within this chapter we consider the length of the path P to be the number of
vertices in P, i.e., |P| = [V(P)].

4.2.1 Structural Properties of Interval Graphs

A graph G is an interval graph if its vertices can be put in a one-to-one correspondence with a family F' of
intervals on the real line such that two vertices are adjacent in G if and only if the corresponding intervals
intersect; F' is called an intersection model for G [1]. The class of interval graphs is hereditary, that is,
every induced subgraph of an interval graph G is also an interval graph. Ramalingam and Rangan [61]
proposed a numbering of the vertices of an interval graph; they stated the following lemma.

Lemma 4.1. (Ramalingam and Rangan [61]): The vertices of any interval graph G can be numbered
with integers 1,2,...,|V(G)| such that if i < j < k and ik € E(G), then jk € E(G).
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This numbering, which also results after sorting the intervals of the intersection model of an interval
graph G on their right ends [1], can be obtained in O(|V(G)| + |E(G)|) time [61]. An ordering of the
vertices according to this numbering is found to be quite useful in solving some graph-theoretic problems
on interval graphs [1, 61]. Throughout this work, such an ordering is called a right-end ordering of G.
Let u and v be two vertices of G; if 7 is a right-end ordering of G, denote u <, v if u appears before v
in 7. In particular, if 7 = (u1,u2,...,uy(qg)) is a right-end ordering of G, then u; <, u; if and only if
1< 7.
The following lemma appears to be useful in obtaining some important results.

Lemma 4.2. Let G be an interval graph, and let = be a right-end ordering of G. Let P = (v1,v2,...,vk)
be a path of G, and let vy ¢ V(P) be a vertex of G such that v1 <, vy <; v and vevy ¢ E(G). Then,
there exist two consecutive vertices v;_1 and v; in P, 2 < i <k, such that vi_1v, € E(G) and vy < v;.

Proof. Consider the intersection model F' of G, from which we obtain the right-end ordering = of G. Let
I; denote the interval which corresponds to the vertex v; in F, and let I(I;) and r(I;) denote the left
and the right endpoint of the interval I;, respectively. Without loss of generality, we may assume that
all values I(I;) and r(I;) are distinct. Since P = (v1,va,...,v;) is a path from vy to vy, it is clear from
the intersection model F of G that at least one vertex of P sees vy. Recall that vyvy ¢ E(G); let v;—_1,
2 < i <k, be the last vertex of P such that v;_1v, € E(G), i.e., vju, ¢ E(G) for every index j, i < j < k.
Thus, since vy <, vg, it follows that r(I;) < I(I;) < r(I;) for every index j, i < j < k and, thus, vy <, v;.
Therefore, in particular, v, <, v;. This completes the proof. 1

4.2.2 Normal Paths

Our algorithm for constructing a longest path of an interval graph G uses a specific type of paths, namely
normal paths. We next define the notion of a normal path of an interval graph G.

Definition 4.1. Let G be an interval graph, and let = be a right-end ordering of G. The path
P = (v1,vs,...,v) of G is called normal, if vy is the leftmost vertex of V(P) in w, and for every i,
2 <4 < k, the vertex v; is the leftmost vertex of N(v;—1) N {v;,viz+1,...,v} in 7.

The notion of a normal path of an interval graph G is a generalization of the notion of a typical path of
G; the path P = (v1,v9,...,v;) of an interval graph G is called a typical path, if vy is the leftmost vertex
of V(P) in w. The notion of a typical path was introduced by Arikati and Rangan [1], in order to solve
the path cover problem on interval graphs; they proved the following result.

Lemma 4.3. (Arikati and Rangan [1]): Let P be a path of an interval graph G. Then, there exists a
typical path P’ in G such that V(P') =V (P).

The following lemma is the basis of our algorithm for solving the longest path problem on interval graphs.

Lemma 4.4. Let P be a path of an interval graph G. Then, there exists a normal path P’ of G, such
that V(P') = V(P).

Proof. Let G be an interval graph, let @ be a right-end ordering of G, and let P = (v1,v2,...,vx)
be a path of G. If £k = 1, the lemma clearly holds. Suppose that & > 2. We will prove that for
every index i, 2 < ¢ < k, there exists a path P; = (v}, v5,...,v},), such that V(P;) = V(P), v} is the
leftmost vertex of V() in 7, and for every index j, 2 < j <4, the vertex v] is the leftmost vertex of
N(vi_1) N{v},vj41,-- -, v} in 7. The proof will be done by induction on i.

Due to Lemma 4.3, we may assume that P = (vi,vs,...,vg) is typical, i.e., that v; is the left-
most vertex of V(P) in m. Let i =2. Assume that v; € V(P), j > 2, is the leftmost vertex of
N(vi) N{vz,v3,...,v;} in 7. Then, since G[V(P)] is an interval graph, and since v; < vj; < v2 and
v1v2, 110; € E(Q), it follows that N{v;] N {v1,ve,...,vp} € Nve] N {v1,v2,...,v;}. Thus, there exists a
path

!/ ! !
P2 = (v17v27"'7vk) = (Ulavjavj—lu"'7v37v27vj+lavj+2"'7vk)
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: Iy / 3

® U2 D U3

U1

P = (vg, v1,v6, V5, 04, v3) P = (v, v2, v4, 03, v6, v5)

Figure 4.1: Illustrating an intersection model of an interval graph G. The path P = (ve, v1, vs, s, V4, U3),
which is Hamiltonian for the graph G, is not a normal path. The path P’ = (v1,vs,v4,v3,v6,v5) is &
normal path such that V(P') = V(P).

of G, such that V(P) = V(P), v} is the leftmost vertex of V() in m, and v} is the leftmost vertex of
N(vy) N{vh,v5,...,v,} in m. This proves the induction basis.

Consider now an arbitrary index i, 2 < i < k — 1, and let P, = (v},v5,...,v;) be a path of G,
such that V(P;) = V(P), v} is the leftmost vertex of V(F;) in 7, and for every index j, 2 < j < i, the
vertex v’ is the leftmost vertex of N(v;_;) N {v},vjy,...,v;} in 7. In particular, it follows that the
subpath (v1,v5,...,v;) of P; is normal. We will now prove that for any vertex v; € {vi 1,v{,0,...,v}},

it holds vyv; € E(G). Indeed, suppose otherwise that vjv] ¢ E(G), for such a vertex
i1
Thus, v;- is not the leftmost vertex

where v; <, v}

Iz

vy. Then, since v] <, v; < v}, it follows by Lemma 4.2 that there are two consecutive vertices v

and v} in P;, 2 < j < i, such that v;_,v; € E(G) and vy <, vj.
of N(v_y) N{v}j,vj1,-.-,vp,-..,v} in 7, which is a contradiction. Therefore, for any vertex v, €

{vi41,vi49,-- -, v}, where vy <, v}, it holds vyv; € E(Q).

Assume that v} € V/(P;), j > i+ 1, is the leftmost vertex of N(v;) N {vj,,v{;s,...,v}} in 7. Con-
sider first the case where v; <, vj.
Indeed, suppose otherwise that vy < v; < v} for such a vertex v;. Then, as we have proved above,
!
J
in 7 and vy <;vj. Thus, v; <;v; for every vertex vy € {vj 1,vj0,...,v;}. Therefore, since

G[V(P;)] is an interval graph, and since v; <, v <p vj;; and vjvi,,vv; € E(G), it follows that
Nvil 0 {vi,vig,-- 50} © Nvig 0 {vj,vi4q,- -5 v} Then, there exists the path

Then, for every vertex vy € {vj 1,0, 9,...,v;} it holds v] <, v}.

vpv; € E(G), which is a contradiction, since v is the leftmost vertex of N(vj) N {vj,,,vj 9,...,v;}

. " " " 1 "y / I I / / / / i !
P = (v],v5,...,0 05, 0) = (Ul,vz,...,Ui,vj,vj_l,...,vi+2,vi+1,vj+1,...,vk)

of G, such that V(P 1) = V(P;), v} is the leftmost vertex of V(P;11) in 7, and for every index j,

2 <j <i+1, the vertex vj is the leftmost vertex of N(v7_;) N {v}, v} y,...,v/} in 7.
Consider now the case where v; <, v;. Then, v} is the leftmost vertex of {v; 1,v{ s,...,v;} in
7. Indeed, suppose otherwise that v, <, v} <, v; for a vertex v, € {vj 1,v{;9,...,v;}. Then, as we

have proved above, vjv; € F(G), which is a contradiction, since v} is the leftmost vertex of N(vj) N
;-. Thus, there exists by Lemma 4.3 a typical path Fp, such that
V(Po) = {vi11,Vis2,---, v} Since Py is typical and v} is the leftmost vertex of V(F%) in , it follows

that v} is the first vertex of Py. Then, since vjv; € E(G), there exists the path

/ / / : /
{vi 1, vii0,--,vp} in mand vy <; v

Py = (v],05,...,0 vl g, 0)) = (v, 05, ..., 05, Po)
of G, such that V(P 1) = V(FP), v} is the leftmost vertex of V(P;11) in 7, and for every index j,
2 <j <i+1, the vertex v} is the leftmost vertex of N(v7_;) N {v}, v/ y,...,v;} in m. This proves the
induction step.

Thus, the path P’ = Py is a normal path of G, such that V(P') = V(P). 1
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4.3 Interval Graphs and the Longest Path Problem

In this section we present our algorithm, which we call Algorithm LP_Interval, for solving the longest
path problem on interval graphs; it consists of three phases and works as follows:

e Phase 1: it takes an interval graph G and constructs the auxiliary interval graph H;
e Phase 2: it computes a longest path P on H using Algorithm LP_on_H;

e Phase 3: it computes a longest path P on G from the path P;

The proposed algorithm computes a longest path P of the graph H using dynamic programming
techniques and, then, computes a longest path P of G from the path P. We next describe in detail the
three phases of our algorithm and prove properties of the constructed graph H which will be used for
proving the correctness of the algorithm.

4.3.1 The interval graph H

In this section we present Phase 1 of the algorithm: given an interval graph G and a right-end ordering
7 of G, we construct the interval graph H and a right-end ordering o of H.

» Construction of H and o: Let G be an interval graph and let 7 = (v1, vz, ..., vv(g)) be a right-
end ordering of G. Initially, set V(H) = V(Q), E(H) = E(G), 0 =, and A = (). Traverse the ver-
tices of w from left to right and do the following: for every vertex v; add two vertices a; 1 and a; 2 to
V(H) and make both these vertices to be adjacent to every vertex in Ng [v;] N {vi, viy1,. .., Vv @)}
add a; 1 and a;2 to A. Update o such that a1,1 <, a1,2 <, v1, and v;—1 <, ;1 <5 ai2 <q v; for
every i, 2 <1 < |V(G)|.

We call the constructed graph H the stable-connection graph of the graph GG. Hereafter, we will denote
by n the number |V (H)| of vertices of the graph H and by o = (u1,ua,...,u,) the constructed ordering
of H. By construction, the vertex set of the graph H consists of the vertices of the set C' = V(@) and
the vertices of the set A. We will refer to C' as the set of the connector vertices ¢ of the graph H and to
A as the set of stable vertices a of the graph H; we denote these sets by C(H) and A(H), respectively.
Note that |[A(H)| = 2|V (G)|.

By the construction of the stable-connection graph H, all neighbors of a stable vertex a € A(H) are
connector vertices ¢ € C'(H), such that a <, ¢. Moreover, observe that all neighbors of a stable vertex
form a clique in G' and, thus, also in H. For every connector vertex u; € C(H), we denote by uy(y,)
and up(y,;) the leftmost and rightmost neighbor of u; in o, respectively, which appear before u; in o, i.e.,
Up(u) <o Uh(u;) <o Wi- Note that ug(,,) and uy(,,) are distinct stable vertices, for every connector vertex

Uj-

Lemma 4.5. Let G be an interval graph. The stable-connection graph H of G is an interval graph, and
the vertex ordering o is a right-end ordering of H.

Proof. Consider the intersection model F of G, from which we obtain the right-end ordering = =
(v1,v2,...,vv(q)) of G. Let I; denote the interval which corresponds to the vertex v; in F', and let
I(I;) and r(I;) denote the left and the right endpoint of the interval I;, respectively. Without loss of
generality, we may assume that all values I(I;) and r(I;) are distinct. Let ¢ be the smallest distance
between two interval endpoints in F.

For every interval I; which corresponds to a vertex wv; € C, we replace its right end-

point r(I;) by r(I;)+ 35, and we add two non-intersecting intervals I = [r(I;),r(I;) + g

Lio=[r(L;) + £,7(I;) + %] (one for each vertex a;; and a;2 of A, respectively). The two new inter-

vals do not intersect with any interval Iy, such that r(Ij) < r(I;). Additionally, the two new intervals

and
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intersect with the interval I;, and with every interval Iy, such that r(I;) > r(I;) and I, intersects with
I;. After processing all intervals I;, 1 <i < |V(G)|, of the intersection model F' of G, we obtain an
intersection model of H. Thus, H is an interval graph, and the ordering which results from numbering
the intervals after sorting them on their right ends is identical to the vertex ordering o of H and, thus,
o is a right-end ordering of H. 1

Definition 4.2. Let H be the stable-connection graph of an interval graph G, and let o = (u1, u2, ..., uy)
be the right-end ordering of H. For every pair of indices i,j, 1 < i < j < n, we define the graph H (i, j)
to be the subgraph H[S] of H, induced by the set S = {us, uit1,...,uj} \{ur € C(H) : upry,) <o i}

The following properties hold for every induced subgraph H(i,j), 1 <14 < j < n, and they are used
for proving the correctness of Algorithm LP_on_H.

Observation 4.1. Let uy be a connector vertex of H(i,75), i.e., ux € C(H(i,j)). Then, for every vertex
ug € V(H(i,7)), such that u, <, ue and ugug € E(H(i,5)), ue is also a connector vertex of H (i, ).

Observation 4.2. No two stable vertices of H (i, j) are adjacent.
Lemma 4.6. Let P = (v1,v2,...,v;) be a normal path of H(i, 7). Then:
(a) For any two stable vertices v, and vy in P, v, appears before vy in P if and only if v, <, vg.

(b) For any two connector vertices v, and vy in P, if vy appears before v, in P and v, <, vy, then v,
does not see the previous vertex vg—1 of vy in P.

Proof. The proof will be done by contradiction.

(a) Let v, and v, be any two stable vertices of H(i,j) that belong to the normal path
P = (v1,va,...,v), such that v, appears before vy in P, and assume that vy, <, v,. Then, clearly
vy # vy, since v, appears before v, in P. Since P is a normal path of H(i,j), vy is the leftmost
vertex of V(P) in o. Thus, v <, vy <, v, and since no two stable vertices of H (i, j) are adjacent
due to Observation 4.2, it follows that v,v, ¢ E(H(i,5)). Thus, by Lemma 4.2 there exist two
consecutive vertices u and ¢’ in P that appear between v; and v, in P, such that uv, € E(H(i,7))
and vy <, v'. Thus, since P is a normal path, v, should be the next vertex of u in P instead of v/,
which is a contradiction. Therefore, v, <, vy.

(b) Let v, and v, be any two connector vertices of H(i,j) that belong to the normal path
P = (v1,v2,...,v;), such that v, appears before v, in P and v, <, vs. Since P is a normal
path of H(i,7), v1 is the leftmost vertex of V(P) in o. Since v, <, vy, it follows that vy # v, and,
thus, there exists a vertex vy,—; which appears before v, in P. Assume that v,v,—1 € E(H(i,7))-
Since v, <, vy, and since P is a normal path, v, should be the next vertex of v,_; in P instead of
vg, which is a contradiction. Therefore, v,v,—1 ¢ E(H(i,5)).

4.3.2 Finding a longest path on H

In this section we present Phase 2 of Algorithm LP_Interval. Let G be an interval graph and let H be
the stable-connection graph of G constructed in Phase 1. We next present Algorithm LP_on_H, which
computes a longest path of the graph H. Let us first give some definitions and notations necessary for
the description of the algorithm.

Definition 4.3. Let H be a stable-connection graph, and let P be a path of H(i,j), 1 <i < j <n. The
path P is called binormal if P is a normal path of H(i,j), both endpoints of P are stable vertices, and
no two connector vertices are consecutive in P.
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ArGgoriTeM LP_ON_H

Input: a stable-connection graph H, a right-end ordering ¢ = (u1,us, ..., u,) of H.
Output: a longest binormal path of H.

forj=1ton
for ¢ = 7 downto 1
if ¢ =j and u; € A(H) then
Cug;i,i) — 15 Plug;i, ) — (ug);
if i # j then
for every stable vertex u, € A(H),i <k <j—1
Lug;i,5) — Lug;i,5 — 1); Plug;i,j) < Plug;i,j —1); {initialization}
if u; is a stable vertex of H(3,j), i.e., u; € A(H) then
Uuj3i,§) — 15 Plujii, j) < (ug);
if u; is a connector vertex of H (i, j), i.e., u; € C(H) and i < f(u;) then
execute process(H (i,7));
compute the mazx{l(ug;1,n) : up € A(H)} and the corresponding path P(ug;1,n);

where the procedure process() is as follows:
process(H(i,5))

fory = f(u;)+1toj—1
for z = f(uj) toy —1 {u, and u, are adjacent to u;}
if uy,u, € A(H) then
wy — L(ug;i,j —1); P{ — P(ug;i,j—1);
wo — luy;z+1,j—1); Py— Puy;z+1,5—1);
if wy +wo + 1> (uy;i,j) then
Uugiing) — wr+ws + 1 Pluysiyj) — (Poug, Py
return the value €(ug; i, j) and the path P(ux;i,j5), V up € A(H(f(u;)+ 1,5 —1));

Algorithm 4: Algorithm LP_on_H for finding a longest binormal path of H.

Notation 4.1. Let H be a stable-connection graph, and let o = (u1,us, ..., u,) be the right-end ordering
of H. For every stable vertex uy € A(H(i,7)), we denote by P(uy;i,5) a longest binormal path of H(i, j)
with uy as its right endpoint, and by £(ug;1,j) the length of P(uy;i,7).

Since any binormal path is a normal path, Lemma 4.6 also holds for binormal paths. Moreover, since
P(uyg;i,7) is a binormal path, it follows that its right endpoint uy, is also the rightmost stable vertex of
P in o, due to Lemma 4.6(a).

Algorithm LP_on_H computes for every induced subgraph H(i,7) and for every stable vertex uy €
A(H(i,7)), the length £(ug;i,7) and the corresponding path P(ug;i,j). Since H(1,n) = H, it follows
that the maximum among the values £(ug;1,n), where u,, € A(H), is the length of a longest binormal
path P(ug;1,n) of H. In Section 4.4.2 we prove that the length of a longest path of H equals to the
length of a longest binormal path of H. Thus, the binormal path P(ug;1,n) computed by Algorithm
LP_on_H is also a longest path of H.

4.3.3 Finding a longest path on G

During Phase 3 of our Algorithm LP _Interval, we compute a path P from the longest binormal path P
of H, computed by Algorithm LP_on_H, by simply deleting all the stable vertices of P. In Section 4.4.2
we prove that the resulting path P is a longest path of the interval graph G.
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ALGORITHM LP_INTERVAL

Input: an interval graph G and a right-end ordering 7 of G.
Qutput: a longest path P of G.

