arXiv:cs/0207061v2 [cs.DS] 14 Nov 2006

Linear-Time Pointer-Machine Algorithms for Path-Evaloat
Problems on Trees and Graphs

Adam L. Buchsbaurn Loukas Georgiadis Haim Kaplan Anne Roger$
Robert E. Tarjah Jeffery R. Westbrook

October 31, 2006

Abstract

We present algorithms that run in linear time on pointer nreehfor a collection of problems, each
of which either directly or indirectly requires the evalioat of a function defined on paths in a tree.
These problems previously had linear-time algorithms Imly éor random-access machines (RAMS);
the best pointer-machine algorithms were super-linearrbingerse-Ackermann-function factor. Our
algorithms are also simpler, in some cases substantiadly, the previous linear-time RAM algorithms.
Our improvements come primarily from three new ideas: a eefianalysis of path compression that
gives a linear bound if the compressions favor certain napsinter-based radix sort as a replacement
for table-based methods, and a more careful partitioning wée into easily managed parts. Our al-
gorithms compute nearest common ancestors off-line,wantl construct minimum spanning trees, do
interval analysis on a flowgraph, find the dominators of a fi@p, and build the component tree of a
weighted tree.

1 Introduction

We study six problems—off-line computation of nearest camrancestors (NCAS), verification and con-
struction of minimum spanning trees (MSTSs), interval as@lyf flowgraphs, finding dominators in flow-
graphs, and building the component tree of a weighted trbetdirectly or indirectly require the evaluation
of a function defined on paths in a tree. Each of these probless linear-time algorithm on a RAM, but

*This work is partially covered by the extended abstract&néhr-Time Pointer-Machine Algorithms for Least Common-An
cestors, MST Verification, and Dominator&toc. 30th ACM Symp. on Theory of Computipg, 279-888, 1998, and “Finding
Dominators Revisited Proc. 15th ACM-SIAM Symp. on Discrete Algorithims, 862—871, 2004.

TAT&T Labs—Research, Shannon Laboratory, 180 Park AverhBlo Park, NJ 07932, USA; email: alb@research.att.com.

1fDept. of Computer Science, University of Aarhus, IT-parkexabogade 34, DK-8200 Aarhus N, Denmark; email:
loukas@daimi.au.dk. Work partially done at Princeton @msity and partially supported by the National Science Eation
under the Aladdin Project, Grant No. CCR-0122581.

§School of Mathematical Sciences, Tel Aviv University, Teli\ Israel; email: haimk@math.tau.ac.il. Work partiatipne
while a member of AT&T Labs.

YDept. of Computer Science, University of Chicago, 1100 B %8teet, Chicago, IL 60637, USA; email: amr@cs.uchicafio.e
Work partially done while a member of AT&T Labs.

IDept. of Computer Science, Princeton University, Princettd, 08544, USA; and Hewlett-Packard, Palo Alto, CA; email:
ret@cs.princeton.edu. Work at Princeton University pégtisupported by the National Science Foundation underAladdin
Project, Grant No. CCR-0122581.

**Los Angeles, CA, USA; email: jwestbrook@acm.org. Work igélst done while a member of AT&T Labs.

http://arXiv.org/abs/cs/0207061v2

Table 1: Time boundsn is the number of vertices, and is either the number of edges/arcs for graph
problems or the number of NCA queries for the NCA problentn, n) is the standard functional inverse
of the Ackermann function.

Problem Previous Pointer-Machine BoundPrevious RAM Bound
Off-line NCAs O(ma(m,n) +n) [2] O(n+m) [38,52]
MST Verification | O(ma(m,n) +n) [58] O(n+m) [22,40]
MST Construction| O(ma(m,n) +n) [18] O(n+m) [26,39]
Interval Analysis | O(ma(m,n) +n) [57] O(n+m) [30,57]
Dominators O(ma(m,n)+n) [43] O(n+m) [8,15]
Component Trees| O(ma(m,n) + n) O(n+m) [62]

the fastest pointer-machine algorithm is slower by an s&ekckermann-function fact@r(See Tablgll.) A
pointer machine [59] allows binary comparisons and ariticr@perations on data, dereferencing of point-
ers, and equality tests on pointers. It does not permit poarithmetic or tests on pointers other than testing
for equality and is thus less powerful than the RAM model [Rhinter machines are powerful enough to
simulate functional programming languages like LISP and. Kdkten, though, the lack of random access
complicates the design of efficient pointer machine algorg; the RAM algorithms for the problems we
consider rely orO(1)-time table lookup methods that are not implementable onirastgromachine. Nev-
ertheless, we are able to overcome the weaknesses of thermpamiachine model and develop linear-time
algorithms for all six problems. Not only are our algorithmsymptotically as fast as the fastest RAM
algorithms, they are simpler too, in some cases substigntial

Our improvements come mainly from three new ideas. The §istéfined analysis of path compression.
Path compression is a well-known technique first used tocspeéhe standard disjoint-set-union (DSU) data
structure [56] and later extended to speed up the evaluafimctions defined on paths in trees [58]. Our
applications use either the DSU structure or path evaludtiothe functionrminimumor maximumor both.

We show that, under a certain restriction on the compresssatisfied by our applications, compression
takes constant rather than inverse-Ackermann amortineel ti

The second new idea is to replace the table-based methdds BAM algorithms with a pointer-based
radix sort. Each of the RAM algorithms precomputes answessriall subproblems, stores the answers in a
table, and looks up the answers by random access. If the fsike subproblems is small enough, the total
size of all distinct subproblems and the total time to sohan are linear (or even sublinear) in the size of
the original problem. Our alternative approach is to cartsta pointer-based encoding of each subproblem,
group isomorphic subproblems together using a pointezéaadix sort, solve one instance of each group
of isomorphic subproblems, and transfer its solution toiseenorphic subproblems, all of which can be
done on a pointer machine.

The third new idea is to change the partitioning strategyortier to reduce the original problem to a
collection of small subproblems, the RAM algorithms p#otita tree corresponding to the original problem
into small subtrees. For some of the problems, partitionimgentire tree into subtrees produces serious
technical complications; this is especially true of the dwators problem. Instead, for all but one of the
problems we partition only the bottom part of the tree intcaBraubtrees. For NCAs and MSTs, this

1 We use Tarjan’s definition [56]. Let(i,) for 4,5 > 1 be defined byA(1,) = 27 for j > 1; A(3,1) = A(i — 1,2) for
i >2;andA(i,j) = A(i — 1, A(i,j — 1)) for 4,5 > 2. Thena(m,n) = min{i > 1: A(4, [m/n]) > logn}.

together with our refined analysis of path compression s4fio yield a linear-time algorithm. For interval
analysis and finding dominators, we also partition the red®i of the tree into a set of maximal disjoint
paths. Only one of our applications, building a componesd,trelies on the original idea of partitioning the
entire tree into small subtrees.

The remainder of our paper proceeds as follows. SeEtionr@dily defines the problems we consider
and reviews previous work. Sectibh 3 discusses disjointisigin, computing path minima on trees, and
a refined analysis of path compression. Sedfion 4 discussasse of pointer-based radix sorting to solve
a graph problem for a collection of many small instances.ti®es{5 through © discuss our applications:
NCAs, MSTs, flowgraph interval analysis, finding dominat@nsd building a component tree, respectively.
Sectior 1D contains concluding remarks. Our paper is afgignily revised and improved combination of
two conference papers [14, 32], including new results irtiSes’ 7 andP.

2 Problem Definitions and Previous Work

Throughout this paper we denote the base-two logarithdogywVe assume, > 2 throughout.

2.1 Nearest Common Ancestors

Off-Line Nearest Common Ancestors: Given ann-node tre€l” rooted at node and a setP of m node
pairs, find, for each paifv,w} in P, the nearest common ancestorwondw in 7', denoted by
nca(v, w).

The fastest previous pointer-machine algorithm is thatlod AHopcroft, and Ullman (AHU) [2], which
runs inO(n + ma(m + n,n)) time. The AHU algorithm uses a DSU data structure; it run®{m + m)
time on a RAM if this structure is implemented using the DSbloathm of Gabow and Tarjan [30] for
the special case in which the set of unions is known in advamnbe first linear-time RAM algorithm was
actually given by Harel and Tarjan [38]. Other linear-tim&MNR algorithms were given by Schieber and
Vishkin [52], Bender and Farach-Colton [12], and Alstrugk{7].

There are several variants of the NCAs problem of increagiffigulty. For each but the last, there is a
non-constant-factor gap between the running time of thesa®AM and pointer-machine algorithms.

Static On-Line: T'is given a priori butP is given on-line: each NCA query must be answered before the
next one is known.

Linking Roots: T'is given dynamically. Specifically’ is initially a forest of singleton nodes. Interspersed
with the on-line NCA queries are on-liti@k(v, w) operations, each of which is given a pair of distinct
rootsv andw in the current forest and connects them by makirige parent ofw.

Adding Leaves: Like linking roots, onlywv is any node other tham andw is a singleton.
General Linking: Like linking roots, onlyv can be any node that is not a descendant.of

Linking and Cutting: Like general linking, but with additional interspersedt(v) operations, each of
which is given a non-root node and makes it a root by discdimged from its parent.

Harel and Tarjan [38] showed that the static on-line prob{end thus the more general variants) takes
Q(loglogn) time on a pointer machine for each query in the worst casetrudsand Thorup [10] gave

a matchingO(n + m log log n)-time pointer-machine algorithm for general linking, whiis also optimal
for the static on-line, linking roots, and adding leavesamts. Earlier, Tsakalidis and van Leeuwen [63]
gave such an algorithm for the static on-line variant, andodified version of van Leeuwen’s even-earlier
algorithm [64] has the same bound for linking roots. Thedsisknown pointer-machine algorithm for
linking and cutting is the)(n + mlog n)-time algorithm of Sleator and Tarjan [53]; Harel and Tarja8]
conjectured that this is asymptotically optimal, and theules of Patrascu and Demaine [47] actually imply
that lower bound in the cell-probe model. On a RAM, the fadtaswn algorithms tak®(n + m) time for
the static on-line [38,52] and adding leaves [27] varia@X&; + ma(m + n,n)) time for linking roots [38]
and general linking [27], an@(n + mlogn) time for linking and cutting [53]. All these algorithms use
O(n + m) space. For a more thorough survey of previous work see plgtral. [7].

2.2 \Verification and Construction of Minimum Spanning Trees

MST Construction: Given an undirected, connected gragh= (V, E) whose edges have real-valued
weights, find a spanning tree of minimum total edge weight\&T) of G.

MST Verification: Given an undirected, connected gragh= (V, E) whose edges have real-valued
weights and a spanning tréeof G, determine wheth€er is an MST ofG.

In both problems, we denote by n and m the numbers of verticdsdges, respectively. Sincéis
connected and > 2, m > n — 1 impliesn = O(m).

MST construction has perhaps the longest and richest histoany network optimization problem;
Graham and Hell [35] and Chazelle [18] provide excellent/eys. A sequence of faster-and-faster algo-
rithms culminated in the randomized linear-time algoritbiiarger, Klein, and Tarjan [39]. This algorithm
requires a RAM, but only for a computation equivalent to MSFification. It is alsccomparison-based
the only operations it does on edge weights are binary casgues. Previously, Fredman and Willard [26]
developed a linear-time RAM algorithm that is not comparibased. Subsequently, Chazelle [18] de-
veloped a deterministic, comparison-base@dn«(m,n))-time pointer-machine algorithm, and Pettie and
Ramachandran [49] developed a deterministic, compatissed pointer-machine algorithm that runs in
minimum time to within a constant factor. Getting an asyrtip#dly tight bound on the running time of this
algorithm remains an open problem.

Although it remains open whether there is a comparisonehadeterministic linear-time MST con-
struction algorithm, even for a RAM, such algorithms do ekis MST verification. Tarjan [58] gave a
comparison-based, deterministit{ma(m,n))-time pointer machine algorithm for verification. Komlos
[41] showed how to do MST verification i@ (m) comparisons, without providing an efficient way to de-
termine which comparisons to do. Dixon, Rauch, and Tarj@h §@mbined Tarjan’s algorithm, Komlos'’s
bound, and the tree partitioning technique of Gabow andamdf0] to produce a comparison-based, deter-
ministic linear-time RAM algorithm. King later gave a sinf@d algorithm [40].

2.3 Interval Analysis of Flowgraphs

A flowgraphG = (V, E,r) is a directed graph with a distinguisheabt vertexr such that every vertex
is reachable fromr. A depth-first spanning tre® of G is a spanning tree rooted atdefined by some
depth-first search (DFS) @F, with the vertices numbered frointo » in preorder with respect to the DFS
(the order in which the search first visits them). We identiéytices by their preorder number. We denote
by n andm the number of vertices and edges(afrespectively.

Interval Analysis: Given a flowgraph and a depth-first spanning tréeof G, compute, for each vertex
v, its headh(v), defined by

h(v) = max{u : u is a proper ancestor afin D and there is a path fromto v in G
containing only descendants @f, or null if this set is empty.

The heads define a forest called théerval forestH, in which the parent of a vertex is its head. If
v IS any vertex, the descendantswoin H induce a strongly connected subgraphGgfwhich is called an
interval, these intervals impose a hierarchy on the loop structui@.ofnterval analysis has been used in
global flow analysis of computer programs [3], in testing tpaph reducibility [60], and in the construction
of two maximally edge-disjoint spanning trees of a flowgrgpr. Tarjan [57] gave a® (ma(m,n))-time
pointer-machine algorithm for interval analysis using DSte Gabow-Tarjan DSU algorithm [30] reduces
the running time of this algorithm t©(m) on a RAM.

2.4 Finding Dominators

LetG = (V, E,r) be a flowgraph. We denote byandm the number of vertices and edges(ofrespec-
tively. Vertexv dominatesrertexw if every path fromr to w containsy, andv is theimmediate dominator
of w if every vertex that dominates also dominates. The dominators define a tree rooted-athe dom-
inator treeT’, such thaty dominatesw if and only if v is an ancestor ofy in T': for any vertexv # r, the
immediate dominator af is its parent ifl".

Finding Dominators: Given a flowgraplG = (V, E, r), compute the immediate dominator of every vertex
other tharr.

Finding dominators in flowgraphs is an elegant problem iplgraeory with fundamental applications
in global flow analysis and program optimization [4, 19, Z,dnd additional applications in VLSI design
[11], theoretical biology [5, 6] and constraint programm[b1]. Lengauer and Tarjan [43] gave a practical
O(ma(m,n))-time pointer-machine algorithm, capping a sequence oiq@us improvements [4,45,50,55].
Harel [37] claimed a linear-time RAM algorithm, but Alstregb al. [8] found problems with some of his
arguments and developed a corrected algorithm, which wsesrful bit-manipulation-based data structures.
Buchsbaum et al. [15] proposed a simpler algorithm, but @edrs and Tarjan [32] gave a counterexample
to their linear-time analysis and presented a way to repaimaodify the algorithm so that it runs in linear
time on a pointer machine; Buchsbaum et al. [T6rrig.] gave a different resolution that results in a linear-
time algorithm for a RAM.

