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Abstract

We present algorithms that run in linear time on pointer machines for a collection of problems, each
of which either directly or indirectly requires the evaluation of a function defined on paths in a tree.
These problems previously had linear-time algorithms but only for random-access machines (RAMs);
the best pointer-machine algorithms were super-linear by an inverse-Ackermann-function factor. Our
algorithms are also simpler, in some cases substantially, than the previous linear-time RAM algorithms.
Our improvements come primarily from three new ideas: a refined analysis of path compression that
gives a linear bound if the compressions favor certain nodes, a pointer-based radix sort as a replacement
for table-based methods, and a more careful partitioning ofa tree into easily managed parts. Our al-
gorithms compute nearest common ancestors off-line, verify and construct minimum spanning trees, do
interval analysis on a flowgraph, find the dominators of a flowgraph, and build the component tree of a
weighted tree.

1 Introduction

We study six problems—off-line computation of nearest common ancestors (NCAs), verification and con-
struction of minimum spanning trees (MSTs), interval analysis of flowgraphs, finding dominators in flow-
graphs, and building the component tree of a weighted tree—that directly or indirectly require the evaluation
of a function defined on paths in a tree. Each of these problemshas a linear-time algorithm on a RAM, but
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Table 1: Time bounds.n is the number of vertices, andm is either the number of edges/arcs for graph
problems or the number of NCA queries for the NCA problem.α(m,n) is the standard functional inverse
of the Ackermann function.

Problem Previous Pointer-Machine BoundPrevious RAM Bound
Off-line NCAs O(mα(m,n) + n) [2] O(n + m) [38,52]
MST Verification O(mα(m,n) + n) [58] O(n + m) [22,40]
MST Construction O(mα(m,n) + n) [18] O(n + m) [26,39]
Interval Analysis O(mα(m,n) + n) [57] O(n + m) [30,57]
Dominators O(mα(m,n) + n) [43] O(n + m) [8,15]
Component Trees O(mα(m,n) + n) O(n + m) [62]

the fastest pointer-machine algorithm is slower by an inverse-Ackermann-function factor.1 (See Table 1.) A
pointer machine [59] allows binary comparisons and arithmetic operations on data, dereferencing of point-
ers, and equality tests on pointers. It does not permit pointer arithmetic or tests on pointers other than testing
for equality and is thus less powerful than the RAM model [1].Pointer machines are powerful enough to
simulate functional programming languages like LISP and ML. Often, though, the lack of random access
complicates the design of efficient pointer machine algorithms; the RAM algorithms for the problems we
consider rely onO(1)-time table lookup methods that are not implementable on a pointer machine. Nev-
ertheless, we are able to overcome the weaknesses of the pointer machine model and develop linear-time
algorithms for all six problems. Not only are our algorithmsasymptotically as fast as the fastest RAM
algorithms, they are simpler too, in some cases substantially.

Our improvements come mainly from three new ideas. The first is a refined analysis of path compression.
Path compression is a well-known technique first used to speed up the standard disjoint-set-union (DSU) data
structure [56] and later extended to speed up the evaluationof functions defined on paths in trees [58]. Our
applications use either the DSU structure or path evaluation for the functionminimumor maximum, or both.
We show that, under a certain restriction on the compressions satisfied by our applications, compression
takes constant rather than inverse-Ackermann amortized time.

The second new idea is to replace the table-based methods of the RAM algorithms with a pointer-based
radix sort. Each of the RAM algorithms precomputes answers to small subproblems, stores the answers in a
table, and looks up the answers by random access. If the size of the subproblems is small enough, the total
size of all distinct subproblems and the total time to solve them are linear (or even sublinear) in the size of
the original problem. Our alternative approach is to construct a pointer-based encoding of each subproblem,
group isomorphic subproblems together using a pointer-based radix sort, solve one instance of each group
of isomorphic subproblems, and transfer its solution to theisomorphic subproblems, all of which can be
done on a pointer machine.

The third new idea is to change the partitioning strategy. Inorder to reduce the original problem to a
collection of small subproblems, the RAM algorithms partition a tree corresponding to the original problem
into small subtrees. For some of the problems, partitioningthe entire tree into subtrees produces serious
technical complications; this is especially true of the dominators problem. Instead, for all but one of the
problems we partition only the bottom part of the tree into small subtrees. For NCAs and MSTs, this

1 We use Tarjan’s definition [56]. LetA(i, j) for i, j ≥ 1 be defined byA(1, j) = 2j for j ≥ 1; A(i, 1) = A(i − 1, 2) for
i ≥ 2; andA(i, j) = A(i − 1, A(i, j − 1)) for i, j ≥ 2. Thenα(m, n) = min{i ≥ 1 : A(i, ⌊m/n⌋) > log n}.
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together with our refined analysis of path compression suffices to yield a linear-time algorithm. For interval
analysis and finding dominators, we also partition the remainder of the tree into a set of maximal disjoint
paths. Only one of our applications, building a component tree, relies on the original idea of partitioning the
entire tree into small subtrees.

The remainder of our paper proceeds as follows. Section 2 formally defines the problems we consider
and reviews previous work. Section 3 discusses disjoint setunion, computing path minima on trees, and
a refined analysis of path compression. Section 4 discusses the use of pointer-based radix sorting to solve
a graph problem for a collection of many small instances. Sections 5 through 9 discuss our applications:
NCAs, MSTs, flowgraph interval analysis, finding dominators, and building a component tree, respectively.
Section 10 contains concluding remarks. Our paper is a significantly revised and improved combination of
two conference papers [14,32], including new results in Sections 7 and 9.

