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*-half completeness in quasi-uniform spaces

ATHANASIOS ANDRIKOPOULOS

ABSTRACT.  Romaguera and Sdnchez-Granero (2003) have intro-
duced the notion of T3 *-half completion and used it to see when a
quasi-uniform space has a *-compactification. In this paper, for any
quasi-uniform space, we construct a *-half completion, called stan-
dard *-half completion. The constructed *-half completion coincides
with the usual uniform completion in the uniform spaces and is the
unique (up to quasi-isomorphism) 77 *-half completion of a symmetriz-
able quasi-uniform space. Moreover, it constitutes a *-compactification
for *-Cauchy bounded quasi-uniform spaces. Finally, we give an exam-
ple which shows that the standard *-half completion differs from the
bicompletion construction.

2000 AMS Classification: 54F15, 54D35.

Keywords: quasi-uniform, *-half completion, *-compactification.

1. INTRODUCTION AND PRELIMINARIES

The problem of constructing compactifications of quasi-uniform spaces has
been investigated by several authors ([4, 3.47], [5], [7]). This notion of quasi-
uniform compactification is by definition Hausdorff. Moreover, a point sym-
metric totally bounded T; quasi-uniform space may have many totally bounded
compactifications (see [5, page 34]) . Contrary to this notion, Romaguera and
Sanchez-Granero have introduced the notion of *-compactification of a T quasi-
uniform space (see [8], [10] and [11]) and prove that: (a) Each T} quasi-uniform
space having a T} *-compactification has an (up to quasi-isomorphism) unique
T *-compactification ([11, Corollary of Theorem 1]); and (b) All the Wallman-
type compactifications of a 77 topological space can be characterized in terms
of the *-compactification of its point symmetric totally transitive compatible
quasi-uniformities ([9, Theorem 1]). The proof of (a) is achieved with the help
of the notion of T7 *-half completion of a quasi-uniform space, which is intro-
duced in [11]. Following ([11, Theorem 1]), if a quasi-uniform space (X,U) is T}
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*-half completable (it has a T} *-half completion), then any T; *-half comple-
tion of (X, ) is unique up to a quasi-isomorphism. In this paper, we prove that
every quasi-uniform space has a *-half completion, called standard *-half com-
pletion, which in the case of a uniform space coincides with the usual one. We
also give an example which shows that the standard *-half completion and the
bicompletion are in general different. While a quasi-uniform space may have
many *-half completions, here we prove that a symmetrizable quasi-uniform
space has an (up to a quasi-isomorphism) unique *-half completion. We also
prove that the standard *-half completion constitutes a *-compactification for
*-Cauchy bounded quasi-uniform spaces.

Let us recall that a quasi-uniformity on a (nonempty) set X is a filter & on
X x X such that for each U € U, (i) A(X) = {(z,z)|]z € X} C U, and (ii)
VoV CU for some V €U, where VoV = {(z,y) € X x X| there is z € X
such that (z,z) € V and (z,y) € V}. The pair (X,U) is called a quasi-uniform
space. If U is a quasi-uniformity on a set X, then =1 = {U~ YU € U}
is also a quasi-uniformity on X called the conjugate of U. Given a quasi-
uniformity & on X, U* = U\/U~! will denote the coarsest uniformity on
X which is finer than U. If U € U, the entourage U N U~! of U* will be
denoted by U*. The topology 7(/) induced by the quasi-uniformity & on X
is {G C X]| for each x € G there is U € U such that U(z) C G } where
U(z) ={y € X|(z,y) € U}. If (X,7) is a topological space and U is a quasi-
uniformity on X such that 7 = 7(U) we say that U is compatible with 7. Let
(X,U) and (Y, V) be two quasi-uniform spaces. A mapping [ : (X,U) — (Y, V)
is said to be quasi-uniformly continuous if for each V'€ V there is U € U such
that (f(x), f(y)) € V whenever (z,y) € U. A bijection f : (X,U) — (Y,V)
is called a quasi-isomorphism if f and f~! are quasi-uniformly continuous. In
this case we say that (X,U) and (Y, V) are quasi-isomorphic. A filter B is called
U*-Cauchy if and only if for each U € U there exists B € B such that BxB C U
(see [4, page 48]). A net (z4)aca is called U*-Cauchy net if for each U € U
there exists an a, € A such that (zq,z,) € U whenever a > a,,d’ > a,.
We call a,, extreme index of (x4)aea for U and , extreme point of (x4)aca
for U. A quasi-uniform space (X,U) is half complete if every U*-Cauchy filter
is 7(U)-convergent [2]. Following to [11, Theorem 1], a *-half completion of a
Ty quasi-uniform space (X,U) is a half complete T} quasi-uniform space (Y, V)
that has a 7(V*)-dense subspace quasi-isomorphic to (X,). In [11, Definition
3] also the authors introduce and study the notion of a *-compactification a T;
quasi-uniform space. A *-compactification of a T1 quasi-uniform space (X,U)
is a compact T quasi-uniform space (Y,)) that has a 7(V*)-dense subspace
quasi-isomorphic to (X,U).

