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Abstract

In this paper, we introduce the notion of generalized interval order
(GIO) which extends the notion of interval order in non-transitive binary
relations. This allow us to extend the classical representation theorem
of Fishburn in [5]. We also provide sufficient conditions which ensure
the existence of the Generalized Optimal Choice Set (GOCS) of GIOs.
Finally, we characterize the existence of the GOCS of GIOs.
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1 Introduction

A partially ordered set (X,�) is called an interval order if there is a function
I assigning to each element x ∈ X a closed interval I(x) = [mx, Mx] of the
real line R so that for all x, y ∈ X, y � x if and only if my > Mx in R. The
concept of an interval order was introduced by Peter C. Fishburn in [5] to build
models of preferences whose associated indifferences may fail to be transitive.
Comparing intervals is a frequently encountered problem in preference mod-
elling, decision aid and experimental psychology. This is due to the fact that
the comparison judgments in experimental psychology (perception, evaluation
of objects, persons) as well as the comparison of alternatives in economic the-
ory (outcomes, objects, candidates, etc) generally are realized through their
evaluations on numerical scales, while such evaluations often are imprecise or
uncertain. Thus, taking an example from economic theory, an interval order is
obtained when one considers that an alternative is preferred to another iff its
interval is “completely to the right”of the other, while any two alternatives,
the interval of which have a non-empty intersection are considered indifferent.
A classical result in interval orders is that of Fishburn in [5]; which examines
the issue of representing an interval order � by means of two functions u and
v (x � y if and only if u(x) > v(y)). Numerical representations are used in
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order to look for maximal elements of binary relations in the set of alterna-
tives. Mathematical optimization tools are applied more easily with numerical
representations of binary relations. Existence of maximal elements of binary
relations has interested economists for long. This kind of relations appear
e.g. in preference theory, in equilibrium theory and in the analysis of dynamic
systems. In all of these choice problems, the interpretation of existence of
maximal elements means that there exists a choice for which there exist no
strictly better choices. In the case of considering the set of alternatives as a
topological space, conditions for the existence of maximal elements are given
by using topological conditions on the alternative’s set as well as continuity
assumptions on the relation. One of the more general continuity assumption
on finding the maximal choice set of an acyclic binary relation R, is that of up-
per tc-semicontinuity defined by Alcantud and Rodŕiguez-Palmero in [1]. This
definition uses the transitive closure of the relation R. As the set of maximal
choices (maximal choice set) is empty and, hence, does not help much when R
contains a top cycle2, we turns to the concept of Generalized Optimal Choice
Set (GOCS), which is a generalization of the maximal choice set. The origin
of GOCS can be found in Schwartz [7]. Schwartz proved that the GOCS is the
maximal choice set of the asymmetric part of the transitive closure of R (cf.
[14, Corollary 6.2.2]). Van Deemen in [9] proves that if the set of alternatives is
finite, then the GOCS is never empty. The existence of maximal elements for
interval orders have been mainly investigated by Campbell and Walker in [4]
and Alcantud in [2]. More precisely, Campbell and Walker provide sufficient
conditions to ensure the existence of maximal elements for interval orders and
Alcantud characterize the existence of maximal elements of interval orders.

In this paper, we extend the notion of interval order in non-transitive binary
relations. This new notion which is called generalized interval order it allows
us to examine the representation of binary relations by means of two functions,
in a general framework, where the axioms of transitivity and irreflexivity do
not hold. Here, we provide a generalization of the classical result of Fishburn
in [5]. Finally, we use the notion of GOCS set (which generalize the notion
of “maximal choice set”), as it is defined by Schwartz in [7] and we extend
the results of Campbell and Walker in [4] and Alcantud in [2]. All of the
results known in the literature about representations of binary relations and
the existence of their maximal elements, make use of conditions (e.g. continuity
conditions) based either on the binary relation itself or on its transitive closure.
After the above mentioned result of Schwartz, a natural generalization of the