2 Problem Definitions and Previous Work

Throughout this paper we denote the base-two logarithm bylog. We assumen ≥ 2 throughout.

2.1 Nearest Common Ancestors

Off-Line Nearest Common Ancestors: Given ann-node treeT rooted at noder and a setP of m node
pairs, find, for each pair{v,w} in P , the nearest common ancestor ofv andw in T , denoted by
nca(v,w).

The fastest previous pointer-machine algorithm is that of Aho, Hopcroft, and Ullman (AHU) [2], which
runs inO(n + mα(m + n, n)) time. The AHU algorithm uses a DSU data structure; it runs inO(n + m)
time on a RAM if this structure is implemented using the DSU algorithm of Gabow and Tarjan [30] for
the special case in which the set of unions is known in advance. The first linear-time RAM algorithm was
actually given by Harel and Tarjan [38]. Other linear-time RAM algorithms were given by Schieber and
Vishkin [52], Bender and Farach-Colton [12], and Alstrup etal. [7].

There are several variants of the NCAs problem of increasingdifficulty. For each but the last, there is a
non-constant-factor gap between the running time of the fastest RAM and pointer-machine algorithms.

Static On-Line: T is given a priori butP is given on-line: each NCA query must be answered before the
next one is known.

Linking Roots: T is given dynamically. Specifically,T is initially a forest of singleton nodes. Interspersed
with the on-line NCA queries are on-linelink(v,w) operations, each of which is given a pair of distinct
rootsv andw in the current forest and connects them by makingv the parent ofw.

Adding Leaves: Like linking roots, onlyv is any node other thanw andw is a singleton.

General Linking: Like linking roots, onlyv can be any node that is not a descendant ofw.

Linking and Cutting: Like general linking, but with additional interspersedcut(v) operations, each of
which is given a non-root node and makes it a root by disconnecting it from its parent.

Harel and Tarjan [38] showed that the static on-line problem(and thus the more general variants) takes
Ω(log log n) time on a pointer machine for each query in the worst case. Alstrup and Thorup [10] gave
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a matchingO(n + m log log n)-time pointer-machine algorithm for general linking, which is also optimal
for the static on-line, linking roots, and adding leaves variants. Earlier, Tsakalidis and van Leeuwen [63]
gave such an algorithm for the static on-line variant, and a modified version of van Leeuwen’s even-earlier
algorithm [64] has the same bound for linking roots. The fastest known pointer-machine algorithm for
linking and cutting is theO(n + m log n)-time algorithm of Sleator and Tarjan [53]; Harel and Tarjan[38]
conjectured that this is asymptotically optimal, and the results of Pǎtraşcu and Demaine [47] actually imply
that lower bound in the cell-probe model. On a RAM, the fastest known algorithms takeΘ(n + m) time for
the static on-line [38,52] and adding leaves [27] variants,O(n + mα(m + n, n)) time for linking roots [38]
and general linking [27], andO(n + m log n) time for linking and cutting [53]. All these algorithms use
O(n + m) space. For a more thorough survey of previous work see Alstrup et al. [7].

2.2 Verification and Construction of Minimum Spanning Trees

MST Construction: Given an undirected, connected graphG = (V,E) whose edges have real-valued
weights, find a spanning tree of minimum total edge weight (anMST) of G.

MST Verification: Given an undirected, connected graphG = (V,E) whose edges have real-valued
weights and a spanning treeT of G, determine whetherT is an MST ofG.

In both problems, we denote by n and m the numbers of vertices and edges, respectively. SinceG is
connected andn ≥ 2, m ≥ n− 1 impliesn = O(m).

MST construction has perhaps the longest and richest history of any network optimization problem;
Graham and Hell [35] and Chazelle [18] provide excellent surveys. A sequence of faster-and-faster algo-
rithms culminated in the randomized linear-time algorithmof Karger, Klein, and Tarjan [39]. This algorithm
requires a RAM, but only for a computation equivalent to MST verification. It is alsocomparison-based:
the only operations it does on edge weights are binary comparisons. Previously, Fredman and Willard [26]
developed a linear-time RAM algorithm that is not comparison-based. Subsequently, Chazelle [18] de-
veloped a deterministic, comparison-basedO(mα(m,n))-time pointer-machine algorithm, and Pettie and
Ramachandran [49] developed a deterministic, comparison-based pointer-machine algorithm that runs in
minimum time to within a constant factor. Getting an asymptotically tight bound on the running time of this
algorithm remains an open problem.

Although it remains open whether there is a comparison-based, deterministic linear-time MST con-
struction algorithm, even for a RAM, such algorithms do exist for MST verification. Tarjan [58] gave a
comparison-based, deterministicO(mα(m,n))-time pointer machine algorithm for verification. Komlós
[41] showed how to do MST verification inO(m) comparisons, without providing an efficient way to de-
termine which comparisons to do. Dixon, Rauch, and Tarjan [22] combined Tarjan’s algorithm, Komlós’s
bound, and the tree partitioning technique of Gabow and Tarjan [30] to produce a comparison-based, deter-
ministic linear-time RAM algorithm. King later gave a simplified algorithm [40].