1. Construct the stable-connection graph H of G and the right-end ordering o of H;
let V(H)=CUA, where C = V(G) and A are the sets of the connector and stable vertices of H,
respectively;

2. Compute a longest binormal path P of H, using Algorithm LP_on_H;
let P = ('Ul,’UQ, . ,ng,v2k+1), where vo; € C, 1<i <k, and V241 € A, 0<i<kE

3. Compute a longest path P= (v2,v4,...,va;) of G, by deleting all stable vertices {v1,vs,...,va5 41}
from the longest binormal path P of H;

Algorithm 5: Algorithm LP_Interval for solving the longest path problem on an interval graph G.

In this section we present our Algorithm LP _Interval for solving the longest path problem on an
interval graph GG; note that Steps 1, 2, and 3 of the algorithm correspond to the presented Phases 1, 2,
and 3, respectively.

4.4 Correctness and Time Complexity

In this section we prove the correctness of our algorithm and compute its time complexity. More specifi-
cally, in Section 4.4.1 we show that Algorithm LP_on_H computes a longest binormal path P of the graph
H (in Lemma 4.13 we prove that this path is also a longest path of H), while in Section 4.4.2 we show
that the length of a longest binormal path P of H is equal to 2k + 1, where k is the length of a longest
path of G. Finally, we show that the path P constructed at Step 3 of Algorithm LP_Interval is a longest
path of G.

4.4.1 Correctness of Algorithm LP _on_ H

We next prove that Algorithm LP_on_H correctly computes a longest binormal path of the graph H.
The following lemmas appear useful in the proof of the algorithm’s correctness.

Lemma 4.7. Let H be a stable-connection graph, and let o = (u1,us2, ..., uy,) be the right-end ordering
of H. Let P be a longest binormal path of H(i,j) with u, as its right endpoint, let uy be the rightmost
connector vertex of H(i,j) in o, and let ug(y,)+1 <o Uy <¢ Up(yy). Then, there exists a longest binormal
path P’ of H(i,j) with u, as its right endpoint, which contains the connector vertex uy,.

Proof. Let P be a longest binormal path of H (i, j) with wu, as its right endpoint, which does not contain
the connector vertex uy. Assume that P = (u,). Since uy is a connector vertex of H (i, ) and uy(,,) is
a stable vertex of H(i,7), we have that u; <5 us(y,) <o Uy < ug. Thus, there exists a binormal path
Py = (uf(yy)» Uk, uy) such that [P;| > [P|. However, this is a contradiction to the assumption that P is
a longest binormal path of H (i, j).

Therefore, assume now that P = (uy, ..., uq,us, uy). By assumption, P is a longest binormal path of
H(i,j) with u, as its right endpoint that does not contain the connector vertex uy. Since the connector
vertex u, sees the stable vertex u, and, also, since wy is the rightmost connector vertex of H(,j) in
o, it follows by Observation 4.1 that wus(,,) <, uy <5 ¢ < uj. Thus, u; sees the connector vertex wu,.
Consider first the case where uy does not see the stable vertex ug, i.e., uy <o Up(u,) <o Uy <¢ U <o Ug-
Then, it is easy to see that the connector vertex uy sees ug(y,), where uys(,,) is always a stable vertex,
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and also, from Lemma 4.6(a) it follows that the vertex wy(,,) does not belong to the path P. Therefore,
there exists a binormal path Po = (up, ..., ug, g, Up(y,), Uk, y) in H(i,j), such that |Py| > |P|. This is
a contradiction to our assumption that P is a longest binormal path.

Consider now the case where uj sees the stable vertex wu,. Then, there exists a path
P = (up, ..., uq,ur,uy) of H(i,j) with u, as its right endpoint that contains the connector vertex uy,
such that |P| = |P'|; since P is a binormal path, it is easy to see that P’ is also a binormal path. Thus, the
path P’ is a longest binormal path of H (i, j) with u, as its right endpoint, which contains the connector
vertex uy. 1

Lemma 4.8. Let H be a stable-connection graph, and let o be the right-end ordering of H. Let P =
(Py,v¢, P2) be a binormal path of H(i,j), and let vy be a connector vertex of H(i,j). Then, P and Py
are binormal paths of H(i,j).

Proof. Let P = (v1,v2,...,04—1,V¢, Ugt1, .- ., 0;) be a binormal path of H (i, 7). Then, from Definition 4.1,
v is the leftmost vertex of V(P) in o, and for every index r; 2 < r < k, the vertex v, is the leftmost
vertex of N(v,—1)N {0, Vry1,...,0} in o. It is easy to see that P; = (vy,vs,...,vs—1) is a normal path of
H(i,7). Indeed, since V(P;) C V(P), then v is also the leftmost vertex of V(P;) in ¢, and additionally, v,
is the leftmost vertex of N(v,—1)N{vy, Upt1,---,v¢—1} in o, for every index r, 2 < r < £—1. Furthermore,
since P is binormal and v, is a connector vertex, it follows that v,_; is a stable vertex and, thus, P; is a
binormal path of H(i,j) as well.

Consider now the path Py = (vpq1,vp42,...,v;) of H(i,7). Since P is a binormal path and v, is a
connector vertex, it follows that vg41 is a stable vertex and, thus, vy41 <, vy due to Observation 4.1.
We first prove that v,y is the leftmost vertex of V(P2) in o. Since P is a binormal path, we obtain
from Lemma 4.6(a) that v,y; is the leftmost stable vertex of V(Pz) in o. Moreover, consider a connector
vertex v; of P,. Then, its previous vertex v;_1 in Ps is a stable vertex and, thus, v;_1 <, v; due to
Observation 4.1. Since vg41 is the leftmost stable vertex of V(P) in o, we have that vy <, v;—1 and,
thus, vg1 <, v;. Therefore, vy1q is the leftmost vertex of V(Ps) in o. Additionally, since P is a binormal
path, it is straightforward that for every index r, £ + 2 < r < k, the vertex v, is the leftmost vertex of
N(vp—1) N{vp, Vp41,-..,0¢} in 0. Thus, Py is a normal path. Finally, since P is binormal and vg41 is a
stable vertex, P is a binormal path as well. I

Lemma 4.9. Let H be a stable-connection graph, and let o = (u1,u2,...,uy,) be the right-end ordering
of H. Let Py be a binormal path of H(i,j — 1) with uy as its right endpoint, and let Py be a binormal
path of H(x 4+ 1,j — 1) with u, as its right endpoint, such that V(P1) NV (Ps) = 0. Suppose that u; is a
connector vertex of H and that u; <, ug(y,) <o tz. Then, P = (P1,uj, ) is a binormal path of H(i, j)
with uy as its right endpoint.

Proof. Let Py be a binormal path of H(i,j—1) with u, as its right endpoint, and let P> be a binormal path
of H(z+1,j—1) with u, as its right endpoint, such that V(P )NV (P2) = 0. Let u, be the first vertex of Ps.
Since u; is a connector vertex of H such that u; <, uy(y;) < u. it follows that u; sees the right endpoint
u, of Py. Additionally, since u, € V(H (2 +1,j — 1)), we have us(y;) <o Uz <o Uzt1 <¢ Uz <o u; and,
thus, u; sees u,. Therefore, since V(Py) NV (P2) = 0, it follows that P = (Py,u;, P») is a path of H.
Additionally, since H(i,5 — 1) and H(x + 1,5 — 1) are induced subgraphs of H(i,7), it follows that P is
a path of H(i,7). Hereafter, in the rest of this proof Py = (v1,v2,...,0p—1), Po = (Upt1,Vpt2,...,0),
Uy = Vp_1, Uy = Vg, and u; = vp.

We first show that P = (v1,v2,...,Vp,...,v¢) is a normal path. Since vy is the leftmost vertex
of V(P1) in o, it follows that v1 <, u,. Furthermore, since for every vertex v, € V(P:) it holds u,
<5 Upt1 <o U, it follows that vy is the leftmost vertex of V(P) in 0. We next show that for every k,
2 < k < £, the vertex vy, is the leftmost vertex of N(vg—1) N {vg, Vg41,..-,0¢} in 0.

Consider first the case where 2 <k <p-—1, ie, v, € V(P;). Since P; is a normal path, wvy
is the leftmost vertex of N(vg—1) N {vk,Vk41,-.-,Vp—1} In 0. Assume that v,_; is a stable ver-
tex. Then, Lemma 4.6(a) implies that vg_1 <, u, and, due to Observation 4.2, it follows that
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N(vg—1) N {vg, Vgt1,---,0¢} 18 a set of connector vertices. Since every connector vertex v, € V(P)
is a vertex of H(z + 1,5 — 1), it follows that vx_1 <, uyy1 <o Uj(y,) and, thus, v, ¢ N(vy_1). Ad-
ditionally, since v, is the rightmost vertex of H(i,j) in o, it follows that vy <, wv,. Therefore,
since vy is the leftmost vertex of N(vi—1) N {vk, Vk41,...,Vp—1} In o, it follows that v is the left-
most vertex of N(vg—1) N {vg,Vg+1,..-,0¢} in 0. Assume now that vi_1 is a connector vertex. Since
P, is a binormal path, vy is a stable vertex such that v, <, wu, and v is the leftmost vertex of
N(wk—1) N {vr, Vg+1,...,0p—1} in 0. Since for every r, p+ 1 <r < ¢, the vertex v, € V(H(z +1,j— 1)),
it follows that v, <, uy <, v,. Additionally, vy <, uz+1 <, Vp. Therefore, vy, is the leftmost vertex of
N(vg—1) N {vg, Vgt1,--.,0e} in o.

Consider now the case where £k =p. Since P; is a normal path and v,_; is a stable vertex,
N(vp—1) N{vp, vp+1,..., v} is a set of connector vertices, due to Observation 4.2. Additionally, since ev-
ery connector vertex v, € V() is a vertex of H(xz+1,j —1), it follows that v, 1 <g Uzt1 <o Ug(y,) and,
thus, v, ¢ N(vp—1). Therefore, N(vp—1) N {vp,vpt1,...,v} = {vp} and, thus, v, is the leftmost vertex
of N(vp—1) N{vp,vpt1,...,v¢} in 0. Now, in the case where k = p + 1, we have that v,41 is the leftmost
vertex of V(P2) = {vp41,Vpt2,...,0¢} in o, since P is a normal path. Therefore, it easily follows that
vp11 is the leftmost vertex of N(vy) N{vp41,Vpt2,-..,v¢} in o. Finally, in the case where p+2 <k < ¢,
since P, is a normal path it directly follows that vy is the leftmost vertex of N(vg—_1) N {vg, Vgt1,---,0e}
in o.

Concluding, we have shown that P is a normal path of H(i,7). Additionally, since P, and Py are
binormal paths of H (7, ), the path P has stable vertices as endpoints and no two connector vertices are
consecutive in P. Therefore, P is a binormal path of H(i, j) with u, as its right endpoint. I

Next, we prove the correctness of Algorithm LP_on_H.

Lemma 4.10. Let H be a stable-connection graph, and let o be the right-end ordering of H. For every
induced subgraph H(i,j) of H, 1 < i < j < n, and for every stable vertex u, € A(H(i,j)), Algorithm
LP_on_H computes the length {(uy;i,7) of a longest binormal path of H(i,j) which has u, as its right
endpoint and, also, the corresponding path P(uy;1i,j).

Proof. Let P be a longest binormal path of the stable-connection graph H(i,7), which has a vertex
u, € A(H(i,7)) as its right endpoint. Consider first the case where C'(H(i,7)) = 0; the graph H(i,5)
is consisted of a set of stable vertices A(H(i,7)), which is an independent set, due to Observation 4.2.
Therefore, in this case Algorithm LP_on_H sets {(uy;4,j) = 1 for every vertex u, € A(H(i,j)), which
is indeed the length of the longest binormal path P(uy;i,7) = (u,) of H(i,j) which has u, as its right
endpoint. Therefore, the lemma holds for every induced subgraph H (i, j), for which C(H (i,j)) = 0.

We examine next the case where C(H(i,5)) # 0. Let C(H)={c1,c2,...,¢k,-..,¢t} be the set of
connector vertices of H, where ¢1 <, ¢3 <4y ... <y Ct <g --- <5 ¢- Let 0 = (u1,ua,-..,u,) be the vertex
ordering of H constructed in Phase 1. Recall that, by the construction of H, n = 3t, and A(H) =
V(H)\ C(H) is the set of stable vertices of H.

Let H(i,j) be an induced subgraph of H, and let ¢, be the rightmost connector vertex of H(i,7) in
0. The proof of the lemma is done by induction on the index k& of the rightmost connector vertex ¢, of
H(i,j). More specifically, given a connector vertex ¢ of H, we prove that the lemma holds for every
induced subgraph H(i,5) of H, which has ¢ as its rightmost connector vertex in o. To this end, in both
the induction basis and the induction step, we distinguish three cases on the position of the stable vertex
uy in the ordering o: u; <o uy Sp Up(cr), Un(er) <o Uy S¢ Uj, and Upc )41 <o Uy <g Up(c,)- In each of
these three cases, we examine first the length of a longest binormal path of H(i,j) with u, as its right
endpoint and, then, we compare this value to the length of the path computed by Algorithm LP_on_H.
Moreover, we prove that the path computed by Algorithm LP_on_H is a binormal path with u, as its
right endpoint.
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We first show that the lemma holds for k=1. In the case where wu; <,uy <; uge,) or
Un(ey) <oly <q uj, it is easy to see that the length £(u,;i,j) of a longest binormal path P of H(i,j)
with u, as its right endpoint is equal to 1. Indeed, in these cases, if u, # wuj(,), then u, does not
see the unique connector vertex ¢, of H(i,j) and, thus, the longest binormal path with w, as its right
endpoint is consisted of the vertex u,. Now, in the case where u, = uy(,), the connector vertex c;
sees 1, however, c¢; does not belong to any binormal path with u, as its right endpoint, since u, is the
leftmost neighbor of ¢; in 0. Therefore, in the case where u; <, uy <o Ug(c,) OF Up(e,) <o Uy Zo Uj,
Algorithm LP_on_H computes the length of the longest binormal path P(uy;i,j) = (uy) of H(i,j) with
u, as its right endpoint. In the case where us(c,)11 <o Uy <o Up(e,), Algorithm LP_on_H computes (in
the subroutine process()) for every stable vertex u, of H(i,j), such that us,) <o 4z <5 ty_1, the
value (ug;i,j — 1)+ L(uy;z+ 1,5 —1)+1 =1+14+1 = 3 and sets l(u,;i,j) = 3. It is easy to see
that the path P(uy;i,j) = (uz, ¢1,uy), computed by Algorithm LP_on_H in this case, is indeed a longest
binormal path of H(i,j) with u, as its right endpoint.

Let now ¢, be a connector vertex of H, such that k¥ < ¢. Assume that the lemma holds for every
induced subgraph H(i,j) of H, which has ¢ as its rightmost connector vertex in o, where 1 < /¢ < k—1.
That is, we assume that for every such graph H (i, j), the value £(uy; 1, j) computed by Algorithm LP_on_H
is the length of a longest binormal path P(u,;4,j) of H(i,j) with u, as its right endpoint. We will show
that the lemma holds for every induced subgraph H(7,j) of H, which has ¢, as its rightmost connector
vertex in o.

Case 1: u; <, uy <, Us(c,). In this case, it holds €(u,;i,5) = €(uy;i, h(cy)) (note that wuy(,) is the
previous vertex of ¢; in ). Indeed, on the one hand, using similar arguments as in the induction basis,
it easily follows that the connector vertex ¢; does not belong to any binormal path of H(i, j) with u, as
its right endpoint. On the other hand, since ¢ is the rightmost connector vertex of H(i,j), it follows
that every vertex w, of H(i,j), where ¢ <, up <, uj, is a stable vertex and, thus, u, does not see wu,,
due to Observation 4.2. Therefore, we obtain that £(u,;i,j) = £(uy;4, h(c)).

Next, we show that this is the result computed by Algorithm LP_on_H in this case. Note first that,
since h(ci) < j, Algorithm LP_on_H has already computed the value £(u,; i, h(c;)) at a previous iteration,
where j was equal to h(cy). Additionally, this computed value £(uy; i, h(ck)) equals indeed to the length
of a longest binormal path P(uy;i,h(cy)) of H(i, h(cy)) with u, as its right endpoint. Indeed, consider
first the case where H (i, h(cy)) is a graph for which C(H (i, h(cy))) = 0, i.e., H(i, h(ck)) has only stable
vertices. Then, as we have shown in the first paragraph of the proof, the computed value £(u,; i, h(cy)) = 1
equals to the length of a longest binormal path of H (i, h(cy)) with u, as its right endpoint. Consider
now the case where H(i,h(cy)) is a graph for which C(H (i, h(cy))) # 0, i.e., H(i,h(ck)) has at least
one connector vertex; let ¢, be its rightmost connector vertex in o. Then, ¢y <, cg, since up(c,) <o C-
Therefore, by the induction hypothesis, the value €(u,; 4, h(ci)) computed by Algorithm LP_on_H equals
indeed to the length of a longest binormal path of H (i, h(cy)) with u, as its right endpoint.

We now show that in Case 1 Algorithm LP_on_H computes £(uy;1,§) = €(uy; i, h(cy)). Consider first
the case where u; is a connector vertex of H(i,j), i.e., u; = cx. Then, Algorithm LP_on_H computes
Ouy;i,7) = (uy;4,j — 1), which equals to £(uy;1, h(ck)), since in this case j — 1 = h(cy). Consider now
the case where u; is a stable vertex; then j —1 > h(cy). If j —1 = h(c) + 1, then Algorithm LP_on_H
computes £(uy;i,j) = £(uy;4,j — 1), which is equal to £(uy;i, h(ck) + 1); moreover, since up (e )41 = C is
a connector vertex, it follows that {(uy;i, h(cy) +1) = €(uy; i, h(ck)) and, thus, €(uy;4,§) = L(uy; i, h(ck)).
Similarly, if j — 1 > h(c) + 1, then Algorithm LP_on_H computes £(uy;i,j) = £(uy;i,j — 1), which
is again equal to £(uy;i,h(cg)). Therefore, in Case 1, where u; <, uy <, us(,), Algorithm LP_on_H
computes £(uy;i, h(c)) as the length of a longest binormal path of H (i, j) with u, as its right endpoint
and, also, computes P(uy;i,j) = P(uy;i,h(c;)). Then, by the induction hypothesis, this path is also
binormal. Thus, in Case 1 the lemma holds.

Case 2: up(c,) <o Uy <o u;. Since ¢ is the rightmost connector vertex of H(i,j), and since u, is a
stable vertex, it follows that u, does not see any vertex of H(i,j). Thus, the longest binormal path of
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H(i,j) with u, as its right endpoint is consisted of the vertex u,, i.e., £(uy;i,7) = 1. One can easily see
that in this case Algorithm LP_on_H computes the length £(u,;,5) = 1, and the path P(uy;i,7) = (uy),
which is clearly a binormal path. Thus, in Case 2 the lemma holds.

