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Abstract

Athanasiadis, Theodoros.
PhD, Department of Computer Science and Engineering, October 2013
Mesh parameterization for feature-based mesh editing applications
Supervisor: Ioannis Fudos
Mesh morphing is a technique for computing a smooth transition between two (or more)
objects. Animation using deforming objects is frequently used in computer graphics for
entertainment. Furthermore, smooth animation of nonrigid objects (e.g. articulated
objects) can be accomplished by mesh morphing on a set of object snapshots.

In recent years, mesh morphing along with cut-and-paste techniques have started to
�nd their way in the product design and optimization process. Nevertheless, new problems
arise from the use of these techniques on these new �elds. Unlike computer graphics were
the primary objective is only the rendering of the results, these new applications require
the intermediate results of the deformed models to be robust and respect form-features.
Therefore, in this thesis we devise robust and fast techniques for the deformation of meshes
which are based on mesh parameterization and respect form features. In a nutshell,
we treat the problems of feature-based morphing, mesh segmentation and cut-and-paste
design. Our �nal goal is to incorporate these techniques in real-time applications, therefore
great emphasis is given on exploiting the power of modern graphic processing units and
massively parallel systems.
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èåüäùñïò ÁèáíáóéÜäçò ôïõ Óùôçñßïõ êáé ôçò ÖùôåéíÞò.
Phd, ÔìÞìá ÐëçñïöïñéêÞò, ÐáíåðéóôÞìéï Éùáííßíùí, Ïêôþâñéïò 2013.
3Ä Ìåôáó÷çìáôéóìïß Ìïñöþí ÂáóéóìÝíïé óå ×áñáêôçñéóôéêÜ ìå ÅöáñìïãÝò óôç Ó÷åäßáóç
ìå ÕðïëïãéóôÞ êáé óôç Ìç÷áíïëoãßá
ÅðéâëÝðïíôáò: ÉùÜííçò Öïýíôïò.

Ï 3Ä ìåôáó÷çìáôéóìüò ìïñöþí (Morphing) åßíáé ìßá ôå÷íéêÞ äçìéïõñãßáò ìéáò ïìáëÞò
ìåôÜâáóçò ìåôáîý äýï Þ ðåñéóóïôÝñùí áíôéêåéìÝíùí. Ôï animation ìå ìåôáó÷çìáôéæüìåíá
áíôéêåßìåíá ÷ñçóéìïðïéåßôáé óõ÷íÜ óôá ãñáöéêÜ. ÅðéðëÝïí, ï 3Ä ìåôáó÷çìáôéóìüò ìïñöþí
ìðïñåß íá ÷ñçóéìïðïéçèåß êáé ãéá ôçí ðáñáãùãÞ animation ìåôáó÷çìáôßæïíôáò äéÜöïñá
óôéãìéüôõðá ôïõ ßäéïõ áíôéêåéìÝíïõ. Ôá ôåëåõôáßá ÷ñüíéá ï ìåôáó÷çìáôéóìüò ìïñöþí ìáæß
ìå ôå÷íéêÝò áðïêïðÞò êáé åðéêüëëçóçò ÷áñáêôçñéóôéêþí Ý÷ïõí áñ÷ßóåé íá åöáñìüæïíôáé
ìå åðéôõ÷ßá óôçí ó÷åäßáóç ìå ÷áñáêôçñéóôéêÜ êáé ãåíéêüôåñá óôéò öÜóåéò ó÷åäßáóçò êáé
âåëôéóôïðïßçóçò ðñïúüíôùí. Ùóôüóï óôá íÝá ðåäßá åöáñìïãþí áõôÝò ïé ìåèïäïëïãßåò
Ýñ÷ïíôáé áíôéìÝôùðåò ìå ìéá óåéñÜ áðü íÝá ðñïâëÞìáôá. Óå áíôßèåóç ìå ôéò åöáñìïãÝò óôá
ãñáöéêÜ, ï óôü÷ïò ðëÝïí äåí åßíáé ìüíï ôï êáëü ïðôéêü áðïôÝëåóìá, áëëÜ ç áêñßâåéá, ç
åõñùóôßá êáé ôï êáôÜ ðüóï åßíáé áîéïðïéÞóéìá ôá åíäéÜìåóá óôÜäéá.

Ìå óôü÷ï ôçí åöáñìïãÞ ôïõ ìåôáó÷çìáôéóìïý ìïñöþí óå åöáñìïãÝò ìç÷áíïëïãßáò
êáé ó÷åäßáóçò ìå ÷áñáêôçñéóôéêÜ óôá ðëáßóéá ôçò åñãáóßáò áõôÞò áíáðôýóïõìå ãñÞãïñåò
êáé áðïäïôéêÝò ìåèïäïëïãßåò ãéá ìåôáöïñÜ ðáñáìïñöþóåùí, áíáãíþñéóç ÷áñáêôçñéóôéêþí
êáé 3Ä ìåôáó÷çìáôéóìü ìïñöþí âáóéóìÝíï óå ÷áñáêôçñéóôéêÜ. ÌåãÜëç Ýìöáóç äßíåôáé
óôçí áîéïðïßçóç ôùí äõíáôïôÞôùí ôùí óýã÷ñïíùí êáñôþí ãñáöéêþí êáé ôùí ðáñÜëëçëùí
óõóôçìÜôùí ãéá ôçí áðïäïôéêÞ õëïðïßçóç ôùí ìåèïäïëïãéþí êáèþò ôåëéêüò óôü÷ïò åßíáé ïé
ìåèïäïëïãßåò áõôÝò íá ÷ñçóéìïðïéçèïýí óå äéáäñáóôéêÝò åöáñìïãÝò ðñáãìáôéêïý ÷ñüíïõ.
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Chapter 1

Introduction

1.1 Product design challenges

1.2 Preliminaries and related work

1.3 Thesis motivation and overview

1.4 Thesis contributions and highlights

1.5 Structure of this thesis

1.1 Product design challenges

In product design, 3D models are often created in the early stage of product develop-
ment, because such models are very e�ective for preliminary design evaluation by the
development team. The evaluation of design concepts in the early stage helps products
meet requirements for manufacturing, cost, safety, quality, maintenance, and so on. These
geometric models are used as an intermediate object shared between the di�erent groups
involved in the design process. It is therefore crucial to use for the design, tools that
enable fast and intuitive de�nitions and modi�cations of the product geometry.

To this end in recent years, feature-based editing approaches have become popular
for the design of products in CAD systems. In Feature-based design the designer does
not manipulate directly the surface but the features themselves. Form features with
geometric meaning, such as holes, ribs, and slots can be manipulated and parameterized
by numerical parameters. Thus, the product de�nition can rapidly change according to
the modi�cations performed. In addition, form features from existing models can be used
to assemble new engineering parts. However, form features do not support all the needs
in terms of shape de�nition during the design process since analytic surfaces are unable
to represent free form shapes that are widely used in engineering designs.
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Another major challenge in product design is the optimization of design variables in
order to meet speci�c requirements. The optimization is usually performed by specialized
optimization software that usually takes as an input a Finite Element Method (FEM)
mesh model derived from the original CAD design [122]. Nevertheless, every required
mesh modi�cation even the slightest one produces a cycle in the design process since it
requires a return to the CAD system. This procedure is not only tedious, but sometimes
not even possible since the various stages of the design process may be handled by di�erent
groups or even by di�erent companies. Therefore, automated shape variation procedures
are important to avoid cycles in the product design. One way to achieve slight mesh
modi�cations is through morphing techniques. Consequently, morphing as a tool for
small modi�cations in the optimization process has started to �nd its way in in commercial
software [23].

It is therefore essential to devise new powerful methodologies for the design of models
beyond traditional CAD editing of mechanical parts that will provide robust and e�cient
3D mesh deformation and feature pasting that respects design constraints. To this end,
our goal is to devise techniques with applications on feature-based morphing and cut-and-
paste design that can be used to deform certain parts of a free-form model with respect
to design constraints imposed by the product speci�cations.

Mesh morphing and cut-and-paste operations can enable the creation of di�erent vari-
ants of mechanical components or assemblies and the ability to rapidly obtain an improved
mesh without returning to the CAD system for slight changes. Common operations that
need to be supported include local modi�cations on mesh parts, moving features along
the contour of a surface, and snapping features to new target geometry. The optimiza-
tion task can then be performed based on design variables, while following certain design
constraints to achieve the �nal design objective. This way the model can be invoked in
an optimization cycle where a multitude of valid models can be created for optimization.
The optimization algorithm calculates new values for the design variables and the process
is repeated until the optimal solution is found. The constraints to be satis�ed may be
surfaces that are required to precisely preserve their type and general shape or design
parameters such as relative distances between surface areas. To this end two powerful
techniques are necessary: mesh morphing and cut-and-paste editing.

Unfortunately, existing methods for morphing and cut-and-paste on free-form surfaces
lack the ability to preserve features and constraints, which are required in engineering
applications and are more oriented towards visual pleasing results. These techniques will
be reviewed in detail in the following sections.
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1.2 Preliminaries and related work

1.2.1 Features in product design

Features in a product model encapsulate the engineering meaning or signi�cance of the
geometry of portions of the product. By features we mean the generic shapes of a product
which engineers can associate certain attributes and knowledge useful for reasoning about
that product. These high-level modeling entities can be used to link the design rationale
with the model. They can also be used to associate geometric and other constraints
with the model in terms of high-level characteristics of the part modeled, and to organize
constraint propagation after a design change. Hence features can be thought of as building
blocks for the product de�nition and make the design process more e�cient. It is therefore
essential for engineering applications to preserve these features after every operation or
deformation performed on the product model during the design process. There are various
types of features that are used in product design, some examples are the following:

• Form features. They describe portions of a part's nominal geometry.

• Tolerance features. They describe geometry variation from the nominal form.

• Assembly features. They describe relationships between parts in a mechanical as-
sembly.

• Functional features. Non geometric parameters related to function, performance
etc.

• Material features. Material composition, treatment, condition etc.

In general, the design features can be classi�ed according to the application in which
they are used. Form features, tolerance features, and assembly features are closely related
to the geometry parts and are called geometric features. Current features-based CAD
systems mainly address geometric features, in particular form features and some kinds of
assembly features and hence our work is mainly focused on form features.

A form feature is de�ned as a partial shape that has an engineering meaning, such as
a round hole. A form feature contains both shape and parametric information. Shape
information that describes the general form of the feature can be a set of curves and
parametric surfaces. These curves and surfaces are often required to keep their original
types, such as circles and cylinders for manufacturing and assembly reasons. Therefore,
it is essential to maintain the curvature and the general shape of the form feature by
de�ning a set of appropriate constraints to be satis�ed during any deformation. Since in
a mesh model a form feature consists of a subset of vertices of the original model, these
constraints refer to constraints over the vertices during a deformation. In general, these
constraints can be categorized into two groups: soft constraints that are approximately
satis�ed in the least squares sense and hard constraints that are precisely satis�ed.

Some possible constraints can be:
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• positional constraints, where vertices must be �xed at a certain constant position.

• curvature constraints, where the curvature normal is constrained.

• rigidity constraints, where the relative positions of pairs of vertices is constrained.

One important consideration when de�ning the form feature deformation behavior is
how to avoid conicting or redundant constraints. In this case, the system formed from
the constraints can be very hard or even impossible to solve.

1.2.2 Cut-and-paste editing

Cutting and pasting are among the most common operations implemented by image
drawing and manipulation software. These operations are a natural way to build complex
images from individual components from various sources. In the context of mesh editing,
Cut-and-paste editing extracts a characteristic feature form a source model and copies it
to a target model. The user usually selects a surface region which is separated into the
base surface and the detail surface, only the detail surface is used as a feature to be pasted.
The detail surface can be stored either as a height-�eld or a parametric volume map [41].
The drawback of the height-�eld representation is that usually general features may be
thick or have overhangs and can not be properly represented. To paste the detail surface
to a target model, the corresponding vertices of the target model are moved based on the
detail map. For 3D models, we should take into account that the smooth attachment of
boundaries between a pasted model and its base is sometimes necessary. One possible
way to resolve this issue is to perform a union operation between the two models and then
apply a blending function along the boundaries of the features [86]. However blending
functions for arbitrary meshes is a di�cult problem to tackle.

Another approach [120],[108] is the modi�cation of di�erential coordinates instead of
directly changing spatial coordinates. The mesh geometry is then implicitly modi�ed
after reconstructing the surface from the di�erential coordinates. This method has the
advantage of reducing deformation artifacts that may appear after the feature pasting.

Existing Cut-and-paste editing methods can be roughly categorized into two broad
groups. The �rst approach uses mesh fusion to blend the source surface and target surface
directly [58],[86]. The second one �rst extracts a base surface as a medium between the
source surface and the target surface, and then transfers the details to the target surface
via the base surface [41],[16]. The former pays more attention to the smoothness of the
boundaries at the joint of the source and target surfaces. The latter focuses on the global
deformation of the source surface according to the target surface. Base surface extraction
is the most important step of the latter algorithms. On the one hand, it determines the
geometry to be pasted, because the details to be pasted are de�ned as the di�erence
between the feature surface and the base surface. On the other hand, it decides, to some
extent, the type of surfaces that can be handled by the algorithm. This is an important
factor since one fundamental problem with most of the aforementioned approaches is their
inability to deal with non-zero genus features.
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1.2.3 Morphing

Shape morphing is a technique that aims to generate a smooth sequence that transforms
a source shape into a target shape. Although we have some quite e�cient and e�ec-
tive methods for 2D morphing, the 3D case remains an open problem both in terms of
feasibility and e�ciency.

Existing methods for 3D morphing can be categorized into two broad classes: volume
based or voxel based [74] and mesh based or structural [62] approaches. The volume-based
approach represents a 3D object as a set of voxels usually leading in intensive computa-
tions. The mesh-based approach exhibits better results in terms of boundary smoothness
and rendering since the intermediate morphs are represented as volumes and techniques
such as marching cube [82] are employed to acquire the �nal polygonal representation
used for rendering. Furthermore, most applications in graphics use mesh-based represen-
tations, thus making mesh-based modeling more broadly applicable. However, volume-
based methods surpass the mesh based ones in that they can handle the morphing of very
di�erent topologies more easily, since volume to volume morphing is a lot similar to image
morphing by means of treating voxels instead of pixels.

Although mesh morphing is more e�cient as compared to volume-based morphing,
it requires a considerable preprocessing of the two considered objects. Mesh morphing
involves two steps. The �rst step establishes a mapping between the source and the
target object (correspondence problem), which requires that both models are meshed iso-
morphically with a one-to-one correspondence. The second step involves �nding suitable
paths for each vertex connecting the initial position to the �nal position in the merged
mesh (interpolation problem). For performing structural morphing, we can use boundary
representation (Brep) or surface representation in which we represent each object by its
surface description, or volumetric or solid meshes, for instance tetrahedral representa-
tions. In volumetric mesh morphing, it is much easier to maintain robustness and avoid
the folding phenomenon. However, volumetric mesh morphing is computationally expen-
sive as compared to surface mesh morphing since the number of elements in the former
case is much larger in comparison to the latter case.

Most surface-based mesh morphing techniques employ a merging strategy to obtain
the correspondence between the vertices of the input model. The merging strategy may be
either automatic or user speci�ed. Kent et al. [62] proposed an algorithm for the morphing
of two objects topologically equivalent to the sphere. The algorithm works in two steps,
�rst the two objects are mapped to a sphere and then the two projected topologies are
merged. A common topology suitable for interpolation is created. The mapping presented
is accomplished by a mere projection to the sphere and thus is applicable solely to star
shaped objects.

The main problem with 3D parameterization techniques like [62] is how to �nd an
appropriate mapping over the unit sphere for each of the morphed objects. Several tech-
niques have been proposed to overcome this limitation inspired by physics. In [57] the
authors use a spring system to model the mesh and gradually force the mesh to expand or
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shrink on the unit sphere by applying a force �eld. Methods using springs do not always
produce acceptable mappings especially when handling complex non convex objects.

[4, 5, 124] use a spring-like relaxation process. The relaxation solution may collapse
to a point, or experience foldovers, depending on the initial state. Several heuristics
achieving convergence to a valid solution are used.

[105, 94, 37] describe methods to generate a provably bijective parameterization of a
closed genus-0 mesh to the unit sphere. The projection involves the solution of a large
system of non-linear equations. A set of constraints on the spherical angles is maintained
to achieve a valid spherical triangulation.

[103] uses a polyhedron realization algorithm that can transform any general polyhe-
dron into a convex one which is isomorphic to the original. The realization consists of two
phases, simpli�cation and re-attachment. During the simpli�cation phase, low valence
vertices are detached from the vertex-neighborhood graph of the polyhedron one by one,
and the corresponding graph is re-triangulated. This step is repeated until a 4-clique
results. The second phase starts by �rst creating a tetrahedron and then the vertices are
re-attached to the polyhedron, in the reverse order of their detachment, while maintaining
the polyhedrons convexity.

[92] presents a similar method that �rst simpli�es the surface mesh to a tetrahedron
while creating a progressive mesh favoring triangles with good aspect ratio and then in
similar way reattaches the vertices and simultaneously optimizes positions of the embed-
ded vertices. The positions of the vertices are optimized to minimize a stretch metric.

[100] presents a method that directly create and optimize a continuous map between
the meshes instead of using a simpler intermediate domain to compose parametrizations.
Progressive re�nement is used to robustly create and optimize the inter-surface map. The
re�nement minimizes a distortion metric on both meshes.

[68] also presents a method that relies on mesh re�nement to establish a mapping be-
tween the models. First a mapping between patches over base mesh domains is computed
and then mesh re�nement is used to �nd a bijective parameterization. One advantage of
this approach is that it naturally supports feature correspondence, since feature vertices
are required as user input for the initial patch mapping.

[71] uses reeb-graphs and boolean operations to extend spherical parameterization for
handling models of arbitrary genus. Each genus-n model is represented as a genus-0
positive mesh and n genus-0 negative meshes. Therefore n + 1 spheres are required to
parameterize these n + 1 meshes independently, and thus to accomplish the spherical
parameterization of genus-n models. Once a consistent embedding is computed for each
model the positive meshes and the negative sets are paired. In the case where the number
of negative meshes is not equal in the two models, extra pseudo negative meshes are
generated to have an equal number of paired negative meshes. For each pair of meshes
the morphing sequence is computed independently. Finally, boolean di�erence operation
is applied to subtract each intermediate negative object from an intermediate positive
object to obtain the morphing sequence. Existing methods for producing valid spherical
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embeddings of genus-0 models can be integrated into their framework.
Another method that uses reeb-graphs for morphing topologically di�erent objects of

arbitrary genus is [59]. The method speci�es the correspondence between the input models
by using graph isomorphism theory. The super Reeb graph, which has the equivalent
topological information to the Reeb graphs of the two input objects, is constructed and
used to conduct the morphing sequence.

[70, 79] provide e�cient techniques for morphing 3D polyhedral objects of genus-0.
The emphasis of the method is on e�ciency and requires de�nition of feature patches
to perform 2D mapping and subsequent merging. Their method does not avoid self
intersection and requires embedding merging and user intervention for mapping.

An interesting work for volume morphing is based on wavelets and presented in [47].
This is a promising approach whose principle could be applied to surface based morphing.
This volume morphing technique yields rather slow algorithms which have time complexity
Ω(n3) where n is the size of the size of the volume representation.