2.5 Building a Component Tree

Let T" be a tree and leL be a list of the edges of. The Kruskal treeof T" with respect talL is a tree
representing the connected components formed by deldtingdges of” and adding them back one-at-a-
time in the order of their occurrence In Specifically, K’ contains2n — 1 nodes. Its leaves are the nodes of
T. Each internal node is a component formed by adding an édge) back toT’; its children are the two
components that combine to form it.

Component-Tree Construction: Given ann-node tre€l’ and a listL of its edges, build the corresponding
Kruskal tree.

Compressed component trees (formed by adding edges a-gt@ipme rather than one-at-a-time) have
been used in shortest-path algorithms [48, 62]. It is dutéégward to build a component tree or a com-
pressed component tree @(na(n,n)) time on a pointer machine using DSU. The Gabow-Tarjan DSU
algorithm [30] improves this algorithm t@(n) time on a RAM, as described by Thorup [62].

3 Path Compression on Balanced Trees

3.1 Disjoint Set Union Via Path Compression and Balanced Uoins

The disjoint set union(DSU) problem calls for the maintenance of a dynamic partitof a universd/,
initially consisting of singleton sets. Each set has a umigsignated elemerthe designated element of a
singleton set is its only element. Two operations are altbwe

unite(v, w) Form the union of the sets whose designated elementsardw, with v being the designated
element of the new set.

find(v) Return the designated element of the set containing element

There are alternative, equivalent formulations of the D®bbfem. In one [56, 59], each set is accessed
by a label, rather than by a designated element. In anothgrdéts have labels but can be accessedrtyy
element. In yet another [61], each set is accesseddayanical elementwvhich in the case of anite(v, w)
operation can be freely chosen by the implementation to therai or w. Our formulation more closely
matches our uses. We denoterbthe total number of elements and hythe total number of finds.

The standard solution to the DSU problem [56, 61] represthietsets by rooted trees in a forest. Each
tree represents a set, whose elements are the nodes ofthEdieh node has a pointer to its parent and a bit
indicating whether it is a root; the root points to the deatgd element of the set. To provide constant-time
access to the root from the designated node, the latteihisrdhie root itself or a child of the root. With this
representation, to perforomite(v, w): find the roots of the trees containimgandw, link them together by
making one root the parent of the other, and maleechild of the new root if it is not that root or a child
of that root already. To perforrfind(v): follow parent pointers until reaching a root, reach theigiested
element of the set in at most one more step, and return thiseale A unite operation takeg(1) time. A
find takes time proportional to the number of nodes on the faiti.pA sequence of intermixed unite and
find operations thus take&3(n + s) time, wheres is the total number of nodes on find paths.

One way to reduce is to usepath compressianafter a find, make the root the parent of every other
node on the find path. Another way to reducés to dobalanced unions There are two well known
balanced-union rules. In the firsthion-by-sizeeach root stores the number of its descendants. To perform
unite(v, w), make the root of the larger tree the parent of the root of thaller, making either the parent of
the other in case of a tie. In the secondjon-by-rank each root has a non-negative integamk, initially
zero. To perfornunite(v, w), make the root of higher rank the parent of the root of lowekran case of a
tie, make either root the parent of the other and add one t@ttieof the remaining root. Both of these union
rules producéalancedtrees. More specifically, let’ be the forest built by doing all the unite operations
and none of the finds. We call the reference forestF' is balanced or, more precisely;-balancedif for
a constant > 1 the number of nodes of heightin F is O(n/c") for everyh. Both union-by-size and
union-by-rank produce 2-balanced forests. Furthermamee®nly roots must maintain sizes or ranks, these
fields obviate the need for separate bits to indicate whiclesare roots.

For any sequence of unions and finds such that the unionsdbidanced forest and the finds use path
compression, the total running timeG¥n + ma(m + n,n)): the analysis of path compression by Tarjan

6

and van Leeuwen [61] applies if the reference forest is luagldn We seek a linear time bound, which we
can obtain for sequences of finds that are suitably regiti®@efore obtaining this bound, we discuss a more
general use of path compression and balanced union: to fimdhaion paths in dynamic trees.

3.2 Finding Minima on Paths

The dynamic path-minimum problegalls for the maintenance of a forest of rooted trees, edthlin a
one-node tree, whose arcs, which are directed from paretttileh have real values. The trees are subject
to three operations:

link(v, w,z) Nodesv andw are the roots of different trees i, andz is a real number. Make the parent
of w by adding arqv, w) to F', with valuez.

findroot(v) Return the root of the tree if' containing the node.

evalv) Return the minimum value of an arc on the path foom the root of the tree containing it.

We shall denote by the total number of nodes and bythe total number dindrootandevaloperations.
Variants of this problem include omitting tHadroot operation, replacing minimum by maximum, and
requiring theevaloperation to return an arc of minimum value rather than justbinimum value. The two
solutions to be described are easily modified to handle trersants. We call a data structure that solves the
dynamic path-minimum problemlek-eval structure

Tarjan [58] considered this problem and developed two datetsires to solve it: a simple one [58,
Sec. 2], which uses path compression on the forest defindueldinks, and a sophisticated one [58, Sec. 5],
which uses path compression on a balanced forest relatée tore defined by the links. Tarjan’s simple
link-eval structure uses a compressed versiot'pfepresented by parent pointers, with the nodes rather
than the arcs storing values. Each root has value infinityfoRe link(v, w, =) by makingv the parent of
w and givingw the valuex. Performfindroot(v) by following parent pointers from to the root of the tree
containing it, compressing this path, and returning the. ré@rformevalv) by following parent pointers
from v to the root of the tree containing it, compressing this patig returning the value ef. To compress
a pathvg, vy, ..., v, with v; the parent o, for 0 < i < k, repeat the following step for eachirom
2 throughk: replace the parent af; by vy, and replace the value of by the value ofv;_ if the latter is
smaller. Compression preserves the resulfindfootandevaloperations while making tree paths shorter.

If the final forestF is balanced, then this simple link-eval structure tak¢s + ma(m + n,n)) time
to perform a sequence of operations [58]: the effect of a cesgion on the structure of a tree is the same
whether the compression is due tdiredroot or aneval In our MST application the final forest is actually
balanced. Our application to finding dominators requiregané sophisticated link-eval structure.

3.3 Delayed Linking with Balancing

Tarjan’s sophisticated structure delays the effect of sofitee links so that they can be done in a way that
makes the resulting forest balanced. Since our analysisresgsome knowledge of the inner workings of
this structure, we describe it here. We streamline the streislightly, and we add to it the ability to do
findroot operations, which were not supported by the original. We dksscribe (in Section_3.4) a variant
that uses linking-by-rank; the original uses linking-byes

We represent the foredt defined by the link operations byshadow forestz. Each tree inF’ corre-
sponds to a tree i with the same vertices and the same root. Each’fr@e R is partitioned into one or

more subtrees$), 51, ..., Sk, such that the root aof; is the parent of the root o, ; for 0 < i < k, and
the root ofSj is the root of 7. We call the roots of the subtreég, S1, . .., S (including the root ofS)
subroots We represenf? by a set of parent pointers that are defined for nodes thatairsuibroots and,
for each subroot, a pointer to its child that is a subrootnif. g Each subroot has a null parent pointer; the
deepest subroot has a null child pointer.) Since parentseméded only for nodes that are not subroots and
child pointers are required only for subroots, we can usenglesipointer per node to store both kinds of
pointers, if we mark each node to indicate whether it is asotbrWe shall usshp(v) to denote the parent
of v in its subtree andhqv) to denote the child of that is a subroot, if there is onshpv) = null if v is a
subroot;shqv) = null if v is a subroot without a child that is a subroot.

With each node we store a valué(v). We manipulate the trees & and the node values to preserve
two related invariants:

(i) evalv) = min{b(u) : u is an ancestor iR of v, andu is in the same subtree a$;

(i) b(shdv)) < b(v) if shqv) # null.

To help keep evaluation paths short, we use both path cosipreand a variant of union-by-size. We
denote bysizgv) the number of descendants©fn R and bysubsizév) the number of descendants of
in the same subtree as For convenience, we lsizgnull) = 0. Thensubsizév) = sizgv) if v is not a
subroot, ancgubsizév) = sizdv) — sizdshqwv)) if v is a subroot. We maintain sizes but only for subroots,
which allows us to compute the subsize of a subroot in cohtitag.

To initialize the structure, make each nada singleton treeshpv) = shqv) = null), with b(v) = oo
andsizdv) = 1. To performevalv), returnb(v) if shglv) = null; otherwise, compress the pathutdrom
the subroot of the subtree containing it (exactly as in thepk link-eval structure of Sectidn 3.2), and then
returnmin{b(v), b(shp(v))}. Performlink(v, w,) as follows. First, seb(w) (previously infinity) equal to
x. Next, if sizgv) > sizdw), perform Part 1 below; otherwise, perform Part 2 below amecessary, Part
3. (See Figurds]1 amnd 2.)

Part 1: 6izdv) > sizdw).) Combine the subtree rooted:atwith all the subtrees in the tree rootedwat
by settingshp(u) = v andb(u) = min{b(u),z} for each subroot of a subtree in the tree rooted at
w. Find such subroots by followinghc pointers fromw. (In Figure[d(Part 1), the successive values
of u arew, s1, s5.) This step effects a compressionuidrom the deepest subroot descendantvof
The updates to thevalues maintain (i) and (ii).

Part 2: giz€v) < siz§w).) Combine all the subtrees in the tree rooted aby settingshpu) = v for
each subroot, # v of a subtree in the tree rooted-at(In Figure[1(Part 2), the successive values of
u arery, r9,r3.) This step effects a compressionutérom the deepest subroot descendant.ofhen
setshqv) = w. This may cause violations of Invariants (i) and (ii).

Part 3: In order to restore (i) and (i) after Part 2, repeatftiilowing step until it no longer applies. Let
so = shdv) ands; = shdsp). (In the first iterationsy = w.) If s; # null andz < b(s;), compare
the subsizes of; ands;. If the former is not smaller, combine the subtrees with satws, and
s1, makingsp the new subroot, by simultaneously settstyys;) = sp andshqsg) = shds;). If
the former is smaller, combine the subtrees with subreg&nds;, makings; the new subroot, by
simultaneously settinghf(sg) = s1, shdv) = s1, b(s1) = x, andsizgs;) = siz&sp). Once this step
no longer applies, (i) and (ii) are restored.

Complete the linking by settingizgv) = siz&v) + sizdw). We call this linking methodinking-by-size

Part 1

S1 r1 Part 2
—_—

Figure 1: Linking by size: Part kizdv) > sizdw), and Part 2sizgv) < sizgw).

v
subsizésy) > subsizés;)
o —_—
S1
52

subsizés) < subsizés;)

Figure 2: Linking by size: Part 3.

The method must keep track of which nodes are subroots. Nbdeare not subroots can be marked as
such by, e.g., setting their sizes to zero, since sizes argaimeed only for subroots. We have omitted this
updating from Parts 1, 2, and 3.

This version of the data structure differs from the origif%8] only in the placement of Part 3 of the
link operation. In the original, Part 3 is done before Partndl 2 to restore (i) and (ii), whether or not
sizdv) > siz€w). Delaying Part 3 allows it to be avoided entirelysizdv) > size€w); in this case Part 1
alone suffices to restore (i) and (ii).

This structure does not suppdiridroot (because amval operation reaches only a subroot, not a root),

but we can easily extend it to do so. To each subroot that immobt, we add a pointer to its deepest
subroot descendant; to each deepest subroot, we add arpoitite root of its tree. Then a root is reachable
from any subroot descendant in at most two steps. To perfominootv), compress the path to from
the subroot of its subtree; then follow at most two pointerseach a root, and return this root. Operation
findroot has the same asymptotic complexityeasl The running time of a link operation increases by at
most a constant factor because of the extra pointer updatsted.

In the sophisticated link-eval structure, path compress@erformed on the subtrees, not on the trees.
The next lemma implies that these subtrees are balanced.

Lemma 3.1 Consider a shadow forest built using linking-by-sizeu I§ a tree node such that shp and
shpshp(u)) are both non-null, then subsi@hpshp(u))) > 2 - subsizéu).

Proof: A nodew can be assigned a paresitgu) in Part 1, 2, or 3 of a link operation. If this occurs in
Part 3,subsizéshpu)) > 2 - subsizéu) after u gets its parent. Once this happesabsizéu) stays the
same andsubsizéshp(u)) can only increase. Thus whepu) gets a parentsubsizéshpshpu))) >
subsizéshpu)) > 2 - subsizéu), and this inequality persists. Regardless of whegets a parershp(u),

if shp(u) gets its parent in Part 3, thexubsizéshpshp(u))) > 2 - subsizéshgw)) > 2 - subsizéu) when
this happens, and this inequality persists. Suppose tlemdthy andshpw) get their parents in Part 1 or
2. Whenu gets its parentsizeshpu)) > 2 - subsizéu). Subsequentlysize'shp«)) cannot decrease until
shpu) gets its parent, at which timgubsizéshpshpu))) > sizéshpw)) > 2 - subsizéu). This inequality
persists. O

Corollary 3.2 The subtrees in any shadow forest built using linking by aiee,/2-balanced.

3.4 Linking by Rank

An alternative to using linking-by-size in the sophistedtink-eval structure is to use linking-by-rank. In
place of a size, every node has a non-negative integes initially zero. The ranks satisfy the invariant

(iii) rank(shpv)) > rank(v).

We explicitly maintain ranks only for subroots. dfis a virtual tree root (i.e., irF"), we denote by
maxranKv) the maximum rank of a subroot descendant. With each virtealrbotv, we storemaxranKv)
(in addition torank(v)).

Performlink(v, w,) as follows. First, seb(w) = x. Then comparenaxrankv) to maxranKw). We
split the rest of the operation into the following parts.

Part 0: IfmaxranKv) = maxranKw), setrank(v) = maxranKv) + 1, maxranKv) = maxranKv) + 1,
and combine all the subtrees in the trees rootedaaitdw into a single subtree rooted atby setting
shpu) = v for each subroot. # v, settingshqv) = null, and setting(u) = min{b(u), b(w)} if v
was a descendant of. (See Figurél3.)

Part 1. If maxrankv) > maxranKw), setrank(v) = max{rank(v), maxrankw) + 1}, and combine
the subtree rooted at with all the subtrees in the tree rootedaf by settingshpu) = v and
b(u) = min{b(u),b(w)} for each subroot descendanof w.

Part 2: Ifmaxrankv) < maxranKw), combine all the subtrees in the tree rooted &ito a single subtree,
unlessshqv) = null, by settingrank(v) = maxrankv) + 1, maxranKv)=maxranKw), and, for each
subrootu # v, shplu) = v. Then seshqv) = w. This may cause violations of Invariants (i) and (ii).

10

Figure 3: Linking by rank: Part GnaxranKv) = maxranKw).