2.3 Interval Analysis of Flowgraphs

A flowgraphG = (V,E, r) is a directed graph with a distinguishedroot vertexr such that every vertex
is reachable fromr. A depth-first spanning treeD of G is a spanning tree rooted atr defined by some
depth-first search (DFS) ofG, with the vertices numbered from1 to n in preorder with respect to the DFS
(the order in which the search first visits them). We identifyvertices by their preorder number. We denote
by n andm the number of vertices and edges ofG, respectively.
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Interval Analysis: Given a flowgraphG and a depth-first spanning treeD of G, compute, for each vertex
v, its headh(v), defined by

h(v) = max{u : u is a proper ancestor ofv in D and there is a path fromv to u in G

containing only descendants ofu}, or null if this set is empty.

The heads define a forest called theinterval forestH, in which the parent of a vertex is its head. If
v is any vertex, the descendants ofv in H induce a strongly connected subgraph ofG, which is called an
interval; these intervals impose a hierarchy on the loop structure ofG. Interval analysis has been used in
global flow analysis of computer programs [3], in testing flowgraph reducibility [60], and in the construction
of two maximally edge-disjoint spanning trees of a flowgraph[57]. Tarjan [57] gave anO(mα(m,n))-time
pointer-machine algorithm for interval analysis using DSU. The Gabow-Tarjan DSU algorithm [30] reduces
the running time of this algorithm toO(m) on a RAM.

2.4 Finding Dominators

Let G = (V,E, r) be a flowgraph. We denote byn andm the number of vertices and edges ofG, respec-
tively. Vertexv dominatesvertexw if every path fromr to w containsv, andv is theimmediate dominator
of w if every vertex that dominatesw also dominatesv. The dominators define a tree rooted atr, thedom-
inator treeT , such thatv dominatesw if and only if v is an ancestor ofw in T : for any vertexv 6= r, the
immediate dominator ofv is its parent inT .

Finding Dominators: Given a flowgraphG = (V,E, r), compute the immediate dominator of every vertex
other thanr.

Finding dominators in flowgraphs is an elegant problem in graph theory with fundamental applications
in global flow analysis and program optimization [4, 19, 24, 45] and additional applications in VLSI design
[11], theoretical biology [5, 6] and constraint programming [51]. Lengauer and Tarjan [43] gave a practical
O(mα(m,n))-time pointer-machine algorithm, capping a sequence of previous improvements [4,45,50,55].
Harel [37] claimed a linear-time RAM algorithm, but Alstrupet al. [8] found problems with some of his
arguments and developed a corrected algorithm, which uses powerful bit-manipulation-based data structures.
Buchsbaum et al. [15] proposed a simpler algorithm, but Georgiadis and Tarjan [32] gave a counterexample
to their linear-time analysis and presented a way to repair and modify the algorithm so that it runs in linear
time on a pointer machine; Buchsbaum et al. [15,Corrig.] gave a different resolution that results in a linear-
time algorithm for a RAM.

2.5 Building a Component Tree

Let T be a tree and letL be a list of the edges ofT . The Kruskal treeof T with respect toL is a tree
representing the connected components formed by deleting the edges ofT and adding them back one-at-a-
time in the order of their occurrence inL. Specifically,K contains2n− 1 nodes. Its leaves are the nodes of
T . Each internal node is a component formed by adding an edge(v,w) back toT ; its children are the two
components that combine to form it.

Component-Tree Construction: Given ann-node treeT and a listL of its edges, build the corresponding
Kruskal tree.
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Compressed component trees (formed by adding edges a-group-at-a-time rather than one-at-a-time) have
been used in shortest-path algorithms [48, 62]. It is straightforward to build a component tree or a com-
pressed component tree inO(nα(n, n)) time on a pointer machine using DSU. The Gabow-Tarjan DSU
algorithm [30] improves this algorithm toO(n) time on a RAM, as described by Thorup [62].

3 Path Compression on Balanced Trees

3.1 Disjoint Set Union Via Path Compression and Balanced Unions

The disjoint set union(DSU) problem calls for the maintenance of a dynamic partition of a universeU ,
initially consisting of singleton sets. Each set has a unique designated element; the designated element of a
singleton set is its only element. Two operations are allowed:

unite(v,w) Form the union of the sets whose designated elements arev andw, with v being the designated
element of the new set.

find(v) Return the designated element of the set containing elementv.

There are alternative, equivalent formulations of the DSU problem. In one [56,59], each set is accessed
by a label, rather than by a designated element. In another [61], sets have labels but can be accessed byany
element. In yet another [61], each set is accessed by acanonical element, which in the case of aunite(v,w)
operation can be freely chosen by the implementation to be either v or w. Our formulation more closely
matches our uses. We denote byn the total number of elements and bym the total number of finds.

The standard solution to the DSU problem [56, 61] representsthe sets by rooted trees in a forest. Each
tree represents a set, whose elements are the nodes of the tree. Each node has a pointer to its parent and a bit
indicating whether it is a root; the root points to the designated element of the set. To provide constant-time
access to the root from the designated node, the latter is either the root itself or a child of the root. With this
representation, to performunite(v,w): find the roots of the trees containingv andw, link them together by
making one root the parent of the other, and makev a child of the new root if it is not that root or a child
of that root already. To performfind(v): follow parent pointers until reaching a root, reach the designated
element of the set in at most one more step, and return this element. A unite operation takesO(1) time. A
find takes time proportional to the number of nodes on the find path. A sequence of intermixed unite and
find operations thus takesO(n + s) time, wheres is the total number of nodes on find paths.