1.2.4 Mesh fusion

Kanai et al. [58] present an approach to merge two meshes through 3D mesh-based
morphing. The basic procedure of their approach is divided into two steps. In the �rst
step, face correspondences are established between the two meshes by which each point
on the face of source mesh is mapped to a point on the face of the target mesh. This step
is called the correspondence problem. The second step, called the interpolation problem
generates a smooth transition by interpolating corresponding points from the source to
the target positions using those correspondences. To address the correspondence problem
both the source feature and the target region must be homeomorphic to a disc to compute
a harmonic map for each. The parameterizations are then mapped to each other and used
to compute a merged topology with the combined topologies. Their main contribution
is the development of several methods for resolving the interpolation problem. Further,
they propose an algorithm based on three geometrical operations, rigid transformation,
scaling and deformation, for adjusting the shape of the two feature boundaries to establish
a smooth attachment. The �nal topology of the pasted feature is computed as a blend
between the target geometry and the source geometry.

Museth et al [86] use Level-set models, which are deformable implicit surfaces that
have a volumetric representation, to present a framework for editing operators. Their
framework supports cut-and-paste by giving the ability to the user to copy,remove and
merge models (using CSG operations) and automatically blend the intersecting regions.
Since level set models are volumetric, the constructive solid geometry operations can be
applied to them in a straightforward manner. Moreover, blending can be applied near the
intersection by de�ning the region of inuence based on the distance to the intersection
curve shared by both input surfaces.
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1.2.5 Implicit representations

Yu et al. [120] present a method for mesh merging,deformation and smoothing. Their
approach is based on editing a Poisson-based gradient �eld. The distinctive feature of
their approach is that the mesh geometry is modi�ed implicitly through the gradient �eld
manipulation. More speci�cally, the technique has tree components, a mesh solver based
on the Poisson equation, a gradient �eld manipulation scheme using local transforms and
a generalized boundary condition representation based on local frames. The theoretical
foundation is that the Poisson equation is able to reconstruct a scalar function from a
guidance vector �eld and a boundary condition. Thus, with these characteristics editing
a function can be achieved by modifying its gradient �eld and boundary condition and
a succeeding reconstruction with the Poisson equation. The surface is reconstructed by
solving the least-squares system resulting from discretizing the Poisson equation with
Dirichlet boundary conditions. The approach is able to perform merging of two meshes
if a correspondence can be established between their open boundaries which serve as
Poisson boundary conditions. The correspondence is not automatically established and
requires user intervention. One advantage of their approach is that artifacts that can
be introduced during deformation can be removed during reconstruction because least-
squares minimization tends to distribute errors uniformly across the function.

Sorkine et al. [108] deformation approach is also based on the modi�cation of di�er-
ential coordinates instead of directly changing spatial coordinates. Their approach use
the term coating to refer to the mixing of geometric details between two surfaces, and
transplanting of a partial surface mesh onto another surface. The coating is de�ned as the
di�erence between the original surface and a low-frequency band of the surface. Thus,
coating transfer is the process of peeling the coating of a source surface and transferring it
onto a target surface. Their surface representation is based on the Laplacian of the mesh,
by encoding each vertex relative to its neighborhood. To apply their approach to meshes
with di�erent topologies a cross mapping is established by parameterizing the meshes over
a common domain. To this end, they use the mean-value coordinate parameterization [33]
for the mapping of patches homeomorphic to the disk over a unit square. To achieve the
cross mapping a registration of the two parts in world coordinates is required. They do
not describe how the feature in the source and target surfaces are de�ned, how they align
the features and how they �nd the required correspondence of the feature boundaries
required for the mapping. The vertices of the target surface are obtained by the interpo-
lated Laplacians and the �nal mesh reconstruction requires solving a linear least-squares
system.

1.2.6 Detail surfaces

Biermann et al. [16] present an approach to copy and paste relief features on multiresolu-
tion surfaces. In their approach they use semiregular multi resolution subdivision surfaces
as their underlying pasting representation. Each surface is separated into two parts: the

21



base surface and the detail surface. The goal is to replace the detail part of the second
surface with the detail part of the �rst. The separation is user-guided, a base surface
is selected by the user along a single atness parameter. Subsequently, a Least-Squares
�tting procedure is employed to perform the separation. The relief feature details are
encoded as a scalar displacement along the normal and a tangential displacement and a
subdivision de�nes a smooth surface recursively as the limit of a sequence of meshes. Each
�ner mesh is obtained from a coarse mesh by using a set of �xed re�nement rules such
as Catmull-Clark subdivision rules. Multiresolution surfaces extend subdivision surfaces
by introduction details at each level. Each time a �ner mesh is computed, it is obtained
by adding detail o�sets to the subdivided coarse mesh. To achieve the feature transfer a
parameterization is computed of the source and the target feature over the plane. The
idea is to map each surface onto the plane as isometrically as possible and then align
the two planar parameterizations, using a linear transformation to compensate for the
distortion. Consequently, their approach is di�cult to generalize to pasting regions with
topology di�erent from that of a subset of a plane. In addition it may result in higher
distortion than a direct mapping from one surface to the other. Their approach supports
real-time transfer of relier features that are homeomorphic to a disc.

Masuda et al. [41] present a cut-and-paste method based on constrained B-spline
volume �tting. Their method is a volume-pasting approach, which paste a parametric
volume instead of a height-�eld. The volume approach allows to deform and paste a
feature in the volume even if it contains overhangs or handles. They �rst compute the
pure feature region and the surrounding context region on the source surface based on user
input. Then, the base surface is calculated by approximating the context region. For the
separation process a global search segmentation method is employed, more speci�cally
a maximum ow minimum cut problem is solved [60]. The base surface can be used to
support a cut operation by replacing the feature region. To perform the feature transfer
an initial parametric volume is de�ned so that it involves the entire feature region and
the control points of the volume are optimized so that the bottom surface corresponds to
the base surface. The parametric volume is used to parameterize the feature region. To
paste a feature the base volume of the feature is deformed to �t the target model. Their
method supports copy and paste of features with overhangs and non-zero genus and is
able to avoid self-intersections of thick features.

Fu et al [39] also present a method that allows to cut and paste features of non-zero
genus onto the target surface. The user �rst identi�es the region of interest by selecting
a set of points. A ood �ll algorithm is then used in the closed polygon curve implicitly
de�ned by the points selected to get the complete region. The source surface is auto-
matically constructed according to the boundary information of the feature. To achieve
this, the user selected boundary is triangulated and then mesh optimization techniques
are used to remove degenerate triangles and adjust the density of the base surface. The
triangulation is solved by using dynamic programming techniques with an O(n3) running
time, with n the number of boundary vertices. However, the base surface is not guaran-
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teed to be self-intersection free and assume that the selected boundary is triangulable.
After extracting the base surface, an intrinsic parameterization [27] is computed to map
the source feature onto the base surface. Then, the source surface is attached to the target
surface, replacing the target region and the feature is reconstructed.

1.3 Thesis motivation and overview

The goal of this research is to devise robust and e�cient mesh editing techniques that
identify and respect form features. To achieve this, our �rst objective will be to tackle the
problem of identifying form-features. After the features have been identi�ed and matched,
appropriate techniques will be used to perform cut-and-paste and morphing operations
with respect to hard and soft constraints.

A key observation from the quick overview of related work in the previous section is
that a lot of the methods rely directly or indirectly on some form of parameterization
of the features or the meshes. Therefore, fast and robust parameterization methods are
crucial for any mesh editing algorithm. To this end, our next goal is to improve and extend
existing methods of mesh parameterization in order to incorporate constraints that are
derived from the features of the meshes and satisfy our needs.

Finally, another goal of this work is to integrate the techniques devised in an interac-
tive editing framework and to evaluate them in terms of e�ciency and robustness. This
is a challenging task and to achieve it we will use technologies and features provided by
modern Graphic Processing Units (GPUs). Modern GPUs o�er an impressive processing
power in terms of oating point operations. Nevertheless, most GPUs are designed specif-
ically for graphics and therefore are very restrictive in their programming model. Due to
this, algorithms that need to be e�cient in the GPUs must be redesigned by taking in
consideration the way these units work. This poses a new set of challenges in designing
and implementing e�cient and robust algorithms.

1.4 Thesis contributions and highlights

As explained in the previous section the core of this thesis is mainly fast and robust
parameterization methods with soft and hard constraints. The applicability of the mesh
parameterization methods devised will be shown in a range of applications such as: mesh
segmentation and feature detection, feature-based morphing, and cut-and-paste opera-
tions with constraints in real-time. To summarize, we can categorize the contributions in
the following domains:

• Planar parameterization methods

• Spherical parameterization methods

• Feature based morphing
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In the domain of planar parameterization this work makes the following technical and
theoretical contributions:

• Establishes the relation between mesh smoothing and parameterization techniques
and derives a simpli�ed formulation for the isometric parameterization problem
(section 2.2).

• Presents an e�cient parallel implementation of a non-linear solver along with a
number of heuristics that speed up substantially the parallel realization on modern
hardware (section 2.3.2).

• Presents an iterative topological untangling process that solves e�ciently the con-
strained parameterization problem (section 2.3).

• Demonstrates the applicability of the parallel solver on realizing the feature cut-
and-paste design paradigm (chapter 5).

In the domain of spherical parameterization, this work makes the following contribu-
tions:

• Introduces a novel iterative quadratic solver for spherical mesh parameterization
(section 3.3).

• Presents an e�cient parallel implementation along with a number of heuristics that
speed up signi�cantly the parallel realization on modern hardware (section 3.4).

• Demonstrates the usefulness of the parallel mesh parameterization algorithm in
several applications that exploit mesh morphology analysis (section 3.5).

Finally, in the domain of feature based morphing this thesis:

• Presents a feature preserving spherical parameterization process based on geomet-
rically constrained optimization (section 4.3).

• Introduces an algorithm that captures high level geometric structure by building a
feature region adjacency graph (section 4.5).

• Describes a novel feature matching technique that automatically aligns two solid
objects and identi�es a set of feature correspondence points (section 4.5).

• Introduces a feature guided optimized parameterization that is used to achieve
smooth visual results in morphing between objects with structural similarities (sec-
tions 4.5, 4.6).
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1.5 Structure of this thesis

The rest of this thesis is organized as follows. Chapter 2 o�ers theoretical background
for mesh smoothing and establishes how it is related to planar parameterization. In
this chapter we also describe the core of our constrained parallel solver for isometric
parameterizations.

Chapter 3 o�ers some background material on planar parameterizations and spher-
ical parameterizations that use reduction to the planar case. In addition our iterative
quadratic solver for spherical mesh parameterization is presented. Furthermore, in this
chapter our parallel implementation along with an experimental study and several heuris-
tics that speedup the parallel realization on modern architectures is described. Finally, it
presents applications of our technique on automated feature selection, mesh decomposi-
tion and similarity-based object retrieval.

Chapter 4 presents related work on 3D morphing and presents the spherical parame-
terization step of our approach. In addition, it briey describes the e�cient computation
of the intersections among the polygons on the sphere and the calculation of the interpo-
lation trajectory. Finally, it presents an experimental evaluation of our method and some
visual morphing results and o�ers conclusions.

Chapter 5 presents an application of cut-and-paste design. In this application the
solver for constrained planar parameterization described in chapter 2 is combined with
modern GPU technologies such as the OpenGL tessellator unit to enable cut-and-paste
operations on meshes in real-time.

Finally, chapter 6 o�ers conclusions.
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Chapter 2

Planar parameterization

2.1 Introduction

2.2 Isometric parameterization

2.3 Constrained isometric parameterizations

2.4 Conclusions

2.1 Introduction

The purpose of mesh parameterization is to obtain a piecewise linear map, associating
each face of the mesh with a surface patch on the parameterization domain. The param-
eterization domain is the surface that the mesh is parameterized on. Since the geometric
shape of the parameterization surface will typically be di�erent than the shape of the
original mesh, angle and area distortion is introduced. Maps that minimize the angular
distortion are called conformal, maps that minimize area distortion are called authalic,
and maps that minimize distance distortion are called isometric. In this work, we deal
with constrained isometric planar parameterizations. These maps are central to a broad
spectrum of applications such as texture mapping, mesh completion, morphing and de-
formation transfer.

An important goal of parameterization is to obtain bijective (invertible) maps. The
bijectivity of the map guarantees that there is no triangle ipping or overlapping. This is
an important guarantee for certain applications, especially in the presence of user de�ned
constraints on the vertices. On a planar parameterization domain a map may exhibit
local or global bijectivity. Local bijectivity is achieved when there are no local triangle
ips in the local neighborhoods of the mesh, whereas global bijectivity is achieved when
there is no global mesh overlapping. Generally, global bijectivity is harder to achieve.
Nevertheless, for most applications local bijectivity is su�cient.
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The existing planar parameterization methods can be classi�ed into two categories
(for an extensive survey see [52]) : (i) methods that solve only linear systems, for example
[75],[27],[81] and (ii) methods that use some kind of non-linear optimization. Typical
methods of the former category, especially the earlier ones, have no guarantee for local or
global bijectivity and usually o�er inferior results as compared to the latter. Nevertheless,
they are usually very fast and can be useful even as an initial solution for non-linear
approaches. For example, in [51] although the energy minimized is non linear, a linear
system is solved to obtain an initial parameterization of the mesh on the plane.

Amongst the latter category, several methods use some form of constrained or uncon-
strained non-linear optimization. These methods either reformulate the problem (result-
ing in non linearity) [106],[63] or directly minimize a non linear energy term [51],[96]. An
indicative example is the work of [106] where the parametrization problem is reformulated
in terms of angles subject to a set of constraints that ensure planarity and triangle validity
of the �nal parameterization. Another example is the work of [63] where the authors use a
set of vertices of the mesh called cone singularities to absorb the Gaussian curvature so as
to compute conformal parameterizations of meshes. This idea was further extended in [13]
where the authors �rst determine automatically the location and the target curvatures of
the singularities. They then proceed by solving a discrete Poisson equation on the mesh
vertices to compute edge lengths and compute the �nal embedding using a linear least
squares methodology based on the computed edge lengths. A related work is [109] based
also on cone singularities where a non linear solver is used to minimize the corresponding
metric and compute the �nal parameterization. Ma and Lin [83] proposed a attening
technique based on optimizing a non linear objective function that compares the edge
lengths and the areas between the triangles on the parameterization space and the mesh.
Their work was extended in [11] where the authors modi�ed the energy function and
improved the initial solution. Finally, another interesting work is [84] where the authors
compute isometric parameterizations by �rst deriving a non linear deformation metric
based on the linear theory of elasticity and then proceed by minimizing that metric using
standard non linear conjugate gradient methods. A comparative study of the results of
some of the above methods can be found in [10].

For practical applications there is usually an additional requirement to accommodate
user de�ned or automatically imposed constraints on the vertices of the parameterization.
Generally, these constraints can be categorized into two groups: soft constraints that are
approximately satis�ed in the least squares sense and hard constraints that are precisely
satis�ed. Methods based on energy minimization can support soft constraints by adding
a quadratic term to the energy function that measures the distance between the vertices
and the desired location. Nevertheless, for linear approaches the additional term usually
breaks the guarantees for bijectivity even for parameterizations on convex domains [52].
Hard constraints are even more di�cult to support. Some methods can be extended to
enforce hard constraints by the use of Lagrange multipliers [27]. However, such methods
do not guarantee parameterization bijectivity.
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In a nutshell, many previous approaches employ non linear solvers for constrained or
unconstrained non linear optimization targeted to conformal parameterizations ([106, 63,
109, 13]). Others use fast linear solvers (e.g. [81]) to obtain isometric parameterizations
but fail to support constraints and local bijectivity. In this work, we deal with the
problem of computing an isometric bijective planar parameterization of a mesh, subject
to hard constraints. Additionally, soft constraints can be trivially supported due to the
formulation of the problem.

2.2 Isometric parameterization

2.2.1 Mesh smoothing preliminaries

Before explaining the connection between the parameterization and the smoothing prob-
lem, we must de�ne some element types. The de�nition of the term element here depends
on the type of the mesh and is either an arbitrary polygon for surface meshes or a polyhe-
dron for volume meshes. The three element types we de�ne are: (i) the physical element
which is obtained through a mapping, possibly with area and angle distortion, of a ele-
ment of the original mesh on the parameterization space, (ii) the reference element which
is constructed by placing one node at the origin and the other nodes at unit lengths along
the cartesian axes, and (iii) the ideal element which depends on the desired properties of
the �nal mesh (see [65], [66]).

Furthermore, we de�ne two a�ne mappings. The �rst mapping from the reference
element xr to the ideal element xi is de�ned as :

xi = W xr (2.1)

where matrix W is the edge matrix (Jacobian) of the ideal element. The second mapping
from the reference element xr to the physical element x is de�ned as :

x = Axr + x0 (2.2)

where matrix A is the edge matrix of the physical element and x0 is the vector with the
coordinates of the �rst vertex. The matrix A holds information about the volume (for
polyhedra), the area, and the orientation of the physical element while x0 controls its
translation.

Based on the above de�nitions the shape matrix from the ideal to the physical element
was de�ned in [65] as:

S = AW−1 (2.3)

and the associated barrier shape quality metric (�shape) : Rn×n → R as :

�shape =
‖S‖2

F

n det(S)2=n (2.4)

28



where for surface and volume meshes n is 2 and 3 respectively. The above metric can be
used in an optimization process as an objective function to minimize over the vertices to
obtain an optimal mesh. This quality metric assumes that each element has positive and
non-zero determinants and consequently non-zero local area or volume. Furthermore, the
barrier form is used to enforce positive Jacobian determinants to prevent folding. The
mappings of a surface mesh triangle are depicted in Figure 2.1.

2.2.2 Shape matrix construction for conformal parameterization

As noted in the previous section the de�nition of the ideal element depends on the desired
properties of the �nal mesh. Therefore to preserve the angles of a triangle of the original
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v'2
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γ

Figure 2.1: Ideal triangle 4v0v1v2 and its similar triangle 4v′0v′1v′2 on R2 along with the
corresponding mappings.

mesh, we de�ne on the parameterization space an ideal triangle 4v0v1v2 with the same
angles. Moreover for reasons that will become apparent, we de�ne its similar triangle
4v′0v′1v′2 with base ||v′0v′1|| = 1 and v′0 = v0 (see Figure 2.1) where:

||v′0v′1||
||v0v1|| = �, � > 0 (2.5)

with the use of basic trigonometry on 4v′0v′1v′2 we may further de�ne the coordinates of
the point v′2 as :

v′2x =
cot �̂

cot �̂ + cot �̂
, v′2y =

1

cot �̂ + cot �̂
(2.6)

Therefore, from (2.5) and the de�nition of W :

W =

[
v1x v2x

v1y v2y

]
=

1

�

[
1 v′2x
0 v′2y

]
=

1

�
W′ (2.7)
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and from equations (2.6) and (2.7) :

W−1 = �W′−1 (2.8)

= �

[
1 −v′2x

v′2y
0 1

v′2y

]
= �

[
1 − cot �̂
0 cot �̂+ cot �̂

]
(2.9)

it follows that :
S = AW−1 = A(�W′−1

) = �AW′−1
= �S′ (2.10)

Matrices W ′ and S ′ are de�ned on the triangle 4v′0v′1v′2. Moreover, using (2.10) the
barrier shape metric (2.4) is de�ned as :

�shape =
‖S‖2

F

det(S)

(2:10)
=

‖�S′‖2
F

det(�S′)

=
�2‖S′‖2

F

�2 det(S′)
=

‖S′‖2
F

det(S′)
= �′shape (2.11)

showing that the barrier shape quality metric is scale invariant. Therefore, to obtain angle
preserving parameterizations, only the angles of the triangles are required to compute the
above matrices.