Part 3: To restore (i) and (ii) after Part 2, repeat the folfgystep until it no longer applies. Let =
shqv) ands; = shdsp). If s1 # null andz < b(s;), comparerank(sg) to rank(s;), and: if
rank(sg) = rank(sp), simultaneously sethp(s;) = sg, shqsg) = shdsy), rank(sg) = rank(sg) + 1,
and maxranKv) = max{maxranKv),rank(sp) + 1}; if rank(sp) > rank(s;), simultaneously set
shp(s1) = sp andshdsp) = shds;); if rank(sp) < rank(s;), simultaneously seshp(sy) = si,
shqv) = s1, andb(sy) = x.

Parts 1, 2, and 3 of linking-by-rank correspond to Parts Bl 3 of linking-by-size; Part 0 handles
the case of equahazranks, in which all subtrees of both trees are combined. (We codttieacorrespond-
ing Part O to linking-by-size, but this is unnecessary.) Asgllinking-by-size, linking-by-rank produces
balanced forests, as we now show. For a nedket subsizéu) be the number of descendantswoin its
subtree.

Lemma 3.3 In any shadow forest built using linking-by-rank, any nadeas subsize:) > 2(rank(u)-1)/2,

Proof: To obtain this result we actually need to prove somethingnger. Suppose we perform a sequence
of link-by-rank operations. We track the states of nodesir ttanks, and their subsizes as the links take
place. Each node is in one of two statasrmalor special The following invariants will hold:

(a) anormal nodeu hassubsizéu) > 2rank(u)/2.
(b) aspecial node: hassubsizéu) > g(rank(u)-1)/2.
(c) aspecial rootu has a normal subroot descendant of rank at lesasd(w).

Initially all nodes are normal; since all initial ranks arera, (a), (b), and (c) hold initially. We need to
determine the effect of each part of an operatiok(v, w,).

If maxranKv) = maxranKw), we makev normal after the link; all other nodes retain their statesisT
preserves (a), (b), and (c); the only question is whethgatisfies (a), since it gains one in rank and can
change from special to normal. Before the link, both the toe#ed atv and the tree rooted at have a
subroot of rankmaxrankv). Since each of these nodes has subsize at 26%&X"anKv)-1)/2 pefore the
link by (a) and (b), after the linkubsizév) > 2 - 20anK(v)-2)/2 — orank(v)/2 Hence (a) holds for after
the link.

If maxranKv) > maxranKw) andrank(v) does not change as a result of the link, all nodes retain their
states. The link preserves (a), (b), and (c), because no inodEases in rank. Ifank(v) does change
because of the link (becoming one greater than the old vélneaarankw)), we makev special. Nodes

11

now satisfies (b), because before the linkhad a normal subroot descendantf rank maxrankw), and
subsizéu) > omaxrankw) /2 by (a); hence, after the linlsubsizév) > orank(v)-1)/2 Node satisfies
(c), because before the link it had a normal subroot descéndaf rank maxranKv) > maxranKw) + 1,
which it retains after the link.

The last case isnaxranKv) < maxranKw). In this case we look at the effects of Part 2 and Part 3
separately. If Part 2 does anything, we makepecial. Node satisfies (b), because before the link it had
a normal subroot descendant of ramiaxranKv), which satisfied (a); hence, after the lirdybsizév) >

o(rank(v)-1)/2 Nodew satisfies (c) after the link, because before the irtkad a normal subroot descendant
of rankmaxranKw) > maxranKv) + 1 by (a), which becomes a normal subroot descendant of

Finally, we must account for the effect of Part 3. Each comatim of subtrees done by Part 3 preserves
(a), (b), and (c), except possibly for those that combine sulgirees with subroots, sgyand z, of equal
rank. In this case the rank of the surviving subroot incredseone; and if the ranks gfandz previously
equaledmaxranKv), maxranKv) increases by one. To preserve the invariants in this casenake the
surviving root, sayy, normal. Nowy satisfies (a), because before the subtrees rootgdaat » were
combined, bothy and> have subsize at least™@Ky)-1/2; after the subtrees are combinedpsizéy) >
9. orank(y)-2)/2 — orank(y) /2, Because, satisfies (a)y satisfies (c).

Thus linking preserves the invariants. By induction, theyain true throughout any sequence of links.
The lemma follows from (a) and (b). O

Corollary 3.4 The subtrees in any shadow forest built using linking-hykrare/2-balanced.

Theorem 3.5 A sequence of operations performed using the sophistidatlkaval structure with either
linking-by-size or linking-by-rank takeQ(n) time for the links and)(n + ma(m + n,n)) time for the
findroot and eval operations.

Proof: The time for a link isO(k + 1), wherek is the decrease in the number of subtrees caused by the
link. Thus the total time for all the links i©(n). The total length of compressed paths, and hence the total
time for findrootandevaloperations, i$)(n + ma(m + n,n)) by the Tarjan-van Leeuwen analysis of path
compression [61], applying Corollafy 3.2 (for linking-Isyze) or Corollary 314 (for linking-by-rank). O

3.5 Refined Analysis of Path Compression

In order to use path compression on balanced trees as a tdaliifding linear-time algorithms, we need
to show that the total time becomes linear if the compressae suitably restricted. In order to capture
both DSU and link-eval applications, we abstract the ditmaas follows. An intermixed sequence of the
following two kinds of operations is performed on a rootecesd, initially consisting of: single-node trees:

assigniu, v) Given two distinct roots, andv, makeu the parent ob.

compresgu) Compress the path t from the root of the tree containing it, by making the root pagent
of every other node on the path.

Lemma 3.6 Supposée nodes aranarkedand the remaining. — ¢ unmarked Suppose the assignments build
a balanced forest, and that each node has its parent changeatk times before it is in a tree containing
a marked node. If there ane compress operations, then the total number of nodes on @asipn paths is
O(kn + ma(m + ¢,0)).

12

Proof: Let F' be the balanced forest built by the entire sequence of assigis, ignoring the compressions;
let ¢ > 1 be such that" is c-balanced; and lgi(v) be the height of a nodein F'. Let

a = [logc (n/l) +log.(1/(c—1)) + ﬂ.

Classify each node into one of three typedow, if v has no marked descendantiip middle if v has a
marked descendant il andh(v) < a; andhigh otherwise.

A compression path from a tree root to one of its descendaisisis of zero or more high nodes
followed by zero or more middle nodes followed by zero or movenodes. Every node on the path except
the first two (totaling at mostm over all compressions) has its parent change to one of greeight as a
result of the compression.

Consider a compression path containing only low nodes. eSiine root is low, the tree in which the
compression takes place contains no marked nodes. All lmuhbaes on the path change parent but remain
in a tree with no marked nodes. The number of times this capdrafo a particular node is at mdsby
the hypothesis of the lemma, totaling at mbatover all compressions.

Consider a compression path containing at least one middiah node. Every low node on the path
except one has its parent change from low to middle or highrasut of the compression. Thus the total
number of low nodes on such paths is at most m. Every middle node on the path whose parent changes
obtains a parent of greater height. This can happen to a enidile at most times before its parent is high.
At most one middle node on a compression path has a high p&v&ling at mosin over all compression
paths. Each middle node has a marked node as a descenddénma&&ed node has at mastt 1 middle
nodes as ancestors (at most one per height lessafharhe total number of middle nodes is thus at most
¢(a + 1). Combining estimates, we find that the total number of midaides on compression paths is at
most/ - a - (a 4+ 1) + m. Sincel < n anda is O(log (n/¢)), the first term iSO (n), implying that the total
number of middle nodes on compression path@(is) + m.

Finally, we need to count the number of high nodes on comjpregsmths. Sincé is c-balanced, the
total number of high nodes is at most

n_n ¢ n oy
¢~ cv c—1 v le—1)" 7

i>a

Let therank of a nodev beh(v) — a. Then every high node has non-negative rank, and the nunfibéyto
nodes of rank > 0 is at most//c!. The analysis of Tarjan and van-Leeuwen [61, Lem. 6] apptethe
high nodes bounds the number of high nodes on compressiba ppO (¢ + ma(m + ¢,¢)). Combining
all our estimates gives the lemma. O

Lemma3.6 gives a bound 6¥(n + m) if, for example,l = O(n/loglogn), by the properties of the
inverse-Ackermann function [56]. In our applicatiohs- n/ log'/? n, which is sufficiently small to give an
O(n + m) bound.

We conclude this section by reviewing some previous resultdisjoint set union and refined analysis
of the DSU structure. The linear-time RAM DSU algorithm ofl#éav and Tarjan [30] assumes a priori
knowledge of the unordered set of unions. An earlier versibour work [14] contained a result much
weaker than Lemmfa_3.6, restricted to disjoint set unionchvinequired changing the implementation of
unite based on the marked nodes. Alstrup et al. [8] also prawgeaker version of Lemnia 3.6 in which the
ma(m + ¢, ¢) term is replaced bylog ¢ + m, which sufficed for their purpose. They derived this resoit f
a hybrid algorithm that handles long paths of unary nodesideithe standard DSU structure. Dillencourt,
Samet, and Tamminen [20] gave a linear-time result assuthimgtable tree property essentially, once
a find is performed on any element in a st all subsequent finds on elements currentlyXirmust be

13

performed beforeX can be united with another set. Fiorio and Gustedt [25] ekkfite specific order of
unions in an image-processing application. Gustedt [36krmizes the previous two works to consider
structures imposed on sets of allowable unions by varicassels of graphs. This work is orthogonal to that
of Gabow and Tarjan [30]. Other improved bounds for path aasgion [16, 44, 46] restrict the order in
which finds are performed, in ways different from our resiit.

4 Topological Graph Computations

Consider some computation that takes as input a géapvhose vertices and edges (or arcs) hé\e)-

bit labels, and produces some output information (possiblye) associated with the graph itself and with
each vertex and edge (or arc). We call such a computatiopaogical graph computatigrbecause it is
based only on the graph structure and €h@)-bit labels, in contrast, for example, to a problem in which
graph vertices and edges (or arcs) have associated reakvdiugeneral the output of a topological graph
computation can be arbitrarily complex, even exponentiadize, and can contain pointers to elements of
the input graph. Our MST verification algorithm will explditis flexibility; in all our other applications,
the size of the output is linear in the size of the input.

Suppose we need to perform a topological graph computationod just one input graph but on an
entire collection of graphs. If the input instances are saral there are many of them, then many of them
will be isomorphic. By doing the computation once for each-smmorphic instance @anonical instance
and copying these solutions to the duplicate instances awamortize away the cost of actually doing the
computations on the canonical instances; most of the tirspdat identifying the isomorphic instances and
transferring the solutions from the canonical instancethéoduplicate ones. The total time spent is then
linear in the total size of all the instances.

Gabow and Tarjan [30] used this idea to solve a special cadisjofnt set union in which the unordered
set of unions is given in advance; Dixon et al. [21] applied tachnique to MST verification and other
problems. These applications use table look-up and reguR&M. Here we describe how to accomplish the
same thing on a pointer machine. Our approach is as followsode each instance as a list of pointers. Use
a pointer-based radix sort to sort these lists. Identifyfifst instance in each group of identically-encoded
instances as the canonical instance. Solve the problenadbr @nonical instance. Map the solutions back
to the duplicate instances. The details follow.

Let G be the set of input instances, each of which contains at pnesttices. LetV be the total number
of vertices and edges (or arcs) in all the instances. kst the maximum number of bits associated with
each vertex and edge of an instance. Construct a singlydimster list whose nodes, in order, represent
the integers from zero throughax{g, 2" + 1} and are so numbered. For each insta6geperform a
depth-first search, numbering the vertices in preorder ddihg to each vertex a pointer into the master list
corresponding to its preorder number; the preorder numbediows us to maintain a global pointer into the
master list to facilitate this assignment of pointers tdigces. Represent the label of each vertex and edge
by a pointer into the master list, using a pointer to the zerento encode the lack of a label. Construct a
list L of triples corresponding to the vertices@f one triple per vertex, consisting of a pointer to the vertex
and its number and label, both represented as pointershatmaster list. Construct a lit of quadruples
corresponding to the edges (or arcs) of the graph, one goiadper edge (or arc), consisting of a pointer to
the edge (or arc), and the numbers of its endpoints and i, ledpresented as pointers into the master list.
(For an undirected graph, order the numbers of the edge endpoincreasing order.) Encode the instance
by a list whose first entry is a pair consisting of a pointertte instance and the number of its vertices,
represented as a pointer into the master list, catenatédists L and Q.

14

Constructing encodings for all the instances také¢d/) time. Recall that the elements of the encodings
are pointers to the master list. Attach a bucket to each eleai¢he master list. Use a radix sort for variable
length lists [1], following the encoding pointers to reable buckets, to arrange the encodings into groups
that are identical except for the first components of eat¢telement (pair, triple, or quadruple): instances
whose encodings are in the same group are isomorphic. Budakte)(N) time.

Now perform the topological graph computation on any onéimse of each group (the canonical in-
stance for that group). Finally, for each duplicate insgaricaverse its encoding and the encoding of the
corresponding canonical instance concurrently, trarisfgthe solution from the canonical instance to the
duplicate instance. The exact form this transfer takesmgpapon the form of the output to the topological
graph computation. One way to do the transfer is to travéisemncodings of the canonical instance and the
duplicate instance in parallel, constructing pointersMeen corresponding vertices and edges (or arcs) of
the two instances. Then visit each vertex and edge (or aittieofanonical instance, copying the output to
the duplicate instance but replacing each pointer to axertedge (or arc) by a pointer to the corresponding
vertex or edge (or arc) in the duplicate instance. If the ouk@s size linear in the input, this take$.V)
time. Summarizing, we have the following theorem.

Theorem 4.1 If the output of a topological graph computation has sizedinin the input size, the compu-
tation can be done on a collection of instances of total &izia O (V) time on a pointer machine, plus the
time to do the computation on one instance of each group ofasgphic instances.

This method extends to allow the vertices and edges (or aftisg instances to be labeled with integers
in the rang€l, g], if these labels are represented by pointers to the nodepreicamputed master list. We
shall need this extension in our applications to finding d@tars and computing component trees (Sections
[8 and 9, respectively). In another of our applications, M®fification, the output of the topological graph
computation has exponential size: it is a comparison trémse nodes indicate comparisons between the
weights of two edges. In this case, we do not construct a ney abthe comparison tree for each duplicate
instance. Instead, when we are ready to run the comparisenfar a duplicate instance, we construct
pointers from the edges of the canonical instance to thesponding edges of the duplicate instance and
run the comparison tree constructed for the canonicalnostebut comparing weights of the corresponding
edges in the duplicate instance. The total tim@{sV) plus the time to build the comparison trees for the
canonical instances plus the time to run the comparisos fogell the instances.

It remains to bound the time required to do the topologicapfgrcomputation on the canonical instances.
The number of canonical instancesg%(f). In all but one of our applications, the time to do a topolagjic
graph computation on an instance of sizer smaller isO(g?); for MST verification, it ngO(g2). Thus the
following theorem suffices for us:

Theorem 4.2 If a topological graph computation tak@9(92) time on a graph witly or fewer vertices, and
if g = log1/3 N, then the total time on a pointer machine to do the topoldgizgaph computation on a
collection of graphs of total siz&, each having at mogt vertices, iSO(N).