2. THE *-HALF-COMPLETION

According to Doitchinov [3, Definition 1], a net (y,),. is called a conet of

the net (z4)qea, if for any U € U there are a,, € A and §, € B such that
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(ys,zq) € U whenever a > a,, and 3 > (3. In this case, we write (yﬁ,xa) — 0.

We denote (x) the constant net (z,)

wcas for which z, = z for each a € A.

Definition 2.1 (see [1, Definitions 1.1(3)]). Let (X,U) be a quasi-uniform space.

(1) For every U*-Cauchy net (x,)

wea We consider ald*-Cauchy net (y,) 5c 5
which is a conet of (x,),.., different than (x,),.,. In the following,
we consider all the nets A = {(z3,),.,, 10 € I} that have (y,),., as
their conet including (y,) . itself. In the next, we pick up all the nets
B = {(y;)ﬁij |7 € J} which are conets of all the elements of A. The
ordered couple (A, B) have the following properties:

(a) for every U € U and every (zh)aca, € A, (y;) € B there

are indices al, 8, such that (y;,:nfl) € U whenever a > a and
B> B

We call al (resp. B.) extreme index of (x)aca, (resp. (y;)

BEB;

) .Besj)
forU and :Efin (resp. y]%) extreme point of (xt)aca, (Tesp. (y, )ﬁij)
for U.

(b) B contains all the conets of all the elements of A and conversely
A contains all the nets whose conets are all the elements of B.
We call the ordered pair (A, B) h*-cut, the nets (24)aca and (Y;) e
generator and co-generator of (A, B) respectively. We also say that
the pair (Y;)sep» (Ta)aca) generates the h*-cut (A, B). It is clear
that different pairs of U*-Cauchy nets can generate the same h*-
cut.
The families A and B are called classes (first and second respec-
tively) of the h*-cut (A, B). In the following, X denotes the set of
all h*-cuts in X.

If the above U*-Cauchy net (z,),., has not as conet a U*-Cauchy net

different from itself, then we relate to it the h*-cut which generated by

the pair ((ma)aGA; (ma)aGA)-

To every x € X we assign an h*-cut, denoted ¢(x) = (A, B,.,)

which is generated by the pair ((z),(x)). Clearly, x belongs to both

of A,., and B, . Thus the class A, contains all the nets which

converge to x in T, and B, contains nets which converge to x in

T .

qutplpose that K = {(z,),cal(,),c. s a non 7(U)-convergent U* - Cauchy
net}. Let xX° = {¢€ € )~(| the generator of & belongs to K}. Then we
put X = p(X)UX".

We often say for a U*-Cauchy net (za)aca with a conet (y,)sep and
U eclU that:

“finally ((y,)5,(%a)a) € U”or in symbols “1.((y,)s,(%a)a) €U 7,

if there are a, € A and 3, € B such that (y,,r.) € U whenever
aza,, B2p0,.
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Definition 2.2. Let (X,U) be a quasi-uniform space, £ € X and W eU.
(1) We say that a net (t'y)'y_el“ is W-close to &, if for each net (2},)aca, € A,
there holds T.((t.),, (x})a) € W.
(2) For each U € U denote by U the collection of all pairs (&',£") for which
a co-generator of & is U-close to .

The proof of the following result is straightforward, so it is omitted.