2.2.3 Connection with MIPS energy

An early method that supported free boundaries and aimed at computing a parameter-
ization that minimized the Dirichlet energy per parameter-space area was Hormann and
Greiner's MIPS method [51]. Since this energy is minimal for conformal mappings this
gives parameterizations that are "as conformal as possible". To show how it relates to the
shape quality metric that targets angle preserving mappings we start with the de�nition
of A :

A = [~v1 − ~v0; ~v2 − ~v0] =

[
v1x − v0x v2x − v0x

v1y − v0y v2y − v0y

]
(2.12)

and the shape matrix S′:

S′ = AW′−1 (2:12)
= [~v1 − ~v0; ~v2 − ~v0]W′−1

(2:9)
= [~v1 − ~v0; ~v2 − ~v0]

[
1 − cot �̂
0 cot �̂ + cot �̂

]

= [~v1 − ~v0; (~v2 − ~v1) cot �̂ + (~v2 − ~v0) cot �̂] (2.13)

Furthermore, we have for det(S′) :

det(S′) (2:8)
= det(AW′−1

)

= det(A) det(W′−1
)

(2:9)
= (cot �̂ + cot �̂) det(A) (2.14)
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Finally, it can be shown (see Appendix) that :

‖S′‖2
F = (cot �̂ + cot �̂)

(
c2 cot ̂ + a2 cot �̂ + b2 cot �̂

)
(2.15)

Using (2.11),(2.14) and (2.15) we get :

�′shape =
1

2

a2 cot �̂ + b2 cot �̂ + c2 cot ̂
det(A)

(2.16)

From (2.16), we derive that the barrier shape quality metric is equal to the half of the
MIPS energy [51].

2.2.4 Isometric parameterization

To obtain an area-preserving parameterization the area of each triangle on the parame-
terization space should tend to match its original area (E) on the mesh : det(A) → 2E.
To measure this deviation a usual metric is [26]:

2E
det(A)

+
det(A)

2E
(2.17)

Therefore, a metric for the area preservation can be de�ned as:

�area
(2:17;2:14)

=
2E(cot �̂+ cot �̂)

det(S′)
+

det(S′)
2E(cot �̂ + cot �̂)

(2:10)
= det(S) +

1

det S
(2.18)

where we de�ne for each ideal triangle 1
� =

√
2E(cot �̂+ cot �̂). Unlike the shape metric,

�area is not scale invariant. More speci�cally, the scale factor of each ideal triangle de�nes
the desired area on the �nal parameterization. By combining the two metrics �shape for
shape preservation and �area for area preservation, we get the simpli�ed combined metric
that targets isometric parameterizations :

�isometric = �shape · �area = ||S||+ ||S||
det(S)2

(2.19)

Therefore, to de�ne the S for each triangle i we need three scaling factors [�i; �i cot �̂i; �i cot �̂i]
computed from the original mesh.

2.3 Constrained isometric parameterizations

There are several alternatives in minimizing the non linear metric for isometric param-
eterizations. For example, in the works of [51] and [66] a non-linear solver is used in
which each node is individually optimized based on the objective function. However, it
is not always feasible to e�cienlty parallelize such an approach due to the arising data
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(a) Initial (b) Untangling

(c) Isometric parameterization (d) Texture mapping

Figure 2.2: Constrained parameterization of the Casting model [1]. Area deformation is
also depicted (blue and red colors correspond to high and low distorted areas respectively).
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(a) Initial (b) ABF++ (c) Untangled (d) Isometric pa-
rameterization

Figure 2.3: Constrained parameterization comparison. The constraints are : (i) the outer
boundary and (ii) a set of internal nodes around the eyes and the nose area.

dependencies. For this reason, we have opted to use a preconditioned conjugate gradient
approach and optimize all nodes simultaneously.

Conjugate gradient methods comprise a class of algorithms for unconstrained optimiza-
tion. These methods have very low memory requirements and have linear convergence
for most problems. An advantage of this class of algorithms is that only the objective
function value and the gradient of the objective function are used during the optimization
phase. Therefore, they do not require knowledge of the sparsity structure of the Hessian
and are suitable for large scale optimization. Another important advantage of these al-
gorithms is that it is possible to implement them with only BLAS-1 operations. There
operations can be implemented very e�ciently on modern hardware [89].

To obtain an initial solution to the parameterization problem we may use one of the
established linear parameterization approaches. This can be easily done by using the
standard parameterization techniques based on barycentric coordinates [112],[34]. The
boundary vertices are mapped to the boundary vertices of a convex polygon with the
same number of vertices and in the same order. Then, the interior vertices are placed
in such a way that each vertex is the centroid of its neighboring vertices. Following this
approach, there are two issues to take into account : (1) the shape of the boundary
polygon and (2) how to map the boundary vertices to the polygon. For the boundary
polygon usual choices are the unit circle and the unit quad whereas for the mapping
usual approaches are parameterization methods such as the chord length or centripetal
parameterization.

In this process, an important problem is that for most practical examples the bound-
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(a) Initial (b) ABF++

(c) Untangled (d) Isometric parameterization

Figure 2.4: Constrained parameterization of the Suzanne model [18]. The constrained
nodes consist of the outer boundary (86 nodes) and 45 internal nodes (Figure a) that are
translated to new positions (Figure b).

ary vertices do not form a convex polygon and therefore the obtained parameterizations
may not be bijective. Another issue is that if we use this parameterization as an initial
solution for conjugate gradient this can be very far from the optimal solution resulting in
slow convergence. A better alternative for computing an initial solution in our approach,
is to use a parameterization technique such as [75],[27], or even [106] that minimize an-
gular distortion. Naturally, in the presence of additional internal constraints and non
convex boundaries the resulting mapping is not expected to be bijective. For example,
as demonstrated in Figure 2.3(b), constraining a set of internal vertices and using the
ABF++ method [106] results in a �nal parameterization that is not bijective.

2.3.1 Preconditioning

Non linear CG can be preconditioned by choosing an appropriate positive de�nite pre-
conditioner matrix. Any matrix that approximates ∇2f(x∗)−1 is a good preconditioner
for nonlinear functions. Therefore, a reasonable choice for such a matrix is the inverse of
the diagonal of the Hessian matrix. Nevertheless, if x is far from a local minimum, the
diagonal of the Hessian may not be positive-de�nite. Another possible CG precondition-
ing strategy is to compute an approximation to ∇2f(x∗)−1 generated by a quasi-Newton

34



ARAP

ABF++

Our method

Figure 2.5: Comparison of parameterization results for the Gargoyle model. The ARAP
parameterization is non bijective in the highlighted area.

ARAP Our method

Figure 2.6: Comparison between the ARAP parameterization and our solver result. The
highlighted region is not locally bijective.

update formula of the Broyden family [87], [80]:

Hk+1 = vTkHkvk + �ksksTk (2.20)

where �k = 1=yTk sk, and
vk = I − �kyksTk (2.21)

here, sk = xk+1 − xk, gk = ∇f(xk)T , and yk = gk+1 − gk. The above mentioned approach
is known as Limited-memory BFGS (L-BFGS) and is useful for solving large problems
since this method maintains a simple and compact approximation of the Hessian matrices.
Therefore, it is suitable when the Hessian is dense or the second derivatives are costly to
compute. A modi�ed version of Hk is stored implicitly, by storing a certain number (m)
of the vector pairs (si; yi) that are used in (2.20) and (2.21). Figure 2.7 demonstrates
the convergence of the BFGS preconditioned nonlinear CG, with Hestenes and Stiefel
[48] update formula and di�erent choices of m. The basic Hessian matrix H0

k plays an
important role in the performance and the robustness of the algorithm. A popular choice
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Figure 2.7: Comparison of the Conjugate Gradient convergence with and without precon-
ditioning.

is to set H0
k = kI where k is a scaling factor. The scale factor generally is used as an

estimate of the size of the true Hessian matrix to ensure that the search direction is well
scaled, and as a result the full step length can be accepted (usually if it satis�es the Wolfe
conditions [117]). Moreover, the scaling prohibits the eigenvalues of the approximate
Hessian from becoming large. There are several approaches in the literature for computing
k, such as those presented in [102],[80] and [3]. In practice, we found the scaling factor
proposed by [3] to perform the best.

2.3.2 Parallel implementation and results

As an API for our implementation, we have used OpenCL 1.1. The core of our solver is the
L-BFGS method described in [87] and the software is available at http://www.cs.uoi.gr/ fu-
dos/smi2013.html. Algorithm 1 summarizes the basic steps of the solver. To maximize

1: d0 = −H0g0

2: �k =
yTk−1gk
yTk−1dk−1

3: dk = −Hkgk + �kdk−1

4: xk+1 = xk + akdk
Algorithm 1: Preconditioned Conjugate Gradient

the performance of our implementation, we have considered a number of factors. Two im-
portant considerations in modern GPUs are: (i) the e�cient memory usage so as to achieve
maximum memory bandwidth and (ii) tuning the instruction usage so as to achieve the
maximum instruction throughput [88]. Therefore, we have used a number of heuristics to
optimize the parallel performance of our non linear solver such as :

• Reduction of the divergence of the parallel kernels.
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• Coalesced memory operations.

• Exact line searches.

P
a

ra
lle

lis
m

Divergence

f
0

f
1

f
2

f
3

f
0

f
7

f
8

f
M-4

v0

v1

vN

Vertex array accessFace array accessScale factors array access

f
M-3

f
M-2

f
M-1

f
M

P
a

ra
lle

lis
m

No divergence

v
1

f0

f1

fM

v
0

v
3

v
0

v
1

v
2

v
N-2

v
N-1

v
N

Figure 2.8: The vector ∇f can be computed in parallel for each vertex with indirect mem-
ory access and execution divergence (left) or for each face with more coalesced memory
transactions and without divergence (right).

The costlier step in the solver is the computation of the gradient ∇f . The gradient
can be computed per vertex, where each computation should access the adjacency list
of the vertex and the corresponding scaling factors of the adjacent faces. If we use this
straightforward approach to parallelize the computation, two problems arise on massively
parallel platforms: random memory access patterns and divergence due to the di�erent
adjacency lists. In our implementation, we follow a two step approach to tackle these
problems. First, we use an auxiliary bu�er where we store the contribution of each face to
its adjacent vertex gradients and then we add up the corresponding partial contributions
to obtain the �nal gradient vector. This process is an e�cient way to parallelize the
computation on the faces (see Figure 2.8). Each face accesses only its three scaling
factors and its vertices; consequently there are fewer levels of indirection while most of
the read accesses are coalesced. The summation step still requires to randomly access the
auxiliary bu�er to compute the �nal gradient, but the most computationally intensive
�rst part of the gradient computation is accelerated substantially.

The other major performance issue in the performance of conjugate gradient methods
is the line search, which requires su�cient accuracy to ensure that the search direction
yields a descent. The line search is typically performed in two stages: a bracketing
phase where we constrain the desirable step length, and an interpolation phase that
computes the step length within this bracketed interval. Ideally, we would like to �nd the
global minimizer for f . However, this approach usually requires many evaluations of the
objective function f and possibly the gradient ∇f . Therefore, there is a trade-o� between
the accuracy of the line search and the computational cost. A common approach is to
perform inexact line searches until some accuracy criteria are met. Common criteria are
the Wolfe conditions [117].

The usual "strong" Wolfe condition requires an extra evaluation of the gradient of the
function. This approach performs well for applications running on platforms with only
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a few threads like CPUs. On the contrary, the evaluation of the gradient on massively
parallel platforms is relatively expensive. Even though we improved the speed of this
computation with the previously described approach, due to the complexity of the gra-
dients the evaluation of ∇f on such platforms is still an order of magnitude slower than
the evaluation of f . Thus, in many cases it is more e�cient to carry out more function
evaluations instead of using the "strong" Wolfe condition to stop the line search process
prematurely. A related issue is the scaling of the Hessian matrix, the scaling ensures that
the search direction is well-scaled and that the full step (ak = 1) is accepted in most
iterations.

Having made the above observations, we have opted for a hybrid approach. First we
scale the Hessian and check the strong Wolfe condition with the full step. If the step
is rejected, we perform an exact line search using the derivative free Brent method [21]
having as a limit the square of the hardware double accuracy. This is also the accuracy
limit for the speci�c line search method. Since the Brent method needs a bracketing
triplet (xa; xb; xc), satisfying f(xb) < f(xa) and f(xb) < f(xc), in the case of the isometric
metric, we take into account the discontinuity of the function when an element becomes
inverted. This discontinuity occurs along the search direction dk using a negative step.
To avoid this case, and assuming that the line search begins with a bijective mapping,
we �nd a low bound � where the function is de�ned. To compute �, we start from a
small value and follow a procedure similar to the backtracking line search approach. This
approach worked reliably in our experiments; the initial bracketing phase typically costs
three or four function evaluations whereas the Brent line search method usually costs less
than ten function evaluations.

Figures 2.5 and 2.6 illustrate the parameterization of two meshes from [1] with our
solver and show a comparison with the ARAP method that also targets isometric pa-
rameterizations [81]. In both the cases the ARAP method failed to produce bijective
parameterizations.

Furthermore, we have obtained performance results minimizing the isometric metric
and using an NVIDIA Tesla c2070 and an Intel i7-2600k processor. The Tesla c2070
contains 448 CUDA cores delivering 515 Gigaops of double-precision peak performance
whereas the i7 processor contains 4 cores and delivers less than 70 Gigaops of double
precision peak performance. Table 2.1 illustrates the scalability of the solver while running
a �xed number of iterations with di�erent level of detail whereas Table 2.2 and Tables
3.3,2.4 provide a comparison with the publicly available parameterization software of [81]
in terms of running times and parameterization quality.

2.3.3 Parameterization with hard constraints

Computing a parameterization with positional constraints is a di�cult research problem.
Traditionally, planar parameterization methods support such constraints. For example
Levy et al [75] incorporates soft and hard constraints in the linear system formed while
Desbrun et al [27] use Lagrange multipliers to add positional constraints. However in the
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(a) Feature (b) Planar pro-
jection

(c) Untan-
gling

(d) Isomet-
ric

Figure 2.9: Constrained boundary parameterization (a) Original feature (b) Planar pro-
jection (not bijective) (c) Untangled mesh (with area deformation) (d) Further optimized
isometric parameterization (also showing area deformation).

presence of a lot of constraints, these methods can fail to compute a bijective parameteri-
zation even if such a parameterization is known to exist. The inherent problem is that the
bijectivity of the resulting map is based on certain properties of the energy minimized.
Thus, adding linear terms in the system formed for soft constraints or removing variables
for hard constraints can break theoretical guarantees for bijectivity. More recent methods
methods such as [106] also support positional constraints but bijective parameterizations
are not guaranteed (Figures 2.3,2.4). Other methods proceed by adding Steiner vertices
to ensure the bijectivity [29] or compute a parameterization by partitioning the mesh into
patches that are then parameterized while maintaining the smoothness and continuity
between them [69].

When the boundary vertices are �xed, the constrained parameterization problem is
equivalent to mesh untangling. Existing methods for untangling employ geometric or
optimization-based approaches. For example in [36] the authors seek to maximize the
minimum element area and formulate the mesh untangling problem as a series of local
linear programming problems. Knupp et al [64] optimize a global function that measures
the di�erence between the absolute and signed element area. The latter requires a custom
solver and a modi�ed line search approach since the gradient of that function is not
continuous.

Another approach to handle folded meshes is to modify the shape quality metric
�shape so as to incorporate an untangling process as suggested by [31]. Having established
the connection between the parameterization and the shape metric based smoothing, we
may use this method with the appropriate isometric equations of section 2 and solve
the resulting convex problem. In our experiments this approach worked reasonably well
for small to medium sized meshes. Nevertheless, it further requires the solution of a
series of non linear problems. More importantly, this objective function can take extreme
values on large meshes and consequently it is very di�cult to optimize it e�ectively.
For the above reasons we follow a di�erent two step approach. First, we consider the
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boundary of the parameterization along the constraints imposed �xed and we treat the
constrained parameterization problem as an untangling problem which is solved with
simple topological operations. Afterwards, we proceed by optimizing the untangled map
with the non linear solver in order to improve the quality of the parameterization. For
such an approach to work in the case of free boundaries a good initial solution should
be available. In this case of free boundaries we use the method of [106] to obtain this
solution.

To derive the topological operator per vertex we formulate the untangling problem as
a minimization problem on the inverted elements:

minf(x) = −
n∑
i

det(A) (2.22)

For the above function if we compute the gradients of a triangle with vertices v0,v1,v2

and edges e0,e1,e2 with respect to vertex v0 we obtain:

detA = (e0y · e2x − e0x · e2y) ⇒

−@ det(A)

@v0x
= −(v2y − v1y) = −e1y (2.23)

−@ det(A)

@v0y
= (v2x − v1x) = e1x (2.24)

This means that the gradient of the negative triangle area with respect to one of its vertices
equals the opposite triangle edge rotated by �

2
clockwise about the triangle normal. If we

sum all the gradients of the adjacent triangles this gives a descent direction and therefore
we can move all the vertices along the corresponding lines:

vk+1
i = vki + �

∑
j∈Ni

CW�
2
(ei;jopposite) (2.25)

where Ni is the set of adjacent inverted triangles around vertex vi, and ei;jopposite is the
edge opposite to vi in triangle j. CW stands for the clock wise rotation transformation.
Unfortunately, if we only apply the above operator there are numerical instability issues.
The problem is directly related to the invariance of the area deformation under shears
[26]. A shear does not change the area of a triangle and therefore extremely sheared
triangles may occur during the minimization process. The problem becomes severe when
the total area of the triangles around a vertex is very small and the corresponding valley
has almost collapsed. In that case the edge lengths may become arbitrarily large especially
if we use a bad initial solution. For this reason, we added a correction term that also
reduces the shearing of a triangle when the area of that triangle drops below a certain
threshold. This correction term is a vector perpendicular to the gradient of the area and
the orientation depends on the angles of the triangle as illustrated in Figure 2.10. The
shear direction is perpendicular to the gradient and the addition of this term preserves the
descent property of the total operator. The addition of this term topologically "bends"
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Figure 2.10: Shear operator for two di�erent triangle con�gurations. The shear operator
is parallel to the opposite edge and the direction depends on which of the two opposite
angles (�,) is greater than �

2
. If both angles are acute then no shear operator is applied.

the descent direction of the vertex towards the centroid of the valley resulting in reduced
edge lengths.

