
ΟΠΤΙΚΟΠΟΙΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΟΙΚΟΣΥΣΤΗΜΑΤΩΝ ΜΕ ΚΥΚΛΙΚΕΣ 

ΜΕΘΟΔΟΥΣ ΑΠΕΙΚΟΝΙΣΗΣ ΓΡΑΦΗΜΑΤΩΝ 

 

 

 

 

Η 

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ 

 

Υποβάλλεται στην 

 

ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης 

του Τμήματος Μηχ. Η/Υ και Πληροφορικής 

Εξεταστική Επιτροπή 

 

 

από την 

 

 

Ευθυμία Κοντογιαννοπούλου 

 

 

 

 

 

ως μέρος των Υποχρεώσεων 

 

για τη λήψη 

 

του 

 

ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ 

 

ΜΕ ΕΞΕΙΔΙΚΕΥΣΗ ΣΤΟ ΛΟΓΙΣΜΙΚΟ 

 

 

 

 

Ιανουάριος 2014 

 

 

  



1 

 

 



i 

Table of Contents 

 

CHAPTER 1. Introduction ....................................................................................................... 1 

CHAPTER 2. Related Work ..................................................................................................... 3 

 Visualization Fundamentals ............................................................................................ 4 2.1

 Software Visualization ..................................................................................................... 6 2.2

 Graph Drawing ................................................................................................................. 7 2.3

 Circular Methods ...................................................................................................... 7 2.3.1

 Multi-Circular Clustered Graph Visualizations ...................................................... 8 2.3.2

 Relationship of our Approach to State of the Art .......................................................... 9 2.4

CHAPTER 3. Graph Layout Methods for Data-Intensive Ecosystems ............................... 11 

 Overview of our Method ................................................................................................ 11 3.1

 Clustering of Modules .................................................................................................... 13 3.2

 Cluster Preprocessing .................................................................................................... 15 3.3

 Layout of Cluster Circle(s) ............................................................................................. 17 3.4

 Circular cluster placement with variable angles .................................................. 18 3.4.1

 Clusters on Concentric Circles ............................................................................... 24 3.4.2

 Clusters on Concentric Arcs ................................................................................... 27 3.4.3

 Layout of Nodes inside a Cluster .................................................................................. 29 3.5

 Refactoring Hecataeus: The Case of Zoom-In for Modules ......................................... 35 3.6

 Tabbed Pane ............................................................................................................ 38 3.6.1

 Overview Map ......................................................................................................... 39 3.6.2

CHAPTER 4. Experiments ..................................................................................................... 43 



ii 

 Experimental Method .................................................................................................... 43 4.1

4.2 Aesthetic Criteria ........................................................................................................... 44 

4.3 Assessment of Objective Criteria .................................................................................. 48 

4.4 Comparison to Alternative Methods ............................................................................ 56 

CHAPTER 5. Conclusions and Future Work ........................................................................ 61 

 Conclusions ..................................................................................................................... 61 5.1

 Future Work ................................................................................................................... 62 5.2

References ..................................................................................................................................... 67 

Short CV ......................................................................................................................................... 88 

 

  



iii 

List of Tables 

 
 

Table 1. Datasets Used (R: Relations, V: Views, Q: Queries, E: Edges) ...................................... 44 

Table 2 Aesthetic criteria and how we address them. ............................................................... 46 

Table 3 How the “Visual Information Seeking Mantra” is applied in our implementation. ... 47 

Table 4 Objective measures for all four data sets ...................................................................... 48 

Table 5 Area occupied by graph (pixels2) ................................................................................... 51 

Table 6 Percentage of occupied area by graph (pixels2) ........................................................... 51 

Table 7 Average time needed for clustering and visualization in milliseconds ...................... 53 

 

  



iv 

List of Figures 

 
 

Fig. 1 Alternative visualizations for the ecosystem of Drupal (an open-source Content 

Management Platform). Left: Circular layout; Right: Layout based on Concentric Circles. ..... 1 

Fig. 2 Alternative visualizations for Drupal. Left: Concentric Arcs. Right: zoom in a cluster of 

Drupal. ............................................................................................................................................. 2 

Fig. 3 Example of module similarity ............................................................................................ 12 

Fig. 4. Clustering algorithm .......................................................................................................... 14 

Fig. 5. Algorithm for the identification of circles, along with their nodes and radii................ 16 

Fig. 6 A cluster from the BioSQL ecosystem ............................................................................... 16 

Fig. 7 Calculating the radius R of the embedding circle ............................................................ 18 

Fig. 8 Calculating angle φ/2 for the case where ρ  is smaller than R. ....................................... 19 

Fig. 9 Calculating φusing the law of cosines ............................................................................... 20 

Fig. 10 Calculating φ/2 for the case where ρ is greater than R ................................................ 20 

Fig. 11 Original assignment of clusters to segments ................................................................. 22 

Fig. 12 Enlarging R by w to apply visual borders between clusters ......................................... 23 

Fig. 13 Visualizations for BioSQL and Drupal with circular cluster placement. ...................... 23 

Fig. 14 2k cluster placement ......................................................................................................... 24 

Fig. 15 Avoiding overlaps between clusters on subsequent circles ......................................... 26 

Fig. 16 Visualizations for BioSQL and Drupal with concentric cluster placement method. ... 27 

Fig. 17 Visualizations for BioSQL and Drupal with concentric arc placement. ....................... 28 

Fig. 18 Algorithm for placing nodes in a cluster. ........................................................................ 30 

Fig. 19 Layout of query nodes in a cluster with respect to the relation node they reference.

 ........................................................................................................................................................ 31 

Fig. 20 Layout of nodes in a cluster from Drupal. ...................................................................... 31 

Fig. 21 Layout of nodes in a cluster, the case of queries that reference more than one tables.

 ........................................................................................................................................................ 32 

Fig. 22 Decide circles for the view nodes. ................................................................................... 34 

Fig. 23 Strata S1, S2, S3 as a result of view stratification produced from Algorithm 4........... 35 



v 

Fig. 24 Initial non clustered layout of Hecataeus ....................................................................... 36 

Fig. 25 Hecataeus window. .......................................................................................................... 38 

Fig. 26 Application window with two viewers: left the detailed clustered view and right the 

overview map. ............................................................................................................................... 40 

Fig. 27 Objective measures for all datasets. ............................................................................... 48 

Fig. 28 The area used by the graph for every layout. ................................................................. 52 

Fig. 29 The connection between number of the clusters and their size with the area they 

cover. .............................................................................................................................................. 53 

Fig. 30 Time needed for clustering. ............................................................................................. 54 

Fig. 31 Average time needed for visualization. .......................................................................... 54 

Fig. 32 Visualization time per method and dataset ................................................................... 55 

Fig. 33 BioSql visualized via a circular algorithm by Jung. ........................................................ 57 

Fig. 34 BioSql visualized with FR algorithm by Jung. ................................................................ 57 

Fig. 35 BioSql visualized with ISOM algorithm by Jung. ............................................................ 58 

Fig. 36 BioSql visualized with KK algorithm by Jung. ................................................................ 58 

Fig. 37 BioSql visualized with a spring layout algorithm by Jung. ............................................ 59 

Fig. 38 First variation of concentric circles method for Drupal data set. ................................. 63 

Fig. 39 Second variation of concentric circles method for Drupal dataset .............................. 64 

Fig. 40 Spiral layout for Drupal data set. .................................................................................... 65 

Fig. 41 Part of Drupal create table statements. .......................................................................... 70 

Fig. 42 Modified create table statements from Drupal data set to become parsable. ............. 71 

Fig. 43 Sample queries from Drupal data set.............................................................................. 72 

Fig. 44 A sample of modified queries to be parsable from taxonomy folder. .......................... 73 

Fig. 45 BioSql data set visualized with the circular method. .................................................... 74 

Fig. 46 BioSql data set visualized with the concentric circle method. ..................................... 75 

Fig. 47 BioSql data set visualized with the concentric arcs method ........................................ 76 

Fig. 48 Biggest cluster of BioSql data set. ................................................................................... 77 

Fig. 49 Drupal data set visualized with the circular method..................................................... 78 

Fig. 50 Drupal data set visualized with the concentriccircles method. .................................... 79 

Fig. 51 Drupal data set visualized with the concentric arcs method. ....................................... 80 



vi 

Fig. 52 Biggest cluster form Drupal data set. .............................................................................. 81 

Fig. 53 ZenCart data set visualized with the circular method. .................................................. 82 

Fig. 54 ZenCart data set visualized with the concentric circles method. ................................. 83 

Fig. 55 ZenCart data set visualized with the concentric arcs method. ..................................... 84 

Fig. 56 OpenCart data set visualized with the circular method. ............................................... 85 

Fig. 57 OpenCart data set visualized with the concentric circles method. .............................. 86 

Fig. 58 OpenCart data set visualized with the concentric arcs method. .................................. 87 

 

 

 

 

 

  



vii 

Abstract 

 
 

Efthimia Kontogiannopoulou. 

MSc, Computer Science Department, University of Ioannina, Greece. 

Visualization of Data-Intensive Information Ecosystems Via Circular Methods. 

Supervisor: Panos Vassiliadis 

 

Data-intensive ecosystems are collections of databases along with software applications that are 

built on top of them. The main characteristic of such systems is their strong dependence on the 

underlying layer of data. The database layer not only facilitates the surrounding applications of 

the information system (scripts, web forms, stored procedures, spreadsheets, or any other client 

application) but also, deeply affects their architecture and maintenance. The research question 

that this Thesis addresses is the provision of a visual map of the ecosystem that can be exploited 

by all the involved stakeholders in order to show the correlation of the developed code to the 

underlying database and support operations like program comprehension, impact analysis (for 

potential changes at the database layer), documentation etc. To provide this visual map, we 

represent the internal structure of ecosystems as a graph, we cluster its nodes and we visualize 

the clustered graph with three circular layout methods. 



viii 

  



ix 

Περίληψη στα Ελληνικά 

 
 

Ευθυμία Κοντογιαννοπούλου. 

MSc, Τμήμα Πληροφορικής, Πανεπιστήμιο Ιωαννίνων. 

Οπτικοποίηση Πληροφοριακών Οικοσυστημάτων με Κυκλικές Μεθόδους Απεικόνισης 

Γραφημάτων 

Επιβλέπων καθηγητής: Παναγιώτης Βασιλειάδης. 

 

Τα οικοσυστήματα δεδομένων αποτελούνται από βάσεις δεδομένων και εφαρμογές οι οποίες 

εξυπηρετούν ερωτήσεις και συνεπώς εξαρτώνται σε μεγάλο βαθμό από αυτές. Το κύριο 

χαρακτηριστικό αυτών των εφαρμογών (scripts, web forms, stored procedures, υπολογιστικά 

φύλλα, κ.ά.) είναι η ισχυρή εξάρτησή τους από το υποκείμενο στρώμα των δεδομένων, το οποίο, 

όχι απλώς είναι απαραίτητο για τη λειτουργία των εφαρμογών, αλλά επηρεάζει και την 

αρχιτεκτονική του κώδικα και την συντήρησή του. Το θέμα αυτής της εργασίας είναι η παροχή 

ενός οπτικού χάρτη του οικοσυστήματος που απεικονίζει την συσχέτιση του πηγαίου κώδικα με 

την βάση δεδομένων και μπορεί να υποστηρίξει λειτουργίες, όπως η κατανόηση του 

προγράμματος, η ανάλυση των επιπτώσεων (για ενδεχόμενες αλλαγές στο επίπεδο της βάσης 

δεδομένων), η τεκμηρίωση, κλπ. Για την παροχή αυτού του οπτικού χάρτη, αναπαριστούμε την 

εσωτερική δομή των οικοσυστημάτων ως γράφημα το οποίο απεικονίζουμε με τρεις κυκλικές 

μεθόδους διάταξης.  



x 

 

 



1 

CHAPTER 1. Introduction 

 

 

Data-intensive ecosystems are conglomerations of one or more databases along with software 

applications that are built on top of them. The main characteristic of such systems is their strong 

dependence on the underlying layer of data. The database layer not only facilitates the 

surrounding applications of the information system (scripts, web forms, stored procedures, 

spreadsheets, or any other client application) but also, deeply affects their architecture and 

maintenance. The research question that this Thesis addresses is the provision of a visual map of 

the ecosystem that can be exploited by all the involved stakeholders (database administrators, 

designers, application developers, managers, testers, etc) in order to show the correlation of the 

developed code to the underlying database and support operations like program comprehension, 

impact analysis (for potential changes at the database layer), documentation etc. 