Proof: Immediate from Theorein 4.1, since the total time to do theltapcal graph computation on the
canonical instances ig?(9*) g0(9*) = g0(s*) = O(N). O
The ability to recover the answers from the topological grapmputations on the instancesgnis
subtle yet critical. Alstrup, Secher, and Spork [9] show Hoveompute connectivity queries on a trée
undergoing edge deletions in linear time. They partitibimto bottom-level microtrees (discussed in the
next section) and compute, for each vertdr a microtree, a bit-string that encodes the vertices opé#tle

15

from v to the root of its microtree. They show how to answer conuiégtqueries using a constant number
of bitwise operations on these bit-strings and applying Elwen and Shiloach decremental connectivity
algorithm [23] to the upper part @f.

The Alstrup, Secher, and Spork algorithm [9] runs on a poimtachine: since the connectivity queries
return yes/no answers, they need not index tables to rettow@nswers. In contrast, while their method can
be extended to solve the off-line NCAs problem in linear tiomea RAM, and even to simplify the Gabow-
Tarjan linear-time DSU result [30], both of these extensimyuire indexing tables to map the results of the
bitwise operations back to verticeslh

The idea of using pointers to buckets in lieu of indexing amyawas described in general by Cai and
Paige [17] in the context of multi-sequence discriminatidheir technigue leaves the efficient identification
of buckets with specific elements as an application-depgnateblem. They solve this problem for several
applications, including discriminating trees and DAGY, thveir solutions exploit structures specific to their
applications and do not extend to general graphs.

5 Nearest Common Ancestors

We now have the tools to solve our first application, the ioié-hearest common ancestors (NCAS) problem:
given a rootech-node treel” and a sef of m queries, each of which is a pdiv, w} of nodes ifl’, compute
nca v, w) for each query{v, w}. Aho, Hopcroft, and Ullman’s algorithm [2] for this probleras presented
by Tarjan [58], solves it using DSU. The algorithm traver§éebottom-up, building a shadow copy as a
DSU forest. It maintains, for each subtree built so far, tbieos its nodes, with the root of the subtree as
the designated element. Initially, each node is in a singleet. Each node also has a se(v) of queries
{v,w}; each query is in two such lists, one foand one forw. The algorithm is as follows.

Visit the nodes off” in a postorder [54]. (Any postorder will do.) When visitingnadew, for every pair
{v,w} in P(v) such thatw has already been visited, retuind(w) as the answer to the quenga(v, w).
Finish the visit tov by performingunite(p(v), v) if v is not the root ofl’, wherep(v) is the parent of in T'.

The correctness of this algorithm follows from basic praipsrof postorder. The DSU operations dom-
inate the running time, which i9(n + ma(m+ n,n)) if the standard DSU structure presented in Se¢flon 3
is used. In this algorithm, the unordered set of unions issknim advance, since it is given by the input tree
T. Thus the use of the Gabow-Tarjan [30] linear-time RAM DSYoaithm results in a linear-time RAM
algorithm for NCAs. Knowing the set of unions in advance, beer, is not sufficient to solve the DSU
problem in linear time on a pointer machine [46]. We explaitifferent property of the unions: they occur
in a bottom-up order.

We partitionT" into a set of small bottom-level trees, calletcrotrees and7”, the rest ofl’. For any
nodev, letT'(v) be the subtree ¢f induced by the descendantswofand let|/7'(v)| be the number of nodes
in T'(v). Letg > 1 be a fixed parameter to be chosen later. We défifig to be amicrotreeif |7'(v)| < g
but |T'(p(v))| > g. For a noder in T'(v), micro(x) = T'(v) is themicrotree ofz androot(micro(z)) is the
root of its microtree Let 7" be the subtree df induced by the vertices ifi that are not in microtrees. Each
leaf in7” has at leasy descendants i, and the descendants of two different leave®’dbrm disjoint sets,
so7” has at most/g leaves. We call the microtrees tfrenge of 7" and7” the coreof T'. See Figur€l4. It
is straightforward to partitiofi’ into its microtrees and core in linear time by visiting thelas in postorder
and computing their numbers of descendants.

We call a query{v, w} smallif v andw are in the same microtree abd) otherwise. We can partition
the queries into big and small and assign each small queryetariicrotree containing it in linear time.
We answer all the big queries by using the AHU algorithm. Wewaer all the small queries by doing a

16

Figure 4: Partitioning of a tre® with ¢ = 3; fringe nodes are open, and core nodes are filled; bottogi-lev
microtrees are encircled. Nodesindb are the leaves of the core.

topological graph computation on the set of graphs defineghblof microtree and its associated queries. By
choosingg appropriately, we get a linear time bound for both parts efdbmputation.

Specifically, choosg = log1/3 n. Answer all the big queries by running the AHU algorithm triesed
to the big queries. To bound the running time, apply Lerhmb@®tBe tree built by the parent assignments
done by the unite operations. Mark every leaff6f Each find occurs in a set containing at least one marked
node. Therefore, settinfg= 1, to count the initial parent assignment for each node,fggithe hypothesis
of the lemma. Since the number of marked nodes is at mégt= n/log'/® n, the lemma implies an
O(n + m) bound on the time to answer all the big queries.

Answer all the small queries by constructing, for each ntree a graph containing the microtree arcs
and, for each query with both nodes in the microtree, an anotéd as a query arc by a bit. Then do a
topological graph computation on these graphs to answesttiadl queries, using the method of Secfidon 4.
With g = log!/3 n, this takesO(n + m) time. Thus we obtain:

Theorem 5.1 The off-line NCAs problem can be solved(n + m) time on a pointer machine.

6 Minimum Spanning Trees

6.1 Verification

Our next applications, minimum spanning tree (MST) vertf@aand construction, combine topological
graph processing with use of the simple link-eval structfr8ection 3.2. Lefl" be a spanning tree of a
connected, undirected graghwhose edges have real-valued weights. For any édge}, let c(v,w) be
the weight of{v, w}. We denote the set of non-tree edgesihyfor any pair(v, w) of vertices, we denote
by T'(v, w) the unique path froms to w in T'. The treel" is minimum if and only if, for every edgév, w}

in P, c(v,w) > c(x,y) for every edge{x,y} onT (v, w). Thus to verify thatl" is minimum it suffices to
computemax{c(z,y) : {z,y} onT(v,w)} for every edge{v, w} in P. We assume henceforth thAtis
rooted at a fixed but arbitrary vertex and that each verteas a sef(v) of the pairs{v, w} in P.

17

Tarjan'sO(ma(m,n))-time MST verification algorithm [58] is like the AHU NCAs abgthm, except
that it uses a link-eval structure (withax instead ofmin) in place of a DSU structure to compute the needed
path maxima. The algorithm builds the link-eval forest dgra bottom-up traversal af. As part of the
process of computing path maxima, the algorithm computes nca(v, w) for each paif{v,w} in P and
stores{v, w} in a setQ(u). Initially each node ofl" is in a single-node tree of the link-eval structure, and
Q(u) is empty for each node. The algorithm follows.

Visit the nodes ofl" in a postorder. (Any postorder will do.) When visiting a v, for every pair
{v,w} in P(v) such thatv has already been visited, afid, w} to Q(findrootw)). For every paifz, y} in
Q(v), returnmax{evalz),evaly)} as the answer to the quefy, y}. Finish the visit tov by performing
link(p(v), v, c(p(v),v)) unlessw is the root ofT".

When the algorithm answers a quefy, y} while visiting a vertexv, v = nca(z,y), andevalz)
andevaly) are the maximum costs of the arcs Bfw, z) andT' (v, y), respectively. In Tarjan’s original
presentation, the NCA calculations are separate from ttregealuations, but combining them gives a more
coherent algorithm. Ignoring the arc costs @&vdloperations, the link-eval structure functions exactlg lik
the DSU structure in the AHU NCAs algorithm.

If the sophisticated link-eval structure of Section]3.3 ect®n[3.4 is used, this algorithm runs in
O(ma(m,n)) time. Unfortunately, these structures delay the effectheflinks, so parent assignments
do not necessarily occur in a bottom-up order, and we cammoteidiately apply the approach of Sectidn 5
to reduce the running time to linear. This problem was pdimtet by Georgiadis and Tarjan [32]. Instead,
we use a result of King [40] to transform the original treeiain O(n)-node balanced tree on which to
compute path maxima. Then we can use the simple link-evadtsite of Section 312 in combination with
the approach of Sectidn 5 to obtain a linear-time algorithm.

6.2 The Borivka Tree

A Borlivka ste13] applied to a weighted, undirected graghis as follows: select a least-weight edge
incident to each vertex, and contract to a single vertex eaohected component formed by the selected
edges. Repeating this step until only a single vertex resmaioduces an MST defined by the original edges
corresponding to the edges selected in all the steps, itlgkt eveights are distinct, which we can assume
without loss of generality.

This algorithm can be enhanced to produceBbelivka treeB, whose nodes are the connected compo-
nents that exist during the Borlivka steps, with each nosgim@as children those components from which
it is formed during a Borlivka step. If componeiitis the parent of componeii?, the weight of ar¢C, D)
is the weight of the edge selected for the vertex correspgnidi D by the Borlivka step in whiclb is con-
tracted intoC'. The leaves of3 are the vertices aff, each of which is originally a single-vertex component.
Each Boriivka step reduces the number of vertices by atdefastor of two; henceB is 2-balanced. Also,

B contains at mos?n — 1 nodes. In general the enhanced Borlivka algorithm ruig(in log n) time on

a pointer machine. On a tree, however, it run®ifn) time, because each contracted graph is a tree, and a
tree hasD(n) edges. We apply the enhanced Borlivka algorithm to theTtrimt is to be verified, thereby
constructing the Boriivka tre8 of 7. In addition to being balanced has the following key property [40]:

for any pair of verticegv, w}, max{c(x,y) : (z,y) onT(v,w)} = max{c(z,y) : (x,y) on B(v,w)}.

Thus we can compute path maxima Brinstead of oril” without affecting the answers to the queries.

18

6.3 Comparison Trees for Computing Path Maxima

Now we can apply the approach of Sectidn 5. yet log!/? n. Partition B into microtrees and a cotB’
as in Sectiom]5. Partition the pairs ininto big pairs those with ends in different microtrees, asmall
pairs, those with ends in the same microtree. Compute path maxnalfthe big pairs by running Tarjan’s
algorithm onB, restricted to the big pairs and using the simple link-etraicture of Sectiof 3]2.

To bound the running time of this computation, we apply Lerh@to B. Mark every leaf ofB’. Each
findrootandevaloccurs in a subtree d® containing a marked node, so setting- 1 satisfies the hypothesis
of the lemma. Since the number of marked nodes is at hogj = 2n/log'/? n, the lemma implies an
O(m) bound on the time to compute path maxima for all the big pairs.

We would like to compute path maxima for all the small pairsapplying the method of Sectidh 4. To
this end, construct for each microtree a graph containiegnifcrotree edges and, for each pair with both
ends in the microtree, an edge designated as a query edgetbiNaws a new difficulty arises: since the arc
costs are arbitrary real numbers, computing path maximatia topological graph computation; we cannot
encode the edge costsdn(1) bits, or even irD(log g) bits.

We overcome this difficulty by following the approach of DixdRauch, and Tarjan [22]: do a topologi-
cal graph computation that builds, for each distinct maigexgbh, a comparison tree, whose nodes designate
binary comparisons between costs of unmarked edges ofdipé ¢ree edges), such that the output nodes of
the comparison tree designate, for each marked edge (qag)ywhich of the unmarked edges on the path
between the ends of the edge has maximum cost. Having Hultteatomparison trees, run the appropriate
comparison tree for each microtree and its associated, pairsg the actual costs of the microtree arcs to
determine the outcomes of the comparisons.

With ¢ = log!/®n, the time for this computation i©(m), plus the time to build comparison trees
for the topologically distinct instances, plus the time wo the comparison trees for the actual instances.
Komlobs [41] proved that the path maxima needed for MST \@ifon can be determined in a number of
binary comparisons of tree edge costs that is linear in timebeu of graph edges, which implies for each
instance the existence of a comparison tree that has degtr lin the number of edges. Dixon et al. [22]
observed that the comparison tree implied by Komlos’ tesarh be built in a time per comparison-tree node
that is quadratic in the number of graph vertices. If we usé thethod to build the comparison trees during
the topological graph computation, ther= log'/® n implies by the results of Sectién 4 that the total time
to build the comparison trees$(m). The total time to run them is linear in the total size of a# #ctual
instances, which is alsO(m). Thus we obtain:

Theorem 6.1 Computing all the path maxima needed for MST verification, @ping the verification itself,
takesO(m) time on a pointer machine.

6.4 Construction of Minimum Spanning Trees

The randomized linear-time MST construction algorithm efd¢fer, Klein, and Tarjan [39] runs on a pointer
machine except for the part that computes the path maximdedefer MST verification. Using the algo-

rithm of Sectio 6.8, this part can be done (determinidiiah linear time on a pointer machine, resulting
in a randomized linear-time, pointer machine algorithmdonstructing an MST.

6.5 Remarks

It is instructive to compare our MST verification algorithmthose of Dixon, Rauch, and Tarjan [22] and
of King [40]. Our use of King's Borlivka tree construction as intermediate step allows us to use only

19

bottom-level microtrees, whereas Dixon et al. partitioa dniginal tree entirely into microtrees, with an
extramacrotreeto represent the connections between them. It also allows use the simple link-eval
structure instead of the sophisticated one. Lerhmh 3.6 sllosvto break big queries into only two parts
(having an NCA in common); Dixon et al. break each big quety s many as six parts. King explicitly
implements Komlos’ comparison algorithm for the Boriitkee, but her algorithm is heavily table-driven
and requires a RAM. She also must compute NCAs separately.

There is an alternative, though more complicated way tofwem MST in linear time on a pointer
machine. This method replaces the use of the Borlivka treefdaytition of the original tree into bottom-
level microtrees and a set of maximal paths that partitiectire. The method does NCA computations on
trees derived from the maximal paths, and it uses a sopdtistidink-eval structure instead of the simple
one. We discuss this method in more detail in Sedfioh 8.7.ughdhe use of the Borlivka tree gives us
a simpler algorithm for MST verification, there is no corresging concept for either of our remaining
applications, and we must rely on the alternative of partitig the core into maximal paths.

7 Interval Analysis

We turn now to two problems on flowgraphs. The firshigrval analysis LetG = (V, A, r) be a flowgraph,
and letD be a given depth-first search tree rooted-.atdentify vertices by their preorder number with
respect to the DFS: < w means that was visited beforev. Reverse preordesf the vertices is decreasing
order by (preorder) vertex number. For each vettgtheheadof v is

h(v) = max{u : u # v and there is a path fromto u containing only descendants of;

h(v) = null if this set is empty. The heads define a for&stalled theinterval forest h(v) is the parent
of v in H. Each subtred] (v) of H induces a strongly connected subgraplGofcontaining only vertices
in D(v) (the descendants efin D). See Figurél5. Tarjan [57] proposed an algorithm that useSGA
computation, incremental backward search, and a DSU daietste to computé? in O(ma(m,n)) time
on a pointer machine. We shall add microtrees, a maximalpetition of the core, and a stack to Tarjan’s
algorithm, thereby improving its running time €(m) on a pointer machine.