Algorithm 2 summarizes the basic steps of the untangling process. where the factors

1: � ← 1
2

2: for k = 0 to convergence or � < � do
3: for i = 0 to N do
4: darea =

∑
j∈Ni CW�

2
(ei;jopposite)

5: dshear =
∑

j∈Ni factorj · shear(eopposite)
6: vk+1

i = vki + �(darea + dshear)
7: end for
8: if

∑ | det(Ak+1)| ≥ ∑ | det(Ak)| then
9: � ← �

2

10: end if
11: k = k + 1

12: end for
Algorithm 2: Untangling Process

are de�ned based on a user de�ned minimum area � as :

factorj =

{
1− |det(Aj)|

� ;−� ≤ det(Aj) ≤ �

0 ; otherwise
(2.26)

This way we move all the vertices along the descent direction according to a � value
without performing an exact line search. We have avoided exact line searches for two
reasons. First, the gradient computations are a�ordable, unlike the non linear functions
of the previous section, and therefore it is better to perform more gradient than function
evaluations. Second, in this way we only need local topological operations that are more
robust arithmetically. The latter is important especially for modern GPUs since it allows
us to use only single precision operations that reduce the memory bandwidth require-
ments and are much faster than the corresponding double precision operations. Figures
2.2,2.3,2.9,2.4 and 2.11 illustrate some untangling results that are used as an intermediate
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step for computing isometric parameterizations. The running time of the untangling pro-
cess depends on the number of constraint vertices and the initial solution. For example,
for the mesh of Figure 2.3 with 13095 faces and 241 constrained vertices the time for the
untangling process was 100ms on a Tesla c2070. In all the experiments performed, the
running time is primarily a�ected by the non linear optimization step that follows the un-
tangling process. For typical meshes of up to 50k triangles, with hundreds of constraints,
the average time for untangling was less than a second.

Table 2.1: Numerical results for di�erent levels of detail while running a �xed number of
iterations (=1000) on the Blech mesh (Area(rms) = 0:490457 and Angular = 0:101195).

Level # vertices # faces i7 (ms) c2070 (ms) Speedup Area(rms)1000 Angular1000

Lod1 1815 3456 999 1072 0.93 0.114456 0.0058238
Lod2 7085 13824 1704 1196 1.42 0.114835 0.0052326
Lod3 27993 55296 4708 1744 2.69 0.142656 0.0069087
Lod4 111281 221184 18156 3322 5.46 0.319943 0.0464538
Lod5 443745 884736 73828 9795 7.53 0.452182 0.0741808

Table 2.2: Time comparison between our solver and ARAP

method model # vertices # faces bijectivity iters # evals f time(s)

ARAP Blech 27993 55296 yes 7 - 1.95
Solver(1000) Blech 27993 55296 yes 1000 2633 1.65
Solver(1500) Blech 27993 55296 yes 1500 3658 2.38
ARAP gargoyle 24406 48672 no 4 - 1.08
solver(5000) gargoyle 24406 48672 yes 5000 15570 10.16
solver(10000) gargoyle 24406 48672 yes 10000 30551 19.88
ARAP julius 209083 416286 yes 28 - 59.02
solver(2500) julius 209083 416286 yes 2500 5583 14.71
solver(4000) julius 209083 416286 yes 4000 8943 23.92

2.4 Summary

We presented an e�cient parallel scheme to compute isometric parameterizations subject to soft
and hard constraints. Our approach is based on establishing a theoretical connection between
the well studied non linear mesh smoothing and the isometric parameterization. Using this
scheme, we have successfully carried out a large number of experiments to validate the solver on
parameterizing meshes up to one million triangles in a few seconds on a modern GPU. Finally,
as an application of our solver, we have parameterized and stored free form features on oating
point textures and then by exploiting the capabilities of the tessellation unit on modern GPUs
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Table 2.3: Comparison of quality between our solver (number of iterations in parenthesis)
and ARAP

Method Model L2(min) L2(max) L2(rms)

ARAP Blech 0.719205 1.35083 0.081242
Solver(1000) Blech 0.721571 1.39323 0.062888
Solver(1500K) Blech 0.708662 1.48147 0.057315
ARAP Gargoyle 0.408068 7465.28 74.4895
Solver(5000) Gargoyle 0.18212 25.9687 3.81626
Solver(10000) Gargoyle 0.226868 16.4789 2.36491
ARAP Julius 0.63778 56.1057 0.203055
Solver(2500) Julius 0.575291 2.03919 0.155464
Solver(4000) Julius 0.618229 2.00369 0.130395

Table 2.4: Comparison of quality between our solver (number of iterations in parenthesis)
and ARAP

Method Model Area(min) Area(max) Area(rms) Angular

ARAP Blech 0.565892 2.0186 0.15528 0.005267
Solver(1000) Blech 0.595902 4.4074 0.13110 0.008731
Solver(1500) Blech 0.574745 4.4745 0.12180 0.005351
ARAP Gargoyle 0.000164 8.2565 1.03866 0.421756
Solver(5000) Gargoyle 0.005277 31.9465 1.78979 0.108743
Solver(10000) Gargoyle 0.010048 22.0854 1.63601 0.121859
ARAP Julius 0.004867 4.269 0.34954 0.043286
Solver(2500) Julius 0.299203 8.559 0.32586 0.041716
Solver(4000) Julius 0.315212 6.409 0.28318 0.045691

we have supported cut and paste operations in real time. This procedure is described in details
in chapter 5.

A possible extension of our work would be the usage of a hierarchical decimation scheme
similar to [51] or [106] to accelerate the convergence of the non-linear solver. Going a step further,
we could exploit the connection between the parameterization and the smoothing problem to
compute the isometric parameterization of volume meshes on 3D domains. By doing so, more
properties of the original mesh could be preserved such as the volume preserving morphing and
blending operations.

Another direction for future research is to provide a formal proof regarding regarding the
convergence of the untangling process. This could be reached from connecting our process to
standard gradient descent approaches and analysing the numerical instabilities that occur near
the solution.
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Figure 2.11: Mapping the Julius model to the plank model. We �rst parameterize the
plank model (right) with ABF++ and we pin the vertices around the ears and eyes of the
Julius model (left) at the corresponding positions of the plank parameterization. (a) The
ABF++ parameterization if folded. (b) The �nal unfolded parameterization is locally
bijective (c) Detail of the �nal parameterization.
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Chapter 3

Spherical parameterization

3.1 Introduction

3.2 Preliminaries

3.3 Spherical parameterizations

3.4 Parallel parameterization

3.5 Applications

3.6 Summary

3.1 Introduction

Fast mesh parameterization is central to many applications such as remeshing, �ltering, texture
mapping, compression, mesh completion and morphing. The surface that the mesh is parameter-
ized on is typically referred to as the parameter domain. The purpose of mesh parameterization
is to obtain a piecewise linear map, associating each triangle of the original mesh with a surface
patch of the domain. An important goal of parameterization is to obtain bijective (invertible)
maps, where each point on the domain corresponds to exactly one point of the mesh. The
bijectivity of the map guarantees that there is no triangle ipping or overlapping.

Since the geometric shape of the domain surface patches will typically be di�erent than the
shape of the original triangles, angle and area distortion is introduced. The distortion of the
parameterization is an important factor, therefore applications typically try to minimize the dis-
tortion for the whole mesh. aps that minimize the angular distortion are called conformal, maps
that minimize area distortion are called authalic, and maps that minimize distance distortion are
called isometric.

In this section, we deal with the problem of computing a bijective mapping between a closed
genus-0 mesh and a spherical domain, such that distortion is globally minimized. It is important
to note that on such a domain, an arbitrary mesh mapping can be authalic, or conformal but not
isometric, as it would have to be both authalic and conformal and in general this is not feasible.
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Although mainly due to recent fundamental theoretical work [20, 4, 5, 91, 105, 44, 93, 12],
there is a good understanding of the mathematical aspects underlying spherical mesh parame-
terizations, the problem of computing such parameterizations e�ciently remains open.

The existing spherical mesh parameterization methods can roughly be classi�ed into two
categories : (i) methods that attempt to extend planar methods and (ii) methods that use
some kind of non-linear optimization. Typical methods of the former category generalize planar
parameterization methods of barycentric coordinates [112] to the spherical domain [4, 54, 46].
For example in the work of [46] the non-linear spherical problem is transfered to the disk and
then the stereographic projection is used to obtain the spherical mapping. Other methods in this
category proceed by splitting the mesh in two half-meshes and mapping each half individually
onto a hemisphere [54].

Amongst the latter category, several methods use non-linear optimization [20, 91, 44] and
usually have a higher computational cost. An indicative example of this category is the work
by [91] that combines a hierarchical method with the optimization of a stretch metric to obtain
geometric images of closed meshes. Another method following a hierarchical approach to obtain
an approximate solution was introduced by [17]. Firstly, the original mesh is simpli�ed by using
an edge-collapse technique until a tetrahedron is obtained. Afterwards, the simpli�cation process
is reversed by reinserting the vertices.

Another method which does not fall directly in either category, is presented by [45] where
the parameterization is based on the properties of the complex conformal gradient �eld. This
method has also the advantage of being able to handle higher genus meshes.

The extension of planar methods to the spherical domain is attractive, since planar parame-
terizations require the solution of a simple linear system. However, they are usually required to
introduce some cuts in the mesh. Such cuts induce distortion that may be undesirable for most
applications.

Therefore, the generalization of planar barycentric mapping to the spherical domain is im-
portant. The weights assigned to the vertices o�er some degree of control over the �nal parame-
terization and it is guaranteed that the �nal parameterization will be fold free provided that the
weights are positive. Nevertheless, earlier fast methods by [4] that attempt to converge to valid
barycentric parameterizations by employing simple projected Gauss-Seidel techniques are bound
to fail in certain cases [93]. ore recently, approaches that combine various techniques from the
above-mentioned parameterization methods have appeared (e.g. the work by [93]). Still, they
need several minutes to calculate parameterizations for a typical, by today's standards, model.
In addition, prior methods do not consider the issues arising from a parallel implementation.

The rest of the chapter is organized as follows. Section 3.2 o�ers some background material on
planar parameterizations and spherical parameterizations that use reduction to the planar case.
Section 3.3 presents our iterative quadratic solver for spherical mesh parameterization. Section
3.4 describes our parallel implementation along with an experimental study and several heuristics
that speedup the parallel realization on modern architectures. Section 3.5 presents applications
of our technique on automated feature selection, mesh decomposition and similarity-based object
retrieval. Finally, Section 3.6 o�ers conclusions.
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3.2 Preliminaries

3.2.1 Planar parameterizations
A planar triangulation is a simple triangulated plane graph the edges of which are represented
by straight lines. The triangulation is called valid when the only intersections between its edges
are at the common endpoints. It is known by [32] that every planar graph G has a valid straight
line representation. Therefore, for any planar graph there exist a set of points p such that the
induced triangulated graph T (G; p) is valid. A way to construct such a graph is described by
[112]. The boundary vertices of G are mapped to a convex polygon with the same number of
vertices and in the same order. Then, the interior vertices are placed such that each vertex is the
centroid of its neighboring vertices. This was extended by [34] who has proven that the vertices
can be any convex combination of its neighboring vertices.

vi =
∑

j∈Ni
wijvj

∑

j∈Ni
wij = 1

wij > 0

(3.1)

Consequently, for �nding a one-to-one bijective mapping for a mesh with an open boundary to
a convex parametric domain (unit disk, unit square), a su�cient condition is to �nd a set of
positive weights that satisfy (3.1) and solve the corresponding linear system for those weights.
The resulting system has always a unique solution provided that the boundary vertices are �xed.
A straightforward choice is to choose equal weights so that each vertex represents the centroid
of its neighbors. This is also referred to as barycentric mapping.

Though through this process a valid triangulation can always be created with no folded
triangles, it is generally desirable that the resulting mapping minimizes a distortion metric that
is related with some distinct shape characteristics of the original mesh.

Two possible sets of weights are described by [27] that produce authalic and conformal pa-
rameterizations. Nevertheless, these weights might be negative when the polygon is not convex
[33]. Thus, although the �nal parameterization is conformal or authalic it may contain folded
triangles. In addition, since the weights are not positive, the corresponding linear system may be
singular. To overcome this limitation for conformal weights we can clamp the angles between 0o

and 90o degrees and therefore have strictly positive weights. Another possible set of weights are
the mean value coordinates introduced by [33]. These weights are not symmetric (wij 6= wji).

3.2.2 Spherical parameterization by reduction to the planar case
The methods for planar parameterizations [119] can be directly extended to a spherical domain by
reducing the spherical parameterization problem to the planar case. A �rst approach to reducing
the problem is to select two vertices as the poles (north and south) of the parameterization.
Subsequently, a geodesic path must be established between the poles over the mesh surface.
The path connecting the two poles de�nes the boundaries of the parameterization and thus the
spherical surface can be converted to a unit disk. If equal weights are chosen and the poles are
selected based on the largest distance along the z direction in object space, the resulting system
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is the linear system proposed by [20]. This approach yields a valid spherical parameterization
for every mesh. Nevertheless, the choices for the poles and the path directly a�ect the quality
of the parameterization.

Moreover, it turns out that selecting a good path is a di�cult problem on its own and usually
there is severe distortion in the �nal parameterization. The underlying issue is that the mapping
of a set of boundary vertices to a �xed convex polygon is far from trivial. This is due to the
fact that in most cases the boundary vertices do not form a convex polygon. Therefore, the
obtained parameterizations exhibit high deformation. To tackle these di�culties [75] construct
parameterizations with free boundaries. Nevertheless, the seams introduced by the cuts in the
mesh may be undesirable for certain applications.

A second approach to reduce the problem is to cut out a triangle from the mesh, leaving
an open boundary, and to make the mesh homeomorphic to the unit disk. This approach, also
referred to in the literature as stereo mapping, usually results in heavily distorted parameteriza-
tions since using the corresponding unit triangle as a boundary tends to cluster the remaining
vertices in the center of the triangle.

3.3 Spherical parameterizations

The main drawback of extending the planar methodologies to the spherical domain is the unnec-
essary distortion introduced in the parameterization. Therefore, it is advantageous to directly
parameterize the meshes on the spherical domain to allow seamless continuous parameteriza-
tions of genus-0 meshes. Unfortunately, generalizing the barycentric coordinates and the planar
parameterization theory to a spherical domain is not straightforward. Since the domain is non-
planar, expressing a vertex on the sphere as a convex combination of its neighbors is in general
not feasible. This would imply for example that if the neighbors of a vertex are co-planar, then
the vertex should also lie on the same plane. Nevertheless, the mathematical aspects of the pa-
rameterization on the spherical domain have received increasing attention in the last few years.
One important observation according to [44] is the following:

Theorem 3.1. If each vertex position is expressed as some convex combination of the positions
of its neighbors projected on the sphere (3.2), then the formed spherical triangulation is valid.

vi =

∑
j∈Ni �ijvj

||∑j∈Ni �ijvj ||∑

j∈Ni
�ij = 1

�ij = �ji
�ij > 0

(3.2)

The spherical triangulation may be controlled by choosing a proper set of symmetric weights,
similarly to the planar case. The system of equations (3.2) can also be expressed as a set of non-
linear equations for the nodes i = 1; :::; n of a mesh, seeking solution for the positions of the
vertices (xi; yi; zi) and the n auxiliary variables ai,
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aixi −
∑

j∈Ni
�ijxj = 0

aiyi −
∑

j∈Ni
�ijyj = 0

aizi −
∑

j∈Ni
�ijzj = 0

x2
i + y2

i + z2
i = 1

(3.3)

The physical interpretation of the equations (3.3), assuming that the weights �ij correspond
to spring constants, is the minimization of the sum of the squared weighted lengths (spring
energy) subject to the vertices being on the sphere. Therefore, the energy that is minimized is:

E(v1; v2; :::; vn) =
1
2

∑

(i;j)∈E
�ij ||vi − vj ||2 (3.4)

Generally, a solution of this system is not unique. Without restricting some degrees of
freedom, there may be in�nite solutions due to the possible rotations over the sphere. ore
importantly, there are degenerate solutions that satisfy (3.3). The most obvious one is observed
when ai = 0 where all the vertices of the parameterization collapse to one point on the sphere.
Another possible degenerate solution can occur when the mesh contains a Hamiltonian cycle
and the vertices are mapped to the equator of the sphere. Other degenerate solutions have been
presented (for example by [44]).

Moreover, even a robust and stable non-linear solver may calculate degenerate solutions for
the system of equations (3.3). A key observation that sheds light on this situation, is that as
the solver iterations proceed, some triangles start growing and eventually pass through the equa-
tor of the sphere. The fundamental problem is that the spherical energy minimum occurs at
a collapsed con�guration, since the area of a planar triangle is always smaller than the area of
the corresponding spherical triangle. Such cases are problematic, because there is an estimation
error introduced in the calculation of the distortion metric over the surface. This error increases
disproportionately with the size of the triangles. Therefore, the non-linear optimizer may mini-
mize the corresponding distortion metric (energy function) over the sphere surface by increasing
the size of the triangles with the largest error.

One way to avoid these degenerate solutions is to constrain three or more vertices, thus
constraining the solver. However, in practice there are two problems: (i) the extra constraints
introduce additional distortion in the parameterization, making the determination of a proper
set of constrained vertices di�cult, (ii) in addition, without paying special attention to the set
of the constrained vertices, the non-linear problem may become infeasible.

3.3.1 An energy decreasing algorithm
Summarizing the above observations, if we try directly to solve (3.3), the following problems
occur,

• Non convexity. The constraints x2
i +y2

i +z2
i = 1 are not convex. Therefore classical convex

minimization cannot be used directly.
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• Non uniqueness. The energy does not have a unique minimum and degenerate solutions
always exist.

• High computation cost. Due to the above reasons, the usual approach of non-linear opti-
mization has a high computation cost.

An approach to tackle these di�culties was proposed by [37]. Here a penalty term d−2
min,

where dmin is the minimum distance of each triangle from the sphere center, was added in the
corresponding planar quadratic energy and therefore there is no need to constrain any vertices
or reproject the solution to the sphere. The motivation of this approach is to provide an upper
bound of the spherical energy by scaling the corresponding planar energies of the triangles.
Therefore, the corresponding problem (3.3) is transformed to an unconstrained one, that can be
solved with standard methods.

Another possible approach to overcome the high computation cost is to use iterative pro-
cedures that attempt to converge to a valid parameterization by applying local improvement
(relaxation) [4]. The idea is to reduce the spring energy of the points with Laplacian smooth-
ing ignoring the sphere constraint and renormalise the solution to obtain valid spherical points.
However, these algorithms are heuristic based and there is no guarantee that they will termi-
nate. In practice, the iterative process can collapse and may require a restart. Furthermore, the
termination criteria for such an algorithm are di�cult to de�ne. For example, a similar method
is used by [93] to calculate an initial guess for the solution. However, the residual reduction
criterion proposed to terminate the method is usually too conservative and the initial guess is far
away from the solution. Thus, there is the need to complement it with a non-linear optimization
step.

Moreover, techniques that rely upon non-linear software need to devise new parallel solutions
and strategies to conform to new parallel architectures. For this reason, the e�ectiveness of all
the techniques relying upon non-linear optimization is limited on inherently parallel architectures
like modern GPUs.