 

  

Fig. 1 Alternative visualizations for the ecosystem of Drupal (an open-source Content 

Management Platform). Left: Circular layout; Right: Layout based on Concentric Circles. 

To highlight the internal structuring of the ecosystem and the co-existence and interdependence 

of software modules and parts of the database schemata, we visualize the ecosystem as a graph 

where all modules are modeled as nodes of the graph and the provision of data from a database 

module –e.g., a table—to a software module is denoted by an edge. To detect “regions” of the 



2 

graph with dense interconnections (and to visualize them accordingly) we cluster the ecosystem’s 

nodes. Then, we employ three circular graph drawing methods for the visualization of the graph 

(see Fig. 1). Our first method, Circular Layout, places all clusters on an embedding “cluster” 

circle. Our second method, to which we refer as Concentric Circles, instead of employing a 

single circle for the clusters, splits the space in layers of concentric circles of clusters. Finally, our 

last method, Concentric Arcs, uses arcs instead of concentric circles. In all our methods, the 

internal visualization of each cluster involves the placement of relations, views and queries in 

concentric circles, in order to further exploit space and minimize edge crossings. 

 

  

Fig. 2 Alternative visualizations for Drupal. Left: Concentric Arcs. Right: zoom in a cluster of 

Drupal. 

The problem is novel and the state of the art does not sufficiently address it -- see Chapter 2 for a 

discussion) and Sec. 4.4 for a visual demonstration. To the best of our knowledge, this is the first 

time that visual “maps” for the particular case of data-intensive information systems are 

produced in a principled manner that addresses aesthetic and objective layout criteria. 

Moreover, a second contribution of this thesis is the exploration of new ground in the area of 

circular graph drawing methods by introducing concentric and arc-based methods for clustered 

graphs with guarantees on cluster disjointness.  

 

  



3 

 

CHAPTER 2. Related Work 

 

 

2.1 Visualization Fundamentals 

2.2 Software Visualization 

2.3 Graph Drawing 

2.4 Relationship of our Approach to the State of the Art 

 

In this chapter we cover the fundamentals and research efforts that were related to the problem 

we study. The most related areas are (a) visualization fundamentals (covered in section 2.1), (b) 

software visualization (covered in section 2.2) and (c) graph drawing methods (covered in section 

2.3). 

 

The basic graph drawing problem simply put is given a set of nodes with a set of edges 

representing relations between nodes calculate the position of the nodes. Graph visualization 

techniques among others have to respect a set of principles, the aesthetic criteria. The aesthetic 

criteria make a graph easier for humans to understand. For example nodes and edges should be 

evenly distributed, edges should have the same length, edge crossings should be kept to minimum 

and many other aesthetic rules. However not all aesthetic rules have the same importance. Some 

authors demonstrate that reducing the edge crossings is by far the most important aesthetic, while 

minimizing the number of bends and maximizing symmetry have a lesser effect. Other authors 

report differences in the perception of a graph depending on its layout.  

 

Another issue we take under consideration when visualizing graphs is their size. The size of the 

graph to visualize is very important in graph visualization. Large graphs cause several problems. 

If the number of elements to visualize is large it can compromise performance or even exceed the 

limits of the viewing area. Few systems can claim to deal effectively with thousands of nodes 



4 

although graphs with this order of magnitude appear in a wide variety of applications. The size of 

a graph can make a normally good layout algorithm completely unusable. In fact, a layout 

algorithm may produce good layouts for graphs of several hundred nodes, but this does not 

guarantee that it will scale up to several thousand nodes. When visualizing graphs, many 

constraints are expressed in the form of aesthetic rules. Aesthetic rules have a huge impact on the 

graph layout. An effective graph drawing algorithm should respect a set of aesthetic criteria 

regarding the distribution of vertices and edges, the edge length and crossings, the complexity of 

the layout, the proximity of visual elements in regard to their similarity, the avoidance of visual 

clutter and many other criteria. 

 

 Visualization Fundamentals 2.1

The fundamental concepts that govern user perception of visually demonstrated information have 

been investigated by the Gestalt school of psychology founded in 1912 and can be summarized as 

follows [Ware04]:  

 Proximity - objects close to each other tend to be perceived as similar.  

 Similarity - objects of the same shape, color, orientation and size are perceived as similar 

by individuals. 

 Connectedness - to express semantic relationship among visually connected objects.  

 Closure - the eye tends to create perceptions of closed space, even if they do not exist -- 

best served when the depicted objects tend to create a “border” around similar objects 

along with blobs of whitespace. 

 Continuity - the eye tends to perceive as related objects that are aligned together 

intersections create the perception of single uninterrupted groups. 

 Symmetry - as a means to emphasize non-typical behavior or emphasis when symmetry is 

broken by an object. In principle asymmetry is used for emphasis while symmetry is used 

in cases where we do not want to target on something specific. 

 Contrast - creates emphasis in sharp antithesis to the similarity principle. Contrast can be 

achieved in terms of chromatic, size or shape choices. 



5 

 Proportion - where an object placed in an area of the visualization is scaled according to 

its semantic significance, as the difference in proportion creates a visual attraction to the 

eye 

 

We also take into consideration best practices [Tidw06] closely related to the above Gestalt 

principles like  

 

 Clutter avoidance - the avoidance of noise on the diagram via uninterrupted areas of 

whitespace that act as separators of the groups of objects 

 Isolation - to promote emphasis for an object in sharp antithesis to the continuity of the 

vast majority of the “regular” objects 

 Visual hierarchy - to denote a semantic hierarchy in the depicted objects 

 Focal points to guide visual flow (i.e., objects that intentionally stand out in the 

representation and whose sequence guides the eye in the visual flow of exploring the 

diagram).  

 

In addition to all these criteria, there are also other principles we have to respect when designing 

graphical user interfaces as it is important to provide the users with the information they are 

looking for effectively. As stated by [Shne96] among many visual design guidelines for effective 

visualizations, the basic principle of Information Visualization can be summarized as the famous 

“Visual Information Seeking Mantra”: Overview first, zoom and filter, then details-on-demand. 

In further detail, these four attributes represent:  

 Overview: Gain an overview of the entire collection. Overview strategies include zoomed 

out views of each data type to see the entire collection plus an adjoining detail view. 

 Zoom : Zoom in on items of interest. Users typically have an interest in some portion of a 

collection, and they need tools to enable them to control the zoom focus and the zoom 

factor. Smooth zooming helps users preserve their sense of position and context. Zooming 

could be on one dimension at a time by moving the zoombar controls or in two 

dimensions. A very satisfying way to zoom in is by pointing to a location and issuing a 



6 

zooming command, usually by clicking on a mouse button for as long as the user wishes 

or clicking on a node or edge to view further details. 

 Filter: filter out uninteresting items.  

 Details-on-demand: Select an item or group and get details when needed. Once a 

collection has been trimmed to a few dozen items it should be easy to browse the details 

about the group or individual items. The usual approach is to simply click on an item to 

get a pop-up window with values of each of the attributes, also helpful to keep a history of 

user actions and support other actions the user may need like undo or replay. 

In section 4.2 Aesthetic Criteria we explain how we address the above criteria. 

 Software Visualization 2.2

A particular area of concern for this thesis involves software visualization. Efforts in this area are 

concerned with properly presenting the structure & dependencies of software modules to a user. 

Efforts in the past include tree maps and nested tree maps. Resent efforts are following the IDE 

approach (like Eclipse or Netbeans). Notably we mention the Code Canvas [DeRo10] and the 

Code Bubbles [BZRK10] projects. 

 

The state of the art on software visualization described in Code Canvas [DeRo10] suggests that 

an effective visualization display should provide orientation, selection of regions, dynamic 

feedback. A display that partitions the main visualization area into separate areas, something that 

requires the use of many layers of visualization helps the user multitask and access lots of 

information simultaneously as the user can create separate visualization displays by 

selecting/filtering items on the main visualization display. The state of the art approach on 

visualization environments suggests that the use of many visualization displays does not 

necessarily mean that the user should launch a new display to browse details on the filtered items 

but the use of a zoomable display allows the user to zoom in to view detailed information and 

zoom out to get overview. The initial visualization display should provide the user with the full 



7 

system structure, a map view of the graph allowing the selection of items of interest by zooming 

into them. 

 

In Code Bubbles [BZRK10] the authors propose a novel user interface that is based on 

collections of lightweight editable fragments, which they call bubbles, when the bubbles are 

grouped together they form concurrently visible working sets. Again the authors of this paper 

suggest that the user needs to multitask effectively. They argue in favor of a new approach, where 

the IDE shows multiple editable fragments simultaneously, letting the user see and work with 

complete working sets. The result reduces navigations like switching among different views 

using tabs, forward/back buttons, etc. that are proved to occupy lots of the programmers time. 

The evaluation of their approach showed that users were able to perform complex code 

understanding tasks significantly more efficiently when using bubbles than when using other 

IDEs like Eclipse due to reduced navigation. 

 

In our implementation we enable multitasking by providing the user with the option to create 

many tabs to view parts of the graph; we also provide the user with an overview map to get a 

more general view with less details of the graph simultaneously without the need of extra 

navigation and the initial view of the graph provides the user with the full system structure. 

 Graph Drawing 2.3

Layout algorithms can be categorized with respect to type of layout they generate. Among the 

many effective ways to visualize a graph our related work focuses on the following categories: 

Circular Methods and Multi-Circular Clustered Graph Visualizations. 

 Circular Methods 2.3.1

In terms of related work, the research that mostly pertains to our method involves circular graph 

drawing. This is due to the increased ability of circular methods to clearly demonstrate natural 

group structures – clusters – within the overall graph [SixT06]. [SixT06] proposes a technique for 



8 

producing circular drawings, using fixed angles on biconnected graphs with the goal of 

minimizing edge crossings. The method places (a) edges towards the circumference of the 

embedding circle and (b) the neighbors of a node as close as possible to the node. [Misu06] 

proposes a method for drawing bipartite graphs in circular layouts. In this method, the nodes of 

the graph are divided into two groups, the “anchor nodes” that are arranged on the circumference 

of a circle and “free nodes” that are positioned in the circular disk in relation to the adjacent 

anchor maps. A simulated annealing algorithm provides the final graph arrangement via the 

iterative computation of a cost for misplacing free nodes with respect to anchor nodes.  

 

 Multi-Circular Clustered Graph Visualizations 2.3.2

[ItKM10] in Drawing Clustered Bipartite Graphs in Multi-Circular Style described a way to 

visualize clustered bipartite graphs in with multi circular methods. They expanded their previous 

single circle layout we discussed above and they proposed a technique in which anchor nodes in a 

bipartite graph are arranged in a hierarchal multi-circular layout with different circles for each 

cluster placed on the periphery of a single big circle. They also develop their method to respect 

certain aesthetic criteria like minimizing edge crossings, edge lengths and increase the area 

efficiency as high as possible. 

 

In RADAR [Vass11] concentric layouts are used to visualize graphs. According to this work each 

node has a type and different types on nodes are placed on different concentric circles. The main 

parts of the RADAR algorithm consist of (I) placing relation nodes in the innermost circle of the 

graph and arranges query nodes around them, (II) distributing query nodes at appropriate angles 

around the relations circle such that each query is close in terms of angle as possible to the 

relation it accesses. (III) de-cluttering the graph by placing query nodes of similar degree in 

concentric cycles of increasing distance from the center, (IV) resolving problems of conflicts 

when query nodes should be placed closely in the graph by slightly shifting the conflicting nodes. 

The RADAR method possesses several good properties such as hiding a part of the graphs noise 



9 

generated by edge crossings and it allows the progressive drawing of the graph. This work is very 

similar to ours in the case of node placement inside a cluster. 

 

In Pining Balloons with Perfect Angles and Optimal Area [HaSk12] the authors visualize nodes 

(balloons) with different sizes on a disk. The number of nodes placed on a disk is a power of two. 

If the number of nodes is not a power of two they place the remaining nodes in a disk concentric 

to the previous but with larger radius. To avoid overlaps they sort the nodes with ascending 

radius order and they divide the disk in as many as the number of nodes equal in size partitions 

such that the biggest node fits perfectly in one partition. Since the nodes they visualize are not 

connected they don’t have to consider any aesthetic criteria regarding the clutter produced by 

edge crossings. [HaSk12] proposes a technique that uses fixed angles to place disks on the 

circumference of a circle. The disks are either touching the circumference, or in case their size is 

greater than the angle that is predefined for them, they are moved further from the circle, till they 

fit in the predefined angle. 