One way to reduces is to usepath compression: after a find, make the root the parent of every other
node on the find path. Another way to reduces is to do balanced unions. There are two well known
balanced-union rules. In the first,union-by-size, each root stores the number of its descendants. To perform
unite(v,w), make the root of the larger tree the parent of the root of the smaller, making either the parent of
the other in case of a tie. In the second,union-by-rank, each root has a non-negative integerrank, initially
zero. To performunite(v,w), make the root of higher rank the parent of the root of lower rank; in case of a
tie, make either root the parent of the other and add one to therank of the remaining root. Both of these union
rules producebalancedtrees. More specifically, letF be the forest built by doing all the unite operations
and none of the finds. We callF the reference forest. F is balanced, or, more precisely,c-balancedif for
a constantc > 1 the number of nodes of heighth in F is O(n/ch) for everyh. Both union-by-size and
union-by-rank produce 2-balanced forests. Furthermore, since only roots must maintain sizes or ranks, these
fields obviate the need for separate bits to indicate which nodes are roots.

For any sequence of unions and finds such that the unions builda balanced forest and the finds use path
compression, the total running time isO(n + mα(m + n, n)): the analysis of path compression by Tarjan
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and van Leeuwen [61] applies if the reference forest is balanced. We seek a linear time bound, which we
can obtain for sequences of finds that are suitably restricted. Before obtaining this bound, we discuss a more
general use of path compression and balanced union: to find minima on paths in dynamic trees.

3.2 Finding Minima on Paths

The dynamic path-minimum problemcalls for the maintenance of a forest of rooted trees, each initially a
one-node tree, whose arcs, which are directed from parent tochild, have real values. The trees are subject
to three operations:

link(v,w, x) Nodesv andw are the roots of different trees inF , andx is a real number. Makev the parent
of w by adding arc(v,w) to F , with valuex.

findroot(v) Return the root of the tree inF containing the nodev.

eval(v) Return the minimum value of an arc on the path tov from the root of the tree containing it.

We shall denote byn the total number of nodes and bym the total number offindrootandevaloperations.
Variants of this problem include omitting thefindroot operation, replacing minimum by maximum, and
requiring theevaloperation to return an arc of minimum value rather than just the minimum value. The two
solutions to be described are easily modified to handle thesevariants. We call a data structure that solves the
dynamic path-minimum problem alink-eval structure.

Tarjan [58] considered this problem and developed two data structures to solve it: a simple one [58,
Sec. 2], which uses path compression on the forest defined by the links, and a sophisticated one [58, Sec. 5],
which uses path compression on a balanced forest related to the one defined by the links. Tarjan’s simple
link-eval structure uses a compressed version ofF , represented by parent pointers, with the nodes rather
than the arcs storing values. Each root has value infinity. Perform link(v,w, x) by makingv the parent of
w and givingw the valuex. Performfindroot(v) by following parent pointers fromv to the root of the tree
containing it, compressing this path, and returning the root. Performeval(v) by following parent pointers
from v to the root of the tree containing it, compressing this path,and returning the value ofv. To compress
a pathv0, v1, . . . , vk with vi the parent ofvi+1 for 0 ≤ i < k, repeat the following step for eachi from
2 throughk: replace the parent ofvi by v0, and replace the value ofvi by the value ofvi−1 if the latter is
smaller. Compression preserves the results offindrootandevaloperations while making tree paths shorter.

If the final forestF is balanced, then this simple link-eval structure takesO(n + mα(m + n, n)) time
to perform a sequence of operations [58]: the effect of a compression on the structure of a tree is the same
whether the compression is due to afindroot or aneval. In our MST application the final forest is actually
balanced. Our application to finding dominators requires Tarjan’s sophisticated link-eval structure.

3.3 Delayed Linking with Balancing

Tarjan’s sophisticated structure delays the effect of someof the links so that they can be done in a way that
makes the resulting forest balanced. Since our analysis requires some knowledge of the inner workings of
this structure, we describe it here. We streamline the structure slightly, and we add to it the ability to do
findroot operations, which were not supported by the original. We also describe (in Section 3.4) a variant
that uses linking-by-rank; the original uses linking-by-size.

We represent the forestF defined by the link operations by ashadow forestR. Each tree inF corre-
sponds to a tree inR with the same vertices and the same root. Each treeT in R is partitioned into one or
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more subtreesS0, S1, . . . , Sk, such that the root ofSi is the parent of the root ofSi+1 for 0 ≤ i < k, and
the root ofS0 is the root ofT . We call the roots of the subtreesS0, S1, . . . , Sk (including the root ofS0)
subroots. We representR by a set of parent pointers that are defined for nodes that are not subroots and,
for each subroot, a pointer to its child that is a subroot, if any. (Each subroot has a null parent pointer; the
deepest subroot has a null child pointer.) Since parents areneeded only for nodes that are not subroots and
child pointers are required only for subroots, we can use a single pointer per node to store both kinds of
pointers, if we mark each node to indicate whether it is a subroot. We shall useshp(v) to denote the parent
of v in its subtree andshc(v) to denote the child ofv that is a subroot, if there is one;shp(v) = null if v is a
subroot;shc(v) = null if v is a subroot without a child that is a subroot.

