
Heteroskedasticity, the single crossing property and ordered
response models 

Andreas C. Drichoutis
Agriculural University of Athens

Panagiotis Lazaridis Rodolfo M. Nayga, Jr.
Agriculural University of Athens Texas AMUniversity

Abstract

Heteroskedasticity in ordered response models has not garnered enough attention in the
literature. Econometric software packages do not handle this problem satisfactorily either.
We provide formulas to calculate heteroskedasticity corrected marginal effects and discrete
changes using an approach that deals with single crossing property, a very restrictive
assumption of ordered response models.
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1. Introduction 
Ordered response models originated from the biometrics literature and their appearance in the 
social sciences is attributed to McKelvey and Zavoina (1975). Since then, many applications 
and extensions of these models have appeared in the economics literature. Most recent is 
Boes and Winkelmann’s (2005) attempt to develop more flexible models that will overcome 
the restrictions inherent in standard models (i.e., the single crossing property - that is the 
signs of the marginal effects can only change once when moving from the smallest to the 
largest category).  
Despite the growing popularity of ordered response models, the literature provides no clear 
way of accounting for heteroskedasticity in these models. Very few econometric packages 
can also account for heteroskedasticity, and even for those that could, the software generally 
cannot distinguish cases where heteroskedasticity is created by the same covariates that are 
included in the model.   Consequently, this issue is often ignored in model estimation. 
Usually if one manages to derive heteroskedasticity corrected marginal effects, these are 
presented by softwares in two tables: one for the variable in the model and one for the 
variable in the heteroskedastic term. Clearly, the more appropriate way would be to account 
for the simultaneous variation of the variable in the model and in the heteroskedastic term.  
Since the literature is limited and vague in this area, we show how to derive the appropriate 
formulas to account for heteroskedasticity in ordered response models. Furthermore, we also 
show that accounting for heteroskedasticity provides a more flexible analysis of marginal 
effects since the restrictive single crossing property vanishes.  
 
 

2. The standard ordered response model 
Assume there is a latent variable y* ranging from −∞  to +∞  and is mapped to an observed 
variable y. The y variable is thought as providing incomplete information about the 
underlying y* according to the measurement equation: 

iy m=   if *
1m i myτ τ− ≤ <  for m=1 to J     (1) 

The τ ’s are called thresholds and the extreme categories 1 and J are defined by open-ended 
intervals with 0τ = −∞  and Jτ = +∞ . The structural model is: 

*
i i iy ε= +b'x            (2) 

where b is a vector of structural coefficients. The observation mechanism results from a 
complete censoring of the latent dependent variable as follows: 
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Maximum likelihood estimation (ML) can be used to estimate the regression of y* on x. To 
use ML one has first to assume a specific form of the error distribution. The ordered probit 
model flows from the assumption that ε  is distributed normally with mean 0 and variance 1, 
while the ordered logit model results from the assumption that ε  has a logistic distribution 
with mean 0 and variance 2 3π . 
Since y* is not observable its interpretation is of no interest. The main focus in ordered data is 
on the conditional cell probabilities given by: 

( ) ( ) ( )1Pr |i i m i m iy m F Fτ τ −= = − − −x b'x b'x       (4) 
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where F represents either the standard normal distribution function or the logistic distribution. 
The parameter estimates from ordered response models, such as ordered probit and ordered 
logit, must be transformed to yield estimates of the marginal changes, that is, to determine 
how a marginal change in one regressor changes the distribution of all the outcome 
probabilities. 
Taking the partial derivative of (4) with respect to xk yields the marginal effect, 

( ) ( ) ( )

( ) ( )

1

1

Pr |

         

i i m i m i
mk

k k k

k m i m i

y m F F
ME

x x x

b f f

τ τ

τ τ

−

−

∂ = ∂ − ∂ −
= = − =

∂ ∂ ∂

⎡ ⎤= − − −⎣ ⎦

x b'x b'x

b'x b'x
    (5) 

where ( ) ( )f dF dβ β β= . Interpretation using the marginal effects can be misleading when 
an independent variable is a dummy variable. Hence, it is more appropriate to calculate the 
discrete change which is the change in the predicted probability for a change in xk from the 
start value 0 to the end value 1. 
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It is clear from (5) that marginal effects are first positive (negative) and then negative 
(positive) depending on the sign of bk. In the case of discrete changes, the single crossing 
property is not mathematically clear but is intuitive, considering that equation (6) involves the 
difference between two probabilities that follow the bell-shaped distribution functions of the 
standard normal and logistic distribution. 
 
 

3. Ordered response models with heteroskedasticity 
In the case where the form of the heteroskedasticity adds no new parameters i.e. 