 Relationship of our Approach to State of the Art 2.4

Compared to related work, we provide a pre-visualization clustering based on node similarity of 

our graph and we introduce a method with variant angles for cluster placement on circle (as 

opposed to fixed angles of the related work) and we also propose two concentric methods. All are 

methods guarantee that the clusters do not intersect. Moreover, we exploit the inherent stratified 

nature of nodes (tables, views and queries) for the placement of nodes within clusters (as views 

are defined over tables and queries over both views and tables). To the best of our knowledge, 

this is the first time that visual “maps” for the particular case of data-intensive information 

systems are produced in a principled manner that addresses aesthetic and objective layout 

criteria. 



10 

  



11 

CHAPTER 3. Graph Layout Methods for 

Data-Intensive Ecosystems 

 

 

3.1 Overview of our Method 

3.2 Clustering of Modules 

3.3 Cluster Preprocessing 

3.4 Layout of Cluster Circle(s) 

3.5 Layout of Nodes inside a Cluster 

3.6 Refactoring Hecataeus: The Case of Zoom-In for Modules 

 

 

In this Thesis, our main task is to provide the user with several graph visualization layouts 

through Hecataeus. Hecataeus is system that allows the modeling, visualization, and evolution 

management of data-intensive ecosystems. In this thesis Hecataeus was re-engineered to support 

new clustered graph layouts as well as multiple viewing panes to enable the new zoom-in features 

that provide the user with extra details on demand and filtering of information. 

 

Hecataeus visualizes database constructs as a directed graph   (   )   represents the vertices 

of the graph and   represents the edges. The components of such a graph are the high level 

constructs, such as relations, views and queries, which we call modules of the graph and the 

lower level constructs such as the attributes. 

 Overview of our Method 3.1

The fundamental modeling pillar upon which we base our approach is the Architecture Graph 

 (   ) of a data-intensive ecosystem. The Architecture Graph is a skeleton, in the form of graph 



12 

that traces the dependencies of the application code from the underlying database. In our previous 

research [MaVP13], we have employed a detailed representation of the queries and relations 

involved; in this paper, however, it is sufficient to use a summary of the architecture graph as a 

zoomed-out variant of the graph that comprises only of modules (relations, views and queries) as 

nodes and edges denoting data provision relationships between them. Formally, a Graph 

Summary is a directed acyclic graph  (   ) with V comprising the graph’s module nodes and E 

comprising relationships between pairs of data providers and consumers. 

 

 

   (     )   
|    ⋂       |

|    ⋃       |
 

 

 
 

 

   (     )   
|          ⋂       |    

|          ⋃       |
 

 

 
 

 

   (     )   
|          ⋂       |

|          ⋃       |
   

Fig. 3 Example of module similarity 

 

In terms of visualization methods, the main graph layout we use is a circular layout. Circular 

layouts are beneficial due to a better highlight of node similarity, along with the possibility of 

minimizing the clutter that is produced by line intersections. We place clusters of objects in the 

periphery of an embedding circle or in the periphery of several concentric circles or arches. Each 

cluster will again be displayed in terms of a set of concentric circles, thus producing a simple, 

familiar and repetitive pattern.  

 

Our method for visualizing the ecosystem is based on the principle of clustered graph drawing 

and uses the following steps: 



13 

1. Cluster the queries, views and relations of the ecosystem, into clusters of related modules. 

Formally, this means that we partition the set of graph nodes V into a set of disjoint subsets, 

i.e., its clusters,           . 

2. Perform some initial preprocessing of the clusters to obtain a first estimation of the 

required space for the visualization of the ecosystem. 

3. Position the clusters on a two-dimensional canvas in a way that minimizes visual clutter 

and highlights relationships and differences. 

4. For each cluster, decide the positions of its nodes and visualize it. 

 Clustering of Modules 3.2

To accomplish a successful visualization it is often required to reduce the amount of visible 

elements being viewed by placing them in groups. This reduces visual clutter and improves user 

understanding of the graph as it applies the principle of proximity: similar nodes are placed next 

to each other. To this end, in our approach we use clustering to group objects with similar 

semantics in advance of graph drawing. 

 

We have implemented an average-link agglomerative clustering algorithm [Dunh02] described in 

(Fig. 4) which works as follows. 

 First, we compute the distances for every pair of nodes in the graph. 

 Then, we iteratively perform cluster merging:  

i. we find the minimum distance pair of clusters, 

ii. we merge the components of the pair into a new cluster, and, 

iii. we calculate the new distances. 

 

This process (Fig. 3) starts with each node being a cluster on its own and stops when the 

minimum distance of all pairs of clusters is greater than a user-defined threshold of cluster 

distance (due to the user interface, a threshold is always set). 

 



14 

Algorithm 1. Clustering 

Input: G : all the graph objects (relations, queries, views), list with solutions 

(initially every object as a cluster) T: the user defined threshold for the distance 

of two clusters (below which the user deems that the merge of the clusters is 

without meaning) 

Variables:  mindist: the min distance between clusters 

Output:  C: a set of clusters 

Begin 

1. Create a set C = { {t1}, {t2}, …, {tn} } with all the objects of G as clusters  

2. Do 

3. mindist =   

4. For each pair ci , cj, i   j 

5. Compute pairwise distances between them 

6. If a pair has smaller distance than mindist  

7. Update mindist with smaller distance  

8. Update mindist pair 

9. End if 

10. End for 

11. Merge mindist pair 

12. Add pair to C 

13. Remove mindist objects from C 

14. If mindist >= T return C 

15. While number of clusters != 1 

16. Return C 

End 

Fig. 4. Clustering algorithm 

The distance function used in our method evaluates node similarity on the grounds of common 

neighbors. So, for nodes of the same type (i.e., the similarity of two queries, or the similarity of 

two tables), similarity is computed via the Jaccard formula, i.e., the fraction of the number of 

common neighbors over the size of the union of the neighbors of the two modules. When it 

comes to assessing the similarity of nodes of different types (like, e.g., a query and a relation), we 

must take into account whether there is an edge among them. If this is the case, the numerator is 

increased by 2, accounting for the two participants. Formally, the distance of two modules, i.e., 

nodes of the graph, Mi, Mj is expressed in formula (1): 



15 

 

    (     )      

{
 
 

 
 

|             ⋂             |

|             ⋃            
 
|
           (   )

|             ⋂             |   

|             ⋃             |
           (   )

 

(1) 

or, equivalently,     (     )      
|                   ⋂                   |

|             ⋃             |
 

To clarify the terminology used in the formula (1), we explain the employed terms as follows. 

 For a given node vi in a graph G(V, E), neighborhood(vi) = {vj, s.t.,  edge (vi, vj) or (vj, vi) 

in E} 

 For a given node vi in a graph G(V, E), closedNeighborhood(vi) = neighborhood(vi){vi} 

 Cluster Preprocessing 3.3

Before proceeding any further, the method requires the computation of the area that each cluster 

will possess in the final drawing. As already mentioned, each cluster includes at least three 

concentric circles: the innermost circle for the relations, an intermediate band of circles for the 

views (which are stratified by definition, and can thus, be placed in strata) and the outermost 

band of circles for the queries that pertain to the cluster. The latter includes two circles: a circle of 

relation-dedicated queries (i.e., queries that hit a single relation) and an outer circle for the rest of 

the queries (see Fig. 3). This heuristic is due to the fact that in all the studied datasets, there was a 

vast majority of relation-dedicated queries; thus, the heuristic allows a clearer visualization of 

how queries access relations and views. 

 

In order to obtain an estimation of the required space for the visualization of the ecosystem, we 

need to perform two computations (see Fig. 5 for the algorithm). First, we need to determine the 

circles of the drawing and the nodes that they contain, and second, we need to compute the radius 

for each of these circles. Then, the outer of these circles gives us the space that this cluster needs 

in order to be displayed.  

 



16 

 

Algorithm 2. Circle Identification 

Input: a cluster C 

Variables:  T: the tables of C, V: the views of C, Q: the queries of C, S: a list of  

strata (to be topologically sorted) over T ∪ V ∪ Q, nodes: T ∪ V ∪ Q 

Output:  a list of circles K={K0, …, Kn}, each annotated with its nodes, 

nodes(Ki), and its radius Ri   

Begin 

1. Topologically sort T, V and Q and organize their nodes in strata; then, S is a 

list of strata, S = T ∪ V ∪ Q, with T= {S0}, V= {S1, …, Sm}, Q = {Sm+1,Sm+2} 

2. For every stratum Si of S = {T ∪ V ∪ Q} 

3.  Append a new circle Ki to K, nodes(Ki) = Vi 

4.  Compute its radius       (      )        

End 

Fig. 5. Algorithm for the identification of circles, along with their nodes and radii. 

 

 

Fig. 6 A cluster from the BioSQL ecosystem 

 



17 

To obtain the bands of views and queries we topologically sort the nodes of the cluster and 

organize their nodes in strata. For the views, each stratum Vi defines an equivalence class in the 

graph and includes all the nodes of the graph that depend only from nodes in strata Vj previous to 

Vi, j < i. Of course, relations form the zero-th stratum with no dependencies whatsoever. For 

queries, we simply split them in two pseudo-strata: (a) relation-dedicated queries and (b) all the 

rest of the queries. Then, for each stratum, we add a circle, with the radius determined by the 

formula: 

 

        (     )        (2) 

 

The rationale for the formula is simple: we need a function that will increase rapidly for a small 

number of nodes and will not change that much when the number of the nodes gets bigger. This 

way we make sure that very small clusters will be placed on a visible circle and big clusters will 

not get enormous. Because of that, we used the logarithmic function described in Formula (2) in 

which we intentionally added the number of nodes that belong to the circle of the cluster, to 

ensure that the circles with small number of nodes will obtain a visible area. The scale factor of 3 

in the formula was empirically determined by working with the datasets that we have used in our 

experimentation (see Chapter 4). In Fig. 6 we depict the internal structure of a cluster from the 

BioSql dataset. 

 

 Layout of Cluster Circle(s) 3.4

Once the clusters have been computed and their radius calculated, then it is time to position them 

on a 2D canvas. We employ a variety of circular layouts for the problem, each with different 

characteristics. The first layout method places all clusters on a single circle; however, in contrast 

to existing techniques, we allocate different angles and sectors per cluster. The second layout 

method places clusters in concentric circles in an attempt to avoid the intermediate empty space 

of the previous method. Finally, the third method, which is a combination of the previous two 

methods, utilizes circular arcs instead of circles and assigns different angles for each cluster. 



18 

 Circular cluster placement with variable angles  3.4.1

In this method, we use a single circle to place circular clusters on. In contrast to the state of the 

art, we do not use fixed sizes for the sectors of the circle the clusters occupy, but rather, the part 

of the overall circle that is assigned to each cluster depends on its size (i.e., its number of nodes).  

R
ρ1

ρ2

ρ2

ρi

ρi
ρ1

 

Fig. 7 Calculating the radius R of the embedding circle 

 

As already mentioned, we have already calculated the radius r of each cluster. Given this input, 

we can also compute R, the radius of the embedding circle. We approximate the contour of the 

inscribed polygon of the circle, computed via the sum of twice the radius of the clusters and then 

we divide this sum by 2π to calculate the radius R of the embedding circle using equation (3). We 

approximate the circles periphery, equal to 2πR, by the sum of edges of the embedded polygon. 

 

    ∑   

| |

   

    ∑     

| |

   
  ⁄  (3) 



19 

 

In Fig. 7 we visually demonstrate how the periphery of a circle is approximated by its embedded 

polygon, in order to calculate the circle’s radius, R. 

The next step after calculating the radius of the embedding circle is to assign each cluster to a 

segment of the circle depending on the cluster’s radius (size). Each one of these segments is 

defined by an angle φ of the embedding circle.  

Before calculating the angle φ we have to consider two cases: 

 The radius ρ of the cluster we want to place is smaller or equal to the radius of the 

embedding circle R we calculated above. 

 The radius ρ of the cluster we want to place is greater than the radius of the embedding 

circle R we calculated above. 

In the first case, depicted in Fig. 8, we consider the right triangle ABO and based on simple 

trigonometry we calculate angle   ⁄  as follows 

φ/2φ/2

R

ρ

O

A

B

C

 

Fig. 8 Calculating angle φ/2 for the case where ρ  is smaller than R. 



20 

         ( 
 

 
 ) (4) 

 

In the second case (see Fig. 10), when ρ is greater than R, Formula 4 is not working correctly 

since sin
-1

 does not produce real numbers for values greater than one. To avoid this problem we 

used the law of cosines. Observe the triangle in Fig. 9. Then, the law of cosines states that  

                  . 