To e�ciently employ iterative procedures, a central issue is the renormalization step. The
iterative procedure to solve the problem with an energy decreasing step and the renormalization
of the solution can be described through the following steps:

1. Let vertices v0
1; :::; v0

n be an initial guess for the solution

2. For j = 0 : : : until convergence

(a) Find vj+1
1 ; :::; vj+1

n such that E(vj+1
1 ; :::; vj+1

n ) ≤ E(vj1; :::; v
j
n)

where vj+1
i may not belong to the sphere

(b) Set vj+1
i = vj+1

i
||vj+1
i || for i = 1; :::; n

The question that arises is whether the energy is still decreasing after the renormalization
step and whether the algorithm converges to a solution of (3.3). The problem is the unknown
behavior of the energy after the normalization. In other words, the gain obtained by the energy
decreasing step can be lost during renormalization.

It is therefore evident that the extension of iterative schemes in the spherical domain is not
straightforward. A useful observation for the energy is the following,
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Proposition 3.1. If vi ∈ R3 and ||vi|| ≥ 1 for the nodes i = 1; :::; n of the mesh, then vi
||vi|| is on

the sphere surface and moreover for the energy (3.4) with barycentric or conformal weights :

E(
v1
||v1|| ; :::;

vn
||vn||) ≤ E(v1; ::; vn) (3.5)

Proof. First we observe that ∀(i; j) :

|| vi||vi|| −
vj
||vj || ||

2 ≤ ||vi − vj ||2

||vi|| ≥ 1

||vj || ≥ 1

(3.6)

Therefore, by the de�nition of the energy (3.4), and because the barycentric and the (clamped)
conformal weights [27] are positive, moving each vertex to the sphere cannot increase any term
of the summation.
The above observation motivates the following iterative procedure,

1. Let vertices v0
1; :::; v0

n be an initial guess for the solution

2. For j = 0 : : : until convergence

(a) Find vj+1
1 ; :::; vj+1

n such that E(vj+1
1 ; :::; vj+1

n ) ≤ E(vj1; :::; v
j
n)

subject to vj+1
i · vji = 1

(b) Set vj+1
i = vj+1

i
||vj+1
i || for i = 1; :::; n

At each iteration, we seek a solution that minimizes the energy function subject to the con-
straint that the new vertices should be coplanar with the vertices in the previous iteration. Thus,
the nonlinear constraints are converted to linear ones. Furthermore, the energy is decreasing after
the renormalization step since ||vj+1

i || ≥ 1. For the cases of barycentric and conformal quadratic
energy functions, the energy minimizing problem in step 2(a) is a saddle point problem.

Saddle point problem solution
We �rst present an iterative process for solving the generic saddle point problem and then we
reduce our problem to this process. Consider the block 2x2 linear system of the form,

(
A B
BT 0

)(
u
v

)
=

(
r
q

)

A ∈ Rn×n; B ∈ Rn×m; n ≥ m

(3.7)

It is known that the solution of the linear system is equivalent to minimizing a function f
subject to a set of m linear constraints [14],

min
u
f(u) =

1
2
uTAu− uT r

s.t. BTu = q
(3.8)
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When A is a symmetric positive semide�nite matrix, this equality-constrained quadratic
problem describes a (generalized) saddle point problem. In this case the variable v represents the
vector of Lagrange multipliers. Any solution (u∗; v∗) of (3.7) is a saddle point for the Lagrangian

L(u; v) =
1
2
uTAu− rTu+ (Bx− q)T v (3.9)

where a saddle point (u∗; v∗) ∈ Rn+m satis�es

L(x∗; y) ≤ L(u∗; v∗) ≤ L(u; v∗); u ∈ Rn and v ∈ Rm (3.10)

Under the following conditions there is a solution to the system (3.7) and it is unique,

Theorem 3.2. Let,

1. A be a real symmetric positive semi-de�nite n× n matrix

2. B be a real n×m matrix with full column rank

3. A and BT have no nontrivial null vectors in common

Then (3.7) has a unique solution for u,v.

Proof. See Theorem 2 by [14].

Given a non zero vector u0 and assuming a splitting of the matrix A = M −N , an iterative
scheme to solve (3.7) is the following,

(
A B
BT 0

)(
uk+1

vk+1

)
=

(
N 0
0 0

)(
uk

vk

)
+

(
r
q

)
(3.11)

Therefore to solve (3.7) a procedure is,

1. Solve Mũk+1 = Nuk + r

2. Solve (BTM−1B)vk+1 = BT ũk+1 − q

3. Solve M(uk+1 − ũk+1) = −Bvk+1

If A = D − L − LT , where D is a nonsingular diagonal matrix and L is a strictly lower
triangular matrix, then the iterative scheme is convergent for the following choices of M and N
[28],

M =
1
!
D;N =

1− !
!

D + L+ LT (3.12)

with ! > 0 so small that 2
!D −A is a positive de�nite matrix.

M =
1
!
D − L;N =

1− !
!

D + LT (3.13)

with 0 < ! < 2.
(3.12) and (3.13) are the usual Jacobi and Gauss-Seidel iterations with over relaxation pa-

rameter !.
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To map our problem to (3.11), we �rst establish some necessary notation. Without loss of
generality, we assume that some vertices are �xed on the sphere and those are numbered last.
Therefore, let n and b represent the number of free and �xed vertices respectively. Next, we
de�ne the weighted m×m block matrix Λ for the vertices of the mesh,




∑m
j w1jI3 −w12I3 · · · −w1mI3
−w21I3

∑m
j=1w2jI3 −w2mI3

...
... . . . ...∑m

j=1wm−1jI3 −wm−1mI3
−wm1I3 −wm2I3 · · · −wmm−1I3

∑m
j=1wmjI3




where m = n+ b, wij is the weight (conformal or barycentric) of the edge connecting i and
j vertices, and I3 is the 3 × 3 identity matrix. Moreover, wij = 0 i� (i; j) =∈ E. In addition,
E,V denote the edges and the vertices of the mesh, and (xi; yi; zi) are the coordinates of the ith
vertex of the mesh. We further denote by Λ̃ = [AU ; AC ] the matrix that is derived from Λ by
deleting its last 3b rows. AU contains all of the weights corresponding to the free vertices and is
an 3n× 3n matrix, AC contains all of the weights corresponding to the �xed vertices and is an
3n× 3b matrix.

We use the following matrices to minimize the quadratic energies for barycentric, and con-
formal mesh mappings,

A := AU ; A ∈ R3n×3n (3.14)

B :=




x1

y1 0
z1

. . .

. . .

. . .
xn

0 yn
zn




; B ∈ R3n×n (3.15)

Furthermore, we have the vectors,

uk = [xk1; y
k
1 ; z

k
1 ; :::; x

k
n; y

k
n; z

k
n]
T ; uk ∈ R3n (3.16)

r = −AC [xn+1; yn+1; zn+1; :::; xn+b; yn+b; zn+b]T ; r ∈ R3n (3.17)

q = [1; :::; 1]T ; q ∈ Rn (3.18)

using the splitting of A, M = 1
!D and N = 1−!

! D + L+ LT (Jacobi iteration) we observe that
BTM−1B = !D (since the vertices are on the sphere). Furthermore, assuming that we use the
normalized weights at each vertex, the iterative procedure becomes,
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1: for k=0 until convergence do
2: for i=1 until n do
3: [x̃i; ỹi; z̃i] = (1− !)[xki ; yki ; zki ] + !(

∑n
j=1;j 6=iwij[x

k
j ; ykj ; zkj ] +

∑n+b
j=n+1wij[xj; yj; zj])

4: �i = [xi; yi; zi]T [x̃i; ỹi; z̃i]− 1

5: [xk+1
i ; yk+1

i ; zk+1
i ] = [x̃i; ỹi; z̃i]− �i[xi; yi; zi]

6: end for
7: end for

Algorithm 3: Iterative Saddle point solution

Proposition 3.2. The iterative algorithm 1 converges to the unique solution of the saddle point
problem (3.7) for symmetric weights.

Proof. We �rst prove the conditions for Theorem 2. Because the mesh is connected and a positive
weight is associated with each edge, A is irreducible. In addition, |aii| ≥

∑3n
j=1;j 6=i |aij | for each

row. Equality is true if the corresponding vertex is connected only with free nodes. Consequently,
if the weights are symmetric and at least one node is �xed, the matrix A is a hermitian irreducibly
diagonally dominant matrix, and therefore positive-semide�nite with ker(A) = 0. In addition,
it is obvious that the matrix B has full column rank since at least one of the components of
each vertex will be non-zero in the spherical domain. Therefore, the conditions of Theorem 2 are
satis�ed. Furthermore, 2

!D −A is positive de�nite for 0 < ! < 1 since it is a strictly diagonally
dominant and irreducible matrix with positive diagonal elements. Thus, the iterative procedure
converges to the unique solution.

3.4 Parallel parameterization

We have developed a parallel implementation of the algorithm presented in Section 3.3. The soft-
ware is available at http://www.cs.uoi.gr/~fudos/smi2011.html. The inherent parallelism of
the speci�c method enables us to map the problem to the hardware as e�ciently as possible. As
an API for our implementation, we have used OpenCL 1.1 to achieve almost direct portability
of our core source to both GPU and CPU based architectures.

To maximize the performance of our parallel implementation we have considered a number
of key factors. A characteristic that a�ects parallel algorithm e�ectiveness on all architectures
is the number of sequential steps of the algorithm. To maximize the parallel execution we have
employed the Jacobi iteration.

We present heuristics that optimize the parallel performance of the proposed algorithm. We
have investigated the employment of three optimization principles and we have evaluated their
e�ect on the performance for both GPU and multicore architectures:

• Optimize memory usage to maximize instruction throughput.

• Test for convergence only every n iterations have been carried out, to reduce the data
synchronization overhead.

• Increase the processing unit cache hit ratio.
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One important consideration in modern GPUs are the e�ective memory usage to achieve
the maximum memory bandwidth and the optimization of the instruction usage to achieve the
maximum instruction throughput [88]. To optimize the memory usage we have further minimized
the data transfer between the host and the GPU device by reducing the number of residual
tests needed for the convergence test for the solution of the saddle point problem. Since the
convergence of the Jacobi is guaranteed, it is not necessary to test the convergence of the linear
system at every iteration. ore speci�cally, we have opted to perform convergence tests only every
a certain number of iterations. This is bene�cial to modern GPUs since it is better to increase
the OpenCL kernel invocations on the GPU and reduce the synchronization between the host
and the device.

We have conducted experiments with equal and conformal weights. Since conformal weights
can be negative in certain cases, all input angles can be clamped between 5o and 85o degrees as
suggested by [37]. For all the examples, the algorithm termination � for the residual reduction
was set to 10−7.

To reduce the data synchronization overhead, the residual of the saddle point problem was
tested for convergence every 1000 iterations. The sparse residual check policy has a large impact
on GPUs and especially on GPUs with slower buses (PCIe 1.0).This has a small positive e�ect
on multicores as well. Table 3.1 summarizes the results of the parameterization on di�erent
commonly used models [1, 18] using an NVIDIA GTX 480. We have also obtained performance
results by carrying out our algorithm on two multi core processors, an Intel Core Duo E6600
and an Intel Core i7-870. Figure 3.1 compares the performance of these architectures. Table 3.3
illustrates the di�erence in running times on the GPU and on the CPU, while Table 3.4 presents
a direct comparison with the running times of the publicly available parameterization software
by [93]. For the results of Table 3.4 we have applied our approach to the models accompanying
the software, using though a much smaller residual target than the one used by [93].

Table 3.1: Numerical results for �nding a spherical parameterization on the GPU with
di�erent models. In this context, the number of iterations is the number of saddle point
problems solved.

model map # vertices # faces # iterations L2 res (×10−8) time (secs)

Suzanne Barycentric 7573 15142 4 5 0.575
Suzanne Conformal 7573 15142 3 5 0.589
Gargoyle Barycentric 24990 49976 4 2 1.706
Gargoyle Conformal 24990 49976 3 6 2.326
Igea Barycentric 25586 51168 3 4 0.908
Igea Conformal 25586 51168 2 3 0.936
Lion Vase Barycentric 38952 77900 3 3 1.567
Lion Vase Conformal 38952 77900 3 3 2.053
Homer Barycentric 78850 157696 3 1 4.923
Homer Conformal 78850 157696 3 4 10.920
Buste Barycentric 183580 367156 3 1 13.759
Buste Conformal 183580 367156 2 1 22.667
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Figure 3.1: Performance di�erence between GPU and CPU OpenCL implementation in
logarithmic scale. Results with vertex cache optimization are also included.
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Figure 3.2: Cache hit rate statistics on the GPU. Results with a vertex locality optimiza-
tion step from [95] are also shown for comparison.

Finally, many cache misses can be avoided by combining the method with preprocessing
techniques that further improve the cache locality of the mesh indices. Figure 3.2 presents
experimental results regarding the cache hit ratio for various models. The cache e�ciency is
decreased as the size of the model increases. As a fast preprocessing step, we have used the
vertex locality optimization proposed by [95]. The optimized results are also included in Table
3.2 for comparison. We observe that with the optimized meshes the computation time is reduced
up to 50% on the GPU. On multicore architectures this has no e�ect since the CPU cache is
usually large enough to �t the entire mesh index.
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Table 3.2: Numerical results for barycentric mapping on the GPU with di�erent levels of
detail
model # vertices # faces iters L2 res (×10−8) time (secs) opt time (secs)

Homer (Lod1) 5002 10000 4 10 0.577 0.483
Homer (Lod2) 10002 20000 4 2 1.059 0.725
Homer (Lod3) 20002 40000 4 2 1.961 1.224
Homer (Lod4) 40002 80000 3 2 3.986 2.178
Homer (Original) 78850 157696 3 1 4.923 3.636

Table 3.3: Comparison of running times (in secs) between GPU and CPU with di�erent
core con�gurations.

model map # vertices # faces iters GTX 480 i7-870(4) i7-870(2) i7-870(1)

Gargoyle Barycentric 10002 20000 4 0.946 1.186 1.950 3.135
Gargoyle Conformal 10002 20000 4 0.949 1.045 1.685 2.714
Torso Barycentric 11362 22720 4 0.718 1.107 1.731 2.808
Torso Conformal 11362 22720 3 0.870 1.123 1.747 2.745
Skull Barycentric 20002 40000 3 0.649 1.076 1.719 2.904
Skull Conformal 20002 40000 2 0.643 0.920 1.373 2.230
Bunny Barycentric 67038 134074 3 1.217 3.616 6.635 12.038
Bunny Conformal 67038 134074 2 2.158 3.778 7.737 14.118

3.5 Applications

3.5.1 Mesh segmentation
Di�erent measures have been used to detect structural features on meshes such as curvature based
computations [121], average error from �tting with surface patches, planes, cylinders or spheres
[73, 9], dihedral angles of adjacent triangles [123], electrical charge density distribution [118],
region atness or smoothness [53], geodesic distances [60] and convexity [90]. Such measures
have been used in conjunction with region growing [97], watershed functions [67], reeb graphs
[6], skeletons [76], clustering [60] and hierarchical clustering [42] and segmentation [9], boundary
extraction [72], Morse theory [113] or probabilistic �elds [90]. For an extended survey of mesh
decomposition techniques the reader is referred to [2] and [8].

[77] and [78] present a shape decomposition and skeletonization method for polyhedrons that
is based on approximate convex decomposition. This principle was used by [110] to decompose
point clouds into components that represent features by using the concavity intensity to detect
saddle points and the discrete curvature to detect edges. A more general principle that can handle
even complex (non star-shaped) objects is to derive a minimal length 3D path (curve segment)
to connect the point to the convex hull without crossing the mesh. Since the convex hull has
a straightforward spherical parameterization, �nding a path that connects v to the convex hull
corresponds to blowing the interior of the object until it expands to the convex hull. This is a
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Figure 3.3: Visualization of the area stretch factor.

Figure 3.4: Visualization of the ratio between the mapped area and the original surface.
Blue and red colors correspond to high and low distorted areas respectively.
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Table 3.4: Comparison of running times of our method vs the one by [93] on the same
CPU (E6600).

model map # vertices # faces [93] method (secs) our method (secs)

Gargoyle Barycentric 10002 20000 23.58 3.422
Gargoyle Conformal 10002 20000 62.86 2.734
Torso Barycentric 11362 22720 26.50 2.704
Torso Conformal 11362 22720 84.49 2.719
Skull Barycentric 20002 40000 67.73 2.828
Skull Conformal 20002 40000 87.26 2.469

CPU-intensive process that can be simulated with a spring system [78, 85]. Our e�cient parallel
spherical mesh parameterization can derive a measure that is somehow related to the minimum
path by computing the deformation that has been applied to the adjacent triangles of a vertex.
This yields a more robust measure that can be computed exactly very e�ciently. As compared
to very sophisticated techniques such as the one presented by [61] that uses mesh coarsening,
DS transforms and re�nement, our work yields results of comparable quality much faster. Post
processing can always be used for application speci�c mesh-segment re�nement.

Our approach is based on the key idea that the spherical embedding represents a pose invari-
ant representation of the mesh for quasi articulated objects. Any spherical embedding is expected
to create some dense concentrations of faces on the sphere due to the prominent extremities of
the mesh. The extruding parts of the meshes, for example the limbs, are expected to be mapped
to relatively small regions on the sphere. Therefore, the area stretching factor (ratio of area in
the surface and in the mapping) in those parts is expected to be much higher than in the rest of
the mesh. Moreover, in the case of the conformal map the angles are generally preserved in the
mapping. Therefore, the area distortion is a�ected more by the geometry of the model and less
by the distortion introduced in the mapped angles. Consequently, our thesis is that the spherical
embedding of a mesh contains a substantial amount of information about its geometric shape.
To illustrate, consider Figure 3.3 where the area stretch factor of the conformal parameterization
for the octopus model is depicted. Figure 3.4 visualizes the distortion of the parameterization in
four typical models with limbs.

De�nition 3.1. The Area stretch factor of a vertex v0 of a mesh denoted by A(v0) is the average
of the area stretch deformation of its adjacent faces.

Furthermore, we have carried out a number of experiments with a region growing approach
that takes advantage of the above observation. The method starts from an initial vertex (the
seed) and expands while a threshold in the variation of the area stretch factor is satis�ed. Figures
3.5 and 3.6 show the segmentation of four typical models and a comparison with the mesh seg-
mentation method presented by [60]. [60] quoted running times of a few minutes for segmenting
moderately sized meshes by relying on mesh simpli�cation to reduce the computation cost. To
compare the e�ciency of our method to theirs, it is important to note that our approach does
not require any pre-process or simpli�cation of the meshes. In all the experiments performed,
the running time for our segmentation method is dominated by the parameterization step. For
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meshes up to 100K triangles, the overall time was less than 5 seconds.

De�nition 3.2. A vertex v0 is called a seed candidate if and only if A(v0) exhibits a local
minimum or maximum at v0.

We �rst derive the candidate seeds for our model. Subsequently, the seeds are sorted in
descending order according to the area stretch factor and our region growing approach is instan-
tiated from these seeds. When a candidate seed is included in a new region it is removed from
the set. This results in a number of regions that represent object extremities.

3.5.2 Texture mapping
With our method angle-preserving parameterizations can be e�ciently obtained and are often
suitable for texture mapping. Figure 3.10 shows the di�erences between the parameterizations
using equal and conformal weights. Furthermore, in Figures 3.9, 3.11, 3.13 and 3.15 we have ap-
plied a checker texture to the meshes, by using the spherical coordinates of the parameterization
as uv coordinates, to visualize the deformation di�erences between the two types of parame-
terization. By acquiring this correspondence one may apply deformations a�ecting the area of
texture features of the original texture, prior to mapping it to our original mesh.