Case 3:  uUpi)+1 Solly So Un(cy)- In this case, the connector vertex cj sees u,. Let
P = (ug, ... Ug,CpylUy, - .. ,Uy) be alongest binormal path of H (i, j) with w, as its right endpoint, which
contains the connector vertex c¢y; due to Lemma 4.7, such a path always exists. Let u, be the previous
vertex of c; in the path P; thus, us,) <s us <s uy. Since P is a binormal path, the vertices u,/,
Ug, Uy, and u, are all stable vertices. Also, since ¢ sees u,, which is the rightmost stable vertex of
P in o, all stable vertices of P belong to the graph H (i, h(cy)). Additionally, since ¢ is the rightmost
connector vertex of H (i, j) in o, all connector vertices of P belong to the graph H (i, h(cg)+1). Therefore,
all vertices of P belong to the graph H (i, h(c) + 1). Thus, the path P is a longest binormal path of
H(i,h(c) + 1) with wu, as its right endpoint, which contains the connector vertex c,. Therefore, for
every graph H (i, ), for which ¢ is its rightmost connector vertex in ¢ and h(cy) + 1 < j, we have that
Uuy;i,7) = €(uy; i, h(ck) +1). Thus, we will examine only the case where h(cy) +1 = j, that is, ¢ is the
rightmost vertex u; of H(i, ) in o.

Next, we examine the length £(u,;4,j) of a longest binormal path of H(i,j) with u, as its right
endpoint, in the case where h(cg) + 1 = j. Consider removing the connector vertex ¢ from the path
P. Then, we obtain the paths Pi = (ug/,...,u;) and P> = (uy,...,uy). Since P is a binormal path of
H(i,j), from Lemma 4.8 we obtain that P; and P, are binormal paths of H (i, ). Since, as we have shown,
all vertices of P belong to H (i, h(cy)+1), and since ¢, = u; is the rightmost vertex of H (i, j) in o, it follows
that all vertices of P; and P, belong to the graph H(i,h(cy)) = H(i,j — 1). Since P is a binormal path,
from Lemma 4.6(a) it follows that for every stable vertex u,, € V(Py), we have u; <, uy <, g <, tg.
Additionally, for every stable vertex us, € V(Py), we have u, <, ug, <, uy <, uj_1, where uj 1 = up(c,)
is the rightmost vertex of H(i,j — 1) in o, since uj = ¢;. Therefore, for every stable vertex u,, € V(P;)
it holds ug, € A(H(i,2)), and for every stable vertex uy, € V(P) it holds ug, € A(H(z + 1,5 — 1)).

Similarly, since P; is a binormal path, wu, is the rightmost stable vertex of V(P;) in o, due
to Lemma 4.6(a). Moreover, since P; is binormal, every connector vertex ¢y € V(P;) sees
at least two stable vertices of P; and, thus, u; <, u Flery) <olUa- Therefore, for every connec-
tor vertex ¢ € V(P1), we have that ¢, € C(H(i,j —1))\{ce € C(H(i,j — 1)) up <5 upe,)} C
CH@G,j—1)\CH(x+1,5-1)). Additionally, from Lemma 4.6(b) we have that every
connector vertex ¢, € V(P;) does not see the vertex wg, i.e., u; <, Uf(ep,) <o €l So Uj—1;
thus, ¢p, € C(H(zx+1,5—1)). Summarizing, let H; and Hs be the induced subgraphs
of H(i,j—1), with vertex sets V(H;)=A(H(,z)UCH@G,j—1)\CH(z+1,57—1)) and
V(H)=AH(z+1,j—1)UC(H(x+ 1,5 — 1)), respectively. Note that the graphs H; and Hs are
defined with respect to a stable vertex u,, where uy(.,) <, 4, <o uj_1, and that Hy = H(z +1,j — 1).
Now, it is easy to see that V(H1) NV (Hz) = (). Moreover, P; and P, belong to the graphs Hy and Ho,

respectively and, therefore, V(P) NV (P,) = (.

Since P = (Py,ck, P2) is a longest binormal path of H(i,j) with u, as its right endpoint, and since
the paths P; and P belong to two disjoint induced subgraphs of H (3, j), it follows that P; is a longest
binormal path of H; with u, as its right endpoint, and that P is a longest binormal path of Hy with
u, as its right endpoint. Thus, since Hy = H(z + 1,5 — 1), we obtain that |Ps| = £(uy;z + 1,5 — 1).
We will now show that |Py| = £(ug;i,7 — 1). To this end, consider a longest binormal path Py of
H(i,j — 1) with u, as its right endpoint. Due to Lemma 4.6(a), u, is the rightmost stable vertex of
Py in ¢ and, thus, all stable vertices of Py belong to A(Hy) = A(H(i,z)). Furthermore, since Py is
binormal, every connector vertex c, of Py sees at least two stable vertices of Py and, thus, us(.,) <o s,
ie, ¢ € C(H) = C(H(i,j — 1)\ C(H(z + 1,5 — 1)). It follows that V(Py) C V(H;) and, thus,
|Py] < |P1]. On the other hand, |P;| < |Py|, since H; is an induced subgraph of H(i,j — 1). Thus,
|P1| = |Po| = £(uy;i,j — 1). Therefore, for the length |P| = £(uy;i,7) of a longest binormal path P of
H(i,j) with u, as its right endpoint, it follows that €(wy;i,7) = l(ug;3,§ — 1) + L(uy;x + 1,5 — 1) + 1.

IN
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Hereafter, we examine the results computed by Algorithm LP_on_H in Case 3. Let P’ be the path
of the graph H(i,j) with u, as its right endpoint computed by Algorithm LP_on_H, in the case where
Uf(ep)+1 <o Uy <o Up(c,)- Consider first the case where u; is a connector vertex of H(i,), i.e., u; = c;. It
is easy to see that the path P’ constructed by Algorithm LP_on_H (in the subroutine process()) contains
the connector vertex cj. Algorithm LP_on_H computes the length of the path P’ = (P{, ¢, Pj), for two
paths P{ and PJ as follows. The path P{ = P(ug;i,j — 1) is a path of H(i,j — 1) with u, as its right end-
point, where u, is a neighbor of ¢, such that uy (., ) <; u, < uy. The path Py = P(uy;z+1,j —1)isa
path of H(z+1, j—1) with u, as its right endpoint, where u (., )41 <5 uy <o Up(c,)- Actually, in this case,
Algorithm LP_on_H computes (in the subroutine process()) the value wy +wq + 1 = |P{| + | P3| + 1, for
every stable vertex u,, where uy(.,) <s uz <o ty, and sets |P’| to be equal to the maximum among these
values. Additionally, Algorithm LP_on_H computes the corresponding path P’ = (P}, ¢y, P3).

Note that the path P| = P(ug;i,j — 1) (resp. P; = P(uy;z + 1,5 — 1)) has already been com-
puted by Algorithm LP_on_H at a previous iteration. Additionally, the computed path P(u,;i,5 — 1)
(resp. P(uy;z+ 1,5 —1)) is indeed a longest binormal path of H(i,j — 1) (resp. of H(z+1,j — 1))
with w, (resp. with w,) as its right endpoint. Indeed, consider first the case where H(i,j — 1)
(resp. H(z+ 1,5 —1)) is a graph for which C(H(i,j —1)) =0 (vesp. C(H(z+ 1,57 —1)) =10), i.e.,
H(i,j—1) (resp. H(xz +1,j — 1)) has only stable vertices. Then, as we have shown in the first para-
graph of the proof, the computed path P(uy;i,j —1) (resp. P(uy;2+ 1,5 — 1)) is a longest binormal
path of H(i,j —1) (resp. of H(x +1,j — 1)) with wu, (resp. with w,) as its right endpoint. Con-
sider now the case where H(i,j —1) (resp. H(z+ 1,5 — 1)) is a graph for which C(H(i,j —1)) #0
(resp. C(H(z + 1,5 — 1)) #0), i.e., H(i,7 — 1) (vesp. H(z 4+ 1,7 — 1)) has at least one connector vertex;
let ¢, be its rightmost connector vertex in o. Then, ¢; <, ¢, since uj_; <, u; = c;. Therefore, by the
induction hypothesis, the path P(uy;i,j—1) (resp. P(uy;2z+1,5 —1)) computed by Algorithm LP_on_H
is indeed a longest binormal path of H(i,j — 1) (resp. of H(z + 1,j — 1)) with u, (resp. with u,) as its
right endpoint.

Since by the induction hypothesis, P{ and Py are binormal paths of H (i, j —1) with u, and u, as their
right endpoints, respectively, it follows similarly to the above that P] and Pj belong to the graphs H; and
H,, respectively. Recall that, the graphs H; and Hs are defined with respect to a stable vertex u,, where
Uf(en) <o Uz <o Uj—1. Since, as we have shown, V(H1) NV (Hz) = 0, it follows that V(P[) NV (P3) = 0.
Therefore, from Lemma 4.9 we obtain that the computed path P’ = (P[,uj, Py) is a binormal path as
well. Moreover, Algorithm LP_on_H computes (in the subroutine process()) for every stable vertex u,,
where uf(c) <o Uy <o Uy, the value £(ug;i,j —1)+£(uy; 2+ 1,5 —1)+1, and sets |P’| to be equal to the
maximum among these values. Thus, the computed path P’ is a longest binormal path of H (i, ) with
uy as its right endpoint.

Consider now the case where u; is a stable vertex of H(i,j). Let ¢, be the rightmost connector
vertex of H(i, ) in o; then h(c;) + 1 < j. Assume first that h(cy) +1 = j — 1. Since u; is a stable vertex
and also the rightmost vertex of H(i,j), u; does not see any vertex of H(i,h(cy) + 1). In this case,
Algorithm LP_on_H correctly computes the path P’ = P(uy;i,j — 1) = P(uy; i, h(cy) + 1), with length
|P'| = £(uy; i, h(ck)+1). Similarly, in the case where h(cg)+1 < j—1, Algorithm LP_on_H again computes
the path P’ = P(uy;i,j — 1) = P(uy;4, h(cg) + 1), with length |P'| = €(uy;4,j — 1) = €(uy; i, h(ck) + 1).
Algorithm LP_on_H has already computed the value €(uy;4, h(cx) + 1) at a previous iteration where j
was equal to h(cg) + 1 (i.e., u; = ¢;) and, also, the computed path P’ = P(uy;i,h(cy) + 1) is binormal.

Concluding, in both cases where u; is a connector or a stable vertex of H (i, j), the path P’ of H(i,j)
with u, as its right endpoint computed by Algorithm LP_on_H is a longest binormal path P(u,;i,7) of
H(i,j) with u, as its right endpoint, and |P’| = £(uy;i,7). Thus, the lemma holds in Case 3 as well. 1

Due to Lemma 4.10, and since the output of Algorithm LP_on_H is the maximum among the lengths
uy;1,n), uy € A(H(1,n)), along with the corresponding path, it follows that Algorithm LP_on_H com-
putes a longest binormal path of H(1,n) with right endpoint a vertex w, € A(H(1,n)). Thus, since
H(1,n) = H, we obtain the following result.
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Lemma 4.11. Let G be an interval graph. Algorithm LP_on_H computes a longest binormal path of the
stable-connection graph H of the graph G.

4.4.2 Correctness of Algorithm LP _Interval

We next show that Algorithm LP Interval correctly computes a longest path of an interval graph G. The
correctness proof is based on the following property: for any longest path P of G there exists a longest
binormal path P’ of H, such that |P’| = 2|P|+ 1 and vice versa (this property is proved in Lemma 4.12).
Therefore, we obtain that the length of a longest binormal path P of H computed by Algorithm LP_on_H,
is equal to 2k + 1, where k is the length of a longest path P of G. Next, we show that the length of a
longest binormal path of H equals to the length of a longest path of H. Finally, we show that the path
P computed at Step 3 of Algorithm LP _Interval is indeed a longest path of the interval graph G.

Lemma 4.12. Let H be the stable-connection graph of an interval graph G. Then, for any longest path
P of G there exists a longest binormal path P’ of H, such that |P’'| = 2|P| 4+ 1 and vice versa.

Proof. Let o be the right-end ordering of H, constructed in Phase 1.

(=) Let P = (v1,v2,...,v;) be a longest path of G, i.e., |P| = k. We will show that there exists
a binormal path P’ of H such that |P’| = 2k + 1. Since G is an induced subgraph of H, the path P of
G is a path of H as well. We construct a path P of H from P, by adding to P the appropriate stable
vertices, using the following procedure. Initially, set P = P and for every subpath (v;,v;41) of the path
]3, 1 <i<k—1, do the following: consider first the case where v; <, v;+1; then, by the construction of
H, v;11 is adjacent to both stable vertices a; 1 and a; 2 associated with the connector vertex v;. If a; 1 has
not already been added to P, then replace the subpath (vi,vi+1) by the path (v;,a;1,v;41); otherwise,
replace the subpath (v;,v;11) by the path (v;,a;2,v;41). Similarly, in the case where v;41 <, v;, replace
the subpath (v;,v;41) by the path (v;, @;q1,1,vi41) or (vi, @412, vi41), respectively. Finally, consider the
endpoint vy (resp. vg) of P.If a1,1 (resp. ag,1) has not already been added to ]3, then add a1,1 (resp.
ag,1) as the first (resp. last) vertex of P; otherwise, add a1,2 (resp. ay,2) as the first (resp. last) vertex

~

of P.

By the construction of P it is easy to see that for every connector vertex v of P we add two stable
vertices as neighbors of v in ]3, and since in H there are exactly two stable vertices associated with every
connector vertex v, it follows that every stable vertex of H appears at most once in p. Furthermore,
since we add in total k + 1 stable vertices to P, where |P| = k, it follows that |P| = 2k + 1. Denote now
by P’ a normal path of H such that V(P') = V(P). Such a path exists, due to Lemma 4.4. Due to the
above construction, the path P is consisted of k + 1 stable vertices and k connector vertices. Thus, since
no two stable vertices are adjacent in H due to Observation 4.2, and since P’ is a normal path of H, it
follows that P’ is a binormal path of H. Thus, for any longest path P of G there exists a binormal path
P’ of H, such that |P’'| = 2|P| + 1.

(«<=) Consider now a longest binormal path P’ = (v1,va,...,v;) of H. Since P’ is binormal, it follows
that ¢ = 2k + 1, and that P’ has k connector vertices and k + 1 stable vertices, for some k > 1. We
construct a path P by deleting all stable vertices from the path P’ of H. By the construction of H,
all neighbors of a stable vertex a are connector vertices and form a clique in G; thus, for every subpath
(v,a,v") of P/, v is adjacent to v’ in G. It follows that P is a path of G. Since we removed all the k£ + 1
stable vertices of P’, it follows that |P| =k, i.e., |P’| = 2|P| + 1.

Summarizing, we have constructed a binormal path P’ of H from a longest path P of G such that
|P'| = 2|P|+1, and a path P of G from a longest binormal path P’ of H such that |P’| = 2|P|+ 1. This
completes the proof. 1

In the next lemma, we show that the length of a longest path of H is equal to the length of a longest
binormal path of H.
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Lemma 4.13. For any longest path P and any longest binormal path P’ of H, it holds |P'| = |P|.

Proof. Let P be a longest path of H, and let P’ be a longest binormal path of H, i.e., a binormal path of
H with maximum length. Then, clearly |P’| < |P|. Suppose that P has k connector and £ stable vertices.
Since no two stable vertices of H are adjacent due to Observation 4.2, it holds clearly that £ < k + 1.
Similarly to the second part of the proof of Lemma 4.12, we can obtain a path P of H with k vertices,
by removing all £ stable vertices from P. Then, similarly to the first part of the proof of Lemma 4.12,
there exists a binormal path P” of H, where |P"| =2k +1>k+{ = |P| > |P’'|. However, |P"| <|P’|,
since P’ be a longest binormal path of H. Therefore, |P’| = |P|. This completes the proof. 1

Let P be the longest binormal path of H computed in Step 2 of Algorithm LP_Interval, using Algorithm
LP_on_H. Then, in Step 3 Algorithm LP_Interval computes the path p by deleting all stable vertices
from P. By the construction of H, all neighbors of a stable vertex a are connector vertices and form a
clique in G; thus, for every subpath (v, a,v’) of P, v is adjacent to v’ in G. It follows that P is a path of
G. Moreover, since P is binormal, it has k connector vertices and k + 1 stable vertices, i.e., |P| = 2k + 1,
where k > 1. Thus, since we have removed all k + 1 stable vertices of P, it follows that |P| = k and,
thus, Pisa longest path of G due to Lemma 4.12. Therefore, we have proved the following result.

Theorem 4.1. Algorithm LP_Interval computes a longest path of an interval graph G.

4.4.3 Time Complexity

Let G be an interval graph on |V (G)| = n vertices and |E(G)| = m edges. It has been shown that we
can obtain the right-end ordering 7 of GG, which results from numbering the intervals after sorting them
on their right ends, in O(n + m) time [1, 61].

First, we show that Step 1 of Algorithm LP_Interval, which constructs the stable-connection graph
H of the graph G, takes O(n?) time. Indeed, for every connector vertex u;, 1 < i < n, we can add two
stable vertices in V(H) in O(1) time and we can compute the specific neighborhood of u; in O(n) time.

Step 2 of Algorithm LP_Interval includes the execution of Algorithm LP_on_H. The subroutine
process() takes O(n?) time, due to the O(n?) pairs of the neighbors u, and u, of the connector vertex
uj in the graph H(i,j). Additionally, the subroutine process() is executed at most once for each
subgraph H(i,j) of H, 1 <1i < j <mn, i.e., it is executed O(n?) times. Thus, Algorithm LP_on_H takes
O(n?) time.

Step 3 of Algorithm LP Interval can be executed in O(n) time since we simply traverse the vertices
of the path P, constructed by Algorithm LP_on_H, and delete every stable vertex.

Therefore, we obtain the following result concerning the time complexity of the algorithm.
Theorem 4.2. A longest path of an interval graph can be computed in O(n*) time.

In order to compute the length of a longest path, we need to store one value for every induced subgraph
H(i,j) and for every stable vertex u, of H(i,j). Thus, since there are in total O(n?) such subgraphs
H(i,j), 1 <i < j<n, and since each one has at most O(n) stable vertices, we can compute the length
of a longest path in O(n®) space. Furthermore, in order to compute and report a longest path, instead of
its length only, we have to store a path of at most n vertices for every one of the O(n?) computed values.
Therefore, the space complexity of Algorithm LP _Interval is O(n?).

4.5 Concluding Remarks

In this work we presented a polynomial-time algorithm for solving the longest path problem on interval
graphs, which runs in O(n?) time and, thus, provided a solution to the open problem stated by Uehara
and Uno in [63] asking for the complexity status of the longest path problem on interval graphs. It
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would be interesting to see whether the ideas presented in this work can be applied to find a polynomial
solution to the longest path problem on convex and biconvex graphs, the complexities of which still
remain open [63].
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CHAPTER 5

TTHE LONCGEST PATH PROBLEM ON
COCOMPARABILITY GRAPHS

5.1 Introduction

5.2 Theoretical Framework

5.3 The Algorithm

5.4 Correctness and Time Complexity

5.5 Concluding Remarks

5.1 Introduction

The longest path problem, i.e., the problem of finding a path of maximum length in a graph, is a
generalization of the Hamiltonian path problem. The Hamiltonian path problem is the problem of
determining whether a graph is Hamiltonian; a graph is said to be Hamiltonian if it contains a simple
path in which every vertex of the graph appears exactly once. The longest path problem or, equivalently,
the problem of finding a maximum Hamiltonian induced subgraph of a graph, is NP-complete on general
graphs and, in fact, on every class of graphs that the Hamiltonian path problem is NP-complete. Thus, it
is interesting to study the longest path problem on classes of graphs where the Hamiltonian path problem
is polynomial, since even if a graph is not Hamiltonian, it makes sense in several applications to search
for a longest path of the graph. Although the Hamiltonian path problem has received a great deal of
attention the past two decades, only recently did the longest path problem start receiving attention.