Then, the angle φ can be computed as follows 

     (        )     (5) 

 

φ

a

b

c

 

Fig. 9 Calculating φusing the law of cosines 

 

B

A

O

R

R

ρ
φ/2

 

Fig. 10 Calculating φ/2 for the case where ρ is greater than R 



21 

To calculate φ  in this case, first we need to calculate angle   ⁄ . This is formally done in formula 

(6), which we prove right away. In Fig. 8 we graphically depict the explanation of this 

calculation.  

         (
      

   ) (6) 

Formula (6) is an implication of the law of cosines defined in formula (5). Specifically, let us 

define the isosceles triangle ABO (Fig. 10) with O being the center of the circle and A, C the 

limits of the sector on the periphery of the circle. BO is the dichotomous of the angle   of a 

sector AOC and also BO is equal to the radius of our circle, so we have constructed the isosceles 

triangle AOB and using the law of cosines (see Fig. 9) with OA as c, OB as b and AB (which is 

equal to the radius of the cluster we wish to place) as a, we can calculate   ⁄  via the equation 

described in (6). 

It is noteworthy, that we cannot avoid discriminating the aforementioned two cases: when ρ < R, 

if we use the formula with the law of cosines, the line OA of Fig. 8 would not be a tangent line 

and would actually cut through the disk of the cluster. As already mentioned, in the case of ρ ≥ R, 

we cannot produce sin
-1

 for values higher than 1. 

We take special care that the layouts of the different clusters do not overlap; to this end, we 

introduce a white space factor w that enlarges the radius R of the cluster circle (typically, based 

on microbenchmarks with the datasets of our experimentation (Chapter 4), we use a fixed value 

of 1.8 for w). To calculate the center coordinates of each cluster we use the radius R multiplied by 

w. The physical meaning of w is that we enlarge the arc over which we place the cluster via the 

expansion of the radius we calculated (Fig. 12). Then, w is the factor that we multiply the radius 

with to make sure that clusters will not overlap. Via this expansion of the radius, the arc around 

which each cluster will be placed is also expanded, thus leaving extra whitespace between the 

actually exploited parts of the clusters’ arcs. This results in producing a virtual visual border for 

the cluster, which is now entirely surrounded by whitespace. We need this visual border for 

aesthetic criteria as it guarantees that the visual perception of neighboring clusters will not 

confuse or merge them. Given the above inputs, we can calculate the angle φ that determines the 

sector of a given cluster for both cases, as well as its center coordinates (cx, cy) via the following 

equations:  



22 

        (
(      )

   ), 

        ( 
 

 
 ) 

      (  ⁄ )     ,           (  ⁄ )      

(6) 

 

To calculate the center coordinates (   
    

) of any cluster i we use the following method:  

 

   
    (∑  

 

   

     )      

   
    (∑  

 

   

     )      

(7) 

As we place clusters sequentially over the embedding circle each sector is placed next to the last 

one and thus, to compute the angle of its dichotomous, over which we place the center of the 

cluster, we sum the    angles of all the previous clusters. 

 

Fig. 11 Original assignment of clusters to segments  

 



23 

R

R*w

Visual 

border

 

Fig. 12 Enlarging R by w to apply visual borders between clusters 
 

 

Fig. 13 Visualizations for BioSQL and Drupal with circular cluster placement. 



24 

 

 Clusters on Concentric Circles 3.4.2

This method involves the placement of clusters to concentric circles. Each circle includes a 

different number of segments, each with a dedicated cluster. The proposed method obeys the 

following sequence of steps: 

 

 

Fig. 14 2
k
 cluster placement 

 

1. Sort clusters by ascending size in a list L
C
 

2. While there are clusters not placed in circles 

2.1. Add a new circle and divide it in as many segments as S = 2
k 

(Fig. 14), with k 

being the order of the circle (i.e., the first circle has 2
1
 segments, the second 2

2
 

and so on) 



25 

2.2. Assign the next S fragments from the list L
C
 to the current circle and compute its 

radius according to this assignment 

2.3. Add the circle to a list L of circles 

3. Draw the circles from the most inward (i.e., from the circle with the least segments) to the 

outermost by following the list L. 

 

Practically, the algorithm expands a set of concentric circles, split in fragments of powers of 2 

(Fig. 14). As the order of the introduced circle increases, the number of fragments increases too 

(S = 2
k
), with the exception of the outermost circle, where the segments are equal to the number 

of the remaining clusters. By assigning the clusters in an ascending order of size, we ensure that 

the small clusters will be placed on the inner circles, and we place bigger clusters on outer circles 

since bigger clusters occupy more space. 

 

Again the first step is to calculate the radius for every concentric circle. We also need to 

guarantee that clusters do not overlap. This can be the result of two problems: (a) clusters of 

subsequent circles have radii big enough, so that they meet, or, (b) clusters on the same circle are 

big enough to intersect. 

To solve the first problem, we need to make sure that the radius of a circle Ki is larger than the 

sum of (i) the radius of its previous circle Ki-1, (ii) the radius of its larger cluster Rmax(Cki-1) on the 

previous circle, and (iii) the radius of the larger cluster of the current circle Rmax(Cki). For the 

second problem, we compute Ri as the encompassing circle’s periphery (2πRi) that can be 

approximated as the sum of twice the radii of the circle’s clusters (Fig. 7).  

 

Again, to avoid the overlapping of clusters and to apply white space as visual border to 

distinguish clusters easily, we set the radius of the circle to be the maximum of the two values 

produced by the aforementioned solutions and we use an additional whitespace factor w to 

enlarge it slightly (typically, we use a fixed value of 1.2 for w). 

 

In Fig. 15 we depict the first condition we need to be satisfied (i.e. clusters of subsequent circles 

have radii big enough, so that they do not overlap). In this case we consider the worst scenario: 

We want to place on circle Ki a cluster Cki, which happens to be the biggest cluster on Ki thus it’s 



26 

radius is Rmax(Cki) and on the previous circle Ki-1 in layer adjacent position, there is also the 

biggest cluster of circle Ki-1 with radius Rmax(Cki-1). In this case to avoid overlaps we need to make 

sure that the radius Ri of circle Ki is not smaller than the sum of the radii Ri-1 and Rmax(Cki) and 

Rmax(Cki-1). 

 

 

R(Ki)

R(Ki-1)

Rmax(CKi-1)

Rmax(CKi)

Circle Ki-1 and 

its radius Ri-1 

Circle Ki and its 

radius Ri 

 

Fig. 15 Avoiding overlaps between clusters on subsequent circles 

Before calculating the radius of a circle, we approximate the contour of the inscribed polygon of 

the circle with the method described in paragraph 3.4.1 and using this contour we calculate 

minimum value that the radius Rmin of this circle can take in order to avoid overlaps between 

clusters on the same circle. Then we calculate the radius of circle    with the following method. 

 



27 

 

 (  )        

{
 

 
         (     

)       (   
)

 

 
∑ (    

)

| |

   

  (    
)                                  

 (8) 

 

In this implementation the angles defining segments of the circle assigned to each cluster are 

equal for all clusters on the same circle and calculated as follows: 

 
        ⁄  (9) 

With φi: the angle same for all clusters on circle Ki , n: the number of clusters on circle Ki 

 

 

Fig. 16 Visualizations for BioSQL and Drupal with concentric cluster placement method. 

 Clusters on Concentric Arcs  3.4.3

As an alternative method of laying out the clusters on the canvas, we suggest the concentric arc 

layout. This method places the clusters in a set of concentric arcs, instead of concentric circles 

(Fig. 17). This provides better space utilization, as the small clusters are placed in the upper left 

corner and there is less whitespace devoted to guard against cluster intersection (See Table 6 for 



28 

detailed metrics for the area occupied by the graph in all three layouts). Overall, this method is a 

combination of the previous two methods. 

(a) We use the same method for deploying clusters we used in section 3.4.2 with the 

difference that instead of circles Ki we deploy the clusters on concentric arcs Ai of size 

  ⁄ . This way we attempt to reduce white space having a more compact layout. Just 

like before we place 2
a
 clusters on the a

th
 arc. In this layout we need to address the 

same radius calculation problem as in section 3.4.2 (i.e. clusters of subsequent circles 

have radii big enough, so that they meet, or, clusters on the same circle are big enough 

to intersect) and for this case we use exactly the same radius optimization technique we 

used before. 

(b) In this layout unlike the 3.4.2Clusters on Concentric layout, the partition assigned to 

each cluster is proportionate to each size. To calculate the partition size of each cluster, 

we used the method expressed by equation (6) of section 3.4.1. 

Again we use the same way of radius optimization we used in 3.4.2 to avoid cluster overlaps. 

 

 

 

Fig. 17 Visualizations for BioSQL and Drupal with concentric arc placement. 



29 

 Layout of Nodes inside a Cluster  3.5

The last part of the visualization process involves placing the internals of each cluster within the 

area designated to the cluster from previous computations. As already mentioned, each cluster is 

aligned in terms of several concentric circles: an innermost circle for relations, a set of 

intermediate circles for views and one or more circles for queries, as we previously stated at 

section 3.3. Now, since the radii of the circles have been computed, what remains to be resolved 

is the order of nodes on their corresponding circle (see Fig. 18 for the algorithm). 

First, we start with relations. We want to place two relations in adjacent positions if they are 

frequently accessed together by many queries. To this end, we iterate over all the queries of a 

cluster that access more than one relation and for each combination of relations accessed by a 

query, we increase a fan-in counter. At the end of this process we sort the combinations with a 

decreasing order of their fan-in counter in a list. The list is used for sequencing the relations: we 

start from the most frequent combination and we arrange the relations by the order it identifies; 

then, we do the same for all the non-placed relations of the following combination, till there are 

no more combinations. Assume we have the following combinations {T4, T3}, {T1, T5} and {T1, 

T2, T3} in decreasing order of frequency. Then, the final order of the relations will be {T4, T3, 

T1, T5, T2}. Exactly the same process is followed to sort the view nodes with respect to the 

relation nodes they use. As the reader might have noticed, the order in which the queries are 

placed, with respect to the relation node(s) they use, is not optimal. The nodes are placed in a 

sequence with a greedy algorithm which has worked well for the experiments we have conducted 

(Chapter 4). Clearly, a more sophisticated method is part of the future work. 

Once the order of the relations is laid out, we compute their coordinates by co-locating them 

along with their dedicated queries (as already mentioned, these queries come in large numbers 

practically). We compute the segment that pertains to a relation by assigning a constant dφ for 

each relation-dedicated query. We calculate dφ as    divided by the number of nodes we want to 

place on the circle. Then, we place the relation in the middle of this segment and the relation-

dedicated queries sequentially in their corresponding circle (Fig. 19). 

 



30 

Algorithm 3. Circle Layout 

Input: a cluster C 

Variables:  T: the tables of C, V: the views of C, Q: the queries of C, S: a list of 

(topologically sorted) strata over T ∪ V ∪ Q  

Output:  an angle φi for each node i of the cluster C 

Begin 

1.   //Order relations
2.  Let L be a list of pairs [c,cn], with c being a combination of relations hit by 

queries in the cluster and cn the frequency of c; L =  
3.  Iterate over Q and compute L          //for each combination increase a 

 counter
4.  Sort L in decreasing order 
5.  Let T* be the list of relations in sorted order; T* =  
6.  For each combination l in L, add its contents to T*, if not already in T* 
7.   //Order relation-dedicated queries
8.  For each table ti in T 
9.   Compute Qd(ti) = the relation-dedicated queries of ti 
10.   Compute the angle of the segment that pertains to Qd(ti)  ωi = | 

Qd(ti)|* dφ, dφ is the angle per node computed as 2π / |T| (the number of 

nodes of the circle) 
11.   Place ti in the middle of its segment, next to the previous: φi = 

0.5*ωi + φi-1 
12.   Place the queries of Qd(ti) sequentially in their circle 
13.   //Order views and queries
14.  For every circle ki of the cluster’s circles (in the order determined by 

Algorithm 2 in Fig. 5) 
15.   For each node vj in ki  
16.   Sum all the angles of the nodes belonging to the cluster that vj 

accesses in the previous circles and divide by their number to compute the 

node’s angle φj 

End 

Fig. 18 Algorithm for placing nodes in a cluster. 

 



31 

 

dφi

dφj

 

Fig. 19 Layout of query nodes in a cluster with respect to the relation node they reference. 

 

Fig. 20 Layout of nodes in a cluster from Drupal. 