Proposition 2.3. Let (X,U) be a quasi-uniform space and let (y,) be a

J— BeEB
co-generator of an h*-cut £ in X. Then (y,) belongs to both of the classes

Ag¢ and Be.

As an immediate consequence of Definition 2.2 and Proposition 2.3 we obtain
the following proposition.

BeB

Proposition 2.4. Let (X,U) be a quasi-uniform space, £, &" € X and U € U.
If (Ys)pens (Y,),er are co-generators of §' and & respectively, then

(€',€") € U if and only if 7.((y,),, (y,),) € U

Corollary 2.5. Let (X,U) be a quasi-uniform space and let & ¢" € X. If
(Ys)penr (U,),er are co-generators of &' and " respectively, then

& =¢&" if and only if (y,,y,) — 0 in 7(U*).
The following lemma is obvious.
Lemma 2.6. Let U,V € U. Then U CV if and only if V C U.
Theorem 2.7. The family U={U|U €U} is a base for a quasi-uniformity U
on X.
Proof. By definitions 2.2 and Proposition 2.3, it follows that the pair (£,¢)
belongs to every element of ¢/ and by the previous Lemma U is a filter.

Let nﬂvQW € U be such that VKOWOW cU arﬁf,y c X Wiih
(Z,7) € WoW. Then there exists a Z in X such that (Z,z) € W and (z,7) € W.
If (27),cas (27),cr and (yY),., are co-generators of 7, 7 and ¥ respectively,
then Definition 2.2 and Proposition 2.3 imply that 7.((27)a, (27),) € W and
T.((zf)y,(yg)ﬁ) € W. We note that, for each (¢,);., € A, it holds that
7.(yY, té)_—> 0. Hence, 7.((z7)a, (t;);) € W oW o W C U which implies that
(z,9) eU. O
Proposition 2.8. If ¢ € X and (14)aca is a U*-Cauchy net which belong to
A, then ¢(xa) — &. Dually, if (y,),ep is a U*-Cauchy net which belong to
B,, then lién((b(yﬁ),f) =0.

Proof. Let V, U € U such that VoV C U. If (z,), .. is a co-generator of
¢, then (2 ,z,) — 0. Thus there are a, and v, such that (z ,z,) € V for
727 and a > a,. Fix an a > a, and pick a net (z;);., of A, . Then,
x, — x4 and so (z4,x,) € V, whenever § > 4, for some 6, € A. Hence,
(2,,75) €U for v > v, and 6 > §,,. Hence (§, p(x,)) € U, whenever a > a,,.
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The proof of the dual is similar. O
Theorem 2.9. The quasi-uniform space (X,U) is a *-half completion of (X,U).

Proof. We firstly prove that (X,{) is half-complete, and secondly that the
space (X,U) has a T(U*)—dense subspace quasi-isomorphic to (X,U). Indeed,
let (£a)aca be a U -Cauchy net of X. In the following, for each a € A, (Y3 sepa
denotes a co-generator of £,. Suppose that W € U. Then, there exists a_. € A
such that (&,&,) € W whenever v,a > a. Fix an a > a_. and suppose that
B(a, W) is the extreme index of (y) for W.

We consider the set

A ={(a,W)la e A, W €U}

ordered by (a/,W') < (o, W")if a’ < a” and W" C W'.

We put y(a, W) and we prove that the net

{y(a, W)l|(a, W) € A*}

BEBq

— a
= Ystaw)

is a U*-Cauchy net.
Indeed, let U € U. Pick V € U such that VoV oV C U. Suppose
that (a', W’), (a",W") > (a, V). Then, (y(a’,W’),yg/’) € (W)* C V* and

(y(a”, W”),yg:) € (W")* C V* whenever 3 > §'(a/, W) and 5" > " (a”,W").
Since (£4)aca IS a U -Cauchy net of X, Proposition 2.4 implies that
T.((yg,)ﬁ,, (yg,,)ﬁ,,) € V* whenever a’,a” > a_. Hence, (y(a’, W’'),y(a",W")) €
V*oV*oV* CU*.

We now prove that (£4)aca is 7(U)-convergent. We have two cases.
Case 1. (y(a,W)) , wyear T(U)-converges to a point x € X.