2Consider a commodity space X and a binary relation R defined on X. A path from
x to y is a finite sequence of distinct points x1, x2, ..., xn such that xRx1, x1Rx2, ..., xnRy.
A path from x to y becomes a cycle when the pair yRx is added. The finite sequence
(x1, x2, ..., xn) is a top cycle in X iff (i) (x1, x2, ..., xn) is a cycle in X and (ii) there is no
x ∈ X \ {x1, x2, ..., xn} and there is no y ∈ {x1, x2, ..., xn} such that xRy.
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well known notions (e.g. weakly upper semicontinuity), which will ensure
the compatibility of the extended results with the classical ones, is to replace
the transitive closure of a binary relation with the asymmetric part of the
transitive closure of this relation. This generalization transform the problem
of the existence of GOCS into the problem of the existence of maxima of a
real-valued function.

2 Notations and Definitions

We recall some definitions from [1], [5], [8].
Let X be a non-empty universal set of alternatives, and let R ⊆ X ×X be

a binary relation on X. The asymmetric part P (R) of R is denoted by P (R) =
{(x, y) ∈ X × X : (x, y) ∈ R and (y, x) /∈ R}. We sometimes abbreviate
(x, y) ∈ R as xRy. The binary relation R is a strict partial order if it is
irreflexive (we never have (x, x) ∈ R) and transitive (for all x, y, z ∈ X,xRzRy
implies xRy). We often use � to denote a strict partial order.

The transitive closure of a relation R is denoted by R, that is for all x, y ∈
X, (x, y) ∈ R if there exists k ∈ N and x0, ..., xK ∈ X such that x = x0

(xk−1, xk) ∈ R for all k ∈ {1, ..., K} and xK = y. Clearly, R is transitive and,
because the case K = 1 is included, it follows that R ⊆ R. Acyclicity says
that there do not exist K and x0, x1, ..., xK such that x = x0, (xk−1, xk) ∈ R
for all k ∈ {1, ..., K} and xK = x. An element x∗ ∈ X is said to be a
maximal element of the binary relation R on X, if (y, x∗) ∈ P (R) does not
hold for all y ∈ X. According to Schwartz, the Generalized Optimal Choice
Set (GOCS) of a binary relation R is defined to be the maximal choice set
of the asymmetric part of the transitive closure of R (P (R) in symbols). It
is clear that for each R ⊆ X × X, P (R) defines a strict partial order on
X. An irreflexive binary relation R is an interval order if it satisfies the
following interval order condition: (x, x�) ∈ R, (y�, y) ∈ R and (y�, x�) /∈ R
imply (x, y) ∈ R. Irreflexivity and the interval order condition imply that R
is transitive.

An asymmetric binary relation R (P (R) = R) is weakly upper semicontin-
uous if whenever xRy there is a neighborhood U of y such that zRx is false
for each z ∈ U . Associated with R we consider the binary relation ∼ defined
as x ∼ y if neither xRy nor yRx. The relation ∼ is said to be the indifference
associated to R. The strong indifference relation ≈ for R is defined by x ≈ y
if for all z ∈ X, x ∼ z ⇔ y ∼ z.

Definition 1 A binary relation R on X satisfies the transitive (tc)-interval
order condition if and only if: for each x, y, x�, y� ∈ X if (x, x�) ∈ R and
(y�, y) ∈ R then (x, y) ∈ R or (y�, x�) ∈ R. In this case, R is called generalized
interval order.
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An equivalent expression for the tc-interval order condition is the following:

(x, x�) ∈ R, (y�, y) ∈ R and (y�, x�) /∈ R ⇒ (x, y) ∈ R

Examples 1 (i) A non-irreflexive or non-transitive binary relation satisfing
the interval order condition is a generalized interval order which is not an
interval order (cf. Proposition 6 below). (ii) Let X = {1, 2, 3, 4} and R =
{(1, 1), (1, 2), (2, 3), (3, 4)}. Then R is a non-irreflexive, non-transitive gener-
alized interval order which does not satisfies the interval order condition.