 



32 

Once these nodes have been laid out, we place the rest of the views and queries in their 

corresponding circle of the cluster. We visit each circle in turn, in the order determined by 

Algorithm 2 in Fig. 5. This way, we are certain that each node of circle ki is defined over nodes in 

the previous circles (and possibly, over nodes in other clusters that do not affect the node’s 

placement). Then, we can follow a traditional barycenter-based method [deTT99] and we place 

the node in an angle that equals the average value of the sum of the angles of the nodes it 

accessed (Fig. 21). As it is expected this method assigns to nodes using the same relations the 

exact same angle causing overlaps of nodes. To avoid this problem every time a node needs to be 

placed on an occupied position we increase the angle that specifies this position by a very small 

value δ (in our case δ=0.09 radians). 

dφi

dφj

δ

(dφi+dφj)/2

r1

r2

q2

q1

 

Fig. 21 Layout of nodes in a cluster, the case of queries that reference more than one tables. 

 



33 

Specifically in Fig. 21 we depict the following case: We need to place queries q1 and q2 and both 

of them reference the relation nodes r1 and r2. To decide their position we sum the angles dφi and 

dφj, r1 and r2 use and place q1 on the corresponding circle with angle (dφi + dφj) / 2. Then we 

need to place query q2 and since it is the second query that references both relations r1 and r2, we 

place it on the corresponding circle with angle (dφi + dφj) / 2 + δ to avoid overlap with query q1. 

 

As we said before the view nodes are placed on a band of circles or stratums. To decide on which 

stratum a view should be placed we count the view’s incoming edges. View nodes with the same 

number of incoming edges belong to the same stratum. We compute a stratification of views as 

follows. In the first stratum we place views with no incoming edges. In the k
th

 stratum we place 

views that depend on at least one view from stratum k-1 and maybe from smaller strata. To do 

that we iterate on all view nodes in each cluster and we add them in stratums with respect to their 

incoming edges, first we start with the view nodes with no incoming edges, we remove them 

from the list with views and we add them to the corresponding stratum and then, we continue 

with nodes with more incoming edges until the list with all the views in the cluster is empty (see 

Algorithm 4 in Fig. 22). In Fig. 23 we depict a simple case of view stratification for six views. S1, 

S2, S3 represent the different strata where we place view nodes according to Algorithm 4. In the 

first stratum, S1 we place the three views that have no incoming edges. Then, we remove their 

outgoing edges and we search for view nodes with no incoming edges to place in the second 

stratum S2, including two views defined over the views of strum S1. We follow this process until 

there are no more view nodes to place. In the case of Fig. 23, there is a third stratum, S3, including 

a view defined over views belonging to previous strata (notice that the dependency does not need 

to be confined only to the exactly previous stratum, but it can be defined over a view belonging 

to any of the previous strata). In the case depicted in Fig. 23, as we have three different strata, we 

will eventually place the view nodes in three different concentric circles. 

 

Other issues related to the visualization of the clusters are: (a) node shape, (b) node size, (c) node 

color, (d) edge weight, and (e) edge color. Regarding the node shape, we use different shapes to 

visually distinguish the different type of nodes. Relation nodes have circular shape, view nodes 

have triangular shape and query nodes are depicted as hexagons. Moreover, we scale the size of 

nodes according to their node degree (i.e., their interconnectedness with other nodes); thus, the 



34 

most used modules are more conspicuous. In terms of node color, we distinguish node types with 

different colors. Database-related nodes, placed in the inner part of a cluster have dark tones. 

Specifically relation nodes are grey and views are dark green. Query nodes have different colors, 

depending on the folder their embedding script in the applications belongs. Thus, the difference 

in color provides another way of grouping queries. This way we can draw several conclusions 

like how likely is it for queries that belong to the same folder, to belong to the same cluster as 

well. 

 

Algorithm 4 View stratification 

Input: A summary of an architecture graph G (Vs ; Es) of a cluster with Vs the 

views of the cluster and Es the edges between nodes of Vs 

Variables:  cnt  

Output:  S: a topologically sorted set of strata S ={S1,…,Sn} each stratum Si 

includes a set of views in Vs 

Begin 

1.  Copy Vs to V 
2.  Stratum S = null 
3.  cnt = 0 
4.  while V not empty do{ 
5.  find view with 0 incoming edges from V 
6.  remove view from V 
7.  remove edges starting from view 
8.  Stratum Scnt = new stratum with all nodes of V with 0 incoming edges 
9.  cnt = cnt+1 

10.  S = S ∪{Scnt} 
11.  }end while 
12.  Return S 

End 

Fig. 22 Decide circles for the view nodes. 

A matter of particular importance that is not obvious in the first place is the amount of visual 

clutter introduced by edges. Edges are the main source of visual clutter and to reduce it, we 

reduced the intensity of the edges’ presence of the visual map. To do that, we picked a light gray 

color for the edges and we made them very thin, in terms of weight, almost invisible. However to 



35 

keep the information the edges provide us, every time a particular node is selected by the user its 

neighboring nodes are highlighted with a blue transparent color so, instead of emphasizing edges, 

we emphasize neighbors. 

 

S1 S2 S3

 

Fig. 23 Strata S1, S2, S3 as a result of view stratification produced from Algorithm 4. 

 Refactoring Hecataeus: The Case of Zoom-In for 3.6
Modules 

In the content of this Thesis we had to refactor the visual part of Hecataeus. Databases are 

continuously evolving environments, where design constructs are added, removed or updated 

rather often. Small changes in the database configurations might impact a large number of 

applications and data stores around the system: queries and data entry forms can be invalidated, 

application programs might crash. A data-centric ecosystem comprises a central database and all 

the software modules and applications that base their operations on it: forms, reports, stored 

procedures, workflows, etc. Hecataeus is a tool that represents the database schema along with its 

dependent views and queries (acting as an abstraction for all the above software modules) as a 

uniform directed graph. Hecataeus enables the user to create hypothetical evolution events and 

examine their impact over the overall graph as well as to define rules so that both syntactical and 

semantic correctness of the affected workload is retained. In order to visualize the database 



36 

modules Hecataeus uses the Jung Visualization viewer as its canvas. A Visualization viewer in 

Jung is in fact a JPanel on which we draw the graph. 

 

 

Fig. 24 Initial non clustered layout of Hecataeus  

 

Hecataeus has a graphical user interface environment making its features easier to access. The 

Hecataeus window consists of two parts. The left part is the visualization viewer, where the graph 

is displayed and the right part consists of a tabbed pane that enables the user with various features 

(See Fig. 25). 

To use Hecateus there is a simple process to follow.  

 The user can create a new project via the menu bar, select the workspace and copy to this 

location the files that describe the database (i.e. relations, queries, views). Alternatively, if 

the database schema the user wants to examine had previously been opened with 

Hecataeus, the user can select to open the already existing project file that was generated 

from Hecataeus. 

 When the user opens a project the graph is displayed on the left part of the window (Fig. 

25). By default the initial layout of the graph is a non-clustered concentric layout (See 

Fig. 24). It consists of at most 3 concentric circles, each one for the three types of nodes 



37 

relations, views and queries. In order to decide which circle to assign on each node type 

we check their number. The type of nodes with the fewer nodes gets in the innermost 

circle and then for the middle circle we get the node type with the directly less nodes and 

at the outer circle we place the nodes of the node type with the most nodes. Again the 

radii of these circles are calculated with the formula (2). 

 Next, the user can apply a new layout. All the available layouts can be found by selecting 

the Algorithms submenu in the Visualize menu. If a clustering layout is selected, before 

displaying the graph Hecataeus asks the user to provide a value for the clustering 

parameter T. T defines how separate the clusters will be. T can get values from zero to 

one. Zero value for T means than every node will be considered a cluster and this will 

result in a simple circular layout. Selecting one for T means that the clustering algorithm 

will not stop until there are no cross edges between clusters (i.e. all clusters are 

independent). When the user selects a value for T the clustering algorithm will start and 

when it finishes it’s time for the layout algorithm to visualize the graph. When the 

visualization part is over, the user is presented with the result depicted in Fig. 25. On the 

left part of Hecataeus the user can view the clustered graph and select nodes to open in a 

different tab for further inspection. In Fig. 25 we see that the nodes with the orange color 

are selected and the other nodes that use them are highlighted with a blue transparent 

color. We can also observe that in Fig. 25the user decided to zoom in one node by its self 

and then the user selected two nodes and zoomed into both of them, thus there are three 

tabs open on the left part of Hecateus. The last two tabs that where opened by the user to 

view additional details of the selected nodes can be closed by the user when they are not 

needed while the first tab which is created by the system and gives a full view of the 

graph cannot be closed. On the right part of Hecataeus, the user can get a summary of the 

clusters by checking the overview map in the “Map” tab (Fig. 25). We provide as well the 

user with a reference for the colors used for the nodes in the “Colors” tab. 

 Finally, the user can apply functions to the nodes by clicking the tabs “Event” or “Policy” 

and filing in the required details. 

 



38 

 

Fig. 25 Hecataeus window. 

 Tabbed Pane 3.6.1

The old version of Hecataeus featured only one visualization viewer active at a time, so our goal 

was to refactor Hecataeus to support a new function providing the user with many visualization 

viewers on demand, with the intent to be used as “zoomed-in” viewers for further detailed 

information. With multiple viewers the user can perform detailed work simultaneously in 

different levels of detail without the need to zoom repeatedly in and out [DeRo10]. These viewers 

can also be used to provide multiple visualizations of the same graph at the same time in a 

different tab. This feature we added can be used in two ways:  

 Zoom-in functionality for modules. This new feature is in fact an application of the 

“Visual Information Seeking Mantra” which suggests the basic guidelines for visual 

representations: Overview first, zoom and filter, then details on demand [Shne96]. 



39 

In our case, the overview of the graph is provided by default on the main tab. This new 

functionality enables zooming in to lower module layers of the user selected node or 

nodes of interest, which is a way of filtering and also providing details on demand. With 

this new feature the user can select a node form the graph and view in another tab its 

components. This way we reduce the amount of information visualized and as a result 

visual clutter. In this new “zoomed-in” tab the user can view and apply actions  

 View the same graph in a different layout in another tab. Before the addition of this 

functionality if the user needed to compare two or more layout algorithms for the same 

graph, the new layout had to be applied and then again the old one. Now the user can 

apply many layouts, visualized in different tabs, to the graph simultaneously compare 

them and finally choose one.  

 

To achieve this multiple viewer visualization every time we open a new tab we create a different 

graph, as there is no way to make visual changes to a graph without making them appear on all 

viewers that visualize this graph i.e., if we want to see the lower level constructs of a higher level 

node or apply a different layout on a graph, the result would be applied on all open viewers which 

visualize this graph. 

 

In our implementation we consider the first tab to be the “main” tab which provides the overview 

of the graph (main tab cannot be closed) and if any changes are applied to nodes on other open 

tabs, we copy this changes to the main graph. 

 

 Overview Map 3.6.2

To provide a zoomed out and less detailed view of the clusters we visualized with the above 

methods we implemented an overview map of the clusters. Overviews in general include zoomed 

out views of certain data types for viewing a summarized view of the graph plus an adjoining 

detailed view [Shne96]. We placed this map on a tabbed pane on the right side of the application 

window providing the ability to the user to view both viewers at the same time. This map was 

created mainly to help the user identify the clusters. To help this cluster identification problem 



40 

we place every node in the cluster map in the same position as the cluster it represents so by 

looking at both visualizations it is straightforward to relate a node on the right (the overview 

map) with the cluster it represents on the left. 

 

Each cluster is represented by a different node on the overview map. To determine the size of the 

overview nodes we used formula (2) which in this case means than the size of every cluster 

overview node is proportionate to the size of the cluster it represents. We do not apply different 

colors for the map nodes since they are quite distinct by themselves thanks to their positioning. 

 

Another issue that we had to address was the labeling of the map nodes (i.e. how to name them). 

The main idea was to name each map node with the same name as the relation in the cluster. The 

problem was that some clusters consist of more than one relation nodes and naming a map node 

by all the relations it features is not a good idea (huge names). 

 

 

 

Fig. 26 Application window with two viewers: left the detailed clustered view and right the 

overview map. 

 



41 

To find a way around this problem, we define the notion of a dominating relation. A relation is 

dominating if the number of its incoming edges is higher or equal than the average number of 

incoming edges per relation in the cluster. So, we compute the average number per relation for 

each cluster by summing the incoming edges for every relation in the cluster and dividing this 

sum by the total number of relations in the cluster. Then we identify the dominating relations of 

the cluster on the basis of the above definition (observe that for the majority of clusters, which 

include a single relation, the definition works fine). Finally the name of the cluster is computed 

by concatenating the names of the dominating relations, thus the name of the corresponding map 

node. The overview map is a new visualization viewer just like the main viewer but smaller. 

  



42 

 

  



43 

 

CHAPTER 4. Experiments 

 

 

4.1 Experimental Method 

4.2 Aesthetic Criteria 

4.3 Assessment of Objective Criteria 

4.4 Comparison to Alternative Methods 

 

In this chapter, we present our experimental assessment of the proposed visualization methods. 