In this case, we have that (¢(y(a, W))) , ) ca. T(U)-converges to ¢(x). Since
(yg)ﬁeBa belongs to Bsa’ Proposition 2.8 implies that (¢(y(a, W)),€,) — 0.

Hence, from (¢(z), ¢(y(a, W))) — 0 we conclude that (£,)aeca 7(U)-converges
to ¢(z).

Case 2. (y(a, W), wycar 18 a non 7(U)-convergent net.
Let ¢ be the h*-cut in X which is generated by (y(a, W) (wwyeas - 1t follows,
by Proposition 2.8, that (£, ¢(y(a, W))) — 0. Since (yg)ﬁeBa belongs to Bﬁa’
Proposition 2.8 implies that (¢(y(a, W)), &, ) — 0. The rest is obvious.
It remains to prove that (¢(X),U/d(X) x ¢(X)) is a 7(U")-dense subspace
of (X,U). Indeed, let £ € X and let (Ys) e be a co-generator of it. Then,
since the co-generator belongs to both of classes of £, Proposition 2.8 implies

that ¢(y,) T(U")-converges to €. O

In the sequel the *-half completion (X,f) constructed above will be called
standard *-half completion of the space (X,U).

The following example shows that the standard *-half completion and the
bicompletion of a quasi-uniform space are in general different.
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Example 2.10. Let X be the set consisting of all nonzero real numbers and
let d be the quasi-metric on X given by:

Jy—x ifr<y
d(z,y) = { 0 otherwise

Suppose that U is the quasi-uniformity generated by d. Let F be the i/*-Cauchy
filter generated by {(0,a)|a > 0} and G be the U*-Cauchy filter generated by
{(b,0)[b < 0}. Then a new point is defined by the h*-cut £ = (A,, B,), where
A, ={G,F} and B, = {F}. Hence, X = ¢(X) U {¢}. Clearly, ¢ defines the
point 0 in (X,U). On the other hand, there is exactly one minimal &*-Cauchy
filter coarser than F and G respectively. More precisely, if F, and G, are any

0

bases for F and G respectively, then {U(F,) |F, € F, and U is a symmetric

o]

member of U*} and {U(G,) |G, € G, and U is a symmetric member of U*}
are equivalent bases for the minimal //*-Cauchy filter H coarser than F and G
respectively. Hence, we have X = i(X) U {H}. The filter H defines the point
0 in (X,U) as well. We conclude the following:

(i) The bicompletion of (X,U) differs from the standard *-half completion.
Indeed, by the definition of £ and from the Propositions 2.3 and 2.8,

we conclude that ¢(G) and ¢(F) converge to 0 with respect to 7(U)

and 7(U ) respectively. On the other hand, (G) and i(F) converge to
0 with respect to 7(U’).

(ii) The standard *-half completion is not quasi-uniformly isomorphic to its
bicompletion. This is true by (i) and the fact that the bicompletion of
(X,U) coincides up to a quasi-isomorphism with the bicompletion of

(X, U).

Theorem 2.11. Let (X,U) be a uniform space. Then, the standard *-half
completion (X,U) coincides with the usual uniform completion.

Proof. Let (X,U) be a uniform space and let £ be an h*-cut in X. Suppose
that (za)aca € A, and (y,),. € B,. Then (y,,2,) — 0 and (24,y,) — 0.
Hence the nets and the conets of & coincide. Thus, the class of equivalent
Cauchy nets, of the uniform case, is identified with an h*-cut and vice versa.
Hence the “ground set” of the two completions is the X. The rest is obvious. [

Next, we give an equivalent definition for nets for the Definition 5 in [11].

Definition 2.12. Let (X,U) be a quasi-uniform space. A U*-Cauchy net
(%,),ca on X is said to be symmetrizable if whenever (y,) is a U*-Cauchy
net on X such that (y,,z,) — 0, then (z,,y,) — 0.

BeB

Definition 2.13. A quasi-uniform space (X,U) is called symmetrizable if each
U*-Cauchy net on X, including for each x € X the constant net (x), is sym-
metrizable.

It easy to check that a quasi-uniform space is symmetrizable if and only if the
bicompletion is 7). In this case, the space has only one T, *-half completion,
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the bicompletion. From Theorem 2.9 and [11, Theorem 1] we immediate deduce
the following result.