With each nodev we store a valueb(v). We manipulate the trees ofR and the node values to preserve
two related invariants:

(i) eval(v) = min{b(u) : u is an ancestor inR of v, andu is in the same subtree asv};

(ii) b(shc(v)) ≤ b(v) if shc(v) 6= null.

To help keep evaluation paths short, we use both path compression and a variant of union-by-size. We
denote bysize(v) the number of descendants ofv in R and bysubsize(v) the number of descendants ofv
in the same subtree asv. For convenience, we letsize(null) = 0. Thensubsize(v) = size(v) if v is not a
subroot, andsubsize(v) = size(v) − size(shc(v)) if v is a subroot. We maintain sizes but only for subroots,
which allows us to compute the subsize of a subroot in constant time.

To initialize the structure, make each nodev a singleton tree (shp(v) = shc(v) = null), with b(v) =∞
andsize(v) = 1. To performeval(v), returnb(v) if shp(v) = null; otherwise, compress the path tov from
the subroot of the subtree containing it (exactly as in the simple link-eval structure of Section 3.2), and then
returnmin{b(v), b(shp(v))}. Performlink(v,w, x) as follows. First, setb(w) (previously infinity) equal to
x. Next, if size(v) ≥ size(w), perform Part 1 below; otherwise, perform Part 2 below and, if necessary, Part
3. (See Figures 1 and 2.)

Part 1: (size(v) ≥ size(w).) Combine the subtree rooted atv with all the subtrees in the tree rooted atw,
by settingshp(u) = v andb(u) = min{b(u), x} for each subrootu of a subtree in the tree rooted at
w. Find such subroots by followingshc pointers fromw. (In Figure 1(Part 1), the successive values
of u arew, s1, s2.) This step effects a compression tov from the deepest subroot descendant ofw.
The updates to theb-values maintain (i) and (ii).

Part 2: (size(v) < size(w).) Combine all the subtrees in the tree rooted atv, by settingshp(u) = v for
each subrootu 6= v of a subtree in the tree rooted atv. (In Figure 1(Part 2), the successive values of
u arer1, r2, r3.) This step effects a compression tov from the deepest subroot descendant ofv. Then
setshc(v) = w. This may cause violations of Invariants (i) and (ii).

Part 3: In order to restore (i) and (ii) after Part 2, repeat the following step until it no longer applies. Let
s0 = shc(v) ands1 = shc(s0). (In the first iteration,s0 = w.) If s1 6= null andx < b(s1), compare
the subsizes ofs0 ands1. If the former is not smaller, combine the subtrees with subroots s0 and
s1, makings0 the new subroot, by simultaneously settingshp(s1) = s0 andshc(s0) = shc(s1). If
the former is smaller, combine the subtrees with subrootss0 ands1, makings1 the new subroot, by
simultaneously settingshp(s0) = s1, shc(v) = s1, b(s1) = x, andsize(s1) = size(s0). Once this step
no longer applies, (i) and (ii) are restored.

Complete the linking by settingsize(v) = size(v) + size(w). We call this linking methodlinking-by-size.
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Figure 1: Linking by size: Part 1,size(v) ≥ size(w), and Part 2,size(v) < size(w).
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subsize(s0) < subsize(s1)

subsize(s0) ≥ subsize(s1)

v
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Figure 2: Linking by size: Part 3.

The method must keep track of which nodes are subroots. Nodesthat are not subroots can be marked as
such by, e.g., setting their sizes to zero, since sizes are maintained only for subroots. We have omitted this
updating from Parts 1, 2, and 3.

This version of the data structure differs from the original[58] only in the placement of Part 3 of the
link operation. In the original, Part 3 is done before Parts 1and 2 to restore (i) and (ii), whether or not
size(v) ≥ size(w). Delaying Part 3 allows it to be avoided entirely ifsize(v) ≥ size(w); in this case Part 1
alone suffices to restore (i) and (ii).

This structure does not supportfindroot (because anevaloperation reaches only a subroot, not a root),
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but we can easily extend it to do so. To each subroot that is nota root, we add a pointer to its deepest
subroot descendant; to each deepest subroot, we add a pointer to the root of its tree. Then a root is reachable
from any subroot descendant in at most two steps. To performfindroot(v), compress the path tov from
the subroot of its subtree; then follow at most two pointers to reach a root, and return this root. Operation
findroot has the same asymptotic complexity aseval. The running time of a link operation increases by at
most a constant factor because of the extra pointer updates needed.

In the sophisticated link-eval structure, path compression is performed on the subtrees, not on the trees.
The next lemma implies that these subtrees are balanced.

Lemma 3.1 Consider a shadow forest built using linking-by-size. Ifu is a tree node such that shp(u) and
shp(shp(u)) are both non-null, then subsize(shp(shp(u))) ≥ 2 · subsize(u).