We start with the discussion of the experimental method and then we assess our method against 

aesthetic criteria and objective measurements and advantages over opponents. 

 Experimental Method 4.1

In order to evaluate our work, we have used some well-known open source projects that contain 

database queries. Table 1 provides a list of the analyzed software projects and gives additional 

information in regard to the dataset (number of relation nodes, view nodes, query nodes and the 

total number of edges in each graph). In order to convert the software of the analyzed tools to the 

graph representation that we use in this Thesis, we performed a sequence of steps. The source 

code of the last version of each tool was downloaded. We retrieved the database definition from 

the source code. Also, we grepped the source code for the occurrences of SELECT and FROM 

terms in it, and out of the resulting text, we isolated lines actually encompassing queries. The 

actual queries were automatically isolated via a dedicated java application we constructed for this 

purpose and post-processed in order to be parsable by our tool, Hecataeus that ultimately converts 

the ecosystem to an architecture graph and visualizes it for the user. For more information about 

the data preprocessing, please refer to the Appendix.  



44 

 

Table 1. Datasets Used (R: Relations, V: Views, Q: Queries, E: Edges) 

Dataset Description R V Q E 

Biosql 

A generic relational schema covering 

sequences, features, sequence and 

feature annotation, a reference 

taxonomy, and ontologies 

28 15 79 104 

ZenCart An open source shopping cart software 106 0 149 158 

Drupal 
An open source content management 

platform 
75 0 355 379 

OpenCart An open source shopping cart software 115 0 650 824 

 

4.2 Aesthetic Criteria 

In this subsection, we assess whether our major design choice of using circular layouts as well as 

the detailed technical choices for each of the proposed methods were appropriate according to the 

fundamental principles for visual object representations. In our visualizations we employ several 

of the Gestalt means to provide unity, flow and order.  

 

Good Gestalt – Pragnaz: The individuals tend to simplify the world by removing complexity and 

focusing on simplicity, orderliness and familiarity. Under this context, objects that form a pattern 

that is regular, simple and orderly tend to be perceptually grouped together. In accordance with 

this rule, we place clusters of objects on the periphery of a circle or on concentric circles. Each 

cluster again is displayed in terms of a set of concentric circles, thus producing a simple, familiar 

and repetitive pattern. We avoid unnecessary visual elements as much as the requirements of the 

problem allow us to, in order to retain simplicity and conciseness of the visual representation. 

How we address the aesthetic criteria for each one of the algorithms is explained in Table 2. 

A list of the aesthetic criteria [BRSG07] we use in our visualizations are the following: 

 

 Proximity is a fundamental Gestalt principle which states that objects close to each other 

tend to be perceived as similar. In our implementation, proximity is achieved via 



45 

clustering: we place nodes with similar semantics closely to each other (in our case, nodes 

belonging to the same clusters of relations, views and queries).  

 Connectedness suggests that physically connected elements are usually grouped. In our 

case, this principle is inherently achieved via the choice of graph representation and 

clustering. 

 Similarity and proportion state that objects of the same color shape and size are perceived 

as similar by individuals and they should be placed closely. These criteria are 

encompassed in our methods via several decisions. We use the same shape for nodes of 

same type (relations, queries, views), the same color for nodes that belong in similar 

physical structures (queries that belong to the same files at the source code are colored 

with the same color; relations and views are always gray and dark green, respectively), 

and, we scale the size of each node according to its graph degree, so that larger size 

denotes larger degree of interrelationship.  

 Closure and isolation suggest that the eye tends to create perceptions of closed space, 

even if they do not exist. Closure is best served when the depicted objects tend to create a 

“border” around similar objects along with blobs of whitespace for isolation. In our 

visualizations, closure and isolation are also inherently supported via the idea of circular 

visualization of each cluster: the outermost circles of each cluster provide a visual border 

that separates it from other clusters. We take special care for clusters not to intersect and 

we enhance their surrounding space with intentionally injected whitespace. The same care 

is paid for individual nodes too. 

 Clutter avoidance is one of the fundamental problems our methods try to battle. As the 

main source of visual clutter is the overwhelming presence of edges --especially, when 

they cross-- we take every possible means to minimize the number of pixels-per-edge, 

without taking them out of the diagram, at the same time. To this end, we decrease the 

strength of edge coloring to light grey and highlighting neighbors only when a user 

interactively picks a node to inspect. The idea of clustering nodes and putting similar 

nodes closely tries to minimize the span of edges throughout the entire canvas. Within 

each cluster, we implement an adjustment of the barycenter method to radial layouts to 

minimize edge crossings. In all our methods, we use straight lines for the edges. Edge 



46 

bends make edges more difficult to follow because an edge with a bend is more likely to 

be perceived as two separate objects. When considering the length of edges, edge length 

is minimized through clustering. A second source of clutter is the overlapping of clusters 

or nodes. To avoid such situations, we intentionally tune the methods to avoid such 

phenomena.  

 

Finally, we avoid any other emphasis of individual clusters or nodes and leave this aesthetic tool 

available for arbitrary usages where there will be a need for emphasizing some parts of the graph. 

We do not inject visual hierarchies, contrast, asymmetry or discontinuity to emphasize any part of 

the graph. We also avoid any special purpose focal points to guide the visual flow of the user’s 

optical navigation over the screen. Flow occurs, however, in the concentric methods, as there is a 

flow from smaller towards larger clusters. This makes these methods more suitable for 

arrangements where cluster size is also important for the users’ work. 

Table 2 Aesthetic criteria and how we address them. 

Aesthetic Criteria Circular Layout 
Concentric Circle 

Layout 

Concentric Arc 

Layout 

Proximity Clustering 

Connectedness graph representation and clustering 

Similarity and 

Proportion 

Same shape and color for same type of nodes, size proportionate to 

connections 

Closure and Isolation Circular visualizations, white border between clusters and nodes 

Clutter Avoidance 

In clusters: different 

angle for each cluster 

depending on its size 

(section 3.4.1) 

In clusters: 

concentric circle 

radius optimization 

(section 3.4.2) 

In clusters: different 

angle for each cluster, 

radius optimization 

section 3.4.3) 

In graph: clustering algorithm produces “perfect” clusters – no intra 

cluster edges 

In edges: barycentric method for node placement, light edge coloring 

 



47 

Table 3 How the “Visual Information Seeking Mantra” is applied in our implementation. 

Visual Information 

Seeking Mantra principles 
How we address them 

Overview 

We give an overview of the graph by visualizing only the higher 

level nodes. For an overview of the clusters, we created an 

overview map that represents each cluster as a single node 

Zoom 
We implemented the zooming feature by providing a more 

detailed view of the selected parts of the graph in a different  tab  

Filter 

The fact that we support zooming in user specified areas of 

interest and provide a new tab with only the user selected modules 

in higher detail is a way of filtering information. 

Details-on-Demand 
This principle is also available via the zoom in feature we 

implemented 

 

 

  



48 

4.3  Assessment of Objective Criteria 

Apart from the aesthetic part, we can also assess the behavior of each of the proposed parts of our 

approach with specific objective criteria. First, we will discuss what the outcome is and benefit 

from our clustering and preprocessing steps. Then, we assess the different methods in terms of 

how efficiently they exploit space and we will also present the time needed for our algorithms for 

both clustering and visualization parts. 

All experiments were made on a workstation with cpu Intel core 2 E7200 @2.53 GHz x 2 and 

ram 3.9 GiB. 

 

Table 4 Objective measures for all four data sets 

Data set # clusters # nodes 

Avg 

nodes/ 

cluster 

Avg cluster 

radius 

Avg edge 

crossings/ 

cluster 

Avg edge 

length 

BioSql 22 112 5,55 12.00 3.50 92.11 

ZenCart 41 255 4,8 11.85 0.46 69.21 

Drupal 37 429 11 25.01 15.62 497.71 

OpenCart 59 765 12,9 28.32 84.08 751.32 

 

 

Fig. 27 Objective measures for all datasets. 

 



49 

Clustering Effectiveness: The first important result concerns the effectiveness of the clustering 

of the graph nodes. In all the studied datasets, our clustering produced a clean separation of the 

graph in connected components that are completely disjoint and isolated! In other words, 

clustering produced clusters that have no edges between other clusters (inter-cluster edges). This 

resulted in the elimination of all the visual clutter that these edges would incur. The second piece 

of good news is that the number of clusters ranges within 20 – 60 clusters in all four cases, thus it 

is presentable in a 2D screen canvas (see Table 4 for the exact numbers). We should, however, 

emphasize that due to the specific nature of the data sets (all are CMS’s) the results should by no 

means be generalized to other types of ecosystems. 

 

In Table 4, we give two objective criteria that are typical metrics used in all the related literature, 

specifically number of edge crossings and average edge length, as well as a metric that is specific 

to our method, and concerns the area covered by the clusters, expressed as average cluster radius. 

It is important to note that, in the absence of inter-cluster edges due to our clustering, all these 

objective measures are independent from the visualization method that follows the original 

clustering. To measure the effectiveness of our clustering algorithm, we have measured the time 

our algorithm needs to cluster the data (See Table 7 for results). As expected, the time needed for 

the clustering possess depends on the size of the dataset and varies between 33.7 milliseconds to 

5785.7 milliseconds. 

 

Method Effectiveness: A second important piece of evidence has to do with the effectiveness of 

the employed methods in terms of space utilization. For each method, we measure 

a. the rectangle produced by the farthest pairs of coordinates, 

b. the sum of the areas covered from all the clusters (on the basis of their outermost 

circle), 

c. the resulting percentage of area covered by the visualized clusters. 

Remember that the area covered depends on the particularities of the method; then, our system 

autoscales the result to fit in the screen. Thus, the area of the bounding rectangle is a clear 

indicator independent of the scale factor of the drawing: between two drawings that will 

ultimately have to fit in the same screen, the one with the larger area needed, will require more 

zoom-out but the area it occupies does not depend on the zoom factor. The units we measure the 



50 

graph area are pixels. To explain that, we start by defining the difference between user space and 

device space. In most computer graphics environments, each pixel is numbered. If you draw a 

square at, say (20, 20), then the top left corner of the square will begin at approximately the 

twentieth pixel from the left edge, or axis, of the drawing space and at the twentieth pixel from 

the top axis of the drawing space. Coordinates that are offset from axes are called Cartesian 

coordinates. The location of Java 2D objects is also specified using Cartesian coordinates. The 

beginning of the space occurs in the upper left side of a hypothetical rectangle that increases to 

the right and downward. Java 2D, however, defines coordinates in units (72 units to an inch), and 

rendering occurs in a hypothetical plane called the user space. Note that we use the term units 

and not pixels. The latter term implies that the output device is a computer screen. When an 

object is drawn to the output device, such as a screen or printer, the results may have to be scaled 

to ensure that the object is the same size. After all, a shape that appears as four inches wide on the 

screen should also appear four inches wide when it is printed on a piece of paper. A computer 

monitor typically uses 72 pixels per inch, so each Java 2D unit is conveniently equivalent to a 

pixel.  

 

Table 5 reports on the area needed for the visualization of the graph. The last column named 

Covered area represents the sum of the area each cluster occupies on the graph, thus it is the 

same for every visualization method since the cluster sizes do not depend on the layout. The other 

three columns named after each one of our visualization methods represent the area of the 

rectangle which embeds the clusters, as it is expected this area is dependent on the visualization 

method. Underlined blue shows the winner method that requires the least area and bold red 

highlights the worst performance. We observe that concentric circles always lose and the winner 

methods are divided, with concentric arches winning for the three smaller cases and circular 

layout for the largest one (See Table 5 and Table 6). At the same time, the amount of covered 

area is fixed for all methods (as cluster sizes are fixed before laying them out in the 2D canvas). 

The percentage of covered area, in all layouts is very small; it ranges between 2% and 25% 

present. As we see in Table 6 datasets BioSql and Drupal have better space utilization while 

ZenCart and OpenCart do not take full advantage of the canvas. OpenCart is a large dataset so it 

is expected to need more space for its visualization. On the other hand, Zencart is a small dataset 

and its behavior is due to the fact that our clustering algorithm creates many small clusters 



51 

(unlike in BioSql and Drupal), which results in a bigger rectangle produced by the farthest pairs 

of coordinates and smaller covered area by its clusters (see Fig. 29).  