Additionally, the longest path problem has also received attention the recent years in the direction of
approximation related results, some of which imply that finding a longest path seems to be more difficult
than deciding whether or not a graph admits a Hamiltonian path. Indeed, it has been proved that even
if a graph has a Hamiltonian path, the problem of finding a path of length n — n® for any ¢ < 1 is
NP-hard, where n is the number of vertices of the graph [47]. Moreover, there is no polynomial-time
constant-factor approximation algorithm for the longest path problem unless P=NP [47]. For related
results see also [29, 31, 32, 66, 68].

As we have mentioned, the longest path problem is NP-hard on every class of graphs on which the
Hamiltonian path problem is NP-complete. The Hamiltonian path problem is known to be NP-complete
in general graphs [33, 34], and remains NP-complete even when restricted to some small classes of graphs
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such as split graphs [37], chordal bipartite graphs, split strongly chordal graphs [58], circle graphs [22],
planar graphs [34], and grid graphs [46]. However, it makes sense to investigate the tractability of the
longest path problem on the classes of graphs for which the Hamiltonian path problem admits polynomial
time solutions. Such classes include interval graphs [1], circular-arc graphs [24], biconvex graphs [3], and
cocomparability graphs [23, 39]. Note that the problem of finding a longest path on proper interval graphs
is easy, since all connected proper interval graphs have a Hamiltonian path which can be computed in
linear time [6]; on the contrary, not all interval graphs are Hamiltonian.

In contrast to the Hamiltonian path problem, the known polynomial time solutions for the longest
path problem are rather recent, and restrict to smaller graph classes. Specifically, a linear time algorithm
for finding a longest path in a tree was proposed by Dijkstra around 1960, a formal proof of which can
be found in [12]. Later, through a generalization of Dijkstra’s algorithm for trees, Uehara and Uno [63]
solved the longest path problem for weighted trees and block graphs in linear time and space, and for
cacti in O(n?) time and space, where n and m denote the number of vertices and edges of the input
graph, respectively. More recently, polynomial algorithms have been proposed that solve the longest
path problem on bipartite permutation graphs in O(n) time and space [64], and on ptolemaic graphs in
O(n®) time and O(n?) space [65]. Furthermore, Uehara and Uno in [63] solved the longest path problem
on a subclass of interval graphs in O(n3(m + nlogn)) time, and as a corollary they showed that a longest
path on threshold graphs can be found in O(n + m) time and space. In Chapter 4 we presented a
polynomial solution of the longest path problem on interval graphs, answering thus the question left open
in [63].

In this chapter we present a polynomial solution for the longest path problem on cocomparability
graphs. Cocomparability graphs form an important and well-known class of perfect graphs [37], which is
a superclass of interval graphs and permutation graphs. As interval and permutation graphs have linear
structures, so do cocomparability graphs: a graph G is a cocomparability graph if and only if its vertices
can be put in an order vi,vo,..., vy (g such that if i < k < j and v;v; € E(G), then vjv, € E(G)
or v;vy € E(G) [56]. The Hamiltonian path problem on cocomparability graphs has been proved to be
polynomial [23], while the status of the longest path problem on such graphs is unknown; actually, the
status of the longest path problem is unknown even on the more special class of permutation graphs.
In this work, we present a polynomial-time algorithm for solving the longest path problem on the class
of cocomparability graphs. Therefore, we resolve the open question for the status of the problem on
cocomparability graphs, and thus on permutation graphs. This result extends our polynomial solution of
the longest path problem on interval graphs presented in Chapter 4.

The rest of this chapter is organized as follows. In Section 5.2, we first review some properties of
partial orders, comparability and cocomparability graphs and, then, introduce the notion of a normal
antipath on a cocomparability graph, which is needed for our algorithm. In Section 5.3, we present our
algorithm for solving the longest path problem on a cocomparability graph, and in Section 5.4 we prove
the correctness and compute the time complexity of our algorithm. Finally, some concluding remarks are
given in Section 5.5.

5.2 Theoretical Framework

For basic definitions in graph theory refer to [10, 37, 56]. Recall that by V(P) we denote the set of vertices
in a path (resp. antipath) P, and within this chapter we consider the length of the path (resp. antipath)
P to be the number of vertices in P, i.e., |P| = |[V(P)|.

5.2.1 Partial Orders and Cocomparability Graphs

A partial order will be denoted by P = (V, <p), where V is the finite ground set of elements or vertices
and <p is an irreflexive, antisymmetric, and transitive binary relation on V. Two elements a,b € V are
comparable in P (denoted by a ~p b) if a <p b or b <p a. Otherwise, they are said to be incomparable
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Figure 5.1: Tllustrating a Hasse diagram of a cocomparability graph G, with layers Hy, Ho, Hs, H4. Note
that ¢ = (v1,v2,...,v10) is a layered ordering for G.

(denoted by a || b). An extension of a partial order P = (V, <p) is a partial order L = (V,<y,) on the
same ground set that extends P, i.e., a <p b= a <z b, for all a,b € V. The dual partial order P* of
P = (V,<p) is a partial order P? = (V, <pa) such that for any two elements a,b € V, a <pa b if and
only if b <p a. A linear order is a partial order without incomparable elements. A linear extension of a
partial order P = (V, <p) is a linear order L = (V, <) on the same ground set that extends P.

The graph G, edges of which are exactly the comparable pairs of a partial order P on V(G), is called
the comparability graph of P, and is denoted by G(P). The complement graph G, whose edges are the
incomparable pairs of P, is called the cocomparability graph of P, and is denoted by G(P). Alternatively, a
graph G is a cocomparability graph if its complement graph G has a transitive orientation, corresponding
to the comparability relations of a partial order Pz. Note that a partial order P uniquely determines
its comparability graph G(P) and its cocomparability graph G(P), but the reverse is not true, i.e., a
cocomparability graph G has as many partial orders P as is the number of the transitive orientations
of G. Furthermore, the class of cocomparability graphs is hereditary, i.e., every induced subgraph of a
cocomparability graph G is also a cocomparability graph.

Let G be a comparability graph, and let Pg be a partial order which corresponds to G. The graph G
can be represented by a directed covering graph with layers Hi, Ho, ..., Hp, in which each vertex is on
the highest possible layer. That is, the maximal vertices of the partial order Py are on the highest layer
H}, and for every vertex v on layer H;_; there exists a vertex u on layer H; such that v <p, w; such a
layered representation of G (respectively Pg) is a called the Hasse diagram of G (respectively Pg). Let
o = (V(G),<s) be a partial order on the vertices of a comparability graph G, such that for any two
vertices v,u € V(G), v <, u if and only if v € H;, u € Hj, and i < j; we may, equivalently, denote
v <, u by u >, v. For vertices v,u € V(G) which belong to the same layer H; of the Hasse diagram of
G, for simplicity sometimes we shall write v =, u; v #, u denotes that vertices v,u € V(G) belong to
different layers. Also, v <, u implies that either v <, u or v =, u; again we may, equivalently, denote
v <, u by u >, v. Throughout the chapter, such an ordering ¢ is called a layered ordering of G. Note
that, the partial order o is an extension of the partial order Pg; in particular, it holds that for any two
vertices u,v € V(G), v <p, u if and only if v <, u and vu € E(G).

Since a comparability graph G does not uniquely determine a partial order, hereafter, for clarity, we
will consider a comparability graph G represented by its Hasse diagram and we will denote by Pg the
partial order (V(G), <p,) to which the Hasse diagram of G corresponds, i.e., the vertices which are on
the highest layer Hj, of the Hasse diagram are the maximal vertices of the partial order Py, and for two
vertices u,v € V(G), v <p, v if v € Hi_1, u € H; and wv € E(G). Thus, we will say that Pg is the
partial order which corresponds to the comparability graph G. Also note that the transitivity property
holds for vertices in the Hasse diagram; for any three vertices v,u,w € V(@) such that v € H;, u € H;,
w € Hy, and i < j < k (or, equivalently, v <, u <, w), if vu € E(G) and uvw € E(G), then vw € E(G).

The following definition and results where given by Damaschke et al. in [23] for providing an alterna-
tive proof for their algorithm for finding a Hamiltonian path of a cocomparability graph; note that the
algorithm and the original correctness proof were first presented in [39], in order to provide a polynomial
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solution for the bump number problem of a partial order.

Definition 5.1. (Damaschke et al. [23]): Let G be a comparability graph, and let Pg be the partial
order which corresponds to G. A path P = (v, vs,...,v;) of the cocomparability graph G is monotone
if v; <p, v; implies ¢ < j, i.e., v; appears before v; in the path P.

The following results appear to be useful in the sequence.

Lemma 5.1. (Damaschke et al. [23]): Let G be a comparability graph, and let Pg be the partial order
which corresponds to G. Let P = (v1,v2,...,v;) be a Hamiltonian path of the cocomparability graph
G such that vy is a minimal element of Pg. Then there exists a monotone Hamiltonian path P’ of G
starting with vertex v1.

Theorem 5.1. (Damaschke et al. [25]): Let G be a cocomparability graph. Then, G has a Hamiltonian
path if and only if G has a monotone Hamiltonian path.

Note that the above two results were proved in [23] for Hamiltonian paths of a cocomparability graph
G. In fact, it appears that the two results hold not only for Hamiltonian paths of G, but also for any path
of G. Indeed, let P be a path of the cocomparability graph G, and let G’ = G[V (P)] be the subgraph
of G induced by the vertices of P. Also, let Pg: be the partial order which corresponds to G’, such that
P is an extension of Pg, ie., for any two vertices u,v € V(G), if u <p, v and u,v € V(G’), then
u <p,, v. Then since P is a Hamiltonian path of G’, then from Lemma 5.1 and Theorem 5.1, there exists
a monotone path P’ of G’ (with respect to Pg/) such that V(P') = V(P). From Definition 5.1 it is easy
to see that P’ is also a monotone path of G (with respect to Pg), since Pg is an extension of Pg.

Additionally, since a path P of a cocomparability graph G is an antipath on the comparability graph
G, and since our algorithm for computing a longest path of a cocomparability graph G computes, in fact,
a longest antipath of the comparability graph G, we restate the above definition and results and whenever
P denotes a path of a cocomparability graph G, we refer to P as an antipath of the comparability graph
G.

We first restate Definition 5.1 as follows: an antipath P = (v, vs,...,v) of a comparability graph G
is monotone if v; <p, v; implies ¢ < j, where Py is the partial order which corresponds to G. We next
restate Lemma 5.1 and Theorem 5.1 in a form stronger than the one stated in [23], to assist us obtain
some important for the correctness of our algorithm results, in the sequence.

Lemma 5.2. Let G be a comparability graph, and let Pg be the partial order which corresponds to G.
Let P = (v1,v9,...,v;) be an antipath of G such that vi is a minimal element of V(P) in Pg. Then
there exists a monotone antipath P’ of G starting with vertex vy such that V(P') = V(P).

Theorem 5.2. Let G be a comparability graph. If P is an antipath of G, then there exists a monotone
antipath P' of G such that V(P') = V(P).

The following lemma derives from properties of comparability graphs, and appears to be useful in
obtaining some important results.

Lemma 5.3. Let G be a comparability graph, and let o be the layered ordering of G. Let P =
(v1,02,...,v) be an antipath of G, and let vi ¢ V(P) be a vertex of G such that v1 <, v, <, v
and vevy € E(G). Then there exist two consecutive vertices vi—1 and v; in P, 2 < i < k, such that
vio1ve ¢ E(G) and vy <4 v;.

Proof. Let P = (v1,v9,...,v;) be an antipath of G, and let v, ¢ V(P) be a vertex of G such that
v <, g <5 v and vevp € E(G). We first show that at least one vertex of P does not see v,. In
the case where v1 =, vy, then v; is such a vertex, i.e., vivy ¢ E(G). Consider now that case where
v <, vy <o Uk, and assume that vev; € E(G) for every vertex v; € V(P), 1 < i < k. Then for every
vertex v; € V(P), 1 < i < k, it follows that v, #, v;, since vertices belonging to the same layer of
the Hasse diagram of G form an independent set. If vs <, w1, then obviously ve <, vg. Assume now
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that v1 <, wve; recall that v1 <, ve. If v1 <, vy <, v2, from the transitivity property it follows that
vov1 € E(G), since vav, € E(G) and vyvy € E(G); this is a contradiction to our assumption that v; and
vy are consecutive in the antipath P. Thus, vs <, v,. Similarly, we can easily show by induction that
for every pair v,_1, v, of consecutive verticesin P, 2 <z < k—1,if v,_1 <, vy then v, <, vy, otherwise
V-1V € E(G) due to the transitivity property. In particular, the same holds for the pair vj_o and vg—_1,
i.e., from vp_o <, vg, we obtain v,_1 <, vy. Recall that vy <, wvy; thus, vp_1 <, vy <, vk, and since
vpvy € E(G) and vpvg—1 € E(G), from the transitivity property we obtain that vyv,—1 € E(G). This
comes to a contradiction to our assumption that P is an antipath of G. Thus, there exists at least one
vertex of P which does not see v,.

Let v;_1 be the last vertex from left to right in P (i.e., ¢ — 1 is the greatest index) such that v;_jv, ¢
E(G), 2 <i < k. Therefore, for every index j, i < j < k, we have v;v, € E(G) and, thus, vj #, v,. If
i = k, then vi_1, vy is a pair of consecutive vertices in P such that vx_jvy ¢ E(G) and vy <, vy, and the
lemma holds. Assume that 2 <4 <k — 1. We will show that v, <, v; for every j, i <j < k. For j =k,
vy <o vp, holds by assumption. Consider now the case where i < j < k£ — 1. Assume that there exists a
vertex vy, 1 < p < k — 1, such that v, <, v¢; let v, be the last such vertex from left to right in . Thus,
vp <, Upt1, by the choice of v,. Then, v, <, vy <, Vpt1, and since v,11v¢ € E(G) and vev, € E(G), we
obtain that vp41v, € E(G). This is a contradiction to our assumption that v, and v,41 are consecutive
in the antipath P of G. Therefore, there exists no vertex v,, 1 < p < k — 1, such that v, <, vy. Thus,
we have shown that v, <, v; for every j, ¢« < j < k. In particular, v, <, v;. Therefore, the vertices v;_;
and v; are a pair of consecutive vertices in P such that v;_1v; ¢ E(G) and vy <, v;. 1

5.2.2 Normal Antipaths on Comparability Graphs

It is easy to see that P is a longest antipath of a comparability graph G if and only if P is a longest path
of the cocomparability graph G. Our algorithm computes a longest path P of a cocomparability graph
G, by computing in fact a longest antipath P of the comparability graph G. In particular, our algorithm
uses a specific type of antipaths of comparability graphs, which we call normal antipaths. We next define
the notion of a normal antipath of a comparability graph G. Recall that by Nz(v) we denote the set of
the antineighbors of a vertex v in the graph G.

Definition 5.2. Let G be a comparability graph, and let o be a layered ordering of G. The antipath
P = (v1,v9,...,u;) of G is called normal, if v; is a leftmost (i.e., minimal) vertex of V(P) in o, and for
every i, 2 < i < k, the vertex v; is a leftmost vertex of Ng(v;—1) N {vi, vig1,..., v} in 0.

Using Lemma 5.3 and Definition 5.2, we prove the following result.

Lemma 5.4. Let G be a comparability graph, and let o be the layered ordering of G. Let P =
(v1,v2,...,vk) be a normal antipath of G, and let vy, and v; be two vertices of P such that v, <, v; and
vv; € E(G). Then € < j, i.e., vy appears before vj in P.

Proof. Let P = (v1,vs,...,v;) be anormal antipath of a comparability graph G, and let v,, and v; be two
vertices of P such that v, <, v; and vv; € E(G). Assume that j < £,i.e., P = (v1,...,0j,...,0¢,..., V).
Since P is a normal antipath, then v is a leftmost vertex of V(P) in o; thus, v1 <, vy <, v;. Since
P’ = (v1,v2,...,v;) is an antipath, v, ¢ V(P'), v1 <, v¢ <, vj, and vev; € E(G), then from Lemma 5.3,
we obtain that there exist two consecutive vertices v;—1 and v; in P’ 2 <4 < j, such that v;_1v; ¢ E(G)
and vy <, v;. However, this comes to a contradiction to our assumption that P is a normal antipath,
since from Definition 5.2 we obtain that v, should be the next vertex of v;_; in P, instead of v;. Therefore,
we obtain £ < j. 1

Recall that, if G is a comparability graph, Pg is the partial order corresponding to G, and o is the
layered ordering of G, then vy <p, v; if and only if vy <, v; and vw; € E(G), for any two vertices
ve,v; € V(G). Therefore, the definition of a monotone antipath can be paraphrased as follows: an
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antipath P = (v1,v2,...,v;) of a comparability graph G is monotone if v, <, v; and v,v; € E(G) implies
that vy appears before v; in P. Then, from Lemma 5.4 we obtain that the notion of a normal antipath
of a comparability graph G is a generalization of the notion of a monotone antipath of G. In particular
we obtain the following result. Note that the inverse of Corollary 5.1 is not always true.

Corollary 5.1. Let G be a comparability graph. If P is a normal antipath of G, then P is a monotone
antipath of G.

In [23], for proving that for any Hamiltonian path P of a cocomparability graph G there exists a mono-
tone Hamiltonian path of G, Damaschke et al. first show that there exists a path P’ = (v1,vz,. .., vjv(@)|)
of G such that v; is a minimal vertex of either Pg or P&. Using the same arguments, we show the following
lemma, which is useful for obtaining some important results.

Lemma 5.5. Let G be a comparability graph, and let Pg be the partial order which corresponds to G. If
P is an antipath of G, then there exists an antipath P’ of G such that V(P') = V(P) which starts with
a minimal vertez of V(P) in Pg.

Proof. Let P = (v1,v2,...,v;) be an antipath of a comparability graph G. Let k be the smallest index
such that vy is either a minimal or a maximal vertex of V(P) in PZ. First, consider the case where
vy, is a minimal vertex of V(P) in P¢. We apply Lemma 5.2 to the antipath P, = (vg,...,v,), and
we obtain a monotone antipath Pi" = (v}/,...,v,’) (with respect to P&) such that V(P{) = V(P;) and
v, = vg. Therefore, P, = (v1,v2,...,05-1,0 ,...,0;) is an antipath of G such that V(P;) = V(P).

Since (v1,v2,...,v,—1) contains no maximal vertex of V(P) in P¢, and (v;/,...,v,’) is monotone (with
respect to PZ), it follows that v/, is a maximal vertex of V(P) = {v1,v2,...,v},...,v,} in P4 (and not
only of {v}’,...,v,'}). Now, consider the reversed antipath P’ = (v, v _1,...,v},Vk—1,...,01), Where

v, is a minimal vertex of V(P’) in Pg. Thus, P’ is an antipath of G such that V(P’) = V(P) which
starts with a minimal vertex of V(P) in Pg.