3.5.3 Shape search
One important goal of shape searching algorithms is to represent the mesh vertices with a pose
invariant representation [12, 55, 56, 101]. Initial tests showed that the spherical parameterization
can be used to �nd similar poses of meshes. The key idea is to compare the signatures derived
from the conformal mappings of the meshes. To derive the signature of a mesh we use the
histogram of the area stretch factor. Since a conformal mapping is independent of the resolution
of the mesh and preserves the consistency of the orientation, we can further make the signature
invariant to the tessellation of the mesh. This can be achieved with uniform or random sampling
of the meshes. Figures 3.7, 3.8 show the histograms obtained from various poses of the same
meshes. A thorough comparison of the proposed shape search measure to other approaches, in
terms of hits and misses, remains as future work.

Figure 3.5: Automatic mesh segmentation.
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(a) Octopus with
our method

(b) [60] (c) Homer with
our method

(d) [60]

Figure 3.6: Comparison of mesh segmentation results.
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Figure 3.7: Hand mesh.
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Figure 3.8: Elephant mesh.
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3.6 Summary

We have presented a simple and e�cient parallel numerical scheme to approximate a spherical
parameterization of a genus-0 mesh. We have successfully used our scheme to parameterize
meshes of up to 400K triangles in less than 25 secs.

We have carried out a large number of experiments to validate that our iterative method
converges to the actual bijective mapping. Using a number of standard graphical models, we
have con�rmed that in each case the L2 residual is decreased below a small tolerance value
(10−7).

A possible extension of our work would be a theoretical result of the convergence behavior.
This could be reached from the fact that the algorithm is energy-decreasing so that the iterative
solution follows a path close to the solution of the non-linear equations (3.3).

Finally, exploring other implementation options might result in improved computational
e�ciency. In particular, a more sophisticated iterative method for solving the saddle point
problem can be used to reduce the number of iterations required for convergence. Nevertheless,
our pro�ling tests show that our implementation is dominated by the memory access latency
and the data synchronization delay between the host and the GPU. Therefore, whether such an
improvement would be bene�cial remains to be determined.

(a) Barycentric (b) Conformal

Figure 3.9: Comparison of texture mapping results for the Fish model [1].
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Figure 3.10: Comparison of sphere mapping results for the Fish model.

(a) Barycentric (b) Conformal

Figure 3.11: Comparison of texture mapping results for the gargoyle mesh [1].
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Figure 3.12: Comparison of projection results for the gargoyle mesh.

(a) Barycentric (b) Conformal

Figure 3.13: Comparison of texture mapping results for the Lion Vase model [1].
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Figure 3.14: Comparison of sphere projection results for the Lion Vase model.

Figure 3.15: Texture mapping results for di�erent models from [1],[18].
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Chapter 4

Feature based morphing: an application
of spherical parameterization

4.1 Introduction

4.2 Related work

4.3 Topology preserving Spherical parameterization

4.4 Surface correspondence and interpolation

4.5 Feature-based morphing

4.6 Experiments and performance evaluation

4.7 Summary

4.1 Introduction

Feature-based computer-aided design has enabled e�cient and robust editing of complex CAD
models through e�ectively capturing designer intent [50]. There is an increasing trend to make
the CAD design process accessible to users with no previous CAD/CAM software experience.
To this end, researchers and manufacturing companies have proposed to mimic the way an artist
shapes a sculpture: start from a volume or object that is close to the intended target and
iteratively shape (morph) its parts to �nally render what the artist had in mind.

Our ultimate goal is to o�er a novel editing paradigm for CAD models that goes beyond
traditional CAD editing of mechanical parts. Towards this goal, we present an accurate and
robust feature-based morphing technique that can be applied between any pair of genus-0 objects.

Although there are quite versatile and accurate methods for 2D image morphing, the 3D case
remains an open problem both in terms of feasibility and accuracy.

Existing methods for 3D morphing can be categorized into two broad classes: volume-based
or voxel-based [74] and mesh-based or structural [62] approaches. In this work, we follow a
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mesh-based approach. The volume-based approach represents a 3D object as a set of voxels
usually leading to computationally intensive computations. The volume-based approach exhibits
better results in terms of boundary smoothness and rendering, since the intermediate morphs
are represented as volumes. Techniques such as marching cubes [82] are employed to acquire the
�nal polygonal representation used for rendering. Furthermore, most applications in graphics
use mesh-based representations, making mesh-based modeling more broadly applicable.

Although mesh morphing is more e�cient as compared to volume-based morphing, it re-
quires a considerable preprocessing of both the source and the target object. Mesh morphing
involves two steps. The �rst step establishes a mapping between the source and the target ob-
ject (correspondence problem), which requires that both models are meshed isomorphically with
a one-to-one correspondence. The second step involves �nding suitable paths for each vertex
connecting the initial position to the �nal position in the merged mesh topology (interpolation
problem). due to the increased space complexity of the representation.

In this work, we introduce a sound and complete approach to morphing between any two
genus-0 objects. Recall that genus-0 objects are by de�nition homeomorphic to the sphere. Our
mapping works in two phases. In the �rst phase, we calculate an initial bijective mapping. In the
second phase, we optimize the mapping to achieve a better placement under speci�c geometric
criteria and topological constraints. We also present an improvement of this approach that
takes into consideration 3D features and derives a feature correspondence set to improve the
�nal visual e�ect. This is a very important characteristic for similar objects, as in the case of
morphing between two articulated human representations. Object alignment, feature detection
and feature point matching is performed automatically without user intervention.

The rest of this chapter is structured as follows. Section 4.2 presents related work on 3D
morphing. Section 4.3 presents the spherical parameterization step of our approach. Section
4.4 briey describes the e�cient computation of the intersections among the polygons on the
sphere and the calculation of the interpolation trajectory. Section 4.5 presents an alternative
mapping method that can be applied to one of the morphed objects based on the mapping of
the other object and a feature point correspondence list of the two meshes. Section 4.6 presents
an experimental evaluation of our method and some visual morphing results. Finally, Section
4.7 o�ers conclusions.

4.2 Related Work

Most surface-based mesh morphing techniques employ a merging strategy to obtain the cor-
respondence between the vertices of the input model. The merging strategy may be either
automatic or user speci�ed. [62] proposes an algorithm for the morphing of two objects topolog-
ically equivalent to the sphere. The mapping presented is accomplished by a mere projection to
the sphere and thus is applicable solely to star shaped objects.

[57] use a spring system to model the mesh and gradually force it to expand or shrink on the
unit sphere by applying a force �eld. Methods using springs do not always produce acceptable
mappings especially when handling complex non convex objects. We overcome this problem
successfully in our approach.

In [4, 124], a spring-like relaxation process is used. The relaxation solution may collapse

68



to a point, or experience foldovers, depending on the initial state. Several heuristics achieving
convergence to a valid solution are used.

[105, 94, 38] describe methods to generate a provable bijective parameterization of a closed
genus-0 mesh to the unit sphere. The projection involves the solution of a large system of non-
linear equations. A set of constraints on the spherical angles is maintained to achieve a valid
spherical triangulation. We have adapted some of these ideas in our work.

[100] present a method that directly creates and optimizes a continuous map between the
meshes instead of using a simpler intermediate domain to compose parameterizations. Progres-
sive re�nement is used to robustly create and optimize the inter-surface map. The re�nement
minimizes a distortion metric on both meshes. [68] present a method that relies on mesh re�ne-
ment to establish a mapping between the models. First a mapping between patches over base
mesh domains is computed and then mesh re�nement is used to �nd a bijective parameteriza-
tion. An advantage of this approach is that it naturally supports feature correspondence, since
feature vertices are required as user input for the initial patch mapping. However, it requires
user supervision and interaction whereas our method is fully automated.

In [71], reeb-graphs and boolean operations are used to extend spherical parameterization for
handling models of arbitrary genus. Existing methods for producing valid spherical embeddings of
genus-0 models can be integrated into their framework. In that respect, this work is orthogonal
to our approach. Another method that uses reeb-graphs for morphing topologically di�erent
objects of arbitrary genus is [59]. The method speci�es the correspondence between the input
models by using graph isomorphic theory. The super Reeb graph, which has the equivalent
topological information to the Reeb graphs of the two input objects, is constructed and used
to conduct the morphing sequence.This method is very interesting from a theoretical point of
view, but in practice the resulting matching may be unintuitive. Our method obtains intuitive
matching results for similar objects and produces visually smooth morphing sequences.

Finally, [79] provide e�cient techniques for morphing 3D polyhedral objects of genus-0. The
emphasis of the method is on e�ciency and requires the de�nition of feature patches to per-
form 2D mapping and subsequent merging. Their method does not avoid self intersection and
requires embedding merging and user intervention for mapping. Our method overcomes these
shortcomings in the expense of considerable increase in preprocessing time for mapping.

The method presented in this work overcomes the limitations of prior methods and allows for
a totally automated and appropriate for morphing mapping of an object of genus-0 surface into
a 2D space with spherical topology. An initial mapping over the unit sphere is computed and
used as initial state and is then improved by employing nonlinear optimization. For smoother
morphing that exploits the high level geometric structure we have introduced a feature-based
approach. Feature correspondence is performed automatically without any user intervention.

4.3 Topology preserving spherical parameterization

4.3.1 Preliminaries
A planar triangulation is a simple triangulated plane graph whose edges are represented by
straight lines. The triangulation is called valid when the only intersections between its edges are
at the common endpoints. It has been shown by Fary et al [32] that every planar graph G has a
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valid straight line representation. Therefore, for any planar graph G there exists a set of points
p such that the induced triangulated graph T (G; p) is valid. A way to construct such a valid
triangulated graph is described in [112]. The boundary vertices of G are mapped to a convex
polygon with the same number of vertices and in the same order. Then, the interior vertices are
placed such that each vertex is the centroid of its neighboring vertices. This was extended by
Floater et al [34] who has proven that each vertex vi=(xi,yi) can be any convex combination of
its Ni neighboring vertices (4.1).

Consequently, for �nding a one-to-one bijective mapping for a mesh with an open boundary
B to a convex parametric domain P ∈ R2 (e.g. a unit disk), a su�cient condition is to �nd a set
of positive weights that satisfy (4.1) and solve the corresponding linear system for those weights.

vi =
∑

vj∈Ni
wijvj

∑

vj∈Ni
wij = 1

wij > 0

(4.1)

Theorem 4.1. The linear system (4.1), which expresses the position of each node as a convex
combination of its neighbors, has a unique solution if at least one of its nodes is �xed.

Proof. See Appendix.

Thus, the resulting system has always a unique solution provided that the boundary vertices
are �xed. A straightforward choice is to choose equal weights resulting in each vertex representing
the centroid of its neighbors. This is also called barycentric mapping. For a mesh M(V;E),
barycentric mapping minimizes the sum of the squares of edges lengths, with respect to a �xed
boundary. This is due to:

f(v1; v2; :::; vn) =
∑

(vi;vj)∈E
||vi − vj ||2

||vi − vj ||2 = (xi − xj)2 + (yi − yj)2
(4.2)

Since f is convex, it has a global minimum when @f=@xi = @f=@yi = 0 for i = 1; :::; n:

@f
@xi = 2

∑
vj∈Ni(xi − xj); @f

@yi = 2
∑

vj∈Ni(yi − yj) (4.3)

This is equivalent to solving the linear system (4.1) with equal weights:

∑

vj∈Ni
wixj = xi

∑

vj∈Ni
wiyj = yi

wi =
1
|Ni|

(4.4)
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The theory for planar parameterizations can be directly extended to a spherical domain by
reducing the problem to the planar case. The parameterization is then computed in polar coor-
dinates. One approach to alleviate the problem is to select two vertices as the poles (north and
south) of the parameterization. Subsequently, a geodesic path must be established between the
poles over the mesh surface. The path connecting the two poles de�nes the boundaries of the
parameterization and thus the spherical surface can be converted to a unit disk. Therefore, we
can directly use the previous analysis to compute one-to-one bijective mapping. If equal weights
are chosen and the poles are selected based on the largest distance along the z direction in object
space, the resulting system is the linear system proposed in [20]. This way a valid spherical pa-
rameterization can always be produced for every mesh. The quality of parameterization depends
on the choices for the poles and the connecting path. It turns out that selecting a good path is
a di�cult problem that a�ects the distortion in the �nal parameterization.

Another approach is to cut out a triangle from the mesh, leaving an open boundary, and
make the mesh homeomorphic to the unit disk. This approach, also referred to in literature as
stereo mapping, usually results in very distorted parameterizations since using the corresponding
unit triangle as a boundary tends to cluster the remaining vertices in the center of the triangle.

As explained, the main drawback of the previously described techniques is the unnecessary
distortion introduced by the parameterization. Unfortunately, generalizing the barycentric co-
ordinates and the planar parameterization theory to a spherical domain is not straightforward.
Since the domain is non-planar, expressing a vertex on the sphere as a convex combination of
its neighbors is not feasible in general. This would imply for example that if the neighbors of a
vertex are co-planar, then the vertex should also lie on the same plane. Nevertheless, it turns
out that the following holds:

Theorem 4.2. If each vertex position is expressed as some convex combination of the positions
of its neighbors projected on the sphere (4.5), then the formed spherical triangulation is valid.

vi =

∑
vj∈Ni wijvj

||∑vj∈Ni wijvj ||∑

vj∈Ni
wij = 1

wij = wji
wij > 0

(4.5)

Proof. This is an immediate result of Theorem 2 in [44].

Problem (4.5) can be expressed as a set of 3n−3 non-linear equations for the nodes i = 1; :::; n−1
of the mesh, where n = |V | is the number or vertices. The equation for the last vertex is
redundant in the case of a connected triangular mesh. We should also introduce n equations
that constrain the vertices to lie on the unit sphere. We then seek the positions of the vertices
vi(xi; yi; zi) and the n auxiliary variables ai:
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aixi −
∑

vj∈Ni
wijxj = 0; i = 1; : : : ; n− 1

aiyi −
∑

vj∈Ni
wijyj = 0; i = 1; : : : ; n− 1

aizi −
∑

vj∈Ni
wijzj = 0; i = 1; : : : ; n− 1

x2
i + y2

i + z2
i = 1; i = 1; : : : ; n

(4.6)

In general, a solution to this system is not unique. Without removing some degrees of
freedom there are in�nite solutions due to the possible rotations over the sphere (three degrees
of freedom). More importantly, there are degenerate solutions that satisfy (4.6). The most
obvious one is observed when ai = 0 where all vertices of the parameterization collapse to one
point on the sphere. Another possible degenerate solution can occur when the mesh contains a
Hamiltonian cycle and the vertices are mapped to the equator of the sphere. Other degenerate
solutions also exist, see e.g. [44]. We can eliminate the in�nite solutions if we �x three degrees of
freedom (for example vertex vn and an angle that will determine a unit circle on which a second
vertex lies). However, even if we manage to avoid degenerate solutions we may still have a �nite
but exponentially large number of solutions (see e.g. [40, 107]) that we may have to eliminate
by overconstraining or by introducing inequalities.

Even a robust and stable non-linear solver may converge to degenerate solutions for the
system of equations (4.6). A key observation is that, as the solver iterations proceed, some
triangles start growing and eventually pass through the equator of the sphere. The fundamental
problem is that the spherical energy minimum occurs at a collapsed con�guration. This situation
occurs because the continuous spherical energy is approximated by a quadratic energy function
calculated over the mesh triangles. Therefore, since the area of a planar triangle is always smaller
than the area of the corresponding spherical triangle, an estimation error is introduced in the
calculation of the energy over the surface. This error increases disproportionately with the size
of the triangles. Therefore, the non-linear minimizer may minimize the corresponding distortion
metric (energy function) over the sphere surface by increasing the size of the triangles with the
largest error.

One common �x to avoid these degenerate solutions is to �x three or more vertices, thus con-
straining the solver. In practice however there are two problems, the extra constraints introduce
additional distortion in the parameterization, and it is di�cult in general to determine a proper
set of �xed vertices. In addition, without paying special attention to the set of the constrained
vertices, the non-linear problem may become infeasible.

Another important issue with the system of equations in (4.6) is that there is no guarantee
that the solution is bijective in the case of non-symmetric or negative weights. Therefore, adapt-
ing the weights for morphing is di�cult because weights for conformal mappings can be negative
and weights for authalic mappings are non-symmetric [27].

Summarizing the above observations, if we try directly to solve (4.6), the following problems
occur:

• Non convexity. The constraints x2
i +y2

i +z2
i = 1 are not convex. Therefore classical convex

minimization cannot be used directly.
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• Non regularity. Due to non-convex constraints, uniqueness and higher regularity of solu-
tions cannot be expected [49].

• Non uniqueness. The energy does not have a unique minimum and degenerate solutions
always exist.

An approach to tackle these di�culties was proposed in [38]. Here a penalty term d−2
min,

where dmin is the minimum distance of each triangle from the sphere center, was added in the
corresponding planar quadratic energy and the constraints were removed. The motivation of
this approach is to provide an upper bound of the spherical energy by scaling the corresponding
planar energies of the triangles. Therefore, the corresponding problem (4.6) is transformed to
an unconstrained one, that can be solved with standard methods. However, this approach is
possible to restrict the minimize process and the convergence properties are unclear since no
theoretical guarantee is provided.

In the method presented in this work, we overcome the above di�culties by employing a two
step approach. An initial bijective parameterization over the unit sphere is computed and is
used as an initial guess for a nonlinear optimization process. The optimized parameterization is
guaranteed to be bijective by enforcing a proper set of constraints.

4.3.2 Initial spherical parameterization
A possible technique that one can use to obtain an initial parameterization is an iterative process
that attempts to converge to a valid parameterization by applying local improvement (relaxation)
[4]. The principle for this improvement is to reduce the spring energy of the points with Laplacian
smoothing ignoring the sphere constraint and renormalise the solution to obtain valid spherical
points. In practice however, the iterative process may converge to a degenerate solution and will
then require a restart. Since Laplacian smoothing does not perform any triangle area balancing,
certain elements may collapse leading to a degenerate solution. The following key observation
motivates our approach,

Observation 4.1. Iterative projected Laplacian smoothing collapses after one or more elements
overgrow.

The above observation motivates an area balancing procedure where the new position of the
vertices is determined based on an area weighted sum. More speci�cally, the new position of
each vertex is determined by the weighted sum of the centroids of the surrounding triangles,
where the weights are determined by the area of each neighboring triangle. This approach yields
a smoother mesh with more balanced element area since larger polygons tend to attract vertices,
while smaller polygons tend to repulse them. Since the set of weights is positive, each individual
folding is not stable and is forced to unfold according to the area weighted centroid attraction
rule.