Definition 2 Let R be a binary relation on X. Then the relation ∼R of R-
indifference and the relation ≈R of strong R-indifference are defined as follows:

x ∼R y if neither xP (R)y nor yP (R)x

and
x ≈R y if for all z ∈ X, x ∼R z ⇔ y ∼R z.

If R is a strict partial order then the notions R-indifference and strong
R-indifference coincide, respectively, with the classical notions of indifference
and strong indifference.

If ≈ is an equivalence relation on a topological space (X, τ ), then the quo-
tient set by this equivalence relation ≈ will be denoted by X

≈ , and its elements
(equivalence classes) by [x]≈. Let the projection map π : X −→ X

≈ which
carries each point of X to the element of X

≈ that contains it. In the quotient
topology induced by π, a subset U of X

≈ is open in X
≈ if and only if π−1(U)

is open in X. Thus, the typical open set in X
≈ is a collection of equivalence

classes whose union is an open set in X. The quotient topology associated
with a topological space (X, τ ) and an equivalence relation ≈ will be denoted
by τquot(≈). The equivalent relation ≈ on X saturates an A ∈ τ if x ∈ A and
y ≈ x implies y ∈ A. In this case we say that A is a ≈-saturated set. If π is
the projection map associated with the equivalence relation ≈ on X, then the
condition A = π−1(π(A)) for A ∈ τ is equivalent to ≈ saturates A.

Definition 3 A binary relation R is ≈-saturated weakly upper semicontinuous
(SWUS), if whenever xP (R)y there is a ≈-saturated open neighborhood U of
y such that zRx is false for each z ∈ U .

Finally, we define a binary relation R̂ on X
≈R

by :

[x]≈
R
R̂[y]≈

R
if there are x� ∈ [x]≈

R
, y� ∈ [y]≈

R
such that (x�, y�) ∈ P (R)

We call R̂, the ≈R-quotient relation of R.
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3 Results

As we mention in the introduction, we are interested to extend the classical
result of Fishburn in [5] to the class of generalized interval orders. First, we
give three auxiliary propositions.

Proposition 2 Let R be a binary relation on X. Then x P (R) z and z ≈R y
imply x P (R) y and x ≈R z and z P (R) y imply x P (R)y.

Proof. We prove that x P (R) z and z ≈R y imply x P (R) y. The rest is
proved similarly. Suppose that x P (R) z and z ≈R y. Then (y, x) /∈ P (R).
Suppose that (x, y) /∈ P (R). Then x ∼R y. Hence, from z ≈R y we conclude
that x ∼R z which contradicts x P (R) z. Thus, x P (R) y.

Proposition 3 Let R be a binary relation defined on a nonempty set X. If
R satisfies the interval order condition, then R is a generalized interval order.

Proof. Let R be a binary relation and let x, x�, y, y� ∈ X such that (x, x�) ∈ R,
(y�, y) ∈ R and (y�, x�) /∈ R. Then, there exist K ∈ N and x0, ..., xK ∈ X such
that x = x0, (xk−1, xk) ∈ R for all k ∈ {1, ..., K} and x

K
= x�. There also

exist M ∈ N and y0, ..., yM ∈ X such that y� = y0, (ym−1, ym) ∈ R for all
m ∈ {1, ..., M} and y

M
= y. Then, from (x

K−1
, x�) ∈ R, (y�, y1) ∈ R and

(y�, x�) /∈ R we conclude that (x
K−1

, y1) ∈ R. Hence, (x, y) ∈ R.
If R is a partial order, then the notions of generalized interval order and

interval order coincide.

Proposition 4 If R is a generalized interval order defined on a nonempty set
X, then P (R) is an interval order on X.

Proof. It is clear that P (R) is irreflexive. Let now x, x�, y, y� ∈ X such
that (x, x�) ∈ P (R), (y�, y) ∈ P (R) and (y�, x�) /∈ P (R). We must prove that
(x, y) ∈ P (R). We have two cases:
Case 1. (y�, x�) /∈ R. Then, by (x, x�) ∈ R and (y�, y) ∈ R we conclude that
(x, y) ∈ R. Suppose that (y, x) ∈ R. Then (y�, x�) ∈ R which is impossible.
Hence (x, y) ∈ P (R).
Case 2. (x�, y�) ∈ R and (y�, x�) ∈ R. Then (x, y) ∈ R. If (y, x) ∈ R, then
(y, y�) ∈ R which is impossible. Hence (x, y) ∈ P (R).