Proof: A nodeu can be assigned a parentshp(u) in Part 1, 2, or 3 of a link operation. If this occurs in
Part 3,subsize(shp(u)) ≥ 2 · subsize(u) after u gets its parent. Once this happens,subsize(u) stays the
same andsubsize(shp(u)) can only increase. Thus whenshp(u) gets a parent,subsize(shp(shp(u))) ≥
subsize(shp(u)) ≥ 2 · subsize(u), and this inequality persists. Regardless of whenu gets a parentshp(u),
if shp(u) gets its parent in Part 3, thensubsize(shp(shp(u))) ≥ 2 · subsize(shp(u)) ≥ 2 · subsize(u) when
this happens, and this inequality persists. Suppose then that bothu andshp(u) get their parents in Part 1 or
2. Whenu gets its parent,size(shp(u)) ≥ 2 · subsize(u). Subsequently,size(shp(u)) cannot decrease until
shp(u) gets its parent, at which timesubsize(shp(shp(u))) ≥ size(shp(u)) ≥ 2 · subsize(u). This inequality
persists. 2

Corollary 3.2 The subtrees in any shadow forest built using linking by sizeare
√

2-balanced.

3.4 Linking by Rank

An alternative to using linking-by-size in the sophisticated link-eval structure is to use linking-by-rank. In
place of a size, every node has a non-negative integerrank, initially zero. The ranks satisfy the invariant

(iii) rank(shp(v)) > rank(v).

We explicitly maintain ranks only for subroots. Ifv is a virtual tree root (i.e., inF ), we denote by
maxrank(v) the maximum rank of a subroot descendant. With each virtual tree rootv, we storemaxrank(v)
(in addition torank(v)).

Performlink(v,w, x) as follows. First, setb(w) = x. Then comparemaxrank(v) to maxrank(w). We
split the rest of the operation into the following parts.

Part 0: Ifmaxrank(v) = maxrank(w), setrank(v) = maxrank(v) + 1, maxrank(v) = maxrank(v) + 1,
and combine all the subtrees in the trees rooted atv andw into a single subtree rooted atv, by setting
shp(u) = v for each subrootu 6= v, settingshc(v) = null, and settingb(u) = min{b(u), b(w)} if u
was a descendant ofw. (See Figure 3.)

Part 1: If maxrank(v) > maxrank(w), set rank(v) = max{rank(v), maxrank(w) + 1}, and combine
the subtree rooted atv with all the subtrees in the tree rooted atw, by settingshp(u) = v and
b(u) = min{b(u), b(w)} for each subroot descendantu of w.

Part 2: Ifmaxrank(v) < maxrank(w), combine all the subtrees in the tree rooted atv into a single subtree,
unlessshc(v) = null, by settingrank(v) = maxrank(v) + 1, maxrank(v)=maxrank(w), and, for each
subrootu 6= v, shp(u) = v. Then setshc(v) = w. This may cause violations of Invariants (i) and (ii).
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Figure 3: Linking by rank: Part 0,maxrank(v) = maxrank(w).

Part 3: To restore (i) and (ii) after Part 2, repeat the following step until it no longer applies. Lets0 =
shc(v) and s1 = shc(s0). If s1 6= null and x < b(s1), comparerank(s0) to rank(s1), and: if
rank(s0) = rank(s1), simultaneously setshp(s1) = s0, shc(s0) = shc(s1), rank(s0) = rank(s0) + 1,
and maxrank(v) = max{maxrank(v), rank(s0) + 1}; if rank(s0) > rank(s1), simultaneously set
shp(s1) = s0 andshc(s0) = shc(s1); if rank(s0) < rank(s1), simultaneously setshp(s0) = s1,
shc(v) = s1, andb(s1) = x.

Parts 1, 2, and 3 of linking-by-rank correspond to Parts 1, 2,and 3 of linking-by-size; Part 0 handles
the case of equalmaxranks , in which all subtrees of both trees are combined. (We could add a correspond-
ing Part 0 to linking-by-size, but this is unnecessary.) As does linking-by-size, linking-by-rank produces
balanced forests, as we now show. For a nodeu, let subsize(u) be the number of descendants ofu in its
subtree.

Lemma 3.3 In any shadow forest built using linking-by-rank, any nodeu has subsize(u) ≥ 2(rank(u)−1)/2.

Proof: To obtain this result we actually need to prove something stronger. Suppose we perform a sequence
of link-by-rank operations. We track the states of nodes, their ranks, and their subsizes as the links take
place. Each node is in one of two states:normalor special. The following invariants will hold:

(a) anormal nodeu hassubsize(u) ≥ 2rank(u)/2;

(b) aspecial nodeu hassubsize(u) ≥ 2(rank(u)−1)/2;

(c) aspecial rootu has a normal subroot descendant of rank at leastrank(u).

Initially all nodes are normal; since all initial ranks are zero, (a), (b), and (c) hold initially. We need to
determine the effect of each part of an operationlink(v,w, x).

If maxrank(v) = maxrank(w), we makev normal after the link; all other nodes retain their states. This
preserves (a), (b), and (c); the only question is whetherv satisfies (a), since it gains one in rank and can
change from special to normal. Before the link, both the treerooted atv and the tree rooted atw have a

subroot of rankmaxrank(v). Since each of these nodes has subsize at least2(maxrank(v)−1)/2 before the

link by (a) and (b), after the linksubsize(v) ≥ 2 · 2(rank(v)−2)/2 = 2rank(v)/2. Hence (a) holds forv after
the link.