Consider now the case there vy, is a maximal vertex of V(P) in P¢. Thus, v, is a minimal vertex of
V(P) in Pg. Then following the above same maner we can obtain an antipath P’ = (v{,v5,...,v,) of G
such that V(P') = V(P) and v} is a minimal vertex of V(P) in P&. Thus, by applying again the same
above procedure to P’, we can obtain an antipath P” of G such that V(P") = V(P) which starts with a
minimal vertex of V(P) in Pg. 1

The following result is very important for proving the correctness of our algorithm for solving the longest
path problem on cocomparability graphs.

Lemma 5.6. Let P be a longest antipath of a comparability graph G. Then, there exists a normal antipath
P’ of G, such that V(P') =V (P).

Proof. Let G be a comparability graph, Pg be the partial order that corresponds to G, o be the layered
ordering of G, and let P = (v1,va,...,v;) be a longest antipath of G. If k = 1, the lemma holds. Suppose
that k > 2. We will prove that for every index i, 2 < i < k, there exists an antipath P; = (v{,v5,...,v}),
such that V(P;) = V(P), v} is a leftmost vertex of V(F;) in o, and for every index j, 2 < j < i, the

/

vertex v} is a leftmost vertex of Ng(v}_;

’ )N {v}, 0541, .., v} in 0. The proof will be done by induction

on 1.

From Lemma 5.5, we may assume that v; is a minimal vertex of V' (P) in Pg, and then from Lemma 5.2
we may assume that P is a monotone antipath of G. Thus, for every vertex v;, 2 < ¢ < k, such that
v; <o U1, we have v;u; ¢ E(G). If vy is a leftmost vertex of V(P) in o, then P; = P. Consider now the
case where v1 is not a leftmost vertex of V(P) in o. Let j, 2 < j < k, be the greatest index such that
vj is a leftmost vertex of V(P) in o. If vivj41 ¢ E(G) then Py = (vj,vj—1,...,01,Vj41,.-.,0k) is an
antipath of G such that V(P;) = V(P) and v; is a leftmost vertex of V(P) in 0.

Consider now the case where v1v;41 € E(G). Since P is monotone and vy appears in P before v;11, we
obtain that v <, vj41. Since v; <, v1 <, Vj+1,0;Vj+1 ¢ E(G), and viv;11 € E(G), from the transitivity
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property it follows that viv; ¢ E(G). Therefore, by the construction of the Hasse diagram of G (and,
thus, of o), there exists a vertex v, in G, such that v, =, v1 and vjv, € E(G); thus, vj11v, ¢ E(G)
due to the transitivity property. If v, ¢ V(P), then P’ = (vj,vj_1,...,01,03,0j41,...,0;) is an antipath
of G longer than P. This is a contradiction to our assumption that P is a longest antipath of G, thus,
vy € V(P). Since P is monotone, vjv, € E(G), and v; <, v, =, v1, it follows that v; appears in
P before vy, ie., j+1 < 2z < k. Infact, j+2 < 2 < k, since v, =, v1 <, vjt1. Then P’ =
(Vj,Vj-1,...,01,03,Vp—1,...,0j41) is an antipath of G such that V(P’) = V(P) \ {va41, V42, ..,k }.
If vj 110,41 ¢ E(G) then Py = (vj,vj—1,...,V1,Vz,Vp—1,--,Vj41,Vs+1,---,Vk) 18 an antipath of G such
that V(P,) = V(P) and v; is a leftmost vertex of V(Py) in o.

Consider now the case where vj1v;41 € E(G). Since P is monotone, vj41v,4+1 € E(G) and vj41
appears in P before v,41, we have that vj41 <, vg41; thus, v, <, vjy1 <o Vg+1. Since vyvj41 ¢
E(G), it follows by the construction of the Hasse diagram, that there exists a vertex v, in G such
that v, =, vj41 and vyv, € E(G); thus, vy41v, ¢ E(G) due to the transitivity property. Similarly
to the above, v, € V(P), since P is a longest antipath of G. Since P is monotone, v,v, € E(G) and
Vg <g Uy =¢ Uj+1, it follows that v, appears in P before vy, i.e., z+1 <y < k and, in fact, z+2 <y < k.
Therefore, P’ = (vj,0j-1,...,01,V3,VUg—1,-.,Vj+1,Vy,Vy—1,...,VUz41) is an antipath of G such that
V(P') = V(P) \ {vy+1,vy42,-..,vx}. Again, if v,110y41 ¢ E(G), then using the above transformation
we obtain an antipath Py. If v, 10,41 € E(G), then we can repeat the above procedure until we find a
pair of vertices vy41 and vyy1 in P such that vy <, vg41, ¢+ 2 <y < k, and vy11vy41 € E(G).

Assume that such a pair of vertices v,41 and v,y1 does not exists in P, ie., vy41 is the last
vertex v of P, vy <5 Usq1, €+ 2 < y = k — 1, and v,410y41 € E(G). Therefore, P’ =
(Vj, V=15, V1,Vz, Vg1, ..., Vj41,Vy, Uy—1,-..,VUz41) is an antipath of G such that V(P') = V(P) \
{vy+1} and y + 1 = k. Since P is monotone, v,41vy+1 € E(G), and v,y appears in P before v, 1,
it follows that v,11 <y vy41; thus, vy <, vz41 <s vy4+1. Then, similarly to the above, it follows
that v,v,11 ¢ E(G), and thus there exists a vertex v, in G such that v,11 =, v, and vyv, € E(G);
thus vvy+1 ¢ E(G). Since P is monotone, v, <, vy and vyvy € E(G), it follows that if v, € V(P),
then v, appears in P after v, and, in fact, after vy4q, ie., y +1 < £ < k. This comes to a con-
tradiction to our assumption that y +1 = k, i.e., v,41 is the last vertex v, of P. Thus, v, ¢ V(P)
and, therefore, P’ = (vj,0j_1,...,01,V3,V5—1,---,Vj41,Vy, Uy—1, .-, Vg41,0¢,Vy+1) is an antipath of
G longer that P, since vy + 1 = k and, thus, V(P’) = V(P) U {v;}. This comes to a contradic-
tion to our assumption that P is a longest antipath of G. Therefore, there exists a pair of ver-
tices v,41 and vy41 in P such that vy, <, ve41,  +2 < y < k, and vq410y41 ¢ E(G). Then,
P = (0j,0j—1, -, V1,Vg, Vg1, -, Ujt1, Uy, Uy—1,- - - Upt1, Uyt1,Vy42,---,V) 1 an antipath such that
V(Py) = V(P) and v; is a leftmost vertex of V(P;) in o. This completes the proof for the induction
basis.

Consider now an arbitrary index i, 2 < i < k — 1, and let P; = (v{,v,...,v},0j,1,...,v;) be an
antipath of G, such that V(P;) = V(P), v} is a leftmost vertex of V(P;) in o, and for every index j,

/

2 < j <, the vertex v} is a leftmost vertex of Ng(v;_;) N{v},v};1,...,v}} in 0. Therefore, the antipath

(v1,v5,...,v;) is normal. We now show that vj is a minimal vertex of {vj,v;,,...,v;} in Pg. Assume
otherwise that there exists a vertex v, € {vj ;,vj,9,...,v;}, such that v}, <p, vj or, equivalently,
vl <, v} and v,v] € E(G). By the induction hypothesis, v} is a leftmost vertex of V(P) in ¢ and,
thus, v] <, v, <, v}. Since P’ = (v{,v5,...,v}) is an antipath of G, v}, ¢ V(P’), vi,v; € E(G), and
v) <o v, <o vj, from Lemma 5.3 we obtain that there exist two consecutive vertices v, _; and vy in P,
2 <y <, such that v, v, ¢ E(G) and v, <, v,. This comes to a contradiction to our assumptions,

since by the induction hypothesis v, is a leftmost vertex of Ng(vy_1) N {vy, vy 1,500 - Vs oo, VL,
while v, € Ng(vy,_1) N {vy,vy41,. 50, Vg, v} and vy, < v,. Therefore, we conclude that v] is
a minimal vertex of {vj, v} ,,...,v}} in Pg. From Lemma 5.2, for any antipath P of a comparability

graph G which starts with a minimal element v of V(P) in Pg, there exists a monotone antipath P” of
G starting with the same vertex v such that V(P”) = V(P). Therefore, without loss of generality we
may assume that {vj,vj,,...,v;} is a monotone antipath of G. Therefore, by the induction hypothesis
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H3 (W Vs
HQ U2 U3
Hl U1

P = (v3,v1,v5,v7) P" = (v1,v3,v2, V5, V7, Vg)

Figure 5.2: Tllustrating a Hasse diagram of a comparability graph G, an antipath P = (v3,v1,vs, v7) of
G which is not normal and a normal antipath P” = (v1,vs, v2,v5,v7,v6) of G.

it is easy to obtain that the path P; is a monotone path.

If vj,, is a leftmost vertex of Ng(v;) N {vi |,vi19,...,v;} in o, then P,y = P;. Consider
now the case where v;;1 is not a leftmost vertex of Ng(vi) N {vj 1,V 9,..., v} in 0. Let j,
i+2 < j <k, be the greatest index for which v} is a leftmost vertex of Ng(vi) N {vi;1,v} 0,-.-,v}}
in ¢. Then, P’ = (v{,v3,...,9},v},Vj_1,...,v{41) is an antipath of G such that V(P') =
V(P) \ {1,005 -0 IE vigviy & E(G), then Py = (vf,vg,...,00, 0, .. v)) =
(V1,09 U U, V1 - V15 Vg1, Vs ny -« -, U) 18 an antipath of G such that V(Pi1) = V(P), vf

is a leftmost vertex of V(Pi;1) in o, and for every index ¢, 2 < ¢ < i+ 1, the vertex v} is a left-
most vertex of Ng(vy ) N {vy, v q,...,v;} in . In the case where vi v}, € FE(G), then we re-

peat exactly the same procedure described in the induction basis until we find a pair of vertices v},
!
y
tices exists, as we have proven in the induction basis. Then, Piy1 = (v{,v5,..., v, v ,...,v)) =

/ / / / / / / / / / : 3 —
(V1 V0, e e e VG UG, UG 1y s V15 e e 5 Vg1, Uy 15 Uygos - - -, Uy) 18 an antipath of G such that V(Piy1) =

V(P), v{ is a leftmost vertex of V(P;41) in o, and for every index ¢, 2 < £ < i+ 1, the vertex v} is a

and v, in P such that v, <, v, 1, £+ 2 < y <k, and v, v, ¢ E(G); such a pair of ver-

leftmost vertex of Ng(vy_1) N {vy, v}, 1,...,v}} in 0. This completes the proof for the induction step.
Thus, the antipath P’ = Py, is a normal antipath of G such that V(P') =V(P). 1

Figure 5.2 illustrates a Hasse diagram of a comparability graph G. The antipath P = (vs,v1,vs,v7) of
G is not normal, and there exists no normal antipath P’ of G such that V(P’) = V(P). Also, P is not a
longest antipath of G, since there exists an antipath P” = (v1,v3, va,vs, v7,v6) of G such that |P”| > |PJ;
note that P” is a normal antipath of G.

5.3 The Algorithm

In this section we present our algorithm, which we call Algorithm LP_Cocomparability, for solving the
longest path problem on cocomparability graphs. The proposed algorithm computes a longest path P of
a cocomparability graph G, by computing actually a longest antipath P of the comparability graph G.
Let GG be a comparability graph, given by its Hasse diagram with layers Hy, Hs, ..., H. For simpli-
fying our notations, we add a dummy vertex ug to G, such that ug belongs to a layer Hy in the Hasse
diagram of G, and ugu; € E(G), for every i, 1 <i < n;let G’ be the resulting graph after adding the ver-
tex ug. Note that, G’ is a comparability graph, having a Hasse diagram with layers Hy, Hy, Ho, ..., Hy,
and let ¢ = (ug,u1,us2,...,u,) be the layered ordering of G'. Note that for any longest antipath of G’
there exists a longest antipath of G’ which does not contain the dummy vertex ug; such an antipath
is also a longest antipath of G, since G is an induced subgraph of G’. Algorithm LP_Cocomparability
computes a longest antipath of G’ which does not contain the vertex ug and, thus, it is a longest antipath
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Hy Vs Us
G G(vy, 1,3)
Hy, 3 Uy
H, n L)
H() Vo

Figure 5.3: Illustrating a Hasse diagram of a comparability graph G and the induced subgraphs G(v1, 2, 3)
and G(vo, 1,3) of G.

of the original graph G as well. Hereafter, we consider comparability graphs having assumed that we
have already added the dummy vertex wg, which we denote by GG, and the antipaths we compute in G
are also antipaths of the graph G\ {uo} = G[V(G) \ {uo}]. We next give some definitions and notations
necessary for the description of the algorithm.

Let Lj = (v1,v2,...,vx) be an arbitrary ordering of the set {v1,v2,...,vr}. We denote by V(L;) the
set of vertices in the ordering L; and by |L;| the cardinality of the set V(L;), i.e., |L;| = |V(L;)|. For
every vertex v, € Lj, we denote by L;(v.) the ordering (vi,va,...,0;-1,V:41,V242, -, V|1,|,Vz), and for
every index r, 0 < r < |L;|, we denote by L’ (v,) the ordering containing the first 7 vertices of L;(v,);
that is:

o [;= (’Ul,’Ug,...,’U‘L”),

o Lij(v.) = (vi,v2,... 7'Uz—1,Uz+1,'UZ+2,...,U‘Lj‘,vz),

. L(v.) =0,

o Li(v.) = (v1,v2,...,0,) f 1< P <21,

o L7(v:) = (01,02, ., Vs 1,0241, V2, -, Upp1) if 2 <7 < |Lj[ — 1, and
° L;(vz) =Lj(vy) if r = |L;|.

Definition 5.3. Let G be a comparability graph, given by its Hasse diagram with layers
Hy,Hy,Hs, ..., Hy, and let ¢ = (ug,u1,us,...,u,) be the layered ordering of G. For every triple p,
i, and j, where 1 <i < j <k and u, € H;_1, we define the graph G(up, i, j) to be the subgraph G[S] of
G induced by the set S = {uy 1 uy € Hpyi <€ <j}\{us :upu, ¢ E(G)}.

Definition 5.4. Let L; be an ordering of the set H; N V(G(up,i,5)). We define the graph
Gy (up,i,j), where u, € Lj and 0 < r < |Lj|, to be the subgraph G[S] of G induced by the set

u

S = V(Glup,i,j — 1)) UL (u,) if i < j, and S = L(u.) if i = j.

Note that, since the dummy vertex ug is adjacent to every other vertex of G, the graph G(uy,1,j),
1 < j <k, is the subgraph G[S] of GG, induced by the set S = {u, : u, € Hp, 1 < £ < j}. Additionally,
G (up, i, §) = Gup,i,5), and if i < j, then GO_(up, i, §) = G(up,i,j — 1).

Figure 5.3 illustrates two examples which correspond to Definition 5.3. In particular, the figure to the
left illustrates a Hasse diagram of a comparability graph G with layers Hy, H1, ..., Hs. The figure in the
middle illustrates the subgraph G(v1,2,3) of G induced by the vertices {vs,vs}. The figure to the right
illustrates the subgraph G(vp,1,3) of G induced by the vertices {v1,v2,v3,v4,v5,v6}, which are all the
vertices belonging to the layers Hy, Hs, H3; recall that no vertex of G is an antineighbor of the dummy

vertex vg.
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Figure 5.4: Tllustrating a Hasse diagram of a comparability graph G and the induced subgraphs G(v1,2,4)
and G2 _(v1,2,4) of G.

Ke)

Figure 5.4 illustrates an example which corresponds to Definition 5.4. In particular, the figure to
the left illustrates a Hasse diagram of a comparability graph G with layers Hy, Hy,..., Hs. The figure
in the middle illustrates the subgraph G(vi,2,4) of G induced by the vertices {vs,vs,v7,vs, v9,v10}-
The figure to the right illustrates the subgraph G%Q (v1,2,4) of G, if we consider the ordering Ly =
(vs,v9,v10) for the vertices of Hy NV (G (v1,2,4)). The subgraph G2 (v1,2,4) of G is induced by the
vertices {vs,vs,v7,vs,v10}, and it is actually an induced subgraph of G(v1,2,4).

Notation 5.1. Let G be a comparability graph, given by its Hasse diagram with layers Hy, H1, Ha, . .., Hy,
and let 0 = (ug,u1,us2,...,uyn) be the layered ordering of G. For every vertex u; € V(G _(up,i,7)), if
u; € Hj, then we denote by f(u;) the smallest index such that f(u;) < j, for which there exists a vertex
uy of G, (up,i,j) such that u, € Hy(y,) and uyuy ¢ E(G); in the case where no such vertex u, ewists in

Gy (up,i,7), where u, <q ug, we set f(ug) = j.

Notation 5.2. Let G be a comparability graph, and let o = (uo, u1,u2, ..., uy,) be the layered ordering of
G. For every vertex u, € V(G (up,i,j)) we denote by P(uy; G, (uy,1,7)) a longest normal antipath of

Uz

G, (up, i, j) with right endpoint the vertex u,, and by €(uy; Gy, _(up,i,7)) the length of P(uy; GY, (up,i,5)).

Notation 5.2 is also used by substituting G}, (up,i,J) by G(up,i,j). Note that, when we refer to
an antipath P = P(uy; G (up,1,j)) as a longest normal antipath, it follows that P is a normal antipath
of G(up,i,j) with right endpoint the vertex u,, and that P is a longest such antipath; thus, P is not
necessarily a longest antipath of G(uy,i,5). However, if P’ is a longest antipath of G(uy,i,5), from
Lemma 5.6 we may assume that P’ is normal; let u, be the last vertex of the normal antipath P’. Thus,
there exists a longest normal antipath P’ = P(u,; G (up, , j)) which is also a longest antipath of G (uy, 1, j)
for some vertex u, € V(G(up,i,7)).

Given a comparability graph G, Algorithm LP_Cocomparability computes for every induced subgraph
G(up,i,j) of G, and for every vertex u, € V(G(up,1,7)), the length £(uy,; G(up,i,5)) and the correspond-
ing antipath P(u,; G(up,i,7)). Since G(uo,1,k) = G \ {uo}, it follows that the maximum among the
values £(uy;G(uo,1,k)) is the length of a longest normal antipath P(u,;G(uo,1,k)) of G \ {uo} and,
thus, of G. In Section 5.4.1, we prove that the normal antipath P(u,;G(uo,1,k)) computed by Algo-
rithm LP_Cocomparability is also a longest antipath of G' and, thus, a longest path of the cocomparability
graph G.

Before giving Algorithm LP_Cocomparability in detail, which is presented in Figures Algorithm 6 and
Algorithm 7, we give a high level description of our algorithm.
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Algorithm LP_Cocomparability. Let G be a comparability graph, given by a Hasse diagram with
Hy,Hy,...,H. Let P be alongest antipath of G. Since there exists a longest antipath of G which does
not contain the vertex up we may assume that P belongs to the graph G \ {up}. Due to Lemma 5.6, we
may assume without loss of generality that P is a normal antipath; let the vertex u be the right endpoint
of P.

(A) For every vertex u, € V(G(uo,1,k))

compute a longest normal antipath of G(uo,1,k) with right endpoint the vertex w,, where
G(U’Oa ]-a k) =G \ {U’O}

(B) Compute the longest antipath among the n antipaths computed in (A).