The proof of the following theorem which generalize the main result of
Fishburn in [5], is inspired by the result of Bridges in [3] for interval orders.

Theorem 5 Let R be a binary relation on a set X such that X
≈R

is countable.
Then the following conditions are equivalent:

(i) R is a generalized interval order.
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(ii) There exist mappings u, v: X → R, with v ≥ u, such that, for all
x, y ∈ X

xP (R)y if and only if u(x) > v(y).

iii) There exist mappings u, ρ: X → �, with ρ > 0, such that, for all
x, y ∈ X

xP (R)y if and only if u(x) > u(y) + ρ(y).

Proof. (iii) ⇒ (ii) ⇒ (i) is evident. We prove that (i) ⇒ (iii). Let R be a

generalized interval order on X, and let X
≈R

= {[x0]≈
R
, [x1]≈

R
, ...}. Let also R̂

be the ≈R-quotient relation of R. Then, by Proposition 5, it is easy to verify
that

xP (R)y if and only if [x]≈R
R̂ [y]≈R

.

Hence, R̂ is a strict partial order in X
≈R

. By Proposition 7, R̂ also satis-

fies the interval order condition in X
≈R

. For each [x]≈
R

in X
≈R

, we define

S([x]≈
R
) = {n ∈ N : ([x]≈

R
, [xn]≈

R
) ∈ R̂ } and T ([x]≈

R
) = {n ∈ N : ∃m ∈

N, ([xm]≈
R
, [x]≈

R
) /∈ R̂ and ([xm]≈

R
, [xn]≈

R
) ∈ R̂ }. Define also, u([x]≈

R
) =∑

n∈S([x]≈
R

)

2−n if S([x]≈R
) = ∅ and u([x]≈R

) = 0 if S([x]≈R
) = ∅ as well as

v([x]≈R
) =

∑
n∈T ([x]≈R

)

2−n if T ([x]≈R
) = ∅ and v([x]≈R

) = 0 if T ([x]≈R
) = ∅.

For [x]≈
R

= [xj]≈
R

we put ρ([x]≈
R
) = 2−j−1 + v([x]≈

R
) − u([x]≈

R
). Clearly,

S([x]≈R
) ⊆ T ([x]≈R

); so that v([x]≈R
) ≥ u([x]≈R

), and therefore ρ([x]≈R
) > 0.

Let x, y ∈ X such that xP (R)y and let [y]≈
R

= [xj]≈
R

for some j ∈ N.

Then, [x]≈
R
R̂[xj]≈

R
, and therefore T ([y]≈

R
) ⊆ S([x]≈

R
).

From j ∈ S([x]≈
R
)\T ([y]≈

R
) we conclude that

u([x]≈R
) ≥ (v[y]≈R

) + 2−j > u([y]≈R
) + ρ([x]≈R

.

Let π : X −→ X
≈R

be the projection map. We put u = u ◦ π, v = v ◦ π and
ρ = ρ ◦ π. Then,

u(x) = u ◦ π(x) = u([x]≈R
) > u([y]≈R

) + ρ([y]≈R
) = u(y) + ρ(y)

On the other hand, if (x, y) /∈ P (R), then S([x]≈R
) ⊆ T ([y]≈R

), and so

u(y) + ρ(y) = u([y]≈
R
) + ρ([y]≈

R
) ≥ u([x]≈

R
) = u(x).

Hence, u(x) ≯ u(y) + ρ(y) which implies that

xP (R)y ⇔ u(x) > u(y) + ρ(y).