If maxrank(v) > maxrank(w) andrank(v) does not change as a result of the link, all nodes retain their
states. The link preserves (a), (b), and (c), because no nodeincreases in rank. Ifrank(v) does change
because of the link (becoming one greater than the old value of maxrank(w)), we makev special. Nodev
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now satisfies (b), because before the linkw had a normal subroot descendantu of rank maxrank(w), and

subsize(u) ≥ 2maxrank(w)/2 by (a); hence, after the link,subsize(v) ≥ 2(rank(v)−1)/2. Nodev satisfies
(c), because before the link it had a normal subroot descendant z of rankmaxrank(v) ≥ maxrank(w) + 1,
which it retains after the link.

The last case ismaxrank(v) < maxrank(w). In this case we look at the effects of Part 2 and Part 3
separately. If Part 2 does anything, we makev special. Nodev satisfies (b), because before the link it had
a normal subroot descendant of rankmaxrank(v), which satisfied (a); hence, after the link,subsize(v) ≥
2(rank(v)−1)/2. Nodev satisfies (c) after the link, because before the linkw had a normal subroot descendant
of rankmaxrank(w) ≥ maxrank(v) + 1 by (a), which becomes a normal subroot descendant ofv.

Finally, we must account for the effect of Part 3. Each combination of subtrees done by Part 3 preserves
(a), (b), and (c), except possibly for those that combine twosubtrees with subroots, sayy andz, of equal
rank. In this case the rank of the surviving subroot increases by one; and if the ranks ofy andz previously
equaledmaxrank(v), maxrank(v) increases by one. To preserve the invariants in this case, wemake the
surviving root, sayy, normal. Nowy satisfies (a), because before the subtrees rooted aty and z were

combined, bothy andz have subsize at least2(rank(y)−1)/2; after the subtrees are combined,subsize(y) ≥
2 · 2(rank(y)−2)/2 = 2rank(y)/2. Becausey satisfies (a),v satisfies (c).

Thus linking preserves the invariants. By induction, they remain true throughout any sequence of links.
The lemma follows from (a) and (b). 2

Corollary 3.4 The subtrees in any shadow forest built using linking-by-rank are
√

2-balanced.

Theorem 3.5 A sequence of operations performed using the sophisticatedlink-eval structure with either
linking-by-size or linking-by-rank takesO(n) time for the links andO(n + mα(m + n, n)) time for the
findroot and eval operations.

Proof: The time for a link isO(k + 1), wherek is the decrease in the number of subtrees caused by the
link. Thus the total time for all the links isO(n). The total length of compressed paths, and hence the total
time forfindrootandevaloperations, isO(n + mα(m + n, n)) by the Tarjan-van Leeuwen analysis of path
compression [61], applying Corollary 3.2 (for linking-by-size) or Corollary 3.4 (for linking-by-rank). 2

3.5 Refined Analysis of Path Compression

In order to use path compression on balanced trees as a tool for building linear-time algorithms, we need
to show that the total time becomes linear if the compressions are suitably restricted. In order to capture
both DSU and link-eval applications, we abstract the situation as follows. An intermixed sequence of the
following two kinds of operations is performed on a rooted forest, initially consisting ofn single-node trees:

assign(u, v) Given two distinct rootsu andv, makeu the parent ofv.

compress(u) Compress the path tou from the root of the tree containing it, by making the root theparent
of every other node on the path.

Lemma 3.6 Supposeℓ nodes aremarkedand the remainingn−ℓ unmarked. Suppose the assignments build
a balanced forest, and that each node has its parent change atmostk times before it is in a tree containing
a marked node. If there arem compress operations, then the total number of nodes on compression paths is
O(kn + mα(m + ℓ, ℓ)).
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Proof: Let F be the balanced forest built by the entire sequence of assignments, ignoring the compressions;
let c > 1 be such thatF is c-balanced; and leth(v) be the height of a nodev in F . Let

a =
⌈

logc (n/ℓ) + logc (1/(c − 1)) + 1
⌉

.

Classify each nodev into one of three types:low, if v has no marked descendant inF ; middle, if v has a
marked descendant inF andh(v) < a; andhigh otherwise.

A compression path from a tree root to one of its descendants consists of zero or more high nodes
followed by zero or more middle nodes followed by zero or morelow nodes. Every node on the path except
the first two (totaling at most2m over all compressions) has its parent change to one of greater height as a
result of the compression.

Consider a compression path containing only low nodes. Since the root is low, the tree in which the
compression takes place contains no marked nodes. All but two nodes on the path change parent but remain
in a tree with no marked nodes. The number of times this can happen to a particular node is at mostk by
the hypothesis of the lemma, totaling at mostkn over all compressions.

Consider a compression path containing at least one middle or high node. Every low node on the path
except one has its parent change from low to middle or high as aresult of the compression. Thus the total
number of low nodes on such paths is at mostn + m. Every middle node on the path whose parent changes
obtains a parent of greater height. This can happen to a middle node at mosta times before its parent is high.
At most one middle node on a compression path has a high parent, totaling at mostm over all compression
paths. Each middle node has a marked node as a descendant; each marked node has at mosta + 1 middle
nodes as ancestors (at most one per height less thana). The total number of middle nodes is thus at most
ℓ(a + 1). Combining estimates, we find that the total number of middlenodes on compression paths is at
mostℓ · a · (a + 1) + m. Sinceℓ ≤ n anda is O(log (n/ℓ)), the first term isO(n), implying that the total
number of middle nodes on compression paths isO(n) + m.

Finally, we need to count the number of high nodes on compression paths. SinceF is c-balanced, the
total number of high nodes is at most

∑

i≥a

n

ci
≤ n

ca
· c

c− 1
=

n

ca−1(c− 1)
≤ ℓ.