The above procedure is expressed concisely by the following steps:

1. Let (v1; v2; :::; vn)0 be an initial guess for the solution

2. For j = 0; until no folded elements exist; j++

(a) Set vj+1
i =

∑
vk∈Ni akck for i = 1; :::; n
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(b) Set vj+1
i = vj+1

i
||vj+1
i || for i = 1; :::; n

where ak is the area of the corresponding k-th triangle that is adjacent to vertex vi and ck is
the centroid of this triangle. The initial solution is obtained by normalizing the original vertex
coordinates (assuming the object is centered at the origin),

v0
i =

vi
||vi|| for i = 1; :::; n (4.7)

The normalizing denominator maintains vertices on the unit sphere.
We have used two alternative methods for obtaining an initial mapping: barycentric mapping

and area weighted Laplacian smoothing. In barycentic mapping, two polar coordinates are
determined for all vertices in two steps. Two vertices are selected as the poles (north and
south) for this process. The poles must not be too close as this will result in a poor initial
parameterization. Therefore, we have implemented this initial mapping by selecting as poles
the vertex pair with the largest distance between them (diameter of the solid). In Laplacian
smoothing, we use the area weighted variation. Figure 4.1 shows the results of the initial mapping
when applying the planar barycentric mapping method and Laplacian smoothing on the frog from
[1]. In general, Laplacian smoothing is faster and provides a robust unfolded initial mapping
while preserving similarities with the initial mesh.

(a) (b) (c) (d)

Figure 4.1: (a) The result of the initial mapping using the planar barycentric method, (b)
the Laplacian smoothing technique, (c) the result after optimization and (d) the original
frog model.

Objective Function: We use as the objective function f to be minimized the sum of all dot
products of every mapped vertex vsi with their corresponding initial position v0

i on the mesh.

f(v1; v2; :::; vn) =
∑

vi∈V
v0
i · vsi (4.8)

4.3.3 Optimized parameterization for morphing
For the optimized mapping we use the following objective function and set of constraints that
are appropriate for morphing:
Geometric Constraints: For each vertex vi we use the spherical constraints from (4.6) to keep
the vertices on the unit sphere surface.
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Start

(a) (b) (c)

Model A

Model B

Intersection

Figure 4.2: (a) Finding intersections in merged topology, (b) curve faces visited in clock-
wise manner and (c) triangulation

x2
i + y2

i + z2
i = 1 (4.9)

Topological Constraints: For each face fi of the mesh with vertices vi0; vi1; vi2 and for each vertex
of this face, each vertex should stay on the same side of the plane de�ned by the other two vertices
and the center of the sphere:

(vi1 × vi2) · vi0 > 0

(vi2 × vi0) · vi1 > 0

(vi0 × vi1) · vi2 > 0

(4.10)

The goal of our optimization approach is to �nd a valid spherical parameterization suitable
for morphing purposes. Since the minimization of the above objective function does not guar-
antee the validity of the �nal spherical parameterization, we must enforce this requirement with
additional topological constraints (4.10). These constraints guarantee that the �nal parameteri-
zation is valid provided that we initiate the solver with a valid solution. In addition, by using a
suitable tolerance � > 0 instead of 0, these constraints o�er control over the area of each face in
the �nal parameterization and thus degenerated elements are avoided.

The choice of the objective function is motivated by the observation that a mapping suitable
for morphing should introduce more distortion in the concave areas. Therefore, the structurally
important vertices of the mesh (for example those over the convex hull) are kept in their original
projected positions on the sphere, whereas the distortion is concentrated on the less signi�cant
concave areas. Figure 4.1 illustrates the optimized mapping for the frog, while Figure 4.14(a)
illustrates the �nal optimized mapping on the sphere for the Blender Suzanne model [18] and
the head model [1]. The preservation of the initial characteristics is apparent.

To solve the problem (4.8) under the constraints (4.9) and (4.10) for large meshes it is
important to have a stable and e�cient numerical procedure. We use the Ipopt software [114],
an implementation of the primal-dual interior point approach for nonlinear programming. This
approach provides an e�cient method for handling problems with large numbers of inequality
constraints. Furthermore, interior-point methods allow convergence from poor starting points
that may appear when computing an initial solution from methods such as the barycentric
mapping (see Figure 4.1(a)). Under mild assumptions, it can be shown that such a procedure
converges to a local solution of the original problem [35]. Moreover, since this is a convex
optimization problem if a local minimun exists, then it is a global minimum. For all the examples
the optimization process successfully terminated, satisfying the convergence tolerance error we
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have used (10−6). As far as e�ciency is concerned the experimental evaluation of Section 4.6
indicates an O(|V |2) behavior for the NL optimization step.

4.4 Surface correspondence and interpolation

Following the successful mapping of two meshes MA and MB on the sphere, a merging process
of the two topologies is performed. The purpose of this step is to create a �nal merged topology
that is suitable for navigating back and forth to the original models.

This process requires each projected edge of one model to be intersected with each projected
edge of the other. The algorithm to compute this step e�ciently is based on the observation
that starting from an intersection over an edge we can traverse all the remaining intersections
by exploiting the topological information contained in the models. The complexity of this step
is O(EA +K) where K is the total number of intersections.

From the intersections found, along with the vertices of the two models, a set of spherical
regions bounded by circular arcs is determined. These regions are always convex, therefore it is
straightforward to triangulate them. First for each edge, the list of intersections that belong to
that edge is sorted by the distance from each vertex of the edge. Additionally, for each vertex,
a list of the edges incident to it in clockwise order is calculated. Based on the aforementioned
geometrical data we traverse each closed bounded region in a clockwise order and compute the
triangulated merged topology in O(K logK) time complexity. Figure 4.2 illustrates this process.

The �nal step of the algorithm involves the projection of the merged topology back to the
original models. For each model A the vertices of model B along with the intersection points are
mapped back to A.

Following the successful establishment of a correspondence between the source and target
vertices, the vertex positions are interpolated to acquire the �nal morphing sequence. To this end,
we use simple linear interpolation. The advantage of linear interpolation, besides its simplicity,
is that it can be e�ciently realized on GPUs using a simple morphing shader for interpolating
vertices and attributes (lighting, textures) in real-time. Nevertheless, linear interpolation may
not always be desirable, especially in very complex meshes where self-penetrations may appear
during the morphing sequence of the models. More advanced interpolation techniques are applied
in such cases. Some of them are also implemented in shaders but their performance may vary
depending on the limits set by the GPU.

4.5 Feature-based morphing

The overall process of feature based morphing is presented in Figure 4.3. First, the optimized
spherical parameterizations are computed for both models (this step can be carried out as pre-
processing and the mapping can be stored along with the mesh representation). Then feature
regions are detected on both models using region growing and matched between the two mod-
els. Subsequently, feature point pairs are extracted and an optimized spherical parameterization
is computed for the second model with respect to the feature point pairs. Finally, the actual
morphing is carried out on the GPU.
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on the parameterization
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Figure 4.3: Overview of the feature-based algorithm.

Figure 4.4: Detecting feature regions in two head meshes: (left) mesh MA and (right)
mesh MB. Numbers correspond to identi�ers for feature regions.
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(a) Original adjacency graph of MA

showing the region number (see Fig-
ure 4.4), the number of nodes and the
area covered in the original model.
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(b) Reduced graph of MA, all edges
with large geodesic distances are
eliminated.
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(c) Original graph of MB

0 (4489)
83.44%

1 (85)
10.24%

2 (359)
1.7%

3 (103)
0.34%

7 (110)
0.58%

1.2556

8 (86)
0.34%

1.1311

4 (369)
1.8%

5 (147)
0.8%

2.08218

6 (130)
0.74%

2.22287

(d) Reduced graph of MB

Figure 4.5: Graph reduction of the head meshes.

To detect feature regions on meshes, we built on a method developed earlier in [110] for
reverse engineering based on discovering features on the point cloud by detecting local changes
in the structure of the point cloud. This method works even better on meshes, since in meshes
vertex adjacency information is provided a priori.

We use region growing, detection of rapid variations of the surface normal and the concavity
intensity and saddle points of the concavity intensity (the concavity intensity is the distance
from the convex hull). This results in a number of regions that represent object feature regions
(Figure 4.4). In the context of this work, we employ this method to detect features in models
for the purposes of matching and alignment of the two meshes that are to be morphed.

Figure 4.6: Detecting feature points inside feature regions.
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Figure 4.7: Feature point matching for the �sh and the duck model.

More speci�cally several softer features on the meshes are detected using a characteristic
called concavity intensity of a point which represents the smallest distance of a point from its
convex hull.

De�nition 4.1. The concavity intensity of a vertex vi of a mesh denoted by I(vi) is the distance
of vi from the convex hull of the mesh.

This characteristic is used to detect soft convex or concave features on the mesh. The surface
normal and the concavity intensity are used in conjunction with a region growing method that
results in detecting sets of faces, called feature regions or simply features that correspond to areas
with distinctive characteristics.(Figures 4.4 and 4.14(b)). Finally, we merge adjacent feature
regions with similarity criteria, starting from features of small area. For a mesh with a set of
vertices V , this process takes time O(|V |) due to the planarity of the original graph and the
almost linear behavior of the smaller-regions-merge-�rst practice.

After obtaining the features of the object, we create a connectivity graph that captures adja-
cency information as illustrated in Figure 4.5. For each edge, we calculate the geodesic distances
between the centroids of the corresponding feature regions. The graphs are then simpli�ed by
reducing the edges that correspond to large geodesic distances to facilitate region matching (Fig-
ure 4.5). In addition, small regions that can introduce noise and are insigni�cant are merged
to form larger regions and when this is not feasible they are eliminated. Elimination of large
distances is motivated by the observation that usually meshes do not exhibit a general structural
similarity but rather a local feature one. This process takes at most time O(|R|2) where R is the
original set of feature regions.

In simple cases (Figure 4.4), where meshes have an almost identical structure, matching of
the corresponding graphs is trivial. For more complex cases (see Figure 4.14), meshes possess
only local structural feature similarities. Therefore, by eliminating the edges with large geodesic
distances we match only local neighborhoods in the graph. These local neighborhoods still
capture higher level information about the structure of the features, for example they detect
eyes, nose and mouth similarities between completely di�erent character models. Alternatively,
for larger graphs subgraph matching algorithms were tested for detecting similar subgraphs in
the two reduced adjacency graphs using randomized algorithms (see e.g. [15]). It remains
to be determined whether such techniques are meritorious in terms of e�ciency and scope.
Finally, if one of the two graphs is of small size and it can be considered as a �xed pattern
then a deterministic subgraph isomorphism algorithm may be used [30] which derives an O(|R|)
algorithm.
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The reduced adjacency graphs are used to perform a 3D alignment of the two models and
establish a correspondence between the regions. This is achieved by �rst matching the two
highest degree nodes in the two graphs and then performing a 3D alignment of the two models.
The remaining regions are paired according to their degree and the distance between them.
Furthermore, we also take into consideration the area covered by each region by favoring the
matching of regions covering similar areas. We have used the following heuristic similarity
measure for matching,

sij = ||ci − cj ||max {ai; aj}
min {ai; aj}

max {di; dj}
min {di; dj} (4.11)

where ci and cj are the centroids of regions i and j, ai and aj are the corresponding areas and
di and dj are the degrees of the nodes in the reduced region adjacency graphs. This entire step
for feature region alignment and matching takes time O(|R1||R2|), where R1; R2 are the sets of
nodes of the reduced graphs.

Moreover, for each feature region we detect points with certain properties that capture speci�c
structural characteristics of the meshes. The resulting point set, called a feature point set,
provides a summary of concave and convex regions of the object.

De�nition 4.2. A vertex vi is called a feature point, if and only if, I(vi) exhibits a local extremum
at vi.

Following the establishment of a correspondence between the region patches of the two
models, the feature points of the corresponding patches are associated according to their dis-
tance. Since the patches may be in di�erent locations in each model, the two regions are trans-
lated so that their corresponding centroids coincide. This step has worst case time complexity
O(|V |+ |FP |2), where FP is the set of feature point pairs. Figures 4.6, 4.7, and 4.14(c) illustrate
the �nal feature point matching for di�erent models.

So the overall time complexity for the feature matching is O(|V | + |R|2 + |FP |2) and the
space complexity is O(|V |+ |R|+ |FP |).

For the feature based mapping of the second model we use the following objective func-
tion and set of constraints to obtain a more appropriate mapping based on the feature point
correspondence of the models:
Objective Function: We use as the objective function to be minimized the sum of all dot products
of every pair pi = (vi1; vi2) of feature vertices vi1 ∈ MA, vi2 ∈ MB. Let FP be the set of pairs
of feature vertices pi. ∑

pi∈FP
vi1 · vi2 (4.12)

Geometric Constraints: For each vertex vi we use constraint (4.9).
Topological Constraints: In addition to equation (4.9), the length of each edge ei (circular arc
over the sphere) that connects the vertices vi1,vi2 must remain the same during optimization:

vi1 · vi2 = vsi1 · vsi2 (4.13)

recall that vsi is the position of vertex vi after the sphere optimization process. By doing so,
we preserve the topology of the second object during the optimization process. In addition, this
avoids very long stretches of triangles to satisfy a certain feature point pair matching. The same
algorithm as in Section 4.3.3 is used for the optimization. This �nal nonlinear optimization step
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Input: Input: Two triangular meshes MA and MB

for each vertex vi of MA do
calculate I(vi)

end
for each vertex vj of MB do

calculate I(vj)
end
for MA and MB do

compute the corresponding feature region sets FA and FB
end
for FA and FB do

compute the corresponding connectivity graphs and perform graph reduction on
them

end
Establish a correspondence of the two nodes with the highest degree in the two
graphs and perform a 3D alignment of F1 and F2 up to rotation based on that
correspondence;
for each feature region in FB do

�nd a feature region in FA using the similarity measure (4.11) and match the
corresponding feature point sets

end
Calculate the spherical parameterization for MA and MB;
Optimize the spherical parameterization of MB in order to match the paired
feature points of the parameterizations;

Figure 4.8: The algorithm for feature based morphing.

is applied on the optimized spherical mapping of the second model. This is the only optimization
step that cannot be performed as preprocessing and thus cannot be stored along with the model
representation. Fortunately, however the convergence speed of this optimization step depends
on the number of feature points and the number of faces of the second model, as it is indicated
by the experiments in Section 4.6.

The method described above o�ers a way of automatically detecting a set of feature point
pairs in structurally similar meshes to guide the morphing sequence. Generally, it is a di�cult
task to automatically �nd common features in every pair of shapes. The fundamental issue is
that common features are usually de�ned through a semantic description and not through a
geometric one. In addition, meshes may exhibit a global structural similarity instead of a local
feature similarity.

Our underlying assumption for the graph matching step is that the relative placement of
the features we want to detect, bears a resemblance between the two models as far as local
features are concerned. Thus, our approach is sensitive in the level of detail that is used for the
segmentation step. Although we try to exploit the high level representations of the objects in
conjunction with low level geometric metrics (area and distances), in cases of global similarity we
must tune the segmentation parameters to limit the number of the regions detected. Moreover,
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we assume that the segmentation step results in a set of convex or almost convex regions and
therefore the distances of the centroids are a reasonable approximation. Another problem may
occur when there exists inherent symmetry in each mesh and as a result of this symmetry the
matching process yields erroneous results.

To tackle these de�ciencies a more general subgraph matching algorithm was examined, such
as the randomized subgraph search algorithm [15], on a more detailed region graph. Neverthe-
less, our extensive experiments indicate that usually a rough matching of the feature regions
gives satisfactory results. Therefore, whether such an extension would be bene�cial in terms of
accuracy and performance it remains to be determined. To summarize our current approach to
feature-based morphing has the following limitations :

• Sensitivity to the segmentation step, since the high level representation may a�ect the
matching of similar features.

• Intra object symmetry may yield non optimal feature point pairs.

• Semantically di�erent features with similar connectivity and geometry can be matched.

• Very soft features that are not clearly identi�ed by the segmentation algorithm may be
left out.

The algorithm for feature-based morphing is presented in Figure 4.8. Figures 4.15 and 4.16
illustrate the visual improvement o�ered by this method.

Figure 4.9: Morphing with alignment and feature point matching. Morphing is visually
smooth through the entire sequence.

Figure 4.10: Morphing with alignment but no feature point matching: �sh (4994 faces)
to duck (1926 faces), merged topology has 28526 faces.
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Figure 4.11: Morphing with alignment and feature point matching: �sh (4994 faces) to
duck (1926 faces), merged topology has 33038 faces.

Figure 4.12: Morphing with alignment but no feature point matching of the Charioteer
model (11098 faces) to a Cycladic idol model (16798 faces), merged topology has 142422
faces.

Figure 4.13: Morphing with alignment and feature point matching, merged topology has
142512 faces
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4.6 Experiments and performance evaluation

We have developed software for implementing mapping, merging and interpolation as described in
the previous sections. The software is available at http://www.cs.uoi.gr/~fudos/cagd2011.
html. The platform used for development consists of a Windows XP Professional based system
running on a Intel Pentium Q6600 Core 2 at 2.4GHz, 2GByte of RAM, with NVIDIA GeForce
8600GT. We have developed the system on Visual Studio 2005, using OpenGL 2.0 (Shader Model
3.0) and GLUT.

Table 4.1 summarizes the results of some of our experiments on mapping for di�erent models
using both the barycentric method and the Laplacian smoothing initialization. |V | is the number
of vertices of the mesh, |F | is the number of faces, and |C| is the number of constraints for the
optimization procedure. The number of iterations refers to the optimization phase, while time
refers to the total time for both deriving the initial mapping and for performing optimization.

We observe that the Laplacian smoothing initialization yields a much faster convergence in the
optimization phase (half the number of iterations and 50% faster). Our extensive experiments
indicate that the number of iterations increases quadratically over the number of vertices of
the polyhedral representation for triangular models. This is a considerable overhead but it
can be calculated o�ine during a preprocessing phase and stored along with the polyhedral
representation. Table 4.2 shows the results for the same set of experiments for the same model
with di�erent LODs ranging from 854 faces up to 5610 for the Suzanne model. This set of
experiments con�rms the above observations.

Finally, Table 4.3 shows the results of the feature guided optimization step. This step is
signi�cantly faster compared to the original parameterization and it depends on the number of
feature point |FP | and the number of faces of the second model. Another factor that a�ects the
speed of convergence is the similarity of the two models. For example in Table 4.3 we observe
a rapid convergence, in terms of iterations, for the case of the two similar head meshes (Figure
4.6).

Table 4.1: Experimental results of mapping with di�erent models of various level of detail

model method |V | |F | |C| iterations time (secs)

Suzanne Laplace 429 854 2991 36 10.9
Suzanne Barycentric 429 854 2991 78 22.6
Bunny(Lod1) Laplace 440 876 3068 94 24.3
Bunny(Lod1) Barycentric 440 876 3068 165 52.0
Frog(Lod1) Laplace 1964 3924 13736 70 422.2
Frog(Lod1) Barycentric 1964 3924 13736 152 895.8

As mentioned in Section 4.4, merging takes in average O(K logK) time, where K is the
number of intersections. For all cases in Tables 4.1 and 4.2, this step took less than 2.5 sec.
Finally, the interpolation step is implemented in GPU so it is very fast and can accommodate
almost unlimited number of frames.