Tarjan’s algorithm proceeds as follows. Delete all the &ros the graph. For each vertex form a
set of all deleted arc6e, y) such thainca(x,y) = u. Process the vertices in any bottom-up order; reverse
preorder will do. To process a vertex add back to the graph arcs corresponding to all the deleted a
(z,y) with nca(z, y) = u. Then examine each afe, v) enteringu. If v # u, seth(v) = u, and contract
into «; for all arcs having as an end, replaaeby u. This may create multiple arcs and loops, which poses
no difficulty for the algorithm. Continue until all arcs intohave been examined, including those formed by
contraction. When adding arcs back to the graph, the aregponding to an original arc is the one formed
by doing end replacements corresponding to all the comresctione so far.

To keep track of contractions, Tarjan’s algorithm uses a BBUcture whose elements are the graph
vertices. The algorithm also uses a reverse adjacenci(set initially empty, for each vertex. A more
detailed description of the algorithm is as follows. To @®su, for each ar¢x, y) such thanca(z, y) = v,
addzx to R(find(y)). (The replacement fat is done later.) Then, whil&(«) is non-empty, delete a vertex
x from R(u); letv « find(z); if v # u, seth(v) <« u, setR(u) «— R(u) U R(v), and dounite(u, v).

With the setsk(u) represented as singly linked circular lists (so that setrutékes constant time), the
running time of this algorithm on a pointer machine is lineacept for the NCA computations and the DSU
operations, which také(ma(m,n)) time in Tarjan’s original implementation. We shall redulce tunning

20

20
3¢ 023
15
1c@ 17 021 22
18
19 20

@ (b)

Figure 5: (a) A DFS treé of the input flowgraphz; non-tree arcs are dashed. (b) The interval foféstf
G with respect taD; arrows are parent pointers.

time to linear by using microtrees to eliminate redundamhjgotation and by reordering the unites into a
bottom-up order.

As in Section b, partitionD into a set of bottom-level microtrees (the fringe), eacthviéwer than
g = log!/®n vertices, andD’, the remainder oD (the core). Use a topological graph computation to
computeh(v) for every vertexv such thati(v) is in the fringe. The definition of heads implies that for any
such vertexv, h(v) andv are in the same microtree, and furthermore that the onlynmtion needed to
compute heads in the fringe is, for each microtree, the syibginduced by its vertices, with non-tree edges
marked by a bit. Withy = log!/? n, this computation take®(m) time by Theoreri4]2.

It remains to compute heads for vertices whose heads are iootfe. Our approach is to run Tarjan’s
algorithm starting from the state it would have reachedrgitecessing the fringe. This amounts to con-
tracting all the strong components in the fringe and theming the algorithm. This approach does not
guite work as stated, because the DSU operations are nati@stenough for Lemmia_3.6 to apply. To
overcome this difficulty, we partition the core into maxinpaths. Then we run Tarjan’s algorithm path-
by-path, keeping track of contractions with a hybrid stouetconsisting of a DSU structure that maintains
contractions outside the path being processed and a staickntintains contractions inside the path being
processed. The latter structure functions in the same wéyeagne Gabow used in his algorithm [28] for
finding strong components. Now we give the complete desonf our algorithm.

Partition the vertices i)’ into a set of maximal paths by choosing, for each non-leakxerin D', a
child ¢(v) in D’. (Any child will do.) The arcgv, ¢(v)) form a set of paths that partition the verticesin
For such a patt®, we denote the smallest and largest vertice®dy top(P) andbotton{ P), respectively;
bottom(P) is a leaf ofD’. SinceD’ has at most/g leaves, the number of paths is at mogy. Partitioning
D' into paths take®(n) time.

After constructing a maximal path partition of the coretialize a DSU structure containing every
vertex (fringe and core) as a singleton set. Visit the fringdices in bottom-up order, and, for each fringe
vertex v with h(v) also in the fringe, perfornunite(h(v),v); for such a vertexi(v) has already been
computed. InitializeR(u) < () for every vertexu. For every ar¢z, y) with x andy in the same microtree,

21

addz to R(find(y)). For every remaining argz, y), computeu = nca(x, y) and addz, y) to the set of arcs
associated witlhr. These NCA computations tak¥m) time using the algorithm of Sectidh 5. Indeed, every
NCA query is big, so the AHU algorithm answers them in linéawet This completes the initialization.
Now process each paftf in the path partition, in bottom-up order with respectdp(P). To process a
path P, initialize an empty stacls. Process each vertexof P in bottom-up order. To process for each
arc(z,y) such thainca(z,y) = u, addz to R(find(y)). Then, whileR(u) is non-empty, delete a vertex
from R(u). Letv « find(z). If vis not onP, seth(v) «— u, setR(u) < R(u) U R(v), and dounite(u, v).
If, on the other handy is on P, v # u, andw is greater than the top vertex ¢ pop fromS each vertex
w less than or equal to, seth(w) « u, and setR(u) < R(u) U R(w). OnceR(u) is empty, push: onto
S. After processing all vertices aR, visit each vertex; on P again, in bottom-up order, and/if«) is now
defined, perfornunite(h(u), u). See Figurélé
This algorithm delays the unites for vertices on a path timéilentire path is processed, using the stack to
keep track of the corresponding contractions. Specifictilly algorithm maintains the following invariant:
if vertex u on pathP is currently being processed amds any original vertex, then the vertex into which
has been contractedis= find(z) if v is not onP, or the largest vertex of less than or equal toif v is
on P andS is non-empty, o otherwise. It is straightforward to verify this invariang iImduction on time;
the correctness of this implementation of Tarjan’s algonitfollows.

Theorem 7.1 The interval analysis algorithm runs i@(m) time on a pointer machine.

Proof: The running time is linear except for the find operations:heaartex gets added t§ once and has
its head set at most once. To bound the time for the find opesative apply Lemma 3.6 to the tree built by
the parent assignments done by the unite operations. Matiogts of all paths. Since there are at mo&j
paths, there are at mosfg = n/log"/® n marked vertices. We claim that= 4 satisfies the hypothesis of
the lemma. We need a property of the interval folstif h(v) = u, then every vertexv # u on the path
in D from u to v is a descendant af in H. This holds because there is a path containing only veriices
D(u) from w to v (via D) to u.

The unites occur in batches, one initial batch for all therosets and one batch per path. Consider any
vertexv. We bound the number of times the set containirig the DSU structure can change, as a result of
a batch of unites, beforeis in a set with a marked vertex. Vertexcan change sets once as a result of the
initialization (from a singleton set to a larger set). Aftiee initialization,v is in some set, whose designated
vertex may be fringe or core. The first batch of unites thahgka the set containingputsw in a set with a
designated vertex that is in the core, specifically on some p@&hThe second batch of unites that changes
the set containing putsv in the same set a@sp(P) (by the property above), andis now in a set with a
marked node. Thus can change sets at most thrice before it is in a set with a rdarkgex. The parent
of v can only change once, as a result of a compression, withoaidnging sets. Therefore, the parent of
can change at most four times beferes in a set with a marked vertex, so the claim is true.

With k = 4 and? < n/log!/3 n, Lemmd3.b gives a bound 6f(m) on the time for thdind operations.

O

Interval analysis is an important component of program floalgsis [3]. It also has other applications,
including testing flow graph reducibility [60], finding a paf arc-disjoint spanning trees in a directed
graph [57] and verifying a dominator tree [33]. Our interaahblysis algorithm give®(m)-time algorithms
on a pointer machine for these applications as well.

In the next section we shall need a compressed version ohtheval forestH’ that is defined with
respect to the fringe-core partition: the paréfiy) of a vertexw is its nearest core ancestor fhif it has
one,null otherwise. We can easily computg from H in linear time, but if we only wanf{’ and notH,

22

bottom @) bottom @)

h(bottor(P)) « us
h(ug) — us

bottom(Q) {3, us, uy, v, bottom(P) } bottom(Q)

bottor(P) (c) (d)

top(Q)

{u4,t0p(P), us, ug, ui, v, bottom P), w, z}

bottom Q)

bottom Q)
(e) ®

Figure 6: Idealized execution of the algorithm on the grapfta), with circled microtree. Arcs depict the
effects of contractions: whenevere R(y), (find(z),find(y)) is an arc in the corresponding graph. The
first vertex in each labeled set is the corresponding origiegtex in (a). (a»b) During preprocessing,
h(v) < w1, andv is inserted into the set af;. (b—c) When processings, h(u;) <« ug via the arqv, ug).
(c—d) When processings, the stackS' is (top-down)(us, bottom(P)). Hence, when processing the arc
(bottom(P), u3), S is popped so that(us) < ug andh(botton(P)) < us. (d) shows the state after doing
theunite(-)’s for path P. (d—e) When processingy, S'is (w, z, bottom(@Q)). Arc (ug, uy) Setsh(ug) < uy
and addgop(P) andz to R(u4). Processingop(P) causes:(top(P)) < w4, and processing pops the
stack so thab(w) < ug andh(z) < uy. (f) After processing pathy.

23

we can avoid the topological graph computation on the mieest First, find the strong components of the
graphs induced by the vertex sets of the microtrees. Foraadhcomponent, find its smallest vertexand
performunite(u, v) for every other vertex in the component. Then run the algorithm above for the core.
This computed(v) = h/(v) for every vertexv with head in the core. Complete the computation by setting
h'(v) = I (u) for each vertexw # wu in a fringe strong component with smallest vertex

8 Dominators

Our second flowgraph problem is finding immediate dominatbet G = (V, A, r) be a flowgraph. We
denote the immediate dominator of any verteky idom(v). Let D be an arbitrary but fixed depth-first
search (DFS) tree rootedatAs in Sectiori 7, we identify vertices by their preorder nemiith respect to
the DFS; reverse preorder is decreasing order by vertex eurie use the notatiom = w to denote that
v is an ancestor ofy in D, andv - w to denote that is a proper ancestor af in D. Sometimes we use
the same notation to denote the respective pattis firom v to w. We denote by(v) the parent ob in D.
We shall need the following basic property of depth-firsrcea

Lemma 8.1 [54] Any path from a vertex to a vertexw > v contains a common ancestoroandw.

We shall describe an algorithm to compute immediate domisah O(m) time on a pointer machine.
This is our most complicated application: it uses all theagland algorithms we have developed so far.
Our algorithm is a re-engineering of the algorithms presgily Buchsbaum et al. [15] and Georgiadis and
Tarjan [31, 32]. As we proceed with the description, we shaiht out the relationships between concepts
we introduce here and the corresponding ideas in thosegqueworks.

8.1 Semi-Dominators, Relative Dominators, Tags, and Exteled Tags

Lengauer and Tarjan (LT) [43] devised a three-p@¥8na(m, n))-time algorithm to compute immediate
dominators. We shall improve their algorithm by speedinghadfirst two steps. Central to the LT algorithm
is the concept osemi-dominators A pathzg, 1, ...,z In G is ahigh pathif z; > x; fori < k. As a
degenerate case, a single vertex is a high path. A high pattisaall proper ancestors of its last vertex. The
semi-dominatoof a vertexw is

sdomw) = min({w} U {u : for some(u,v) in A there is a high path fromto w}).
Therelative dominatorof a vertexw is
rdom(w) = argmin{sdonfu) : sdomfw) = u = w}.

With this definition, relative dominators are not uniquet faw any vertex any relative dominator will do.
The LT algorithm operates as follows:

Step 1. Compute semi-dominators.
Step 2: Compute relative dominators from semi-dominators.

Step 3: Compute immediate dominators from relative dominators.

Step 3 relies on the following lemma:

24

Lemma 8.2 ([43, Cor. 1]) For any vertexv # r, idomv) = sdonfv) if sdonm{rdom(v)) = sdonfv);
otherwise, idorfw) = idom(rdom(v)).

Using Lemmd 812, the LT algorithm performs Step 3 in a sttigtvard top-down pass ovep that
takesO(n) time on a pointer machine.

The LT algorithm performs Steps 1 and 2 in a single pass tlsits\the vertices ob in reverse preorder
and uses a link-eval data structure to compute semi-doarsaind relative dominators. We shall present
separate algorithms for Steps 1 and 2, although these séepbecpartially combined, as we discuss in
Sectio 8.7.

Step 2 is almost identical to MST verification. Indeed, siggpwe assign a costloniv) to each tree
edge(p(v),v) and apply the MST verification algorithm to the trBewith query set) = {(sdom(v),v) :

v # r}, with the modification that the answer to a query is an edgeininum cost on the query path rather
than the cost of such an edge. Thendog r, rdom(v) is the vertexu such thatp(u), w) is the answer to
the query(sdonfv),v). Modifying the link-eval structure to replace maximum bynmum and to return
edges (or, better, vertices) rather than costs is straigtid. The algorithm of Sectidd 6 thus performs
Step 2 inO(n) time on a pointer machine. (The number of querie®(s).)

It remains to implement Step 1, the computation of semi-gamors. Lengauer and Tarjan reduce this
computation, also, to a problem of finding minima on tree patising the following lemma:

Lemma 8.3 ([43, Thm. 4]) For any vertexw,
sdonfw) = min ({w} U {nca(u,w) : (u,w) € A} U {sdonfv) : I(u,w) € A, ncalu,w) = v = u}).

The lemma gives a recurrence Smon{w) in terms ofsdon{v) for v > w. The LT algorithm performs
Step 1 by visiting the vertices in reverse preorder and usiintk-eval structure to perform the computations
needed to evaluate the recurrence.

Even though Step 1 is now reduced to computing minima on @#espwe cannot use the MST verifica-
tion algorithm directly for this purpose, because that atgm answers the queries in an order incompatible
with the requirements of the recurrence. Instead we dewahoglternative strategy. For convenience we
restate the problem, which allows us to simplify slightlg lecurrence in Lemnia 8.3. Suppose each vertex
w has an integetag t(w) in the rangd1, n]. Theextended tagf a vertexw is defined to be

et(w) = min{t¢(v) : there is a high path fromto w}.

Lemma 8.4 If t(w) = min({w} U {v : (v,w) € A}) for every vertex, then sddm) = et(w) for every
vertex.

Proof. Immediate from the definitions of semi-dominators and eXéeintags. O
We can easily compute the tag specified in Lerhmb 8.4 for evagxinO(m) time. Thus the problem
of computing semi-dominators becomes that of computingreded tags.
Lemmd 8.8 extends to give the following recurrence for edéehtags:

Lemma 8.5 For any vertexw,

et(w) = min({t(w)} U {et(w) : I(u,w) € A, ncalu,w) = v = u}).

25

21[15] 2212l

18[2]

/ 09 2. Da”
/s ~7192] 20[2]

-

10[9] 11[9] 13[12] 14[2]

Figure 7: Extended tags and arc tags. The number inside eackeis the extended tag of the correspond-
ing vertex. The number on each arc is its tag; the arc tag @feadr forward arc is infinite and not shown in
the figure.