Step (B) is trivial, while for executing Step (A) we do the following:

(A.1) For every subgraph G(uy,1,j) and

for every vertex u, € V(G (up,1,7))

compute a longest normal antipath of G(u,,1%, ) with right endpoint the vertex w,,.

Let L; be an ordering of H; NV (G (uyp,1,7)).

(A.1.1) For every subgraph G}, (u,i,j) and
for every vertex u, € V(Gy,_(up,i,j)) such that u, ¢ L;\ {u;} (where u; is the last vertex
of L% (u.))

compute a longest normal antipath of G7,_(uy, i, j) with right endpoint the vertex u,,
where Glﬁ”(uwi,j) = G(up,i,j), Yu; € Lj.

5.4 Correctness and Time Complexity

In this section we prove the correctness of our algorithm and compute its time complexity. In particular,
in Section 5.4.1 we show that Algorithm LP_Cocomparability computes a longest normal antipath P of
the comparability graph G which is, in fact, a longest antipath of G and, thus, a longest path of the
cocomparability graph G. Finally, in Section 5.4.2 we analyze the time complexity of our algorithm.

5.4.1 Correctness of Algorithm LP_Cocomparability

We next prove that Algorithm LP_Cocomparability correctly computes a longest antipath of the compa-
rability graph G. The following lemmas appear useful in the proof of the algorithm’s correctness.

Lemma 5.7. Let G be a comparability graph, given by its Hasse diagram with layers Ho, H1, Ha, . .., Hy,
let o be the layered ordering of G, and let L; be an ordering of the set H; NV (G(up,i,j)). Let P =
(P1,ve, P2) be a mormal antipath of G, (up,i,j5), and let vy be the last vertex of L}(u.). Then, Py and
Py are normal antipaths of G, (uyp, i, j).
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ALGORITHM LP_COCOMPARABILITY

Input: a comparability graph G, given by its Hasse diagram with layers Hy, H1, Ho, ..., Hj, and a layered
ordering o = (ug, w1, U2, ..., u,) of G.

Output: a longest normal antipath of G.

1. forj=1tok

2 for ¢ = j downto 1

3 for every vertex u, € H;_1

4 let L; be an ordering of H; NV (G(up,i,7))

5. for every vertex u, € L;

6 for r =1 to |L;]

7 let u; be the last vertex of L7 (u.)

8 for every vertex u, € V(G _(up,i,7)) and y #t {initialization for u, # u;}
9

if r =1 then

10. é(uy?G?AZ (up,is4)) — Uluy; Glup,i,j —1));

11. P(uy; G (up,i,§)) — Puy; G(up,i, j —1));

12, Uty G, (s 1,7)) — Lty G (1, )

13. Pluy: G (i, 1)) — Pluys G oty 1))

14. end_for

15. if i =j then {case i = j}

16. (o3 G (g 5:)) — |5 (u2)]

17, Plus; Gy, §.7)) — L)

18. if i # j then

19. Uuy; Gy (up, i, 7)) < 1 {initialization for u, = u;}
20. P(uy; Gy, (up, i, §)) — (ug);

21. execute process(G;,_(up,i,5));

22. end _for

23. C(uy; Gluy,i,7)) — £(uy; GLle(up,i,j)); {for the vertex u. € L;}
24. P(us; Glup, i,5)) — Pluzi G2 (up,i,5);

25. end_for

26. for every vertex u, € V(G(up,t,5)) and uy ¢ L; {for the vertices u, ¢ L;}
27. Uy G i, ) — Lluy; Gi (w1, )

28. Puy; Gup, i, §)) — Pluy; Gu? (up, i, 5));

29. end_for

30. end_for

31. end_for

32. end _for

33. compute the maz{l(uy; G(uo,1,k)) : uy € G(uo,1,k)} and the corresponding antipath
P(“y; G(u07 17 k))a

Algorithm 6: Algorithm LP_Cocomparability for finding a longest antipath of G.
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where the procedure process() is as follows:

PROCESS(GT,_(up, i, 5))

procedure bridge(G}, (up,i,]))
if f(u) < j then {uy is the last vertex of L (u.)}
for h=f(u)+1toj
for £ = f(u) to h—1
for every vertex u, € Hy NV (G5 Hup,i,j)) and uus ¢ E(G)
for every vertex uy, € Hy, NV (G, (ug, 0+ 1,5))
wy — Ly Gy (up, 0, 5)); Pl Plug; Gy (up, 6, 4));
ws — g G M oig, €4 1,9); B Pluys G i, £+ 1,));
if wi +wy + 1> L(uy; Gy, _(up,4,5)) then
‘g(uyﬁ GZZ (up, i, 7)) < w1 + w2 + 1;
P(uy; Gy, (up, i, §)) — (P, ue, P3);
end_for
end_for
end_for

end_for

procedure append (G, (up,i,5))
for £ = f(ug) to j {uy is the last vertex of L%(u.)}
for every vertex u, € He N (V(G5  (up,i,4)) and upu; ¢ E(G)
wy f(uz;GZZl(Upaiaj)); Pl — P(Uz;GZ:l(Upaiaj));
if wy + 1> €(u; GY,_(up, i, 7)) then

s GT,_(up,iy ) — wy + 13
P(Ut;GZZ(Upaivj)) = (P1/7ut);

end_for

end_for

return (the value £(uy; Gy, (up,i,5)) and the antipath P(u,; G}, (up,i,5)), for every vertex
uy € V(G (up, flug) +1,4)) if f(u) < j, and for uy, = uy if f(uy) = j);

Algorithm 7: The procedure process().
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Proof. Let P = (v1,v2,...,0¢-1,V¢,V¢11,--.,Vy) be a normal antipath of G7,_(uy,i,7). Then, from Def-
inition 5.2, vy is a leftmost vertex of V(P) in o, and for every index z, 2 < x < y, the vertex v, is a
leftmost vertex of Ng(vy—1) N {vz,Va11,...,0y} in 0. It is easy to see that P = (v1,v2,...,v4-1) is a
normal antipath of G7,_(uy,4,7). Indeed, since V' (P;) C V(P), then v; is also a leftmost vertex of V' (P)
in ¢ and, additionally, v, is a leftmost vertex of Ng(vy—1) N {vg,vat1,...,v¢—1} in o, for every index x,
2< g <f—1.

Consider now the antipath Py = (vey1,ve42,...,vy) of Gy, (up,i,j). We first prove that v,y is a
leftmost vertex of V(P%) in 0. By assumption vy € Lj, thus, v, <, vy for every index z, £ +1 <z < y.
We will show that v,vy ¢ E(G), for every index z, £+ 1 < z < y. Let v, be a vertex of V(Pz). Consider
first the case where v, =, v;; then it is straightforward that v,v, ¢ E(G). Consider now the case where
vy <g V¢. Since P is a normal antipath, v, <, v¢, and v, appears before v, in P, from Lemma 5.4 we
obtain that v,vy ¢ E(G). Thus, we have proved that v,vp ¢ E(G) for every vertex v, € V(Py). Since vp41
is a leftmost vertex of Ng(ve) N{veq1,vet2,-..,vy} in o, and since Ng(ve) N {ves1,ve42,--.,0y} = V(P),
it follows that vey1 is a leftmost vertex of V(P,) in o. Additionally, since P is a normal antipath, it
is straightforward that v, is a leftmost vertex of Ng(vy—1) N {vg,Vas1,...,vy} in o, for every index z,
£ +2 < x <y. Therefore, from Definition 5.2 it follows that P, is a normal antipath of G}, (up,i,7). 1

Lemma 5.8. Let G be a comparability graph, given by its Hasse diagram with layers Hy, Hy, Hs, ..., Hy,
let 0 = (uo,u1,us, ..., uy) be the layered ordering of G, let L; be an ordering of the set H; NV (G (up,1i,j)),
and let u; be the last vertex of L% (u.). Let P1 be a normal antipath of G " (uy,i,7) with right endpoint
a vertex u, such that u, € Hy, f(u:) < € < j—1, and wu, ¢ E(G). Let Py be a normal antipath of
G ug, (+1, j) with right endpoint a vertex u, such thatu, € Hy, (+1 < h < j, and V(P))NV (P,) = 0.
Then, P = (P1,u;, P2) is a normal antipath of G7,_(up,i,j) with right endpoint the vertex .

Proof. Let P; be a normal antipath of GZ:l(up, i,7) with right endpoint a vertex u, such that u, € Hy,
flug) <€ <j—1, and wpu, ¢ E(G), and let P, be a normal antipath of GI,~!(u,, ¢ + 1, ) with right
endpoint a vertex u, such that u, € Hp, £+ 1 < h < j, and V(P) NV (P,) = 0. Since wu, ¢ E(G),
Uy <o Us <y ur and usu, € E(G) for every vertex us € V(Py), it follows that wus ¢ E(G) for
every vertex us € V(P2). Thus, the first vertex of P, is an antineightbor of u;. Therefore, since
V(P1)NV(P) =0, it follows that P = (Py,u, P») is an antipath of G. Additionally, since u, <, u, <,
us, upt, € E(G), and uyu, € E(G) for every vertex u, € V(G5 (ugz, €+ 1,4)), from the transitivity
property we obtain that u,us € E(G), for every vertex us € V(P»); thus, for every vertex us; € V(FPa),
we obtain us, € V(G. '(up,i,5)). Therefore, since G~ '(up,i,7) and G '(ug, £ + 1,j) are induced
subgraphs of G7,_(up,1i,j), it follows that P is a antipath of G}, (up,i,j). Hereafter, in the rest of this
proof Py = (v1,v2,...,04-1), Po = (Vg41,Vg42, -+, Vs), Us = Vg1, Uy = Vs, and us = v,.

We first show that P = (v1,v2,...,%,...,0s) is a normal antipath. Since v; is a leftmost vertex of
V(Py) in o, it follows that v1 <, u,. Furthermore, since for every vertex v, € V(P2) it holds u, <, v,
it follows that v is a leftmost vertex of V(P) in 0. We next show that for every k, 2 < k < s, the vertex
vy is a leftmost vertex of Ng(vk—1) N {vk, Vkt1,...,0s} in 0.

Consider first the case where 2 < k < ¢ —1, i.e., vy € V(P). Since P; is a normal antipath, it follows
that vy, is a leftmost vertex of Ng(ve—1)N{vk, Vk+1,--.,04—1} in 0. Consider first the case where v, <, ;.
Since u; <, vy for every vertex vy, ¢ < k' < s, it follows that vy <, vir. Therefore, in the case where
v <o Uy, we obtain that vy, is also a leftmost vertex of Ng(vig—1) N {vk, Vk+1,-..,vs} in 0. Consider now
the case where u, <, vi. Since v, is a rightmost vertex of V(P) is o, it follows that vy, is a leftmost vertex
of Ng(vk—1)N{vg, Vkg1,...,04-1,v4} in 0. Now, since u, <, vy, and vy is the next vertex of v;_1 in P, it
follows that vg_1u, € E(G). Also, since Py is normal, v,_1u, € E(G), and v,_1 appears before u, in Py,
from Lemma 5.4 it follows that vg_1 <, u,. Now, since vp—1 <, U, <, vy for every vertex vy € V(Pa),
vp—1u, € E(@), and u,vp € E(G), from the transitivity property it follows that vg_1vg € E(G). Thus,
for every vertex vy of Po, it follows that vy_1vp € E(G). Therefore, in the case where u, <, vy, we
obtain again that vy is a leftmost vertex of Ng(vk—1) N {vg, Vkq1,...,vs} in 0. Therefore, in the case
where 2 < k < ¢ — 1, we have proved that vy, is a leftmost vertex of Ng(vk—1) N {v, Vkt1,...,0s} in 0.
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Consider now the case where k = ¢. Since P; is a normal antipath, and for every vertex vy € V(Ps)
we have that vy € V(G5 (ug, 041, 5)), it follows that vgu, € E(G). Therefore, v, is the only antineigh-
bor of vy_1 in {vg,v441,...,vs} and, thus, v, is a leftmost vertex of Ng(vq—1) N {vg, vg41,-..,vs} in o.
Now, in the case where k = ¢ + 1, we have that v,1 is a leftmost vertex of V(P2) = {vy41,Vg42,---,Vs}
in o, since P, is a normal antipath. Therefore, it easily follows that v,y is a leftmost vertex of
Ng(vg) N {vg41,vg42,...,vs} in 0. Finally, in the case where ¢ +2 < k < s, since P, is a normal an-
tipath it directly follows that vy is a leftmost vertex of Ng(vi—1) N {vk, Vk41,--.,0s} ino. B

We next prove the correctness of Algorithm LP_Cocomparability.

Lemma 5.9. Let G be a comparability graph, given by its Hasse diagram with layers Ho, H1, Ha, . .., Hy,
and let 0 = (ug,u1,us,...,u,) be the layered ordering of G. For every induced subgraph G(up,i,j)
of G, and for every vertex u, € V(G(up,i,j)), Algorithm LP_Cocomparability computes the length
U(uy; G(up,i,7)) of a longest normal antipath of G(up,i,j) with right endpoint the vertez u, and, also,
the corresponding antipath P(u,; G(up,i,7)).

Proof. The proof of the lemma for every subgraph G(up,i,7), 1 <i < j <k, will be done by induction
on the index j, 1 <7 < k.

We first prove the lemma for j = 1, ie., for the subgraph G(up,1,1), where u, = uo in this case.
Let Ly be an ordering of the set H1 NV (G(up,1,1)). It is easy to see that the length £(u.; G(up,1,1)),
of a longest normal antipath of G(u,,1,1) with right endpoint a vertex u, € L1, equals to |L1|. Let us
now compare this value to the value computed by Algorithm LP_Cocomparability. Firstly, since in this
case i = j, it easy to see that for every graph G7,_(u,,1,1), 1 <r < |Ly|, Algorithm LP_Cocomparability
correctly computes and sets £(us; Gy, _(up,1,1)) = |L](u.)| and P(us; G, (up,1,1)) = Li(u.), where u; is
the last vertex of L7 (u.) (lines 15-17). Finally, for r = |L1], it is easy to see that £(uy; G‘uLzl‘(up, 1,1)) =
|L1(u.)| and P(uy; GLLZI‘(up, 1,1)) = Li(u,), and Algorithm LP_Cocomparability sets £(u,; G(up,1,1)) =
(u; G‘uLzl‘(up, 1,1)) and P(u,; G(up, 1,1)) = P(u,; Glﬁll(up, 1,1)), for every vertex u, of Ly (lines 23-24).
Therefore, the lemma holds for every subgraph G}, (up,1,1), 1 < r < |Li|. This proves the induction
basis.

Assume now that the lemma holds for every index j/, 1 < j/ < j —1 < k — 1. That is, assume
that for every induced subgraph G(uy,,i’,7") of G, 1 < i’ <3 < j—1<k—1, and for every vertex
uy € V(G (up,i’,7")), Algorithm LP_Cocomparability computes the length £(u,; G(up,i’,j’)) of a longest
normal antipath of G(up,i, ') with right endpoint the vertex u, and, also, the corresponding antipath
P(uy; G(up,i',5")).

We will next show that the lemma holds for j' = j, 1 <i < j <k, i.e., for every induced subgraph
G(uy,i, j) of G.

Consider first the case where 1 < i = j < k. Let L; be an ordering of the set H; N V(G (up, j, 7))
It is easy to see that the length ((u.; G (up,j,7)), of a longest normal antipath of G(up,j,j) with right
endpoint a vertex u. € Lj, equals to [L;|. Let us now compare this value to the value computed
by Algorithm LP_Cocomparability. Let u; be the last vertex of L%(u.). We first show that for ev-
ery graph G, (up,7,5), 1 < r < |L;|, Algorithm LP_Cocomparability correctly computes the values
Cug; Gy (up, 4,7)) and P(ug; G, (up,j,7)). It is easy to see that the length €(us; Gy, (up,j,7)), of a
longest normal antipath of G7,_(uy, j, j) which has u; as its right endpoint, equals to |L}(u,)|. In the case
where i = j, Algorithm LP_Cocomparability correctly computes and sets £(u; G, (up, j,5)) = [L}(u.)|
and P(uy; Gy (up,7,5)) = Lj(u.) (lines 15-17); note that for r = |L;[, we have [L}(u.)| = |L;|. Since
Algorithm LP_Cocomparability computes these values for every vertex u, € Lj, i.e., for every sub-
graph G7,_(up,j,7)), and since G(up, j,j) = GLle(up,j,j), for any vertex u, € Lj, it follows that Al-
gorithm LP_Cocomparability correctly computes and sets £(u.,G(up,j,j)) = Z(uz,GLLj‘(up,j,j)) and
P(uy, G(up, j,j)) = P(uz,GuLz”(up,j,j)) (lines 23-24), for every vertex u, € L;. Thus, the lemma holds
for every subgraph G(up,i,7) of G such that 1 <i=j <k.
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Consider now the case where 1 <14 < j < k. To prove that the lemma holds in this case, we use the
following claim.

r

Claim 5.1. For every induced subgraph G, (up,i,j) of G, 1 < i < j < k, and for every vertex
uy € V(G (up,i,j)) such that w, ¢ L; \ {u}, where u; be the last vertex of L}(u.), Algorithm
LP_Cocomparability correctly computes £(uy; Gy, _(up,i,5)) and P(uy; G, (up,i,j)).

Recall that G(uyp,i,j) = GLL; | (up,i,j) for any vertex u, € L;. Then, for the length of a longest normal
antipath of G(up, i, j) with right endpoint a vertex u, € V(G(up,1,j)) such that u, ¢ L;, from Claim 5.1
we obtain that €(uy; G(up,i,5)) = é(uy;G,lule(up,i,j)), where u, is any vertex of L;. It is easy to see
that Algorithm LP_Cocomparability sets £(uy; G(up,i,7)) = £(uy; G‘uLjI(up, i,7)) and P(uy; G(up,i,j)) =
P(uy;GLsz‘(up,i,j)), where u, is any vertex of L;, for every vertex u, of G(up,i,j) such that u, ¢ L;
(lines 26-28). Also, for the length of a longest normal antipath of G(u,,4,j) with right endpoint a vertex
u, € Lj, from Claim 5.1 we obtain that £(u.;G(up,i,j5)) = K(uZ;Glij‘(up,i,j)). Since the procedure
process () is executed for every vertex u. € Ly, i.e., for every subgraph G}, (uy,i,5)), it follows that
Algorithm LP_Cocomparability correctly computes and sets £(u,; G(up,i,5)) = £(u.; Glule(up,i,j)) and
P(uy; G(up,i,j)) = P(u;;GLle(up,i,j)) for every vertex w, € L; (lines 23-24). It is now clear that
Algorithm LP_Cocomparability correctly computes the length of a longest normal antipath of G(uy, 1, j)
with right endpoint a vertex u,, for every vertex u, € V(G(up,1,7)). This proves the lemma. I

Proof of Claim 5.1. For proving the claim we use the induction hypothesis of Lemma 5.9. That is, we
assume that for every induced subgraph G(up,i’,j') of G, 1 <i' < j' < j—1 < k—1, and for every vertex
uy € V(G(up,i',j")), Algorithm LP_Cocomparability correctly computes the length £(u,; G(up,i’,j")) of
a longest normal antipath of G/(uy,i’,j") with right endpoint the vertex u, and, also, the corresponding
antipath P(uy; G(up,?',j")).