 

We also measured the time needed to visualize the data sets using our algorithms (see Table 7 for 

average times in five runs). As one would expect the speed of our algorithms depends on the size 

of the graph we want to visualize. Specifically the fastest visualization is for the BioSql dataset 

and it takes 6 milliseconds, while the slowest is for the OpenCart dataset and it takes 41 

milliseconds. The clustering time depends also on the size of the graph and it varies between 31 

for BioSql dataset and 5929 milliseconds for OpenCart. Expectedly, the average clustering times 

are similar for all of our three algorithms since the clustering procedure is the same (Fig. 30). 

Table 5 Area occupied by graph (pixels
2
) 

Data set Circular layout 
Concentric 

circles 

Concentric 

arcs 
Covered area 

BioSql 196243.49 275943.12  193640.75 44549.6 

ZenCart 2007635.67  2162419.52 1238295.66 50739.45 

Drupal 2329122.25  3232092.83  1612675.06 253172.6 

OpenCart  5775976.36 18392055.26 9711796.44 461424.53 

 

Table 6 Percentage of occupied area by graph (pixels
2
) 

Data set Circular layout 
Concentric 

circles 

Concentric 

arcs 
Covered area 

BioSql 22% 16% 23% 44549.6 

ZenCart 2% 2% 4% 50739.45 

Drupal 10% 7% 15% 253172.6 

OpenCart 7% 2% 4% 461424.53 

 



52 

 

 

Fig. 28 The area used by the graph for every layout. 



53 

 

 

Fig. 29 The connection between number of the clusters and their size with the area they cover. 

 

Table 7 Average time needed for clustering and visualization in milliseconds 

Data set Circular Layout Concentric Circles Concentric Arcs 

 Clustering Visualization Clustering Visualization Clustering Visualization 

BioSql 36 6 31 6 34 6 

ZenCart 118 6 116 12 123 7 

Drupal 882 14 758 6 784 5 

OpenCart 5.801 41 5.929 13 5.627 8 



54 

 

 

Fig. 30 Time needed for clustering. 

 

Fig. 31 Average time needed for visualization. 



55 

 

 

Fig. 32 Visualization time per method and dataset 

  



56 

4.4 Comparison to Alternative Methods 

 

In this section we will discuss alternative visualization methods and we compare them to our 

approach. Our visualizations were implemented with Jung, a software library that provides a 

common and extendible language for the modeling, analysis, and visualization of data that can be 

represented as a graph or network. Jung is written in Java, which allows Jung-based applications 

to make use of the extensive built-in capabilities of the Java API, as well as those of other 

existing third-party Java libraries. Jung supports several layouts, out of which we discern the 

following prominent ones: 

 A simple, random Circle Layout (Fig. 33)  that places vertices randomly on a circle 

 The Fruchterman-Reingold algorithm [FrRe91], denoted as FRLayout (Fig. 34) 

 Meyer's "Self-Organizing Map" layout [Meye98] denoted as ISOMLayout (Fig. 35)  

 The Kamada-Kawai algorithm [KaKa89], denoted as KKLayout in Jung (Fig. 36), 

 The SpringLayout (Fig. 37), which is a simple force-directed spring-embedder[dETT99] 

 

We applied all these layouts on our datasets to compare them with our layouts. The result is 

shown in the figures bellow. In Jung’s circular layout all nodes are randomly placed on a 

periphery of a circle with radius R = total number of nodes / 2π. With this radius there should be 

no overlaps, however as we see in Fig. 33 nodes do overlap where in some parts of the 

circumference of the circle there are empty (white) spaces. In the remaining Jung layouts, the 

nodes of the graph appear to be randomly placed on the canvas. 



57 

 

Fig. 33 BioSql visualized via a circular algorithm by Jung. 

 

Fig. 34 BioSql visualized with FR algorithm by Jung. 



58 

 

Fig. 35 BioSql visualized with ISOM algorithm by Jung. 

 

Fig. 36 BioSql visualized with KK algorithm by Jung. 



59 

 

Fig. 37 BioSql visualized with a spring layout algorithm by Jung. 

  



60 

  



61 

 

CHAPTER 5. Conclusions and Future Work 

 

 

5.1 Conclusions 

5.2 Future Work 

 

 

 Conclusions 5.1

In this Thesis, we have presented methods for the visualization of data-intensive software 

ecosystems. We have modeled each such system as a graph. The nodes of the graph represent 

both database constructs (relations and views) and application-level constructs (queries 

embedded in the code of the applications) in a uniform manner. Edges denote data provision. To 

battle visual clutter, we cluster the nodes of the graph in groups; each cluster represents a subset 

of the entire ecosystem that is related on the grounds of data provision. Given these clusters, we 

draw a map of the ecosystem in three possible ways, all as variants of circular layouts (to better 

utilize space) and on the grounds of several aesthetic criteria; at the same time, each cluster is 

internally visualized as a set of concentric circles, too. Our experimental evidence in all the open-

source CMS systems that we have examined, demonstrates that (a) the clusters have produced 

clean separations of the ecosystem in graph connected components, and, (b) for all the methods, 

the number of clusters is such that it allows their placement in the screen in a usable way. 

Concerning space utilization, concentric arches win for small graphs and the circular layout wins 

for larger graphs. 

 



62 

To the best of our knowledge, this is the first principled step ever in the literature of visualizing 

data-intensive systems. As such a vast area of research issues remains to be explored, including 

alternative visualization methods, improved space utilization, and the relationship of graph 

metrics to source code properties. 

 Future Work 5.2

Except from the three visualization methods we discussed in previous sections, we have also 

implemented three other layouts, two concentric and a spiral. We decided however not to present 

them in the main part of our work because the two concentric were variations of the concentric 

method we presented in section 3.4.2 and the spiral layout creates visual flow something that 

contradicts the aesthetic criteria we respect.  

 

The first variation of the concentric circles method is depicted in Fig. 38. In this layout we 

reverse the order we place the clusters. Instead of starting with the smallest clusters and placing 

them in the innermost concentric circle, in this case we start with the biggest clusters. This 

method creates a focal point in the center of the concentric circles, thus making the smaller 

cluster look like outliers. 

 

In the second variation of the concentric circles method we reversed the order we split the circles 

in 2
k
 segments. We start with the outermost circle and we divide it in 2 segments and place 2 

clusters on the periphery of this circle then we move to the next circle and we divide it to 2
2
 and 

as the algorithm continues, in the end we place the innermost circle the reaming clusters (Fig. 

39). 

 

The last layout we implemented is a spiral layout depicted in (Fig. 40). In this method we sort the 

clusters in ascending order and then we place them on a spiral. To create this spiral, we use a 

circular layout with the difference that every time we place a cluster we increase the radius so the 

next one will be placed further form the center of the circle. This method was abandoned because 

it generates a visual flow (i.e. makes the viewer follow the spiral). 



63 

 

 

 

Fig. 38 First variation of concentric circles method for Drupal data set. 



64 

 

Fig. 39 Second variation of concentric circles method for Drupal dataset 

 



65 

 

Fig. 40 Spiral layout for Drupal data set. 

 

Naming a few of the things that could get implemented in the near future based on the work we 

have done are: 

 Separate the Hecataeus environment from the Jung visualization part  

 Implement other non-circular visualization layouts 

 Use another visualization tool besides Jung like D3 or processing 

 Find a way to order clusters 

 When selecting a file from the color index, highlight the nodes that belong to this file 

 

  



66 

  



67 

 

 

References 

 

 

[BeBD09] Fabian Beck, Michael Burch, Stephan Diehl. “Towards an Aesthetic Dimensions 

Framework for Dynamic Graph Visualisations”,  In 13th International Conference 

on Information Visualisation (IV 2009), pp 592-597, 2009 

[BRSG07] Chris Bennett, Jody Ryall, Leo Spalteholz, Amy Gooch. “The Aesthetics of Graph 

Visualization”, In Eurographics Workshop on Computational Aesthetics in 

Graphics, Visualization and Imaging (Computational Aesthetics 2007), pp 57-64, 

2007 

[BZRK10] Andrew Bragdon, Robert C. Zeleznik, Steven P. Reiss, Suman Karumuri, William 

Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra,Joseph J. LaViola 

Jr. “Code bubbles: a working set-based interface for code understanding and 

maintenance”, Proceedings of the 28th International Conference on Human Factors 

in Computing Systems (CHI 2010), pp 2503-2512, 2010 

[CrCa05] Brock Craft, Paul A. Cairns. “Beyond Guidelines: What Can We Learn from the 

Visual Information Seeking Mantra?”, 9th International Conference on Information 

Visualisation, (IV 2005),  pp 110-118, 2005 

[DeRo10] Robert DeLine, Kael Rowan. “Code canvas: zooming towards better development 

environments”,  Proceedings of the 32nd ACM/IEEE International Conference on 

Software Engineering (ICSE 2010), pp 207-210, 2010 

[dETT99] G. di Battista, P. Eades, R. Tamasia, I. G. Tollis “Graph Drawing: Algorithms for 

the visualization of graphs”, Prentice-Hall, 1999. 

[Dunh02] Margaret H. Dunham “Data Mining: Introductory and Advanced Topics”, Prentice-

Hall, 2002. 

[FrRe91] T. Fruchterman and E. Reingold. “Graph drawing by force-directed placement“, 

Software - Practice and Experience (SPE), 21(11),  pp 1129–1164, 1991 

[HaSk12] Immanuel Halupczok, Andre Schulz “Pinning balloons with perfect angles and 

optimal area”,  Journal of Graph Algorithms and Applications, 16(4), pp 847-870, 

2012 

[HeMM00] Ivan Herman, Guy Melançon, and M. Scott Marshall. “Graph Visualization and 

Navigation in Information Visualization: A Survey”, IEEE Transactions on 

Visualization and Computer Graphics 6, pp 124-43. 2000 

[ItKM10] Takao Ito, Kazuo Misue, Jiro Tanaka. “Drawing Clustered Bipartite Graphs in 

Multi-circular Style”,  14th International Conference on Information Visualisation 

(IV 2010),  pp 23-28, 2010 

[KaKa89] T. Kamada and S. Kawai. “An algorithm for drawing general undirected graphs”, 

http://www.informatik.uni-trier.de/~ley/pers/hd/b/Burch:Michael.html
http://www.informatik.uni-trier.de/~ley/pers/hd/d/Diehl:Stephan.html
http://www.informatik.uni-trier.de/~ley/db/conf/iv/iv2009.html#BeckBD09
http://www.informatik.uni-trier.de/~ley/db/conf/iv/iv2009.html#BeckBD09
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Ryall:Jody.html
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Spalteholz:Leo.html
http://www.informatik.uni-trier.de/~ley/pers/hd/g/Gooch:Amy_Ashurst.html
http://www.informatik.uni-trier.de/~ley/db/conf/cae/cae2007.html#BennettRSG07
http://www.informatik.uni-trier.de/~ley/db/conf/cae/cae2007.html#BennettRSG07
http://www.informatik.uni-trier.de/~ley/pers/hd/b/Bragdon:Andrew.html
http://www.informatik.uni-trier.de/~ley/pers/hd/z/Zeleznik:Robert_C=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Reiss:Steven_P=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/k/Karumuri:Suman.html
http://www.informatik.uni-trier.de/~ley/pers/hd/c/Cheung:William.html
http://www.informatik.uni-trier.de/~ley/pers/hd/c/Cheung:William.html
http://www.informatik.uni-trier.de/~ley/pers/hd/k/Kaplan:Joshua.html
http://www.informatik.uni-trier.de/~ley/pers/hd/c/Coleman:Christopher.html
http://www.informatik.uni-trier.de/~ley/pers/hd/l/LaViola_Jr=:Joseph_J=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/l/LaViola_Jr=:Joseph_J=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/c/Cairns:Paul_A=.html
http://www.informatik.uni-trier.de/~ley/db/conf/iv/iv2005.html#CraftC05
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Rowan:Kael.html
http://www.informatik.uni-trier.de/~ley/db/conf/icse/icse2010-2.html#DeLineR10
http://www.informatik.uni-trier.de/~ley/db/conf/icse/icse2010-2.html#DeLineR10
http://www.informatik.uni-trier.de/~ley/pers/hd/i/Ito:Takao.html
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Tanaka:Jiro.html
http://www.informatik.uni-trier.de/~ley/db/conf/iv/iv2010.html#ItoMT10
http://www.informatik.uni-trier.de/~ley/db/conf/iv/iv2010.html#ItoMT10


68 

Information Process. Letters, 31(1), pp. 7–15, 1989 

[MaVP13] Petros Manousis, Panos Vassiliadis, George Papastefanatos. “Automating the 

Adaptation of Evolving Data-Intensive Ecosystems”, 32th International Conference 

on Conceptual Modeling  (ER 2013), pp. 182-196, 2013. 