( ) 2
i iVar wε = , then the procedure is very simple since (4) will be, 
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And consequently (5) and (6) will yield: 
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In the case where heteroskedasticity adds an additional parameter vector (multiplicative 
heteroskedasticity), i.e. ( ) ( ) 2

expi iVar ε ⎡ ⎤= ⎣ ⎦γ'z , things might be trickier. If the z vector 
contains no common variables with the x vector, then marginal effects and discrete changes 
can be calculated by (8) and (9) since ( )expi iw = γ'z . However, if one or more variables in 
the z vector are common to the x vector, then the calculation of the marginal effects and 
discrete changes have to account for the fact that the variables of interest appear both in the 
nominator and the denominator of equations (8) and (9). Formally, assume that we can break 
the z vector into two vectors z1 and x2 where the x2 vector contains parameters common to x. 
We can then write ( ) ( ) 2

1 1 2 2expi i iVar ε ⎡ ⎤= +⎣ ⎦γ 'z γ 'x  and (4) will take the form: 
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Taking the partial derivative of (10) with respect to xk will yield the marginal effect, 
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The formulas are much simpler in the case of discrete changes, since (6) will then be: 
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Note that the difference between (12) and (9) is that the numerator will vary simultaneously 
with the denominator. Clearly, (11) and (12) no longer rely on a single crossing property. The 
sign in (11) is indeterminate.  While (12) still involves the difference between cell 
probabilities, these are scaled up or down depending on the heteroskedastic terms. In all, if xk 
is subset of x then one should use equations (8) and (9), but if xk is subset of x2 then equations 
(11) and (12) are appropriate. 
 
 

4. Empirical illustration 
To illustrate how the presence of heteroskedasticity changes marginal effects and discrete 
changes, we use the data from Drichoutis et al. (2005). The purpose of the paper was to 
assess the effect of several variables on nutritional label use.  Specifically, their paper 
investigated which factors may have an effect on how often consumers tend to read the on-
pack nutrition information of food products when grocery shopping. Label use was measured 
on a four likert scale ranging from never, not often, often and always. 
We define only a parsimonious form of the model since our purpose is to illustrate the 
estimation process with and without heteroskedasticity. Therefore, we will only assume that 
label use is affected by household size (Hsize), age (Age40, Age55, Age56), education 
(Educ2) and income (Inc2, Inc3), 
Label Use = f (Hsize, Age40, Age55, Age56, Educ2, Inc2, Inc3)   (13) 
In (13), only household size is a continuous variable. All the other variables are dummies, 
indicating various age groups, educational levels and income levels. In Table 1, we present 
the results of the above estimation using an ordered probit model. The first half of the table 
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presents the results where no heteroskedasticity is assumed. The second half of the table 
shows results where we assumed that household size and income are responsible for 
heteroskedasticity.  
Table 1 shows that ignoring the presence of heteroskedasticity can be misleading in terms of 
magnitude but also in terms of the direction of the effect. Notice also that the single crossing 
property vanishes since the sign of some variables in Table 1 changes twice when moving 
from the smallest to the largest outcome category providing a more flexible way to analyze 
the data. 
 
 

5. Conclusion 
The need to account for heteroskedasticity in ordered response models is a problem, if 
present, since it can lead to erroneous results. That is, it can either overestimate or 
underestimate the true variance and, hence the standard errors may therefore be either 
understated or overstated. This issue becomes more relevant considering that known 
econometric software packages do not handle this problem satisfactorily. We provide 
formulas to calculate heteroskedasticity corrected marginal effects and discrete changes. We 
also show that our approach deals with a very restrictive assumption of the ordered response 
models (i.e., single crossing property). 
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Table 1. Marginal effects and discrete changes of demographic variables on frequency of 
reading nutritional labels 
Variables No heteroskedasticity Groupwise heteroskedasticity 

 Never 
Not 

often Often Always Never 
Not 

often Often Always
Hsize 0.014 0.004 -0.005 -0.013 -0.005 0.031 0.017 -0.042 
Age40 -0.066 -0.021 0.020 0.067 -0.079 -0.047 0.045 0.081 
Age55 -0.120 -0.041 0.033 0.128 -0.149 -0.096 0.076 0.169 
Age56 -0.035 -0.011 0.010 0.036 -0.051 -0.032 0.028 0.054 
Educ2 -0.112 -0.032 0.036 0.108 -0.120 -0.062 0.072 0.111 
INC2 0.034 0.009 -0.012 -0.031 -0.003 0.072 0.025 -0.093 
INC3 0.103 0.025 -0.037 -0.091 0.104 0.068 -0.078 -0.123 
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