Proof: Analogous to the proof of Lemnia 8.3. Letbe the right side of the equation in the statement
of the lemma. First we provet(w) < z. If z = t(w), etlw) < x is immediate from the definition of
et(w). Supposer = ef(v) for v such thanca(u, w) — v - u and(u, w) in A. By the definition ofet(v),
et(v) = t(z) for some vertex: such that there is a high path fromto v. Extending this path by the tree
path fromo to u followed by the ardu, w) gives a high path from to w. Henceet(w) < et(v) = z.

Next we prover < et(w). Let z be a vertex such thatt(w) = ¢(z) and there is a high path fromto
w (by the definition of the extended tags). zIf= w, thenz < et(w) from the definition ofz. If not, let
(u, w) be the last edge on the high path freno w. Letv be the first vertex along the high path such that
nca(u, w) — v — u. Such av exists sinceu is a candidatenca(u, w) < w < u). We claim that the part
of the high path fronz to v is itself a high path. Suppose to the contrary that this pamtains a vertex less
thanv, and lety be the last such vertex. Thgrmust be an ancestor ofby Lemmd8.]l, and sincgis on a
high path forw, ncau, w) - y - v. This contradicts the choice of It follows thatet(v) < t(z); that is,
z < ef(w). O

We introduce one more definition that simplifies some of oumigdas and discussion. For an &ic w),
thearc tagof (u, w) is

at(u, w) = min{et(v) : ncalu, w) - v = u}

if this minimum is over a non-empty set, and infinity othemvisvhennca(u,w) = u). An example is
shown in Figurél7. Using arc tags, the recurrence in Lemma&bmes

et(w) = min({t(w)} U {at(u, w) : (u,w) € A}). 1)

26

8.2 The Interval Forest

We could use Eq[{1) to compute extended tags just as the OFithin uses Lemmia 8.3 to compute semi-
dominators, but we seek a faster method. Note that theravarkinds of arc§«, w) that must be handled:
those such that andw are unrelatedofoss arcy, and those such that - u (back arc$. (Arcs such that

u - w do not contribute to the recurrence.) We apply differenhiégues to the cross arcs and the back
arcs, which allows us to tease apart the intertwined contipngimplied by Eq.[(fl) and reorder them to
apply our techniques.

To handle the back arcs, we use the interval forest discussgdction Y. Recall the following defi-
nitions. For each vertew, the headh(w) of w is the maximum vertex. # w such that there is a path
from w to « containing only descendants @fif this maximum is over a non-empty set, amall otherwise.
Lemma[8.1 implies that the constraint arin the definition ofh(w) is equivalent ta: - w and there is a
high path fromw to . The heads define a forekt called theinterval forest h(w) is the parent ofv in H.
The following lemma allows us to compute extended tags bypedimg arc tags only for the cross arcs and
propagating minima up the interval forest.

Lemma 8.6 For any vertexw,
et(w) = min({t(v) : v € H(w)} U{at(u,v) : (u,v) € A, v € H(w), u & D(w)}).

Proof: Letx be the right side of the equation in the statement of the lenkinst we proveet(w) < z. Let
v be in H(w). Since there is a high path fromto w, etfw) < ¢(v). Let (u,v) be in A such thaw is in
H(w) butw is notin D(w). Lety be a vertex of minimunet(y) such thanca(u, v) — y = u, and letz be
a vertex of minimunt(z) such that there is a high path frono y. Then there is a high path fromto y to
u to v to w, which implieset(w) < t(z) = et(y) = at(u, v). We conclude thagt(w) < z.

Next we prover < et(w). Let z be a vertex such that(w) = ¢(z) and there is a high path fromto
w. If zisin H(w), thenz < t(z) = et(w). Suppose: is not in H(w). Let (u,v) be the first arc along
the high path frome to w such thatv is in H(w). Thenu cannot be inD(w), or it would be inH (w),
contradicting the choice dfu,v). Thusnca(u, v) & w. Lety by the first vertex along the high path such
thatnca(u,v) - y = u. By Lemmd38.1L, the part of the high path franto y is itself a high path. Thus
z < at(u,v) < ef(y) < t(z) =ef(w). O

Corollary 8.7 For any vertexw,
et(w) = min({t(w)} U {et(v) : h(v) = w} U {at(v,w) : (v,w) is a cross arg).

Corollary[8.T gives an alternative recursion for computixtended tags by processing the vertices in
reverse preorder. Lemnia 8.6 also allows us to compute eatietad)s for all the vertices on a tree path,
given only arc tags for arcs starting to the right of the path.

8.3 Microtrees and Left Paths

As in Sectiori b, we partitiol) into a set of bottom-level microtrees (the fringe), eachtaiming fewer than

g = log!/® n vertices, and)’ (the core), the remainder d@#. We call a cross arsmallif both its ends are
in the same microtree arfnlg otherwise. We also partitio®’ into maximal paths as in Sectiéh 7, but a
particular set of maximal paths. Specifically, we partitiohinto left paths as follows: an ar¢p(v), v) of

D' is aleft arcif v is the smallest child gf(v) in D’. A left pathis a maximal sequence of left arcs. We can

27

partition D into microtrees and left paths (m) time during the DFS that definds. If P is a left path, as
in Sectior ¥ we denote bpp(P) andbottom P) the smallest and largest vertices Bnrespectively. The
importance of left paths is twofold. First, there are at mo&j of them. Second, ifp(v),v) is a left arc,
any child ofp(v) smaller tharv must be in the fringe, not the core. That is, left paths have microtrees
descending on their left. Left paths serve in place oflithes of Georgiadis and Tarjan [31, 32]; left paths
are catenations of those lines.

Our hypothetical plan for computing extended tags in lirigae is to use a topological graph computa-
tion to handle the microtrees and a link-eval structure fmate arc tags for the big cross edges. This plan
does not quite work: computing extended tags is unlike tlegipus problems we have considered in that
there is an interaction between the fringe and the core. ricpkar, we need at least some information about
the small cross arcs in order to compute extended tags irotiee @nd information about the big cross arcs
to compute extended tags in the fringe. For the former coatjout we do not, however, need to compute
arc tags for the small cross arcs: the recurrence in Lemnmaxp@sses the extended tags of vertices in
the core in terms only of tags of vertices and arc tags of big<arcs. To handle the limited interaction
between fringe and core, we use a two-pass strategy. Duminfirst pass, we compute arc tags of big cross
arcs and extended tags in the core while computing limiteminmation in the fringe. In the second pass, we
use the information computed in the first pass in a topoldgjmh computation to compute extended tags
in the fringe.

The information we need in the fringe is a set of values defaefbllows. For a vertex in a microtree
D(s), themicrotagof w is

mMt(w) =min ({¢(v) : there is a path from to w in D(s)} U
{at(u,v) : (u,v) isacross arcv € D(s), u ¢ D(s), and there is a path iD)(s) from v to w}).

Our microtags correspond to tpeshed external dominatocf Buchsbaum et al. [15] (also used by Geor-
giadis and Tarjan [31, 32]). The next lemma shows that, winenptiting the arc tags of big cross arcs, we
can use microtags in place of extended tags for fringe wsiithat is, we shall use microtag values in the
link-eval structure, when linking fringe vertices.

Lemma 8.8 Letw be a vertex in a microtre®(s). Then
min{et(v) : s = v > w} = min{mMv) : s = v = w}.

Proof: Let x andy be the values of the left and right sides of the equation irstaeement of the lemma,
respectively. First we prove that> y. Letv be a vertex such that = et(v) ands — v — w. Let z be
a vertex such that(z) = et(v) and there is a high path fromto v. If z is in D(s), then this high path is
in D(s), which implies thatr = t(z) > mt(v) > y. Suppose on the other hand thas not in D(s). Let
(p, q) be the last arc along the high path such tha not in D(s), and letz’ be the first vertex along the
high path such thatca(p, q) 5 2/ % p. Note that(p, ¢) must be a cross arc, singds not in D(s) and is
on a high path t@ in D(s). See Figurél8. As in the proof of Lemimal8.5, the part of the pih fromz to
2’ is itself a high path, which implies = ¢(z) > et(2’) > at(p,q) > mt(v) > y.

Next we prove thatr < y. Letw be a vertex such that = mt(v) ands — v — w. Suppose
mt(v) = t(z) for somez in D(s) from which there is a path toin D(s). Letu be the first vertex on this
path that is an ancestor af. Then the path from to « is a high path by Lemmia8.1 and the choice of
u. Thusz < ef(u) < t(z) = y. Suppose on the other hand thmai(v) = at(p, ¢) for an arc(p, ¢q) such
that ¢ but notp is in D(s) and there is a path fromto v. Letw be the first vertex on this path that is an

28

\ -~

1T 0OF
high path

Figure 8: Proof of Lemma8.8. Dashed curves represent graghis pSolid edges represent tree paths. Each
gray vertex can be in the core or in the fringe.

ancestor ofw. By Lemma 8.1, the part of the path frogto « is a high path. Let be a vertex such that
t(z) = at(p, ¢) and there is a high path fromto a vertexz’ such thanca(p, q) = 2’ = p. See Figur&ls.
This path, together with the path = p, the arc(p, ¢), and the high path from to v, is a high path. Thus
x <etlu) <t(z) = at(p,q) = mtlv) = y. O

To help compute extended tags during the first pass, we usapressed interval foregi’ in place of
the interval forest/. Recall that inH’, the parent.’(v) of a vertexw is the nearest ancestor oin H that
is a core vertex. Foresfd and H' are identical on the core; each subtredbtonsisting of fringe vertices
with a core root is compressed fili’ to the root with all the fringe vertices as children. The uéi6in
place ofH is an optimization only: we can build eithéf or H' in linear time using the algorithm of Section
[7, but, as noted in Sectidn 7, buildidd’ instead ofH avoids the use of topological graph computations on
the microtrees and thus is simpler. The algorithm of Sefibuilds /' by partitioning D into microtrees
and maximal paths. We can use the set of left paths as the mbxaths, avoiding the need for two different
partitions.

To compute extended tags in the core, we use the followingllaoy of Lemmd 8.6:

Corollary 8.9 If w is a core vertex

et(w) = min ({t(v) : v = w or v is fringe with 2/ (v) = w} U {et(v) : v is core withh'(v) = w} U
{at(u,v) : (u,v) is a big cross arc such that= w or v is fringe with2'(v) = w}).

The algorithm of Georgiadis and Tarjan [32] for computingnileators does not usé’ explicitly, but
it does do an incremental backward search using a stack tatamaistrongly connected parts of lines, in
effect doing a just-in-time computation of (part dff. Making this computation separate, as we have done,
breaks the overall algorithm into smaller, easier-to-usi@dad parts, which could be combined if desired.

8.4 Computation of Arc Tags

The heart of the algorithm is the computation of arc tags. i sach such computation into two parts,
either of which can be void: top part which computes a minimum of extended tags over part or al of
left path, and @ottom parf which computes a minimum of extended tags of core vertioglsnaicrotags

29

top(P)

botton{ P)

(@) (b)

Figure 9: Examples of non-emptyca(u,v) — mid(u,v) paths. (a) Case > botton{P). (b) Case
u < bottom(P).

of fringe vertices using a sophisticated link-eval streetuSpecifically, le{w, v) be a big cross arc. L&?
be the left path containingca(u, v), and letQ be the intersection o and the patmca(u,v) = u. We
denote the last vertex o by mid(u,v). Note thatQ) can be non-empty (contain no arcs) onlyifs a
fringe vertex. See Figufd 9.

For a given left path”?, we compute minima of extended tags for all such non-emptigsp@ at the
same time. We do not need to know any of these minima untihelleixtended tags for vertices éhhave
been computed. This allows us to compute the minima for sathsg) in arbitrary order. One way to
compute these minima is to use the MST verification algorjtamsuggested above for doing Step 2 of
the LT algorithm. In this application, however, the treengeverified is actually a path, and we can use
an algorithm that is at least conceptually simpler, if notnagtotically faster. The problem we need to
solve is that of computing minima for given subsequences sfquence of numbers. This is trenge
minimum queryRMQ) problem [29]. This problem has a linear-time reduttj@9] to an NCA problem
on a Cartesian tree [65]. We can thus compute minima for pathg constructing the Cartesian tree and
applying our NCA algorithm. Either method allows us to corteptine top parts of arc tags @(m) time on
a pointer machine.

To compute the bottom parts of arc tags, we use a sophigtitiateeval structure. We delay the links
for arcs on a left path until the top of the left path is reachsd for arcs in a microtree until its root is
reached. This allows us to establish a linear time boundIfthelink-eval operations using Lemrha B.6.

8.5 The First Pass

We now have all the pieces necessary to describe the firstgbamg algorithm for computing extended
tags. Before the first pass, build the compressed intervasf@!’, computenca(u, v) for each big cross
arc (u,v), and construct, for each core vertexthe set of big cross args, v) with nca(u,v) = w. This
takesO(m) time on a pointer machine using the method of Section 6: thAd\&e computed as part of the

30

algorithm that buildg4’. Each vertex has acomputed tag ¢v) that is initialized tat(v) and that decreases
as the first pass proceeds, ustilv) = mt(v) if v is fringe, orct(v) = et(v) if v is core. Each fringe vertex
v also has an associated set of cross arcs, initially emptye&ach fringe vertex, if v has a parent i’
andct(h/(v)) > ct(v), replacect(h’(v)) by ct(v). Finally, initialize a sophisticated link-eval data stiure
with no edges and each vertex@fas a node.

The first pass visits each microtree once and each left patk.tWhe visits are in reverse preorder with
respect to the roots of the microtrees and the top and botewtites of the left paths; the first visit to a left
path corresponds to its bottom (largest) vertex; the seewit] to its top (smallest) vertex. Conceptually,
envision a reverse preorder traversalfwith actions taken as described below whenever a microbete
or bottom or top vertex of a left path is visited.

When visiting a microtreé(s), it will be true that, for each vertexin D(s),

et(v) < ct(v) < min({t(v)} U{at(u,v) : (u,v) € A, u & D(s)}). 2

Compute microtags for all vertices iR(s) by finding the strong components of the subgraph induced by
the vertices inD(s) and processing the strong components in topological offteprocess a component,
compute a microtag for the component, equal to the minimurthett(-) values for all vertices in the
component and the microtags for all preceding componehtsétwith an arc leading to the component).
Then setct(v) for every vertex in the component equal to the computed riEgroThe assigned value of
ct(v) must bemt(v), assuming Eq[{2) holds. The time required for this comjrtais linear in the size
of the subgraph induced b9 (s) [54]. Having computed microtags fdp(s), performlink(p(v), v, ct(v))

for every vertex inD(s), in bottom-up order. Finally, for each cross &tcv) in the set of cross arcs of a
vertexu in D(s), setct(v) < min{ct(v), evalu)}, and then sett(h'(v)) « min{ct(h'(v)), ct(v)} if v has

a parent ind’. Such computations happen here only for dics)) such that. is in a microtree hanging on
the left of some left path. It will become clear later that; $oich an arc, the top part of the evaluation of
at(u,v) gets done first, when the left path is processed. &taf«) operation does the bottom part of the
evaluation, finishing the job. We describe below when thesg are entered in the set associated with

When visiting a left pathP for the first time, begin by visiting the vertices of P in bottom-up order
and settingct(h' (w)) <« min{ct(h'(w)), ct(w)} if w has a parent idl’. Once these updates are completed,
ct(w) = et(w) for every vertexw on P. Then collect all the arcéu,v) in the sets associated with the
vertices onP; i.e., the arcu,v) such thaincau,v) € P. For each such arfu,v), setmid(u,v) «
p(root(micro(u))) if w < bottom(P), andmid(u, v) « findroot(u) otherwise. Thédindrootoperation in the
latter case is an operation on the link-eval structure. ktpgomputed all thenid values for all the cross
arcs, evaluate the top parts of their arc tags, using eithéireamethods discussed in Section|8.4. For each
such arc(u, v) with computed arc tag top part do the following. Ifu > bottom{v) (see Figurél9a), set
x < min{z,evalu)}; otherwise (see Figufd 9b), add, v) to the set of cross arcs af In the former
case, theevalu) operation computes the bottom part of the arc tag; in therlatise, the computation of
the bottom part is done when the microtree containir{gvhich hangs to the left oP) is visited. In either
case, sett(v) «— min{ct(v), 2}, and then sett(h'(v)) < min{ct(h/(v)), ct(v)} if v is a fringe vertex with
a parent inHd’.