Corollary 2.14. If a T1 quasi-uniform space is symmetrizable, then it has a
Ty *-half completion which is unique up to a quasi-isomorphism.

3. STANDARD *-HALF COMPLETION AND *-COMPACTIFICATION

We recall some well known notions from [6].

A net (z,),., is said to be frequently in S, for some subset S of X, if and
only if for all a € A there is some a’ > a such that x , € 5. A net is said to
be eventually in S if and only if there is an a, in A such that for all « > a,
x, isin S. A point z in X is a cluster point of the net (z,),., if and only if
the net is frequently in all neighborhoods of z. The net (z,),., converges to
x if and only if (z,),., is eventually in all neighborhoods of z. The tail sets
of (x,),., are the sets T, (a in A) where T, = {x_,|a’ > a}. Note that the T,
have the finite intersection property, by the directedness of the index set A, so
they generate a filter, the filter of tails of (x,),., or the filter associated with
the net (z,),.,. Then a point z is a cluster point of (x,),., if and only if z is
in cl(T,) for all a (if and only if it is a cluster point of the filter of tails). And
x, — x if and only if the filter of tails converges to x. This already shows that
there is a close relationship between convergence of filters and convergence of
nets.

Definition 3.1 (see [6, page 81]). A universal net in X is one such that for
each S C X, either the net is eventually in S, or it is eventually in X \ S.

From the classical theory we have the following statements.

(a) A net is a universal net if and only if its associated filter is an ultrafilter.
(b) Let F be the filter associated with the net (z,),., and G be a filter
with 7 C G. Then (z,),., has a subnet whose associated filter is G.

a) and (b) implies that:
(a) P
(c¢) Every net has a universal subnet.

(d) A universal net converges to each of its cluster points.
(e) A space is compact if and only if every universal net is convergent.

Definition 3.2 (see [11, Definition 6]). A quasi-uniform space (X,U) is called
*-Cauchy bounded if for each ultrafilter F on X there is a U*-Cauchy filter G
on X such that (G,F) — 0.

Definition 3.2 admits an equivalent definition for nets.

Definition 3.3. A quasi-uniform space (X,U) is called *-Cauchy bounded if
for each universal net (x,) on X there is a U*-Cauchy net (y,) on X

a€EA BEB
such that (y,,z,) — 0.

Theorem 3.4. Let (X,U) be a_*-_Cauchy bounded quasi-uniform space. Then
the standard *-half completion (X,U) is a *-compactification of the space (X,U).
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Proof. Let (£,),., be a universal net in (X,U). Suppose that for any a €
A g = (A B ). Let (y3),cp, and {y(a,W)|(a,W) € A*} be as in the
proof of Theorem 2.9. Then, {y(a, W)|(a, W) € A*} is a net in X. By the
above statement (c), we have that (y(a,W)), ... has a universal subnet,
let {y(a,, W, )|(a,,W,) € A*, k € K}. Since (X,U) is *-Cauchy bounded,
there is a U*-Cauchy net (x_) _. of X such that (z_,y(a,,W,)) — 0. Hence
(¢(z,), d(y(a,, W,))) — 0 in (X,U) (1). On the other hand, since the space
(X,U) is half-complete, there exists £ € X such that (¢(z)), .. 7(U)-converges
to € (2). Hence by (1) and (2) we conclude that {¢(y(a,,W,))|(a,,W,) €
A*, k € K} 7(U)-converges to &. Since {¢(y(a,, W, ))|(a,,W,) € A*, k€ K}is
a subnet of ¢(y(a, W)),, e We conclude that ¢ is a cluster point of the latter.
Since (y5) 4, belongs to B, , Proposition 8 implies that (¢(y(a, W)),€,) —
0. Hence, ¢ is a cluster point of (§,),.,. There also holds that (¢,),., is a
universal net, thus the above statement (d) implies that it 7(U)-converges to
¢. Finally, by the above statement (e) we conclude that the space (X,U) is
compact. By Theorem 9, the space (X,U) has a T(ﬁ*)—dense subspace quasi-
isomorphic to (X,U). Hence (X,U) is a *-compactification of (X,U). O
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