Figures 4.9, 4.10 and 4.11 illustrate 3 di�erent cases of morphing whereas Figure 4.14 shows
the di�erent steps to obtain the �nal morphing sequence. We have performed the experiments
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Table 4.2: Experimental results with the same model with di�erent levels of detail

model method |V | |F | |C| iterations time (secs)

Suzanne(Lod1) Laplace 429 854 2991 36 10.9
Suzanne(Lod1) Barycentric 429 854 2991 78 22.6
Suzanne(Lod2) Laplace 703 1402 4909 26 21.3
Suzanne(Lod2) Barycentric 703 1402 4909 70 54.8
Suzanne(Lod3) Laplace 1404 2804 9816 49 151.3
Suzanne(Lod3) Barycentric 1404 2804 9816 91 271.3
Suzanne(Lod4) Laplace 2807 5610 19637 79 934.0
Suzanne(Lod4) Barycentric 2807 5610 19637 136 1578.6

Table 4.3: Feature alignment optimization

model1 model2 |FP | |F | |C| iterations time (secs)

Fish Duck 23 1926 9632 123 14.3
Head1 Head2 26 11040 55202 34 39.9
Head2 Suzanne 36 5610 25245 171 78.7
Head2 Caesar 60 13530 67652 182 321.1

on well-known models such as the Stanford bunny [111], the Blender Suzanne [18] and the
Aim@shape frog [1]. Finally, we have applied the algorithm to generate the morph sequence for
two models obtained from a 3D scanner The results are illustrated in �gures 4.12, 4.13 and 4.16.
In addition to the geometry, the textures of the model were interpolated to produce the �nal
morphing sequence.

4.7 Summary

We have presented a method that performs morphing between arbitrary genus-0 objects without
any user intervention. The sphere mapping can be considered as a preprocessing step and stored
along with the representation of the solid. The merging is very fast in the average case, and
the interpolation is implemented with GPU GLSL shaders. Finally, we have presented a fully
automated technique for feature matching and alignment that greatly improves the visual e�ect
and allows for applying controlled morphing to CAD model editing. We have used our method
successfully on object pairs of similar topology (for examples busts) and of a quite di�erent one
(�sh and duck). We are currently exploring the feasibility of parallelization through GPUs of the
optimization phase and the use of user de�ned constraints for feature matching and morphing-
based editing.

Furthermore, recent results on parallel computation of spherical parameterizations for mesh
analysis [7] may adapted for fast accurate feature region detection. Finally, the bene�ts of using
randomized subgraph matching algorithms for detecting common feature patterns [15] in objects
with large number of features should be investigated further.
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Figure 4.14: An example for the entire feature-based morphing process: (a) (from left
to right): The head model (11042 faces) and the optimized spherical parameterization,
Suzanne (5600 faces) and the corresponding optimized spherical parameterization, and
�nally the optimized spherical parameterization of Suzanne with respect to the feature
point pairs detected. (b) Morphing without feature point matching (the rightmost spher-
ical parameterization of (a) is not used). (c) The feature regions are detected and paired.
(d) Establishing feature point correspondence between the two meshes. (e) Finally, after
optimizing one of the spherical parameterizations with the use of the feature point pairs,
a visually smooth morphing sequence is obtained by linearly interpolating the vertices.
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(a) (b)

(c) (d)

Figure 4.15: Close-up of the morphing sequence: (a) Model M1, (b) 50% morph without
feature point matching, (c) 50% morph with feature point matching and (d) target model
M2. The improvement around the ear area with feature point matching in (c) as compared
to morphing without feature point matching in (b) is evident.

(a) (b) (c) (d)

Figure 4.16: Comparison of morphing results: (a) Model M1, (b) 50% morph without
feature point matching, (c) 50% morph with feature point matching and (d) target model
M2. The improvement around the ear area and the outline of the model with feature
point matching in (c) as compared to morphing without feature point matching in (b) is
apparent.
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Chapter 5

Feature cut-and-paste: an application
of planar constrained parameterization

5.1 Introduction

5.2 Our approach

5.1 Introduction

In the context of mesh editing, the cut-and-paste paradigm extracts a characteristic feature from
a source surface and copies it on a target surface. The user usually selects a surface region which
has two parts: the base surface and the detail surface. The base surface is a connected subset
of the original surface and the detail surface is used as a feature to be copied/pasted. The goal
is to replace the detail part of the target surface with the detail part of the source surface. The
key question is how to transfer correctly the details from the source surface to the target. The
target base surface may be altered as well to achieve smooth blending.

The detail surface can be stored either as a height-�eld or a parametric volume map [41].
The drawback of the height-�eld representation is that usually general features may be thick or
contain overhangs and they can not be properly represented. To paste the detail surface to a
target model, the corresponding vertices of the target model are moved based on the detail map.
In 3D, a smooth attachment of boundaries between the pasted feature and its base is sometimes
required. One possible way to resolve this issue is to perform a union operation between the two
models and then apply a blending function along the boundaries of the features [86]. However,
blending functions for arbitrary meshes is a di�cult problem to solve e�ciently and robustly.
Snappaste [104] suggests an iterative algorithm for aligning the feature and the base surface, by
positioning and deforming both surfaces. However they do not avoid the need for remeshing.

Another approach [120],[108],[19] is the modi�cation of di�erential coordinates instead of
directly changing spatial coordinates. The mesh geometry is then implicitly modi�ed after re-
constructing the surface from the di�erential coordinates. This method has the advantage of
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reducing deformation artifacts that may appear after feature pasting. Nevertheless, sharp fea-
tures are di�cult to support. A tool for interactive cut-and-paste operations that uses the above
approach is Mesh Mixer [99]. A distance preserving local parameterization is computed around
the pasted area using approximate geodesic distances [98] and both the base surface and the
feature are deformed using variational surface deformation techniques [19]. This method is very
fast but su�ers from some robustness issues as mentioned by the authors [98].

Existing cut-and-paste editing methods can be roughly categorized into two broad groups.
The �rst group, uses mesh fusion to blend the source surface and target surface directly [58],[86].
The second group �rst extracts a base surface as a medium between the source surface and
the target surface, and then transfers the details to the target surface via the base surface
[41],[16],[39]. The former pays more attention to the smoothness of the boundaries at the joint
of the source and target surfaces. The latter focuses on the global deformation of the source
surface according to the target surface.

5.2 Our approach

In our approach, we have adapted tools and techniques from the di�erential coordinate and
the mesh fusion scheme. We use an adaptive tessellation scheme that is built on top of the
GPU tessellation unit. The tessellation is adaptive in the sense that only areas of interest are
tessellated while the rest of the mesh remains untessellated. The feature area is parameterized
with our non-linear solver and is subsequently stored in a 2D oating point texture. This texture
is used in the tessellation evaluation shader to o�set the base surface so as to create the feature in
real time. The two main problems we address in this approach are: (i) how to support arbitrary
features for pasting operations and (ii) how to smoothly blend the pasted feature and the base
surface. Our approach is fast enough to support interactive operations.

The parameterization of the pasted feature should satisfy the following requirements to sup-
port arbitrary features:

• The boundary of the parameterization should be arbitrary. Convex boundary parameter-
izations are useful only for simple features and usually exhibit high distortion.

• The parameterization should be bijective and isometric. This allows us to store the feature
in a 2D texture. The area and angular distortion of the parameterization should be minimal
to avoid under sampling during the storage phase.

• Hard and soft constraints on the vertices should be handled robustly. This implies that
the parameterization is bijective regardless of the constraints on the vertices (if such a
parameterization exists).

All the above requirements can be satis�ed by our non-linear solver described in chapter 2.
Therefore, provided that we have parameterized the base area using one of the established meth-
ods, we proceed by computing a constrained parameterization of the feature. More speci�cally,
we �x the boundary along with other user de�ned internal points on corresponding positions of
the base surface parameterization. To �nd the speci�c correspondences we may follow either an
automatic or a user-driven approach. To automatically compute the constraints we project the
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feature boundary on the base surface and use the corresponding (s,t) parameterization coordi-
nates of the base surface to constrain the feature parameterization. A limited user intervention
may be necessary in cases of very complex boundaries. Alternatively, other methods can be used
such as the snapping algorithm of [104].

Regarding the smooth attachment problem, a way to paste the feature without distorting
its form is to treat the base surface as an elastic object and smoothly deform it to produce an
appropriate area for pasting. The above observation led us to use a method that works very well
in practice and produces intuitive results without deforming the feature surface. Our approach
is based on the use of Radial basis functions (RBFs) [115],[22]. RBFs are a tool for interpolating
data and are used to derive the displacement in any location in the space. RBF applications
include mesh warping, medical imaging, and surface reconstruction [24],[25].

An RBF, s, is a function of the form:

s(y) =
N∑

i=1

wi�(||y − xi||) + pm(y) (5.1)

where � is called the basic function, wi is a scalar coe�cient, x1; :::; xN are the pairwise distinct
control points of the RBF, and p(x) is an m degree polynomial. Popular choices of basic function
include the thin-plane and the polyharmonic splines. To compute the coe�cients we need to solve
a linear system of order equal to the number of RBF control points (5.2).

[
Φ P
P T 0

][
w
�

]
=

[
f
0

]
(5.2)

where f are the known values at the control points, Φ is �lled with the values of the basis function
between the control points, and P depends on the polynomial used. Once the coe�cients have
been calculated, any arbitrary point can be expressed through the function s (5.1). In our
experiments we have observed that the polyharmonic and the Wendland [116] basic functions
produce the most natural looking results. Furthermore, we use two sets of control points. The
�rst set of stationary control points is positioned at the boundaries of the base region and �xes
the boundaries of the domain. The coordinates of each control point are used to set the right
part. The second set of moving control points is positioned at the boundaries of the pasted
feature. More speci�cally, we project the boundary points of the pasted feature on the base
surface and use the projected points as control points. To set the right part for this set of
control points we use the corresponding coordinates from the boundary of the feature. Having
established an initial correspondence between the boundary of the feature and the base surface,
we may apply an additional transformation on the feature to better place it on top of the surface.
This additional transformation only a�ects the right part of the linear system. Therefore, for
reasons of e�ciency we compute and store the LU factorization only once and perform a back
substitution when this transformation matrix changes. This way, the user can interactively move
and rotate the feature on the base surface.

After transforming the base surface with RBFs the feature is pasted with the use of the
tessellation unit. More speci�cally, in the tessellation control shader we sample the feature
texture to decide if the base surface needs tessellation. If the base surface is tessellated, we o�set
the new vertices using the feature texture and apply the additional transformation matrix (if
there is one).
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(a) (b)

(c) (d)

Figure 5.1: Overview of the pasting process. (a) Base surface, �xed and movable control
points are colored red and orange respectively. (b) Pasted feature, the boundary of the
feature is green. (c ) We may apply an additional transformation on the feature and
deform the base surface with RBFs. (d) Final pasting result.

The process of RBF interpolation and pasting is illustrated in Figure 5.1 whereas Figures 5.4
and 5.5 illustrate the deformation result for di�erent base surfaces. The reader is also referred
to the supplementary material that accompanies this work and is also available at http://www.
cs.uoi.gr/~fudos/smi2013.html.

Having established an initial correspondence between the boundary of the feature and the
base surface, we may apply an additional transformation on the feature to better place it on top
of the surface. This additional transformation only a�ects the right part of the linear system.
Therefore, for reasons of e�ciency we compute and store the LU factorization only once and
perform a back substitution when this transformation matrix changes. This way, the user can
interactively move and rotate the feature on the base surface.

After transforming the base surface with RBFs the feature is pasted with the use of the
tessellation unit. More speci�cally, in the tessellation control shader we sample the feature
texture to decide if the base surface needs tessellation. If the base surface is tessellated, we o�set
the new vertices using the feature texture and apply the additional transformation matrix (if
there is one).

The process of RBF interpolation and pasting is illustrated in Figure 5.1 whereas Figures
5.4,5.5 and 5.6 illustrate the deformation result for di�erent base surfaces. The reader is also
referred to the supplementary material that accompanies this work and is also available at http:
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(a) Undeformed (b) RBF Interpolation

Figure 5.2: Base surface deformation.

//www.cs.uoi.gr/~fudos/smi2013.html.

(a) Base surface (b) Cut-and-paste without
RBF

(c) RBF Interpolation

Figure 5.3: Cut-and-paste example.
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(a) Undeformed (b) RBF Interpolation

Figure 5.4: Base surface deformation.

(a) Base surface (b) Cut-and-paste without
RBF

(c) RBF Interpolation

Figure 5.5: Cut-and-paste example.
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(a) (b)

Figure 5.6: Example of replacing the the head of the gargoyle mesh.
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Chapter 6

Conclusions

6.1 Conclusions

6.1 Conclusions

Fast and robust constrained parameterization methods are essential for many applications. In
this thesis, we have presented robust methods for e�ciently computing planar and spherical
parameterizations subject to soft and hard constraints.

In the domain of planar parameterization, our approach is based on establishing a theoretical
connection between well studied mesh smoothing methods and the isometric parameterization
problem. Based on our theoretical analysis we have implemented a novel non-linear solver that
exploits the capabilities of modern GPUs for computing constrained isometric parameterizations.
A possible direction for future research in that domain is to provide a formal proof regarding the
convergence of the untangling process that is used for computing constrained parameterizations.
This could be reached from connecting our process to standard gradient descent approaches and
analysing the numerical instabilities that occur near the solution.

In the domain of spherical parameterization, we tackle the di�cult non linear problem with
non linear constraints by transforming the problem to a series of easier to solve saddle point
problems. Based on this novel idea we have presented a simple and e�cient numerical scheme to
compute spherical parameterizations with the use of modern GPUs. Our method is at least an
order of magnitude faster than state of the art spherical parameterization methods. A possible
extension of our work would be a theoretical result of the convergence behavior. This could
be reached from the fact that the algorithm is energy-decreasing so that the iterative solution
follows a path close to the solution of the non-linear equations solved. In addition a thorough
comparison of the proposed shape search using spherical parameterizations to other approaches,
in terms of hits and misses, remains as future work.

Finally, the aforementioned methods have been used to perform morphing between arbitrary
genus-0 objects without any user intervention and cut-and-paste operations of form-features.
Moreover, we have presented a fully automated technique for feature matching and alignment
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that greatly improves the visual e�ect and allows for applying controlled morphing to CAD model
editing. As a future direction in that domain we intend to explore more complex cut-and-paste
operations such as sliding features along surfaces. This would require the reparameterization
of the feature with a set of dynamic constraints during the movement on the surface which is
challenging.
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Appendix

A. Equivalence of shape metric and MIPS

‖S′‖2
F = trace(S′TS′)

(2:13)
= (~v1 − ~v0) · (~v1 − ~v0) + ((~v2 − ~v1) cot �̂+

(~v2 − ~v0) cot �̂) · ((~v2 − ~v1) cot �̂+ (~v2 − ~v0) cot �̂)

= ‖~v1 − ~v0‖2
2 + ‖~v2 − ~v1‖2

2 cot �̂2 + ‖~v2 − ~v0‖2
2 cot �̂2+

2(~v2 − ~v1) · (~v2 − ~v0) cot �̂ cot �̂
(CL)
= ‖~v1 − ~v0‖2

2 + ‖~v2 − ~v1‖2
2 cot �̂2 + ‖~v2 − ~v0‖2

2 cot �̂2+

(‖~v2 − ~v1‖2
2 + ‖~v2 − ~v0‖2

2 − ‖~v1 − ~v0‖2
2) cot �̂ cot �̂ (6.1)

where we use the cosine law (CL) on the last equation, if we further de�ne the triangle edge
lengths as :

a = ‖~v2 − ~v1‖2; b = ‖~v2 − ~v0‖2; c = ‖~v1 − ~v0‖2 (6.2)

it follows that :

‖S′‖2
F

(6:1);(6:2)
= (1− cot �̂ cot �̂)c2 + (cot �̂+ cot �̂)(a2 cot �̂+ b2 cot �̂)

= c2
sin �̂ sin �̂ − cos �̂ cos �̂

sin �̂ sin �̂
+

(a2 cot �̂+ b2 cot �̂)
cos �̂ sin �̂ + sin �̂ cos �̂

sin �̂ sin �̂

= c2
− cos(�̂+ �̂)

sin �̂ sin �̂
+ (a2 cot �̂+ b2 cot �̂)

sin(�̂+ �̂)

sin �̂ sin �̂

= c2
− cos(� − ̂)
sin �̂ sin �̂

+ (a2 cot �̂+ b2 cot �̂)
sin(� − ̂)
sin �̂ sin �̂

= c2
cos ̂

sin �̂ sin �̂
+ (a2 cot �̂+ b2 cot �̂)

sin ̂
sin �̂ sin �̂

=
sin ̂

sin �̂ sin �̂

(
c2 cot ̂ + a2 cot �̂+ b2 cot �̂

)

= (cot �̂+ cot �̂)
(
c2 cot ̂ + a2 cot �̂+ b2 cot �̂

)
(6.3)

B. Solving Linear Systems with Laplacian Smoothing

Let (xi; yi) denote the coordinates of the ith node of a mesh. In addition, let the coordinates
of its adjacent vertices be (xj ; yj) : vj ∈ Ni, where Ni denotes the set of neighbors of node vi.
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If we assign a set of positive weights wij , where wij is the weight of a neighbor node j when
determining node i then,

We will prove Theorem 1, i.e. that the linear system (4.1), which expresses the position of
each node as a convex combination of its neighbors, has a unique solution if at least one node is
�xed.

Proof. Let b and m represent the numbers of boundary (or �xed) and interior (or free) nodes,
respectively. Next, de�ne xB and yB to be vectors of length b that contain the initial x and y
coordinates of the boundary nodes. Similarly, de�ne xI and yI to be the vectors of length m that
contain the initial x and y coordinates of the interior nodes. Thus, [xB|yB] and [xI |yI ] contain
the original positions of the boundary and interior nodes respectively. The weighted matrix L,
for the graph G(V ;E;w) is:

L(i; j) =
{ −wij ; i 6= j∑

k∈V wik; i = j

wij = 0; (i; j) =∈ E
(6.4)

where the boundary nodes are placed in last b rows and columns m + 1; : : : ;m + b, i.e. after
the interior nodes which are placed in the �rst m rows and columns 1; : : : ;m. Let A = [AI |AB]
be the matrix that is derived from the weighted matrix L by deleting its last b rows. Then, the
linear system (4.1) is expressed as:

AI [xI |yI ] = −AB[xB|yB] (6.5)

where AI is an m×m matrix that contains all the weights corresponding to the interior neighbors.
In addition, AB is an m × b matrix contains all of the weights corresponding to the boundary
neighbors. Because the mesh is connected and a positive weight is associated with each edge, AI

is irreducible. In addition, |aIii| ≥
∑m

j=1;j 6=i |aIij | for each row because the diagonal elements are
1, and the o�-diagonal elements are negative summing to a value in [−1; 0]. Equality is true if
the corresponding vertex is connected only with interior nodes. Therefore, if b > 0, there exist
i such that |aIii| >

∑m
j=1;j 6=i |aIij |, and AI is weakly dominant. Thus, AI is invertible and has a

unique solution [43], if there is at least one boundary node.
Moreover, it can be shown that the Jacobi iteration for each row i represents a step of the

simultaneous version of Laplacian smoothing, where all the positions are modi�ed simultaneously,

[xI |yI ]k+1
i =

m∑

j=1
j 6=i

wij [xI |yI ]kj +
m+b∑

j=m+1

wij [xB|yB]j (6.6)

Similarly, it can be shown that the iterations produced by the Gauss-Seidel method are
the same as the sequential version of Laplacian smoothing, where the positions are modi�ed
sequentially and depend on the order in which the vertices are considered. Since AI is irreducible
and weakly dominant and thus invertible, both Jacobi and Gauss-Seidel methods converge [43],
and thus Laplacian smoothing converges to the same point which is the solution of the linear
system (6.5).
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