Let G, _(up,i,j) be an induced subgraph of G such that 1 < i < j < k. We prove the claim
by induction on j, 2 < j < k, i.e., given a specific index j, we prove that the claim holds for every
induced subgraph G, (up,4,7) of G, where 1 < i < j < kand 0 < r < |L;[, and for every vertex
uy € V(GY, (up,i,j)) such that u, ¢ L; \ {us}, where u; is the last vertex of L% (u.). To this end, we
distinguish three cases on the position of the vertex u, in the ordering o: u, € Hy where ¢ < f(uy),
uy € Hy where f(u) +1<¢<j—1, and u, = w;. In each of these cases, we examine first the length of
a longest normal antipath of G7,_(u,,i,j) with right endpoint the vertex w, and, then, we compare this
value to the length of the antipath computed by Algorithm LP_Cocomparability. The proof is done by
induction on the index r, 0 < r < |Lj].

Consider first the case where r = 0, i.e., L‘j) = (). Since here we examine the case where 1 # j, from
Definition 5.4 we obtain that G (up,i,5) = G(up,i,j — 1). Therefore, it is easy to see that for every
subgraph GY_(up,i,j), and for every vertex u, € V(GY_(up,4,j)), the length £(uy; GY_(up,i,j)) equals
t0 £(uy; G(up,i,j — 1)). It is easy to see that Algorithm LP_Cocomparability sets €(uy; GO (up,i,5)) =
Uuy; G(up,i,5—1)) and P(uy; G (up,i,§)) = P(uy; G(up,i, j—1)), for every vertex u, € V(GY_(up,i,7))
(lines 8-11). Since by the induction hypothesis of Lemma 5.9, Algorithm LP_Cocomparability correctly
computes the values of {(uy; G(up,i,7 — 1)) and P(uy; G(up,i,j — 1)), it follows that the algorithm also
correctly computes the values of £(uy; G\ (up,i,)) and P(uy; G _(up,i,j)). Therefore, the claim holds
for r = 0.

Suppose now that the claim holds for every index ¢, 0 < ¢ <r —1 < |L;| — 1. We will now prove that
the claim holds for the subgraph G7,_(up,4,7) of G, 1 <r < [L;].

Case 1. For every vertex u, of G}, (up,i,j) such that u, € Hy and i < £ < f(uy), it is easy to see that
Uuy; G (up,i,j)) = (uy; GL M (up, i, §)), since uy does not belong to any normal antipath with right
endpoint a vertex u, € Hy, i < ¢ < f(us). In this case, Algorithm LP_Cocomparability computes and
sets (uy; G (up,i,7)) = L(uy; Gh- " (up, i, 7)) for the length of a longest normal antipath of GI, (uy, i, )

with right endpoint a vertex u, € Hy, i < ¢ < f(u;); the algorithm also computes the corresponding
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antipath. This computation is done during the initialization (lines 8-14), and these values do not change
during the process() of the algorithm, since u, € H; and ¢ < f(u;) + 1. Since by the induction
hypothesis Algorithm LP_Cocomparability correctly computes the value of £(u,; GZ:l(up, i,7), for every
vertex u, € G5 '(up,i,j) such that u, ¢ Lj, it follows that Algorithm LP_Cocomparability correctly
computes the values of £(u,; GY,_(up,i,7)) and P(uy; Gy,_(up,i,5)).

Case 2. We consider next the case where u, € Hy and f(u;) +1 < h <j—1. Let P = (ug,...,uy) be
a longest normal antipath of G}, (uy,%,j) with right endpoint the vertex u,.

(I) Consider first the case where P contains the vertex u;. Assume first that P = (u, u,) is a longest
normal antipath of G, _(u,, i, ) with right endpoint the vertex u,. Since u, € Hy, f(u;) +1<h <j—1,
it follows that there exists at least one vertex u, € Hy(,,) such that u,us ¢ E(G). Thus, P’ = (ug, us, uy)
is a normal antipath of G7,_(uy, 4, j) with right endpoint the vertex u, which is longer than P. This is a
contradiction to our assumption on P.

Assume now that P = (ug/,...,Us, U, Uy, .., uy) = (P1,us, P2) is a longest normal antipath of
G, (up,i,j) with right endpoint the vertex u,. From Lemma 5.7, we obtain that Py = (u,,...,u,) and
Py = (uy, ..., uy) are normal antipaths of G, (up,4,7), and in fact of G5~ (up, 1, 7).

We will now show that u, <, us and u,us € E(G), for every vertex us € V(Py), where u, is the

,
Uz

every vertex us € V(P,). Consider first the case where u, is a vertex of Py such that us <, us. Since P

right endpoint of P;. Since u; € Lj and P is an antipath of G, (up,t,j), it follows that us <, u, for
is normal and u; is the next vertex of u, in P, it follows that u,us € E(G) for every vertex us € V(Ps)
such that us; <, u;. Since P is normal, u,us € E(G), and u, appears before ug in P, from Lemma 5.4
we obtain that u, <, us, for every vertex ugs € V(Ps) such that us; <, us. Therefore, we have proved
that for every vertex us € V(P») such that us <, u;, we have u, <, us and u,us € E(G).

Consider now the case where u, is a vertex of P, such that u, =, u;. Since u, is a vertex of P,
such that u, <, u¢, from the above we obtain that u, <, u,. Since u, <, uy <, Ut =, U, it follows
that u, <, us, for every vertex us € V(Pz) such that us =, u;. It is left to show that the property
ugus € E(G) for every vertex us € V(P2) such that us =, u; holds. Assume that P is an antipath
for which this property does not hold. We next show that there exists a longest normal antipath P’ of
G, (up,i,7) with right endpoint the vertex u,, such that P’ = (P1, P;) and V(P') = V(P), for which
this property holds.

Assume now that there exists a vertex us € V(P,), such that us; =, u; and u,us ¢ E(G). Let
P = (Prus, Po) = (Pr,us, Uy ..., U Ug, Ugrr, ..., Uy), and let ug be the last such vertex in P. Then
P = (P, Py) = (P1,us, Uy ..., Ug, U, Uy, ..., Uy) is an antipath, since we next prove that u; and wu,
have an antiedge with every vertex of F». To this end, let u, be a vertex of P such that ¢ # s. If
ug =, uy, then indeed uyu; ¢ E(G) and ugus ¢ E(G). If uy <, uq, then from the above we have proved
that u, <, u, and uzu, € E(G). Since u, <, uy, <, ut, Ugtty € E(G), and uyur ¢ E(G), from the
transitivity property we obtain u,u; ¢ E(G); using the same arguments we obtain that u,us ¢ E(G).
Therefore, since uy/, uy, uy € V(P,), we obtain that P’ = (Pr,us, Uy ..., Uys, Us, Ugr, . .., Uy) is a longest
antipath of G7, (uy,i,j) with right endpoint the vertex w,. It is easy to see that P’ is normal, since P
is normal and u; =, us. By repeating the above procedure we can obtain a longest normal antipath
P’ = (P}, u, Py) with right endpoint the vertex u, such that u,u, € E(G) for every vertex us € V(P3)
such that us =, u;, where u, is the last vertex of P;. Therefore, we may assume without loss of generality
that P = (ugr,..., Uz, U, Uy, ... Uuy) = (Pr,ug, Pp) is a longest normal antipath of G, (up,4,7) with
right endpoint the vertex u,, with the property that uyus € E(G) for every vertex us € V(P) such that
Uy =4 Ug-

Therefore, we have proved that u, <, us and uzus € E(G), for every vertex us € V(P). Since
u; <, uy and by assumption u, € Hp, f(u;) +1 < h < j — 1, we obtain that u, € H;, where
flug) < € < j—2. Then, for every vertex us; € V(P) we obtain that us € Hj, where £ + 1 < h < j.
Additionally, since we have shown that u,us; € E(G) for every vertex us € V(P,), from Definition 5.4
we obtain that u, € V(G5 (us,€ + 1,4)) for every vertex uy € V(P,). Note that, every vertex u, of
G ug, 0+1, ) is also a vertex of G% = (up, i, 7). Indeed, since i < £+1 < j, and since u, <, Uy <q Us,
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upty € E(G), and uzus € E(G), from the transitivity property we obtain that u,us € E(G). Let Hy be
the subgraph of G%,_(up,i,j) induced by V(Hz) = V(G5 ' (ug, €+ 1,j)). Therefore, we have shown that
every vertex of P, belongs to Ho.

By assumption, for every vertex u, € V(P1) we have u, € V(GL, ' (up,4,j)). Let now u, be any vertex
of Pi. If uy <, uy, then u, € Hy and d < £; thus, from Definition 5.4 we obtain that u, ¢ V(Hz) =
V(G5 (ug, £+1,5)). Consider now the case where u, is a vertex of Py such that u, <, u,. Since P is a
normal antipath, u, <, u4, and u, appears before u, in P;, from Lemma 5.4 we obtain that u,u, ¢ E(G).
Therefore, from Definition 5.4 we obtain again that u, ¢ V(Hs) = V(G5 (us, €+ 1,5)). Therefore, we
have proved that no vertex of P; can belong to Hz. Let H; be the subgraph of G}, (u,,i,j) induced by
V(Hy) = V(G5 up,i,7)) \ V(G5 (ug, £+ 1,)). Thus, we have shown that every vertex of P belongs
to Hi. Therefore, we have shown that V(Py) C V(Hy), V(P2) C V(Hs), and V(H,) NV (Hy) = 0. Tt is
easy to see that V(P) NV (P) = 0.

Since P = (P, uy, P») is a longest normal antipath of G7,_(uy, 4, j) with right endpoint the vertex wu,,
and since the antipaths P; and P, belong to two disjoint induced subgraphs of G}, (u,,i,j), it follows
that P; is a longest normal antipath of H; with right endpoint the vertex u,, and that P» is a longest
normal antipath of Hy with right endpoint the vertex u,. Thus, since Hy = GZ:l(uz,ﬁ +1,4), we obtain
that |Po| = €(uy; G5 Hug, £+ 1,7)). We will now show that |Py| = €(u,; GI ' (up,4,5)). To this end,
let Py be a longest normal antipath of GZ;l(up,i, j) with right endpoint the vertex u,. Assume that
there exists a vertex u; € V(Fy) such that uy € V(Ha) = V(G5 (us, £+ 1,5)). Since u, € Hy, then
Uy <o us and uzus € E(G). Since Py is normal, from Lemma 5.4 we obtain that u, appears before u,
in Py. This comes to a contradiciton to our assumption that u, is the right endpoint of Py. Thus, no
vertex of Py belongs to Hy. Thus, V(Py) C V(H1), and since P; is a longest normal antipath of H; with
right endpoint the vertex u,, we obtain that |Py| C |P1|. Additionally, since H; is an induced subgraph
of G~ (up,i,j), we obtain that [Py| C |Py|. Thus, |Py| = |P1| and, therefore, Py is a longest normal
antipath of G~ !(uy, 1, ) with right endpoint the vertex u,. Thus, |Pi| = €(us; G5 H(up, 1, ).

Therefore, for a longest normal antipath P = (Py,us, P») of G7, (up,i,j) with right endpoint
a vertex u, € Hp, f(u) +1 < h < j — 1, we have shown that |P| = £(uy; G}, (up,i,j)) =
Wi G (i) + i G g, £ + 1j) + 1 and, also, P = PlugiGl (uping) =
(Pt G utg, 6,3)), s Platy; G et €4 1,9))).

Hereafter, we examine the results computed by Algorithm LP_Cocomparability in Case 2. Let P’ be
the antipath of G7,_(u,,1,j) with right endpoint a vertex u, computed by Algorithm LP_Cocomparability,
in the case where u, € Hp, f(u;) +1 < h < j — 1. Note that the antipath P’ which is constructed by
the algorithm with the procedure(bridge) contains the vertex u;. Algorithm LP_Cocomparability
computes the length of P’ = (P[, us, P3), where u; is the last vertex of L7(u.), for two antipaths P; and
Pj as follows. The antipath P{ = P(u,; G%_'(up,4,)) is a longest normal antipath of G, ! (up, i, j) with
right endpoint a vertex w, such that u, € Hy, f(u;) < £ < j —2, and u,u; ¢ E(G). The antipath
Py = P(uy; G- M(ug, £+ 1,7)) is a longest normal antipath of G, '(u,, ¢ + 1, ) with right endpoint a
vertex u, such that u, € Hy, £+ 1 < h < j — 1. Actually, in this case, Algorithm LP_Cocomparability
computes with the procedure (bridge) the value wy + we + 1 = |Pj| + | P3| + 1, for every vertex u, such
that u, € Hy, f(u) < € <j—2, and u,u; ¢ E(G), and sets |P’| to be equal to the maximum among
these values. Also, Algorithm LP_on_H computes the corresponding antipath P = (P}, ug, Py).

By the induction hypothesis, Algorithm LP_Cocomparability has correctly computed the values
P] = P(ug; G5 (up,i,7)) and Py = P(uy; G5~ (ug, £+ 1,7)). Since, by the induction hypothesis, the
computed antipaths P and P, are normal antipaths of G7,_(u,,i,j) with right endpoints the ver-
tices u, and wu,, respectively, it follows similarly to the above that P belongs to the graph H; and
P; belongs to the graph Hs, where V(Hy) = V(G5 (up,i,4)) \ V(G (ua, € + 1,5)), V(Hy) =
V(GL Y (ug, £+ 1,5)), and u, is the right endpoint of P{. Since V(Hy) NV (Hz) = 0, it follows that
V(P))NV(P;) = 0. Then, from Lemma 5.8 we obtain that the antipath P’ = (P{,us, Py) com-
puted by Algorithm LP_Cocomparability is a normal antipath of G7,_(uy,i,j) with right endpoint the
vertex u,. Moreover, since Algorithm LP_Cocomparability computes with the procedure(bridge)
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the value €(ug; Go-H(up,i,5)) + Cluy; Go-H(ug, £+ 1,5)) + 1, for every vertex u, such that u, € Hy,
flug)) < £ < j—2, and wyu, ¢ E(G), and sets £(uy; Gy, _(up,i,5)) to be equal to the maximum
among these values, it follows that the value {(uy; G}, (up,i,j)) computed by the algorithm equals to
the length of a longest normal antipath of G7,_(u,,i,j) with right endpoint the vertex wu,. Also, Al-
gorithm LP_Cocomparability also correctly computes the corresponding antipath P(uy; Gy, (up,i,7) =
(P(ug; Gy (up, i, §)), e, Pluy; Go- Hug, €+ 1, ).

(IT) Consider now the case where the longest normal antipath P of G, (u,,i,j) with right endpoint
the vertex u, does not contain the vertex us. Then, V(P) C V(G5 (up,4,])), and it easily follows that
P is a longest normal antipath of GI,~'(uy,4,j) with rigth endpoint the vertex u,. By the induction
hypothesis, Algorithm LP_Cocomparability correctly computes the value £(uy; G~ (up, i, 7)), for every
vertex uy, € G5 (up,i,j) such that uy, ¢ L; \ {,;}. During the initialization (lines 8-14) the algorithm
sets (uy; G (up,i,7)) = L(uy; GL-Hup, 1, ), for every vertex u, € Hp, f(ug) +1<h<j—1.

From Lemma 5.8 (since we have shown above that V(P]) NV (P4) = 0), we obtain that during the
execution of the procedure(bridge) the antipaths constructed by Algorithm LP_Cocomparability are
normal antipaths of G7,_(up,i,j) with right endpoint a vertex u,. Therefore, since we have assumed
that P is a longest normal antipath of G7,_(up,i,j) with right endpoint the vertex u,, it follows that no
antipath with right endpoint the vertex u, which is constructed with the procedure (bridge) is longer
than P. Thus, since |P| is the initial value given to £(u,; G, (up,i,5)), it follows that the statement
w1 +wa +1 > L(uy; Gy, (up,4,7)) (in the procedure (bridge)) is false for every vertex u, € H, such that
fluy) <€ < h—1and wu, ¢ E(G). Therefore, the initial value of £(u,; G}, _(up,i,7)) is not changed
during the execution of the process(). Therefore, Algorithm LP_Cocomparability correctly computes
and sets ((uy; G (up,i,7)) = £(uy; G5~ (up, 4, j)) for the vertex uy € Hp, f(ug) +1<h <j—1.

Concluding, in both Cases 2(I) and 2(IT), we have proved that the antipath P’ computed by Algorithm
LP_Cocomparability is a longest normal antipath P(u,; G, (up,i,j)) of G}, (up,i,j) with u, as its right
endpoint, and |P’| = £(uy; G7, (up,i,j)). Thus, the claim holds in Case 2.

Case 3. Consider now the case where u, = u;. Assume first that u; has no antineighbors in G7,_(u,,1, ).
Then (u;) is a longest normal antipath of G7,_(u,,1,j) with right endpoint the vertex u;. Since we examine
the case where i # j, it is easy to see that Algorithm LP_Cocomparability sets £(u; Gy, (up,1,5)) = 1
and P(us; G, (up,i,j)) = (uy) (lines 19-20). Since u; has no antineighbors in G7,_(u,,1,5), it follows
that r = 1 and f(u;) = j. Thus, the initial value of £(us; G}, _(up,4,7)) is not changed during the
execution of the process (). Therefore, Algorithm LP_Cocomparability correctly computes the values of
U(us; G, (up, i, 5)) and P(ug; Gy, (up,1,7)) in the case where u; has no antineighbors in G7,_(uy, 1, 7).

Assume now that u; has at least one antineighbor in G7,_(up,4,5). Let P = (ug, ..., Uz, u;) = (P, ug)
be a longest normal antipath of G7,_(u,, i, j) with right endpoint the vertex u;. Then, it is easy to see that
P’ is a longest normal antipath of GI,~!(uy, 4, j) with rigth endpoint the vertex u,. In this case, with the
procedure (append), Algorithm LP_Cocomparability computes the value w1 +1 = £(uy; G5~ (up, i, 5))+1,
for every vertex u, € Hy N V(G ' (up,i,7)) such that f(u;) <€ <j, x #t, and u,us ¢ E(G), and sets
U(ug; Gy, _(up,i,j)) to be equal to the maximum amongs these values. We next show that the algorithm
correctly computes the values l(us; Gy,_(up,4,5)) and P(ug; Gy, (up,i,5)).

(a) Assume first that u, ¢ L;, where u, is the right endpoint of P’. Since by the induction hypothesis
the algorithm correctly computes the values €(u,; Gl '(up,i,7), for every vertex u, € G5 '(up,i,j)
such that u, ¢ Lj, it follows that Algorithm LP_Cocomparability computes, among other, the value
U ug; G (up,i,4)) + 1 = |P'| 4+ 1, and sets £(ug; G7_(up,i,7)) to be equal to |P'| + 1 = |P| which is
the length of a longest normal antipath P of G, (u,,i,j) with right endpoint the vertex u,. Also, the
algorithm correctly computes the corresponding antipath P(us; G5, (up,i,§)) = (P(ug; G5 up, 0, 7)), ur).