[MELS95] Kazuo Misue, Peter Eades, Wei Lai, Kozo Sugiyama. “Layout Adjustment and the 

Mental Map”,  Journal of Visual Languages and Computing, 6(2) pp 183-210, 1995 

[Meye98] Bernd Meyer. “Self-Organizing Graphs A Neural Network Perspective of Graph 

Layout’’, Lecture Notes in Computer Science Volume 1547, pp 246-262, 1998 

[Misu06] Kazuo Misue. “Drawing bipartite graphs as anchored maps”, Asia-Pacific 

Symposium on Information Visualisation  (APVIS) pp 169-177, 2006 

[RoLN07] R. Rosenholtz, Y. Li, L.Nakano. “Measuring visual clutter”, Journal of Vision, 7(2) 

pp 1-22, 2007 

[Shne96] Ben Shneiderman. “The Eyes Have It: A Task by Data Type Taxonomy for 

Information Visualizations”,  Proceedings of the 1996 IEEE Symposium on Visual 

Languages, pp 336-343, 1996 

[SixT06] Janet M. Six, Ioannis G. Tollis. “A framework and algorithms for circular drawings 

of graphs”, J. Discrete Algorithms, 4(1), pp 25-50, 2006 

[Tidw06] Jenifer Tidwell. “Designing interfaces - patterns for effective interaction design”, 

O'Reilly, 2006 

[Vass11] Panos Vassiliadis. “RADAR: Radial applications' depiction around relations for 

data-centric ecosystems”, ICDE Workshops 2011, pp 62-67, 2011 

[Ware04] C. Ware. “Information Visualization: perception for design”, Morgan Kaufmann, 

2
nd

 edn., 2004 

 

  

http://www.informatik.uni-trier.de/~ley/pers/hd/e/Eades:Peter.html
http://www.informatik.uni-trier.de/~ley/pers/hd/l/Lai:Wei.html
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Sugiyama:Kozo.html
http://www.informatik.uni-trier.de/~ley/db/journals/vlc/vlc6.html#MisueELS95
http://link.springer.com/search?facet-author=%22Bernd+Meyer%22
http://link.springer.com/bookseries/558
http://www.informatik.uni-trier.de/~ley/db/conf/vl/vl1996.html#Shneiderman96
http://www.informatik.uni-trier.de/~ley/db/conf/vl/vl1996.html#Shneiderman96
http://www.informatik.uni-trier.de/~ley/db/conf/icde/icdew2011.html#Vassiliadis11


69 

Appendix 

 

Data preprocessing 

In this section we will explain how we got out data (the figures bellow refer to Drupal data set). 

At first we had to obtain the schema of the database, which looked like this: (Fig. 41)  

 

- MySQL dump 10.13  Distrib 5.5.31, for debian-linux-gnu (i686) 

-- 

-- Host: localhost    Database: testdrupal 

-- ------------------------------------------------------ 

-- Server version 5.5.31-0+wheezy1-log 

-- 

-- Table structure for table `actions` 

-- 

 

DROP TABLE IF EXISTS `actions`; 

/*!40101 SET @saved_cs_client     = @@character_set_client */; 

/*!40101 SET character_set_client = utf8 */; 

CREATE TABLE `actions` ( 

  `aid` varchar(255) NOT NULL DEFAULT '0' COMMENT 'Primary Key: Unique actions ID.', 

  `type` varchar(32) NOT NULL DEFAULT '' COMMENT 'The object that that action acts on 

(node, user, comment, system or custom types.)', 

  `callback` varchar(255) NOT NULL DEFAULT '' COMMENT 'The callback function that 

executes when the action runs.', 

  `parameters` longblob NOT NULL COMMENT 'Parameters to be passed to the callback 

function.', 

  `label` varchar(255) NOT NULL DEFAULT '0' COMMENT 'Label of the action.', 

  PRIMARY KEY (`aid`) 

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='Stores action information.'; 

/*!40101 SET character_set_client = @saved_cs_client */; 

 



70 

-- 

-- Table structure for table `authmap` 

-- 

 

DROP TABLE IF EXISTS `authmap`; 

/*!40101 SET @saved_cs_client     = @@character_set_client */; 

/*!40101 SET character_set_client = utf8 */; 

CREATE TABLE `authmap` ( 

  `aid` int(10) unsigned NOT NULL AUTO_INCREMENT COMMENT 'Primary Key: Unique authmap 

ID.', 

  `uid` int(11) NOT NULL DEFAULT '0' COMMENT 'User’s users.uid.', 

  `authname` varchar(128) NOT NULL DEFAULT '' COMMENT 'Unique authentication name.', 

  `module` varchar(128) NOT NULL DEFAULT '' COMMENT 'Module which is controlling the 

authentication.', 

  PRIMARY KEY (`aid`), 

  UNIQUE KEY `authname` (`authname`) 

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='Stores distributed authentication 

mapping.'; 

/*!40101 SET character_set_client = @saved_cs_client */; 

 

Fig. 41 Part of Drupal create table statements. 

In order to make this parsable for the parser of Hecataeus to read we had to make some changes. 

The final form looks like this (Fig. 42): 

 

CREATE TABLE  actions  ( 

   aid  varchar(255) NOT NULL, 

   type  varchar(32) NOT NULL, 

   callback  varchar(255) NOT NULL, 

   parameters   varchar(255) NOT NULL, 

   label  varchar(255) NOT NULL, 

  PRIMARY KEY ( aid ) 

); 

 

CREATE TABLE  authmap  ( 



71 

   aid  int(10) NOT NULL, 

   uid  int(11) NOT NULL, 

   authname  varchar(128) NOT NULL, 

   module  varchar(128) NOT NULL, 

  PRIMARY KEY ( aid ) 

); 

 

Fig. 42 Modified create table statements from Drupal data set to become parsable. 

 

Basically we removed the comments, the DEFAULT property, the longblob data type, the engine 

and the unique keys, since our parser understands only primary keys. The next step was to get the 

queries that use those tables. To do that we grepped the Drupal system using the keyword 

“select” and this is what we got (Fig. 43): 

 

./modules/taxonomy/taxonomy.module:    $result = db_query('SELECT t.tid FROM 

{taxonomy_term_data} t INNER JOIN {taxonomy_term_hierarchy} th ON th.tid = t.tid 

WHERE t.vid = :vid AND th.parent = 0', array(':vid' => $vid))->fetchCol(); 

./modules/taxonomy/taxonomy.module:    $names = db_query('SELECT name, machine_name, 

vid FROM {taxonomy_vocabulary}')->fetchAllAssoc('machine_name'); 

./modules/taxonomy/taxonomy.install:  $vocabularies = db_query("SELECT machine_name 

FROM {taxonomy_vocabulary}")->fetchCol(); 

./modules/taxonomy/taxonomy.install:  return db_query('SELECT v.* FROM 

{taxonomy_vocabulary} v ORDER BY v.weight, v.name')->fetchAllAssoc('vid', 

PDO::FETCH_OBJ); 

./modules/taxonomy/taxonomy.install:  $vids = db_query('SELECT vid FROM 

{taxonomy_vocabulary}')->fetchCol();                  

./modules/taxonomy/taxonomy.install:  $result = db_query('SELECT v.*, n.type FROM 

{taxonomy_vocabulary} v LEFT JOIN {taxonomy_vocabulary_node_type} n ON v.vid = n.vid 

ORDER BY v.weight, v.name');                                                        

./modules/taxonomy/taxonomy.install:    $sandbox['total'] = db_query('SELECT COUNT(*) 

FROM {taxonomy_term_data} td INNER JOIN {taxonomy_term_node} tn ON td.tid = tn.tid 

INNER JOIN {node} n ON tn.nid = n.nid LEFT JOIN {node} n2 ON tn.vid = n2.vid')-

>fetchField();                                                                                                                  



72 

./modules/taxonomy/taxonomy.install:    $result = db_query('SELECT v.vid, 

v.machine_name, n.type FROM {taxonomy_vocabulary} v INNER JOIN 

{taxonomy_vocabulary_node_type} n ON v.vid = n.vid');                                                             

./modules/taxonomy/taxonomy.install:    $result = db_query_range('SELECT vocab_id, 

tid, nid, vid, type, created, sticky, is_current FROM {taxonomy_update_7005} ORDER BY 

n', $sandbox['last'], $batch);                                                    

./modules/taxonomy/taxonomy.install:      $bundles = db_query('SELECT bundle FROM 

{field_conFig._instance} WHERE field_name = :field_name', array(':field_name' => 

'taxonomyextra'))->fetchCol();                                                           

./modules/forum/forum.module:        $used = db_query_range('SELECT 1 FROM 

{taxonomy_term_data} WHERE tid = :tid AND vid = :vid',0 , 1, array(                                                                                                             

 

Fig. 43 Sample queries from Drupal data set. 

 

Again we needed to make these parsable by Hecateus parser and the result looks like this (Fig. 

44): 

 

 

SELECT format FROM  filter_format ; 

SELECT COUNT(*) FROM  taxonomy_term_data ; 

SELECT COUNT(*) FROM  taxonomy_term_data ; 

SELECT COUNT(*) FROM  taxonomy_term_data ; 

SELECT COUNT(*) FROM  taxonomy_index  WHERE nid = 0 AND tid = 0 ; 

SELECT COUNT(*) FROM  taxonomy_index  WHERE nid = 0 AND tid = 0 ; 

SELECT COUNT(*) FROM  taxonomy_index  WHERE nid = 0 AND tid = 0 ; 

SELECT COUNT(*) FROM  taxonomy_index  WHERE nid = 0 AND tid = 0 ; 

SELECT COUNT(*) FROM  taxonomy_index  WHERE nid = 0 AND tid = 0 ; 

SELECT COUNT(*) FROM  taxonomy_index  WHERE nid = 0 AND tid = 0 ; 

SELECT COUNT(*) FROM  taxonomy_index  WHERE nid = 0 AND tid = 0 ; 

SELECT COUNT(*) FROM  taxonomy_index  WHERE nid = 0 AND tid = 0 ; 

SELECT COUNT(*) FROM  taxonomy_index  WHERE nid = 0 AND tid = 0 ; 

SELECT COUNT(*) FROM  taxonomy_index  WHERE nid = 0 AND tid = 0 ; 

SELECT COUNT(*) FROM  taxonomy_index  WHERE nid = 0 AND tid = 0 ; 

SELECT t.tid FROM  taxonomy_term_data  t ,  taxonomy_term_hierarchy  th WHERE th.tid 



73 

= t.tid AND t.vid = 0 AND th.parent = 0; 

SELECT name, machine_name, vid FROM  taxonomy_vocabulary ; 

SELECT machine_name FROM  taxonomy_vocabulary ; 

SELECT v.* FROM  taxonomy_vocabulary  v ORDER BY v.weight, v.name; 

SELECT vid FROM  taxonomy_vocabulary ; 

SELECT bundle FROM  field_conFig._instance  WHERE field_name = 0; 

Fig. 44 A sample of modified queries to be parsable from taxonomy folder. 

What we did was to remove the php variables, assign 0 as a value when needed and replaced 

queries that used joins with the same queries without joins. 

 

  



74 

Screenshots of all the datasets that we have used 

 

Fig. 45 BioSql data set visualized with the circular method. 



75 

 

Fig. 46 BioSql data set visualized with the concentric circle method. 



76 

 

Fig. 47 BioSql data set visualized with the concentric arcs method 



77 

 

Fig. 48 Biggest cluster of BioSql data set. 



78 

 

Fig. 49 Drupal data set visualized with the circular method. 



79 

 

Fig. 50 Drupal data set visualized with the concentriccircles method. 



80 

 

Fig. 51 Drupal data set visualized with the concentric arcs method. 



81 

 

Fig. 52 Biggest cluster form Drupal data set. 



82 

 

Fig. 53 ZenCart data set visualized with the circular method. 



83 

 

Fig. 54 ZenCart data set visualized with the concentric circles method. 



84 

 

Fig. 55 ZenCart data set visualized with the concentric arcs method. 



85 

 

Fig. 56 OpenCart data set visualized with the circular method. 



86 

 

Fig. 57 OpenCart data set visualized with the concentric circles method. 



87 

 

Fig. 58 OpenCart data set visualized with the concentric arcs method. 

  



88 

SHORT CV 

 

 

Efthimia Kontogiannopoulou was born in Athens in 1989. She was admitted at Computer Science 

Department of the University of Ioannina in 2007, and she received her BSc degree in computer 

science in 2011. Later she attended the postgraduate program in University of Ioannina, 

Computer Science & Engineering Department. Her academic interests lie in the area of software 

engineering and data visualization. 

   



89 

 