When visiting a left pathP for the second time, perforimk(p(w), w, ct(w)) for each vertex orP in
bottom-up order, unlesB is the last path, in which case the first pass is done.

Based on the results of the previous sections, it is stri@ighérd (but tedious) to prove that this algo-
rithm correctly computes extended tags. Note that the dhgoreagerly pushest(-) values upH’, rather
than lazily pulling them; the latter would require compagtisets of children fof’, whereas the former can
be done using just parent pointers.

31

Lemma 8.10 The first pass take@(m) time on a pointer machine.

Proof: The running time of all parts of the algorithm is linear basedprevious results, except for the
findrootandevaloperations. To bound the time for these, we apply Lefinnla 3etshadow subtrees built
by the link operations. These subtrees @fzbalanced by Corollarfy 3.2 for linking-by-size and Corplla
[B:4 for linking-by-rank. Mark the parents (ifv) of the tops of all the left paths. This marks at most
n/g =n/log"/? n vertices. We claim that = 5 satisfies the hypothesis of the lemma.

We need to use details of the link implementation, for whioh nefer the reader to Sectién 8.3 for
linking-by-size and3]4 for linking-by-rank. The links agdn batches with no intermixefindroot or eval
operations, one batch per microtree and one batch per lift patv be any vertex. We count the number
of times the subroot of the shadow subtree contaimicgn change, as the result of a batch of links, before
v is in a subtree containing a marked node. Lgt= v,v1,v9,... be the successive roots of the shadow
trees containing. The subroot of the shadow subtree containirgan change only as the result of a batch
of links that include the current; as one of the vertices being linked. Suppesegfringe. The first batch of
links to includev is the one fomicro(v). This batch of links makeg(root(micro(v))) the root of the tree
containingu; that is,v; = p(root(micro(v))). The next batches of links that include are those for other
microtrees whose roots are childrenvgfin D. Such a batch does not change the root of the tree containing
v but can change the subroot of the subtree containjngaking it equal tay;. Once such links are done,
the only remaining batch of links that includesis the one for the left patt’; containingv;. This batch
makesv, = p(top(P;)), which means that the shadow tree containinfput not necessarily the shadow
subtree containing) has a marked vertex. The next batches of links that inclydee those for microtrees
whose roots are children af, in D. Such a batch cannot change the root of the tree containibgt it
can change the subroot of the subtree containingaking it equal ta», which is marked. Otherwise, the
next (and last) batch of links that includesis the one for the left patl’, containingvs. This batch makes
v = p(top(F2)).

Now v is either in the subtree rootedat, and hence in a subtree with a marked vertex, or it is a shadow
descendant of,, which is no longer the root of the shadow tree containingNo subsequent link can
change the root of the subtree containingiithout puttingv andwvs, which is marked, in the same subtree.
Tracing through the analysis above, we see that the subftioé shadow subtree containing a fringe vertex
v can change at most four times beferé in a subtree with a marked vertex.ufis a core vertex, the last
part of the same analysis applies: the first batch of linkisdtha change either the root of the tree containing
v or the subroot of the subtree containing the one for the left path containingthe subroot of the subtree
containingv can change at most twice beforas in a subtree with a marked vertex. The shadow parent
of vertexv can change at most once before the root of the shadow sulotnégringv changes. Thus the
shadow parent af can change at most five times beferes in a shadow subtree with a marked vertex. This
verifies the claim. With: = 5 and? < n/log'/? n, Lemmd3.b gives a bound 6f(1m) on the time for the
findrootandeval operations. O

8.6 The Second Pass

Having computed extended tags for all core vertices, we coenpxtended tags for all fringe vertices by
using a topological graph computation on the microtreeshénfirst pass, just before a microtréxs) is
processed, each vertexn D(s) hasct(v) = min({¢t(v)} U {at(u,v) : (u,v) € A, u & D(s)}). It follows
that if we compute extended tags within the subgraph indigethe vertices ofD(s), using thesect(-)
values as the initial tags, we will obtain the correct exezhthgs for the vertices i (s) with respect to the
original tags in the entire graph. Tlog-) values are in the randé, n], but we can map them to the range

32

[1, ¢g] by sorting all thect(-) values using a pointer-based radix sort, extracting addigeof ct(-) values

for each subproblem, and mapping each such sorted lj$t #0. To do this on a pointer machine, we need
to maintain a singly linked master list of length whose nodes correspond to the integers 1 throygind
store with each integer a pointer to its corresponding fwosih the master list, and we need to track such
pointers through the entire running of the algorithm. Weuass that each input tag is given along with a
corresponding pointer into the master list. For the spe&eiaé of computing semi-dominators, we construct
the master list and the corresponding pointers as we petfwerdepth-first search and number the vertices.
The only manipulations of vertex numbers are comparisang,is easy to track these pointers through the
entire computation.

Once the tags are mapped[tog], the computation of extended tags on the microtrees is ddgijoal
graph computation, which we perform using the method desdrin Sectioril5. With the choicg =
log1/3 n, the second pass requir@gm) time on a pointer machine.

Combining all the parts of the algorithm, we obtain the failog theorem:

Theorem 8.11 Finding immediate dominators takéXm) time on a pointer machine.

8.7 An Alternative Method for Step 2

We conclude our discussion of dominators by sketching amredtive method for performing Step 2 (com-
puting relative dominators) that does some of the work insé@ond pass of Step 1 and then uses a simpli-
fication of the algorithm for the first pass of Step 1 to do thst.re

For a microtreeD(s), thect(-) values of its vertices just beforB(s) is processed provide enough
information not only to compute the semi-dominators of eaicits vertices but also to compute the relative
dominator of each vertex such thatsdoniv) is in D(s). This we can do as part of the topological graph
computation that forms the second pass of Step 1. The remgapart of Step 2 is to computdom(v) =
argmin{sdomu) : sdomv) > u - v} for each vertexs with sdonfv) in the core. We can do this by
running a simplified version of the first pass of Step 1. We ffiyoitlie link-eval structure so that aval
returns a vertex of minimum value, rather than the valudfit$¥e compute the relative dominators in the
same way that pass 1 of Step 1 computes the arc tags of biganesssbut without using the interval tree
H' and without using nearest common ancestors. We begin bpgteach paifsdoniv), v) with sdonfv).
Then we performink(p(v), v, sdonfv)) for every fringe vertex, in reverse preorder. Finally, we process
each left pathP, in reverse preorder with respectltotton{). To process a left patf?, we collect all
the pairs(u, v) stored with its vertices. For each such pair, wersgl(u, v) < findrootv). We evaluate
each top part from: to mid(u, v) using an NCA computation on a derived Cartesian tree as sfiscuin
Section 8.4, modified to return a candidate relative doromk(u, v) for each pair. For each pair we set
rdom(v) < argmin{sdonievalv)), sdonfrd(u,v))}. Finally, we performink(p(v), v, sdontv)) for every
vertex onP in reverse preorder, unlegsis the last path, in which case we are done. This method forgdoi
Step 2 take®)(n) time.

This approach also leads to an alternative algorithm for M&fication, as mentioned in Sectibn6.5,
which avoids the use of the Borlivka tree as an intermedtefg seplacing it with NCA computations on
Cartesian trees derived from the paths of a partition of tire of the original tred” into maximal paths.
We must still do verification within microtrees, but these amicrotrees of the original tree rather than of
the Borlivka tree.

33

8.8 Remarks

From the definition of microtags we have that for anyin a microtreeD(s), mt(w) < mt(v) for any

s = v — w. This inequality implies that the eval function need onlyegie on the core tree. The
algorithms of Buchsbaum et al. [15] and Georgiadis and mgi§d, 32] rely on this fact but also require
a hybrid link-eval structure for the evaluation of path miai on the core. Lemmia 3.6 allows us to use a
standard (simpler) link-eval structure that can includeftinge, which also yields a more uniform treatment
of the core and fringe vertices.

Our dominators algorithm uses the linear-time offline NCgoaithm for two subproblems: interval
analysis and range minimum queries. Georgiadis [31] obskthiat a refined partition of the core tree
into unary paths of sizé(g) enables us to use trivial algorithms to compute NCAs; togickl graph
computations are still required, but they are performed arndSian trees corresponding to each unary path.

9 Component Trees

Our final application is a tree problem, unusual in that inse¢o require partitioning all of the given tree,
rather than just the bottom part, into microtrees.

9.1 Kruskal Trees

The Borlivka tree discussed in Secfion 6 represents theectethcomponents that are formed as Borivka’s
MST algorithm is run. We can define the analogous concepttfeerdST algorithms. For example, the
Kruskal treeis the tree whose nodes are the connected components fos#edskal's MST algorithm [42]
is run. Kruskal’'s algorithm starts with all vertices in siepn components and examines the edges in
increasing order by weight, adding an edge to the MST beiilg lbnd combining the two corresponding
components when the edge has ends in two different compan&he Kruskal treds is binary, with one
node per component, whose children are the components gecthtw form the given component. Each leaf
of K is a vertex of the original graph; each non-leaf node is asingleton component. See Figliré 10.
Even if the given graph is a tree, constructing the Kruske¢ tis equivalent to sorting the edges by
weight, because the Kruskal tree for a star (a tree of diamhet® contains enough information to sort the
edges. If we are given the edges in order by weight, howedweptoblem of constructing the Kruskal tree
becomes more interesting. We shall develogdn)-time, pointer machine algorithm to build the Kruskal
tree K of atreeT’, given a list of the edges @f in order by weight.

9.2 Bottom-Up Construction of a Kruskal Tree

Itis straightforward to build< bottom-up using a DSU structure whose nodes are the nodesiod whose
sets are the node sets of the current components. As thetlatggroceeds, each designated node of a set
stores the node dk corresponding to the set. Rdftat an arbitrary vertex; lgi(v) denote the parent of
in the rooted tree. Initialize a DSU structure with each noda singleton set, storing itself (a leaf &f).
Process the edges (now arcs) in the given order. To procems gn(v), v), letu = find(p(v)). Add a new
nodex to K, whose two children are the nodes stored ahdv. Storex atw, and perforrmunite(u, v). (For
example, in Figure10, the node correspondingftg) is stored ab.)

This algorithm runs inO(na(n,n)) time on a pointer machine; only the finds take non-linear time
Although it builds K bottom-up, it does not proce&sbottom-up but in the given arc order. As in Sections
[6H8, we thus cannot directly apply the method of Sediion Fthuce the running time to linear. On the

34

(@) (b)

Figure 10: (a) The input weighted trdé the filled nodes are subtree roots wHEns partitioned with
g = 3. (b) The Kruskal tred< of T'. Leaves correspond to the nodesigfinternal nodes correspond to
edges offl".

other hand, if we generalize the DSU structure to allemite operations to have arbitrary nodes, rather
than just designated nodes, as parameters, and we repletereg(«, v) operation in the algorithm by
unite(p(v),v), then the (unordered) set of unions is known in advance,usecthe unions correspond to
the arcs ofl". As Thorup [62] observed in the context of solving an eqeméalproblem (see Sectidn P.4),
this means that the algorithm runs in linear time on a RAM & linear-time DSU algorithm of Gabow and
Tarjan [30] is used.

Not only are the unions not bottom-up @h but also there is no obvious way to transform the problem
into one on a balanced tree as in Sediibn 6. Instead, weiparil of 7" into microtrees and do a topological
graph computation to precompute the answers to finds witleimticrotrees. Once these answers are known,
running the algorithm to builds takesO(n) time. Number the arcs @f from 1 throughn — 1 in the given
order. For any non-root vertex let n umv) be the number ofp(v), v); let num(v) = oo if v is the root.
For any non-root vertex, let f(v) be the node returned bind(p(v)) in the algorithm that buildg<. (For
example, in Figure10f(j) = b.) Thenf(v) is the nearest ancestorof v that hasnum(u) > num(v). We
will precomputef (v) if v and f(v) are in the same microtree.

9.3 Linear-Time Construction

Letg = n/10g1/3 n. Partition all of 7" into microtrees, each of size at magt using the method of
Dixon, Rauch, and Tarjan [22], slightly modified. Visit thedes ofT" in a bottom-up order, computing,
for each nodev, a sizes(v) and possibly marking as a subtree root. The value &fv) is the num-
ber of descendants of v such that no node on the path framto w is marked. When visiting), set
s(v) = 1+ 3 is a child of, S(w). If s(v) > g, mark every child ofv and sets(v) to 1. Every marked
nodewv determines a microtree whose nodes are the descendanits such that is the only marked node
on the path fronw to w. The construction guarantees that every microtree canttiimosty nodes. It
also guarantees that there are at mo&t parents of marked nodes, since, for each such parent, tioé set
microtrees rooted at its children contains at leasbdes. Partitioning” into microtrees take®(n) time.

To precompute the answers to finds in the microtrees, beginitilizing f(v) < null for every non-
root nodev. Then use a pointer-based radix sort to renumber the no@@smmicrotree consecutively from
1 up to at mosy in an order consistent with their original numbers (givenrayn). This does not affect
the answers to the finds for any vertex whose answer is in the saicrotree. To do the pointer-based radix

35

sort, build a master list of nodes representing the numbdnsolighn, and use pointers to these nodes in
lieu of the actual numbers. For each microtree, build a sinmilaster list of nodes representing the numbers
1 through the number of nodes in the microtree, and use peitue¢hese nodes in lieu of numbers. Now the
problem of answering the finds within microtrees is actualtppological graph computation as defined in
Sectior 4, and witly = n/ log!'/? n it can be done irD(n) time by Theoreni 4]2. This computation gives a
non-null valuef (v) for every vertexo such thaw and f(v) are in the same microtree.

Having precomputed the answers to some of the finds, we rusdgbethm that buildg<, but using the
precomputed answers. Specifically, to process affydeg, v), letu = f(v) if f(v) # null, v = find(p(v))
otherwise. Then proceed as in Secfiod 9.2.

Theorem 9.1 Suppose that the edges of a weighted fregre given in order by weight. Then the Kruskal
tree of 7" can be built inO(n) time on a pointer machine.