(b) Consider now the case where for any longest normal antipath P = (uy/, ..., ug,ur) = (P, u;) of
G, (up, i, ) with right endpoint the vertex u, = u; we have u, € L;. Then P’ is alongest normal antipath
of G5 (up,i,j) with right endpoint any vertex of Lj, i.e., |P'| > |P”|, for any normal antipath P of
Gr ' (up,i,j) with right endpoint a vertex of L;j. Let u, be the last vertex of L;_l(uz) for which such
an antipath P’ exists. Since Algorithm LP_Cocomparability computes, with the procedure(append),
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the value wy + 1 = €(uy; G- H(up, ,5)) + 1, for every vertex u, € L;fl(uz), and sets £(ug; Gy, _(up, i, 5))
to be equal to the maximum amongs these values, it follows that it suffices to show that there exists at
least one vertex u, € L;_l(uz) such that Algorithm LP_Cocomparability correctly computes the value
U(ug; G~ (up, i, 7)) and sets it to be equal to |P'|.

Assume that u, is the last vertex of L;fl(uz), i.e., there exists such a longest normal antipath P’ for
which u, is the last vertex of L;fl (uz). Then by the induction hypothesis, Algorithm LP_Cocomparability
correctly computes the length €(uz; G5~ " (up, i, 7)) of a longest normal antipath of G7,~* (up, 4, j) with right
endpoint the vertex u,. Therefore, in this case the last vertex u, of L;_l(uz) is such a vertex, and the
claim holds.

Consider now the case where u, is not the last vertex of L;fl(uz), ie, u, € L§72(uz). Let uq be
the last vertex of L;fl(uz). Since P’ is a longest normal antipath of G, (up,i,j) with right endpoint
any vertex of Lj, it follows that u, € V(P’), since otherwise P” = (P’,u,) is such an antipath longer
than P’. Let P’ = (tyr, .., Uqgr,Ug, Ugr - - ., Uy) = (P1,uy, P2). We now prove that u, <, u,. The case
where u, >, u, does not exist since u, € L;. Assume that u, =, u,. Then using similar arguments
as in Case 2(I), Lemma 5.4, and Definition 5.2, it is easy to obtain that us; =, u, for every vertex
us € V(P2). Thus, P’ = (P1,ugr, ..., uz, ug) is a normal antipath such that V(P"”) = V(P’) with right
endpoint the vertex u, which appears after u, in Lg_l(uz); this is a contradiction to our assumption
on u,. Therefore, we obtain that u, <, u,. Assume now that P’ = (ugr, ..., Uy, Ug, Ugrry- .., Uy) IS &
longest normal antipath of GZ;I(up,i, j) with the property that for any vertex us of L’;*Q(uz) which
appears after u, in P’ we have usu, € E(G); since we have proved that u, <, ug, then using the same
arguments as in Case 2(I) we can prove that such a longest normal antipath exists. In particular, using
the same arguments as in Case 2(I), we can prove that u, <, us and uypus € E(G), for every vertex
us € V(Py).

Since uguy, ¢ E(G) and uy <, ug, we assume that uy € Hy, f(uy) < € < j—1. Let Hy be
the subgraph of GZ:I(up,i,j) induced by V(Hs3) = V(G;Z_Q(uq/,é +1,7)). Similarly to Case 2(I), we
can show that every vertex of P, belongs to Hy. Let H; be the subgraph of Gzz_l(up,i,j) induced by
V(H1) = V(G 2 (up,i,4)) \ V(GL *(ugr, £+ 1,5)). Again, we can show that every vertex of P belongs
to Hi. Therefore, we have that V(P1) C V(Hy), V(P) C V(Hs), and V(H,) NV (Hy) = 0. Tt is easy to
see that V (P1) NV (P2) = 0. Finally, we can obtain that P; is a longest normal antipath of G2 (up, i, j)
with right endpoint the vertex ug, i.e., |[Py| = £(ug; G5 *(up,4,5)), and Py is a longest normal antipath
of GI~*(ug, ¢+ 1,j) with right endpoint the vertex ug, i.e., |Pa| = (uz; G *(ug, €+ 1, )).

Since uy <, ug, it follows that u, ¢ Lj. Therefore, from the induction hypothesis Algorithm
LP_Cocomparability correctly computes the length €(ug; Gl 2(up,i,5)) = |Pi|. Now it is left to show
that the value (uy; G5 %(ug, (+1,5)) = | P2| computed by the algorithm is the length of a longest normal
antipath of GZ:Q(uqz,ﬁ—i— 1,4) with right endpoint the vertex u,. Observe that now P» is a longest normal
antipath of G~ %(ug, (+1, j) with right endpoint any vertex of L§_2(uz) and, actually, u, is the last vertex
of L;‘Q(uz) for which such an antipath P» exists, otherwise we come to a contradiction to the choice of P’.
If u, is the last vertex of L;fz(u:) then, similarly to the above, by the induction hypothesis the algorithm
correctly computes the value £(ug; G (ugr, €+ 1,5)). If u, is not the last vertex of L;fz(uz), then we
repeat the above same procedure for the last vertex of L;_2(uz). We repeat the above procedure until u,
is the last vertex of the ordering L;l (uz), 1 <r’ <r—2. Then, using the induction hypothesis, we obtain
that the algorithm correctly computes the value of the corresponding normal antipath P, with right
endpoint the vertex u,, since at that iteration u, is the last vertex of the ordering L;l (uz). Concluding
Algorithm LP_Cocomparability correctly computes the length £(u,; G ' (up,4,5)) = |P'| and, thus, the
length £(u; G, (up,i,7)) = |P'| 41 = |P|; the algorithm also computes the corresponding antipaths.

Concluding, we have proved that the claim holds for the subgraph G7,_(up,i,j) of G, where 1 <r <
|L;|. ®

Now, let P be a longest antipath of G. From Lemma 5.6 we may assume without loss of generality
that P is a normal antipath of G. If u, € V(@) is the right endpoint of P, then P is a longest normal
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antipath of G' with right endpoint the vertex u,. Since there exists a longest antipath of G’ which does not
contain the vertex ug we may assume that P belongs to the graph G\ {uo}. Since G(uo,1,k) = G\ {uo},
from Lemma 5.9 it follows that Algorithm LP_Cocomparability correctly computes a longest normal
antipath of G(uo, 1, %) with right endpoint the vertex u, and, thus, sets £(u,;G(uo,1,k)) = |P|. Since
the output of Algorithm LP_Cocomparability is the maximum among the lengths {f(u,; G(uo, 1, %)) :
uy € V(G (uo, 1,k))}, along with the corresponding antipath, from Lemma 5.9 it follows that Algorithm
LP_Cocomparability computes a longest normal antipath P’ of G(uo, 1, k) with right endpoint any vertex
uy € V(G (uo, 1,k))) such that |P’| = |P|. Therefore, we obtain the following result.

Theorem 5.3. Algorithm LP_Cocomparability computes a longest antipath of a comparability graph.

5.4.2 Time Complexity

Let G be a comparability graph on |V (G)| = n vertices and |E(G)| = m edges. Given a Hasse diagram
of GG, the time complexity of our algorithm is as follows.

Algorithm LP_Cocomparability executes the subroutine process() for every induced sub-
graph G, _(up,i,j) of G. In particular, the subroutine process() contains two procedures, the
procedure(bridge) and the procedure(append). The execution of the procedure(bridge) for the
subgraph G, (u,,1, ) takes O(n?) time, due to the O(n?) pairs of antineighbors u, and u, of the vertex
ug in the graph G7, (up,i,j). The execution of the procedure(append) for the subgraph G}, (up,i,7)

T
Uz

takes O(n) time, due to the O(n) antineighbors u, of the vertex w, in the graph G, (uy,i,j). Therefore,

the execution of the subroutine process() for the subgraph G7,_(u,,i,7) takes O(n?) time.

Additionally, the subroutine process() is executed at most once for each subgraph G7,_(up,4,5) of

G. Since 1 <i < j <k, u, € Hi_1, u; € Lj, and 1 <r < |L;], it follows that there exist O(n®) such
subgraphs G, (up,i,5) of G. Thus, Algorithm LP_Cocomparability takes O(n") time.

In order to compute the length of a longest antipath, we need to store one value for every vertex u,
of G%_(up,i,4), for every induced subgraph G7,_(up,i,j) of G. Thus, since there are in total O(n®) such
subgraphs G, _(up,i,j), and since each one has at most O(n) vertices, we can compute the length of a
longest antipath in O(n®) space. Furthermore, in order to compute and report a longest antipath, instead
of its length only, we have to store an antipath of at most n vertices for each one of the O(n%) computed
values. Therefore, the space complexity of Algorithm LP_Cocomparability is O(n").

5.5 Concluding Remarks

In this chapter we presented a polynomial-time algorithm for solving the longest path problem on co-
comparability graphs, resolving thus the open question on the complexity status of the problem on
cocomparability and, also, on permutation graphs. We also help to shed some light on the borderline
between P and NP, since the longest path problem is known to be NP-complete on comparability graphs
and quasi-parity graphs, which are superclasses of permutation and cocomparability graphs, respectively.

It would be interesting to study the complexity of the longest path problem on distance-hereditary
and bipartite distance-hereditary graphs, since they admit polynomial solutions for the Hamiltonian
path problem, and also since the longest path problem has been proved to be NP-complete on chordal
bipartite graphs, HHD-free graphs, and parity graphs, while it is polynomial on ptolemaic graphs and
trees. Additionally, the same holds for the classes of convex and biconvex graphs, since the longest path
problem has been proved to be NP-complete on chordal bipartite graphs and polynomial on bipartite
permutation graphs.
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Figure 5.5: Illustrating a map of some classes of perfect graphs and the complexity status of the longest
path problem.

Figure 5.5 illustrates a map of some classes of perfect graphs and the complexity status of the longest
path problem.

e By NP we mark the classes for which the longest path problem has been proved to be NP-complete;
in fact, we obtain these results from the NP-completeness of the Hamiltonian path problem.

e By P we mark the classes for which polynomial solutions have been presented for the longest path
problem until now.

e With gray color we mark the classes of interval graphs and cocomparability graphs, as well as their
subclasses, for which we have proved within this work that the longest path problem admits a
polynomial solution.

e By the symbol ? we mark the classes for which the Hamiltonian path problem has been proved to
be polynomial, while the complexity of the longest path problem still remains an open question.
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CHAPTER 6

CONCLUSIONS AND FURTHER RESEARCH

6.1 Colinear and Linear Graphs
6.2 Coloring Problems

6.3 Longest Path Problem

6.1 Colinear and Linear Graphs

In this work we introduced the colinear coloring on graphs and proposed a colinear coloring algorithm
that can be applied to any graph G. Based on the colinear coloring we defined two graph properties,
namely the y-colinear and a-colinear properties, and characterized known graph classes in terms of these
properties. We also defined and studied the graphs that are characterized completely by the y-colinear
or the a-colinear property, which form two new classes of perfect graphs, and which we call colinear and
linear graphs.

We also provide characterizations for colinear and linear graphs and prove structural properties. More
specifically, we show that the class of colinear graphs is a subclass of co-chordal graphs, a superclass of
threshold graphs, and is distinguished from the class of split graphs. Additionally, we infer that linear
graphs form a subclass of chordal graphs and a superclass of quasi-threshold graphs. We also prove that
any Ps-free chordal graph, which is not a linear graph, properly contains a k-sun as an induced subgraph.
However, the k-sun is not a forbidden induced subgraph for the class of linear graphs and, thus, linear
graphs form a superclass of the class of Ps-free strongly chordal graphs.

An interesting question would be to study structural and recognition properties of colinear and linear
graphs and see whether they can be characterized by a finite set of forbidden induced subgraphs. More-
over, an obvious though interesting open question would be whether combinatorial and/or optimization
problems can be efficiently solved on the classes of linear and colinear graphs. In addition, it would be
interesting to study the relation between the colinear chromatic number and other coloring numbers such
as the harmonious number and the achromatic number on classes of graphs.

Concerning the question of whether optimization problems can be efficiently solved on the classes of
linear and colinear graphs, it would be interesting as a first step to study the complexity status of the
harmonious coloring problem and the longest path problem. From the results presented in Chapter 3
it follows that the harmonious coloring problem is NP-complete on the classes of colinear graphs and
disconnected linear graphs, while it still remains open on connected linear graphs. Additionally, the
longest path problem is NP-complete on both colinear and linear graphs, a result which follows from

81



w )5 )3 Wh— ke
w2 ws ko1 Wk wy wy ws we—1 W wi wy  ws W1 Wy

Figure 6.1: Hlustrating forbidden subgraphs Fy, F», and F5 (in the order they appear from left to right).
Note that, in all three graphs, the set K is a clique, and [ is an independent set.

the NP-completeness of the problem on split strongly chordal graphs [58], which form a subclass of both
linear and colinear graphs.

Additionally, a promising and interesting area for further research is studying structural and recogni-
tion properties of colinear and linear graphs, and seeing whether they can be characterized by a finite set
of forbidden induced subgraphs. In fact, we have done some progress towards this direction, and below
we present some preliminary results.

Briefly, we build on our results presented in Chapter 2, where we proved some structural properties
for colinear and linear graphs, including the following theorem.

Theorem 2.1. Let F be the family of all the minimal forbidden induced subgraphs of the class of linear
graphs, and let F; be a member of F. The graph F; is either a C,, (n > 4), or a Ps, or it properly contains
a k-sun (k> 3) as an induced subgraph.

Observe now that, if S is a k-sun graph, k > 4, then from Theorem 2.1 and the definition of colinear
and linear graphs, it is easy to see that any Pg-free co-chordal graph which is not a colinear graph
properly contains an S;, graph as an induced subgraph. Additionally, from the definition of strongly
chordal graphs it is easy to obtain that for any k-sun graph Sy, k > 4, the graph S) contains a k’-sun,
k' <k, as an induced subgraph. From the above observations, and our study on colinear and liner graphs
in terms of forbidden induced subgraphs, we conjecture the following.

Conjecture 6.1. Any Pg-free co-chordal graph which is not a colinear graph properly contains a k-sun,
k > 3, as an induced subgraph.

Let us now explain the graphs illustrated in Figures 6.1 and 6.2. We first explain the graphs illustrated
in Figure 6.1. Note that in all three graphs, the set K is a clique, and I is an independent set. In F}, the
vertex vy sees the vertex wy € I, and also another vertex w; € I such that i # k — 1. In Fy, the vertex v
sees at least three vertex of I, such that for any two neighbors w;,w; € I, i < j, of v we have ¢ # j — 1
(mod k). In F3, the vertex v sees wy € I, and also another vertex w; € I such that i # 2 and i # k. Also,
the vertex vy sees wy € I, and also another vertex w; € I such that i # k —1 and i # 1.

We explain now the graphs illustrated in Figure 6.2. Again in all three graphs, the set K is a clique,
and I is an independent set. In ﬁl, the vertex vy sees the vertex wy, € I, and also another vertex w; € T
such that ¢ # k — 1. Also, the vertex v sees the vertex wy € I and also every vertex of the set K\ N (wy).
In fg, the vertex v sees at least three vertex of K, such that for any two neighbors v;,v; € K, 7 < j, of
v we have i # j — 1 (mod k). In ﬁg,, the vertex v sees vy, € K, and also another vertex v; € K such that
1 # k—1and i # 1. Also, the vertex w; sees v1 € K, and also another vertex v; € K such that i # 2
and i # k.
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Figure 6.2: Illustrating the forbidden subgraphs ﬁl, ﬁg, and Fj (in the order they appear from left to
right). Note that, in all three graphs, the set K is a clique, and T is an independent set.

In sum, from Theorem 2.1, Claim 6.1, and after much work towards the direction of characterizing
colinear and linear graphs in terms of forbidden induced subgraphs, we conjecture the following.

Conjecture 6.2. Let G be a Ps-free chordal graph. Then, G is a linear graph if and only if G is
(F1,F3,F3)-free and G is (Fy,Fs,F3)-free.

6.2 The Harmonious Coloring Problem

In this work we first show that the harmonious coloring problem is NP-complete on connected interval
and permutation graphs. Also we prove the NP-completeness of the problem on the class of split graphs.
Extending our results, we then prove that the harmonious coloring problem is NP-complete on the classes
of split undirected path graphs and colinear graphs. We also present a polynomial solution for the same
problem on the class of split strongly chordal graphs. The interest of this result lies on the fact that the
harmonious coloring problem is NP-complete on split graphs and strongly chordal graphs. In addition,
polynomial solutions for the problem were only known until now for the classes of connected cographs,
connected quasi-threshold graphs, and threshold graphs, all of which have a trivial solution; note that,
the harmonious coloring problem on disconnected quasi-threshold graphs is NP-complete.

An interesting next step in the study of the harmonious coloring problem would be to see if the
problem admits a polynomial solution on linear graphs. Since linear graphs form a superclass of both split
strongly chordal graphs and quasi-threshold graphs, the harmonious coloring problem is NP-complete on
disconnected linear graphs, while it still remains open on connected linear graphs. Obtaining a polynomial
solution of the harmonious coloring problem on connected linear graphs would be interesting, since most
of the known results for the harmonious coloring problem on special classes of graphs are NP-completeness
results; indeed, the only known non-trivial polynomial algorithm for the problem is our solution on split
strongly chordal graphs, which form a subclass of linear graphs.

6.3 The Longest Path Problem

In this work we presented a polynomial-time algorithm for solving the longest path problem on interval

graphs, which runs in O(n?) time and, thus, provided a solution to the open problem stated by Uehara

and Uno in [63] asking for the complexity status of the longest path problem on interval graphs.
Moreover, we studied the longest path problem on the class of cocomparability graphs, a well-known
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class of perfect graphs which includes both interval and permutation graphs. Although the Hamiltonian
path problem on cocomparability graphs was proved to be polynomial almost two decades ago [23], the
complexity status of the longest path problem on cocomparability graphs has remained open until now;
actually, the complexity status of the longest path problem has been open even on the more special class
of permutation graphs. In this work, we presented a polynomial-time algorithm for solving the longest
path problem on the class of cocomparability graphs. This result extends our polynomial solution of
the longest path problem on interval graphs, and resolves the open question for the complexity of the
problem on cocomparability graphs, and thus on permutation graphs.

Additionally, through this work we help to shed some light on the borderline between P and NP,
since the longest path problem was known to be NP-complete on comparability graphs and quasi-parity
graphs [58], which are superclasses of permutation and cocomparability graphs, respectively.

It would be interesting to study the complexity of the longest path problem on convex and biconvex
graphs, which they admit polynomial solutions for the Hamiltonian path problem; the longest path prob-
lem is NP-complete on chordal bipartite graphs [58] which is a superclass of both convex and biconvex
graphs, and polynomial on bipartite permutation graphs [64] which is subclass of convex and bicon-
vex graphs. Additionally, the same holds for the classes of distance-hereditary and bipartite distance-
hereditary graphs. Indeed, the longest path problem is NP-complete on chordal bipartite graphs [5§]
which is a minimal superclass of bipartite distance-hereditary graphs, and polynomial on trees [12] which
is a minimal subclass of bipartite distance-hereditary graphs. Additionally, the longest path problem
is NP-complete on the minimal superclasses of distance-hereditary graphs, namely HHD-free graphs
and parity graphs [58], while it is polynomial on ptolemaic graphs [65] which is a minimal subclass of
distance-hereditary graphs.

Therefore resolving the question concerning the complexity of the longest path problem on these
graph graphs, would sharpen the demarcation line between polynomially solvable and NP-hard cases of
the problem, for most of the well-known subclasses of perfect graphs.
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