As a corollary of the above Theorem, we have the main theorems of Fish-
burn in [5] and Bridges in [3].
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4 Characterization of the existence of Gener-

alized Optimal Choice Set of GIOs

We extend the notion of R-maximal element defined by Suzumura in [8], as
follows:

Definition 4 An element x∗ ∈ X is said to be an optimal element of the
binary relation R on X, if (y, x∗) ∈ P (R) does not hold for all y ∈ X.

The set of optimal elements in X constitutes its GOCS. In transitive binary
relations the notion of optimal element coincides with the notion of R-maximal
element. In order to characterize the existence of optimal elements in GIOs
we need the following theorem of Campbell and Walker in [4].

Theorem 6 Let (X, τ ) be a compact topological space. Then, every weakly
upper semicontinuous interval order on X has a maximal element.

Lemma 7 Let R be a binary relation defined on a set X and let R̂ be the
≈R-quotient relation of R on X

≈R
. A [z]≈R

in X
≈R

is a maximal element on X
≈R

if and only if each t ∈ [z]≈
R

is an optimal element on X.

Proof. Let [x∗]≈
R

be a maximal element on X
≈R

. If we suppose that a

t ∈ [x∗]≈R
is not an optimal element on X, then there is some y ∈ X such that

yP (R)t. Hence [y]≈R
R̂[x∗]≈R

, a contradiction. Hence, t is an optimal element
of X.

Theorem 8 Let (X, τ ) be a compact topological space, and let R be a ≈R-
saturated weakly upper semicontinuous GIO. Then, the Generalized Optimal
Choice Set of R is non-empty.

Proof. Firstly, we shall show that R̂ in ( X
≈R

, τquot(≈R)) satisfies the sup-

positions of Theorem 11. Indeed, R̂ is a partial order and by definition of
τquot(≈R)), the space ( X

≈R
, τquot(≈R)) is compact. By Proposition 7, we also

conclude that R̂ satisfies the interval order condition. Finally, R̂ is weakly up-
per semicontinuous. To check it, let [x]≈

R
R̂[y]≈

R
for some [x]≈

R
, [y]≈

R
∈ X

≈R
.

Then xP (R)y. Hence, there is a ≈R-saturated open neighborhood U of y such
that zRx is false for each z ∈ U . Hence, π−1(π(U)) = U which implies that
π(U) is τquot(≈R))-open neighborhood of [y]≈

R
. Thus, ≈R satisfies the weakly

upper semicontinuity condition ([z]≈
R
R̂[x]≈

R
is false for each [z]≈

R
∈ π(U)).

Hence, by Theorem 10, we conclude that R̂ has a maximal element [x∗]≈
R

on
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( X
≈R

, τquot(≈R)). Then, Lemma 11 implies that the set of optimal elements is
non-empty.

We now use Theorem 12 in order to prove the following characterization
of the existence of optimal elements in the class of GIOs, which extends the
Theorem 7 of Alcantud in [2].

Theorem 9 Let R be a GIO defined on X. The following conditions are
equivalent:

(a) The Generalized Optimal Choice Set of R is non-empty,
(b) there exists a compact topology on X such that R is ≈R-saturated

weakly upper semicontinuous.

Proof. (b) implies (a) by Theorem 12. We now prove that (a) implies (b).
Let M be the set of optimal elements (GOCS) in X. Let τ be the excluded

set topology generated by M [6, p.48] (this has as open sets all those subsets
of X which are disjoint from M, together with X itself). Then X is compact
under τ since every open cover of X includes X itself. Hence, {X} is always
a finite subcover. It remains to prove that R is ≈R-saturated weakly upper
semicontinuous. Indeed, let x, y ∈ X such that xP (R)y. Then, for each
z ∈ M, the set K = {t ∈ X : xP (R)t} does not contain z. Hence, M∩K = ∅.
Thus, K is an open neighborhood of y. It is clear that for each t ∈ K, (t, x) /∈
R. Indeed, if (t, x) ∈ R for some t ∈ K, then tP (R)xP (R)t or (x, t) ∈ I(R)
which implies that (x, t) /∈ P (R), an absurdity. Finally, Proposition 5 implies
that K is ≈R-saturated.
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