Proof: The algorithm runs on a pointer machine; the running timé(s) except for the time to do the
finds. We bound the time for the finds by applying Lenima 3.6 &tthe built by the parent assignments
done by the unite operations. Mark every parent of a miceoto®t. This marks at most/g nodes. If an
operationfind(p(v)) is actually done, because its answer is not precompuyted, andv are in different
microtrees. The union operations are such thatahdy are in the same set ands an ancestor af, every
vertex on the tree path fromto y is also in the same set. Thus whigmd(p(v)) is done,f(v), p(v), and
p(root(micro(v))) are all in the same set. Sinpgroot(micro(v))) is marked, this find occurs in a set with
a marked node. We conclude that Lenimd 3.6 applies kith1, giving anO(n) time bound for the finds
that are not precomputed. O

We do not know whether there is a way to bultdin linear time using only bottom-level microtrees. If
there is, it is likely to be considerably more complicatedrtlthe algorithm we have proposed.

9.4 Compressed Kruskal Trees

We can generalize the Kruskal tree to allow equal-weighesdghen adding edges, we add all edges of the
same weight at the same time and add a node to the Kruskabtreedry new component so formed, whose
children are the components connected together to formhie. résulting component tree is not necessarily
binary. Thorup [62] and Pettie and Ramachandran [48] hawe sisch a compressed Kruskal tree in shortest
path algorithms. Given a tree and a partition of its edges egual-weight groups, ordered by weight, we
can construct the generalized Kruskal tree in linear timegointer machine as follows. Break ties in
weight arbitrarily. Build the Kruskal tree, labeling eacbngponent node with the group of the edge that
formed it. Contract into a single node each connected seb@és labeled with the same group. The last
step is easy to do i®(n) time.

10 Concluding Remarks

We have presented linear-time pointer-machine algorittomsix tree and graph problems, all of which have
in common the need to evaluate a function defined on pathgé@ealtinear time is optimal and matches the
previous bound for RAM algorithms for these problems; ogoathms improve previous pointer-machine
algorithms by an inverse-Ackermann-function factor. Qupiovements rely mainly on three new ideas:
refined analysis of path compression when the compressaons ¢ertain nodes; pointer-based radix sort to
help process small subproblems in batches; and carefitiairig of the tree corresponding to the original
problem into a collection of microtrees and maximal patssa@propriate to the particular application.

36

Our algorithms are simpler than the previous linear-timeMR&lgorithms. Indeed, our approach pro-
vides the first linear-time dominators algorithm that cofddsibly be implemented at all: the linear-time
algorithm of Alstrup et al. [8] requires Q-heaps [26], imiply an impossibly-large constant factor. Buchs-
baum et al. implemented their original RAM algorithm [15f, which our pointer-machine algorithm is
an improvement, and presented experimental results deratng low constant factors, though the simpler
Lengauer-Tarjan algorithm was faster. Georgiadis, Tagad Werneck [34] report more recent experiments
with algorithms for finding dominators, with results thatwaepending on input size and complexity.

Our methods are sufficiently simple and general that we déxipetn to have additional applications,
which remain to be discovered.

Acknowledgements

We thank Stephen Alstrup and Amos Fiat for some pointerseweipus works.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman.The Design and Analysis of Computer Algorithms
Addison-Wesley, Reading, MA, 1974.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Uliman. On finding lovteommon ancestors in treeSIAM
Journal on Computing5(1):115-32, 1976.

[3] A. V. Aho, R. Sethi, and J. D. UllmarCompilers: Principles, Techniques, and Todsldison-Wesley,
Reading, MA, 1986.

[4] A.V.Ahoand J. D. UllmanThe Theory of Parsing, Translation, and Compilinglume 11:Compiling
Prentice-Hall, Englewood Cliffs, NJ, 1972.

[5] S. Allesina and A. Bodini. Who dominates whom in the ecteyn? Energy flow bottlenecks and
cascading extinctionslournal of Theoretical Biology230(3):351-8, 2004.

[6] S. Allesina, A. Bodini, and C. Bondavalli. Secondaryiegtions in ecological networks: Bottlenecks
unveiled. Ecological Modelling 2005. In press.

[7] S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe. Neamshmon ancestors: A survey and a new
distributed algorithm. IfProc. 14th ACM Symp. on Parallel Algorithms and Architeet@002.

[8] S. Alstrup, D. Harel, P. W. Lauridsen, and M. Thorup. Daatbrs in linear time.SIAM Journal on
Computing 28(6):2117-32, 1999.

[9] S. Alstrup, J. P. Secher, and M. Spork. Optimal on-linerdmental connectivity in treetnformation
Processing Letter$4(4):161-4, 1997.

[10] S. Alstrup and M. Thorup. Optimal algorithms for findingarest common ancestors in dynamic trees.
Journal of Algorithms35:169-88, 2000.

[11] M. E. Amyeen, W. K. Fuchs, I. Pomeranz, and V. Boppanaultrequivalence identification using
redundancy information and staticand dynamic extractlorRroc. 19th IEEE VLSI Test Symposium
pages 124-30, 2001.

37

[12] M. A. Bender and M. Farach-Colton. The LCA problem réed. In Proc. 4th Latin American
Symp. on Theoretical Informaticgolume 1776 ol ecture Notes in Computer Sciengages 88-94.
Springer-Verlag, 2000.

[13] O. Borlivka. O jistem problemu minimalnimPrace Moravsk Prirodovedecke Spolénosti v Brié
(Acta Societ. Science. Natur. Moravicag)37-58, 1926.

[14] A.L.Buchsbaum, H. Kaplan, A. Rogers, and J. R. Westkramear-time pointer-machine algorithms
for least common ancestors, MST verification, and domisattr Proc. 30th ACM Symp. on Theory
of Computing pages 279-88, 1998.

[15] A. L. Buchsbaum, H. Kaplan, A. Rogers, and J. R. Westkro& new, simpler linear-time domina-
tors algorithm. ACM Transactions on Programming Languages and Syst20(§):1265-96, 1998.
Corrigendum 27(3):383-7, 2005.

[16] A.L.Buchsbaum, R. Sundar, and R. E. Tarjan. Data-tratbootstrapping, linear path compression,
and catenable heap-ordered double-ended queB&sM Journal on Computing24(6):1190-1206,
1995.

[17] J. Cai and R. Paige. Using multiset discrimination ttvedanguage processing problems without
hashing.Theoretical Computer Scienc#45:189-228, 1995.

[18] B. Chazelle. A minimum spanning tree algorithm witheénse-Ackermann type complexityournal
of the ACM 47(6):1028-47, 2000.

[19] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and .RZ&deck. Efficiently computing static
single assignment form and the control dependence gra@i Transactions on Programming Lan-
guages and Systenik3(4):451-90, 1991.

[20] M. B. Dillencourt, H. Samet, and M. Tamminen. A genengbeoach to connected-component labeling
for arbitrary image representation¥ournal of the ACM39(2):253-80, 1992.

[21] B. Dixon, M. Rauch, and R. E. Tarjan. Verification and siéwity analysis of minimum spanning trees
in linear time. Technical Report CS-TR-289-90, Princetarivarsity Dept. of Computer Science, July
1990.

[22] B. Dixon, M. Rauch, and R. E. Tarjan. Verification and siéivity analysis of minimum spanning trees
in linear time. SIAM Journal on Computing1(6):1184-92, 1992.

[23] S. Even and Y. Shiloach. An on-line edge deletion probldournal of the ACM28(1):1-4, 1981.

[24] J. Ferrante, K. Ottenstein, and J. Warren. The prograpeddency graph and its uses in optimization.
ACM Transactions on Programming Languages and Syst@{8s319-49, 1987.

[25] C. Fiorio and J. Gustedt. Two linear time union-find stgaes for image processingTheoretical
Computer Sciengel54:165-81, 1996.

[26] M. L. Fredman and D. E. Willard. Trans-dichotomous aitions for minimum spanning trees and
shortest pathslournal of Computer and System Scienes533-51, 1994.

38

[27] H. N. Gabow. Data structures for weighted matching aedrest common ancestors with linking. In
Proc. 1st ACM-SIAM Symp. on Discrete Algorithmpages 434—43, 1990.

[28] H. N. Gabow. Path-based depth-first search for strordyk@oonnected componentdnformation
Processing Lettersr4:107-14, 2000.

[29] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling agldted techniques for geometry problems.
In Proc. 16th ACM Symp. on Theory of Computipgges 135-43, 1984.

[30] H. N. Gabow and R. E. Tarjan. A linear-time algorithm &ospecial case of disjoint set unialournal
of Computer and System Scienc&®(2):209-21, 1985.

[31] L. GeorgiadisLinear-Time Algorithms for Dominators and Related ProldeRhD thesis, Department
of Computer Science, Princeton University, 2005.

[32] L. Georgiadis and R. E. Tarjan. Finding dominators siéed. InProc. 15th ACM-SIAM Symp. on
Discrete Algorithmspages 862—71, 2004.

[33] L. Georgiadis and R. E. Tarjan. Dominator tree verifmatand vertex-disjoint paths. IRroc. 16th
ACM-SIAM Symp. on Discrete Algorithnmages 43342, 2005.

[34] L. Georgiadis, R. E. Tarjan, and R. F. Werneck. Findimgnéhators in practice.Journal of Graph
Algorithms and Applicationsl0(1):69-94, 2006.

[35] R.L.Graham and P. Hell. On the history of the minimumrspag tree problemAnnals of the History
of Computing7(1):43-57, 1985.

[36] J. Gustedt. Efficient union-find for planar graphs arfteosparse graph classd@heoretical Computer
Science203:123-41, 1998.

[37] D. Harel. A linear time algorithm for finding dominatarsflow graphs and related problems.Rroc.
17th ACM Symp. on Theory of Computipages 185-94, 1985.

[38] D. Harel and R. E. Tarjan. Fast algorithms for finding nres& common ancestor§SIAM Journal on
Computing 13(2):338-55, 1984.

[39] D. R. Karger, P. N. Klein, and R. E. Tarjan. A randomizétear-time algorithm to find minimum
spanning treeslournal of the ACM42(2):321-28, 1995.

[40] V. King. A simpler minimum spanning tree verificatiorgatithm. Algorithmicg 18:263-70, 1997.
[41] J. Komlbs. Linear verification for spanning tre€ombinatorica 5(1):57-65, 1985.

[42] J. B. Kruskal. On the shortest spanning subtree of atgeayal the traveling salesman probleRro-
ceedings of the American Mathematical SogGi@ét$3—7, 1956.

[43] T.Lengauer and R. E. Tarjan. A fast algorithm for findihgminators in a flowgraphACM Transac-
tions on Programming Languages and Systeh(i¥):121-41, 1979.

[44] M. Loebl and J. NeSetfil. Linearity and unprovalilibf set union problem strategies I. Linearity of
strong postorderJournal of Algorithms23:207-20, 1997.

39

[45] E. S. Lorry and V. W. Medlock. Object code optimizatiddommunications of the ACM2(1):13-22,
1969.

[46] J. M. Lucas. Postorder disjoint set union is linearAM Journal on Computindl9(5):868—82, 1990.

[47] M. Patrascu and E. D. Demaine. Logarithmic lower basim the cell-probe modeSIAM Journal on
Computing 35(4):932-63, 2006.

[48] S. Pettie and V. Ramachandran. Computing shortesspeith comparisons and additions. Rroc.
13th ACM-SIAM Symp. on Discrete Algorithrpages 267-76, 2002.

[49] S. Pettie and V. Ramachandran. An optimal minimum spantree algorithm.Journal of the ACM
49(1):16-34, 2002.

[50] P. W. Purdom and E. F. Moore. Algorithm 430: Immediatedqmminators in a directed grap@.om-
munications of the ACML5(8):777-8, 1972.

[51] L. Quesada, P. Van Roy, Y. Deville, and R. Collet. Usirmrihators for solving constrained path
problems. InProc. 8th Int'l. Symp. on Practical Aspects of Declarativenguagesvolume 3819 of
Lecture Notes in Computer Scienpages 73—-87. Springer, 2006.

[52] B. Schieber and U. Vishkin. On finding lowest common atoes: Simplification and parallelization.
SIAM Journal on Computindl7(6):1253—62, 1988.

[53] D. D. Sleator and R. E. Tarjan. A data structure for dyitatrees. Journal of Computer and System
Sciences26(3):362-91, 1983.

[54] R. E. Tarjan. Depth-first search and linear graph atbors. SIAM Journal on Computindl(2):146—
59, 1972.

[55] R. E. Tarjan. Finding dominators in directed grap8$\M Journal on Computing(1):62—-89, 1974.

[56] R. E. Tarjan. Efficiency of a good but not linear set unidgorithm. Journal of the ACM22(2):215—
25, 1975.

[57] R.E. Tarjan. Edge-disjoint spanning trees and depgit$earchActa Informatica 6(2):171-85, 1976.

[58] R.E. Tarjan. Applications of path compression on be¢ahtreesJournal of the ACM26(4):690-715,
1979.

[59] R. E. Tarjan. A class of algorithms which require noahin time to maintain disjoint setdournal of
Computer and System Scienc&®(2):110-27, 1979.

[60] R. E. Tarjan. Testing flow graph reducibilityournal of Computer and System Scien&£8):355-65,
1994.

[61] R. E. Tarjan and J. van Leeuwen. Worst-case analysigtafirion algorithms.Journal of the ACM
31(2):245-81, 1984.

[62] M. Thorup. Undirected single-source shortest pathh wositive integer weights in linear timéour-
nal of the ACM 46(3):362-94, 1999.

40

[63] A. K. Tsakalides and J. van Leeuwen. An optimal pointeachine algorithm for finding nearest
common ancestors. Technical Report RUU-CS-88-17, U. btept. of Computer Science, 1988.

[64] J. van Leeuwen. Finding lowest common ancestors inthess logarithmic time. Unpublished report,
1976.

[65] J. Vuillemin. A unifying look at data structure€ommunications of the ACN3(4):229-39, 1980.

41

	Introduction
	Problem Definitions and Previous Work
	Nearest Common Ancestors
	Verification and Construction of Minimum Spanning Trees
	Interval Analysis of Flowgraphs
	Finding Dominators
	Building a Component Tree

	Path Compression on Balanced Trees
	Disjoint Set Union Via Path Compression and Balanced Unions
	Finding Minima on Paths
	Delayed Linking with Balancing
	Linking by Rank
	Refined Analysis of Path Compression

	Topological Graph Computations
	Nearest Common Ancestors
	Minimum Spanning Trees
	Verification
	The Boruvka Tree
	Comparison Trees for Computing Path Maxima
	Construction of Minimum Spanning Trees
	Remarks

	Interval Analysis
	Dominators
	Semi-Dominators, Relative Dominators, Tags, and Extended Tags
	The Interval Forest
	Microtrees and Left Paths
	Computation of Arc Tags
	The First Pass
	The Second Pass
	An Alternative Method for Step 2
	Remarks

	Component Trees
	Kruskal Trees
	Bottom-Up Construction of a Kruskal Tree
	Linear-Time Construction
	Compressed Kruskal Trees

	Concluding Remarks