Let therank of a nodev beh(v) − a. Then every high node has non-negative rank, and the number of high
nodes of ranki ≥ 0 is at mostℓ/ci. The analysis of Tarjan and van-Leeuwen [61, Lem. 6] appliedto the
high nodes bounds the number of high nodes on compression paths byO(ℓ + mα(m + ℓ, ℓ)). Combining
all our estimates gives the lemma. 2

Lemma 3.6 gives a bound ofO(n + m) if, for example,ℓ = O(n/ log log n), by the properties of the
inverse-Ackermann function [56]. In our applicationsℓ = n/ log1/3 n, which is sufficiently small to give an
O(n + m) bound.

We conclude this section by reviewing some previous resultson disjoint set union and refined analysis
of the DSU structure. The linear-time RAM DSU algorithm of Gabow and Tarjan [30] assumes a priori
knowledge of the unordered set of unions. An earlier versionof our work [14] contained a result much
weaker than Lemma 3.6, restricted to disjoint set union, which required changing the implementation of
unite based on the marked nodes. Alstrup et al. [8] also proved a weaker version of Lemma 3.6 in which the
mα(m + ℓ, ℓ) term is replaced byℓ log ℓ + m, which sufficed for their purpose. They derived this result for
a hybrid algorithm that handles long paths of unary nodes outside the standard DSU structure. Dillencourt,
Samet, and Tamminen [20] gave a linear-time result assumingthe stable tree property: essentially, once
a find is performed on any element in a setX, all subsequent finds on elements currently inX must be
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performed beforeX can be united with another set. Fiorio and Gustedt [25] exploit the specific order of
unions in an image-processing application. Gustedt [36] generalizes the previous two works to consider
structures imposed on sets of allowable unions by various classes of graphs. This work is orthogonal to that
of Gabow and Tarjan [30]. Other improved bounds for path compression [16, 44, 46] restrict the order in
which finds are performed, in ways different from our restriction.

4 Topological Graph Computations

Consider some computation that takes as input a graphG whose vertices and edges (or arcs) haveO(1)-
bit labels, and produces some output information (possiblynone) associated with the graph itself and with
each vertex and edge (or arc). We call such a computation atopological graph computation, because it is
based only on the graph structure and theO(1)-bit labels, in contrast, for example, to a problem in which
graph vertices and edges (or arcs) have associated real values. In general the output of a topological graph
computation can be arbitrarily complex, even exponential in size, and can contain pointers to elements of
the input graph. Our MST verification algorithm will exploitthis flexibility; in all our other applications,
the size of the output is linear in the size of the input.

Suppose we need to perform a topological graph computation on not just one input graph but on an
entire collection of graphs. If the input instances are small and there are many of them, then many of them
will be isomorphic. By doing the computation once for each non-isomorphic instance (acanonical instance)
and copying these solutions to the duplicate instances, we can amortize away the cost of actually doing the
computations on the canonical instances; most of the time isspent identifying the isomorphic instances and
transferring the solutions from the canonical instances tothe duplicate ones. The total time spent is then
linear in the total size of all the instances.

Gabow and Tarjan [30] used this idea to solve a special case ofdisjoint set union in which the unordered
set of unions is given in advance; Dixon et al. [21] applied the technique to MST verification and other
problems. These applications use table look-up and requirea RAM. Here we describe how to accomplish the
same thing on a pointer machine. Our approach is as follows. Encode each instance as a list of pointers. Use
a pointer-based radix sort to sort these lists. Identify thefirst instance in each group of identically-encoded
instances as the canonical instance. Solve the problem for each canonical instance. Map the solutions back
to the duplicate instances. The details follow.

Let G be the set of input instances, each of which contains at mostg vertices. LetN be the total number
of vertices and edges (or arcs) in all the instances. Letk be the maximum number of bits associated with
each vertex and edge of an instance. Construct a singly linked master list whose nodes, in order, represent
the integers from zero throughmax{g, 2k + 1} and are so numbered. For each instanceG, perform a
depth-first search, numbering the vertices in preorder and adding to each vertex a pointer into the master list
corresponding to its preorder number; the preorder numbering allows us to maintain a global pointer into the
master list to facilitate this assignment of pointers to vertices. Represent the label of each vertex and edge
by a pointer into the master list, using a pointer to the zero node to encode the lack of a label. Construct a
list L of triples corresponding to the vertices ofG, one triple per vertex, consisting of a pointer to the vertex,
and its number and label, both represented as pointers into the master list. Construct a listQ of quadruples
corresponding to the edges (or arcs) of the graph, one quadruple per edge (or arc), consisting of a pointer to
the edge (or arc), and the numbers of its endpoints and its label, represented as pointers into the master list.
(For an undirected graph, order the numbers of the edge endpoints in increasing order.) Encode the instance
by a list whose first entry is a pair consisting of a pointer to the instance and the number of its vertices,
represented as a pointer into the master list, catenated with listsL andQ.
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Constructing encodings for all the instances takesO(N) time. Recall that the elements of the encodings
are pointers to the master list. Attach a bucket to each element of the master list. Use a radix sort for variable
length lists [1], following the encoding pointers to reach the buckets, to arrange the encodings into groups
that are identical except for the first components of each list element (pair, triple, or quadruple): instances
whose encodings are in the same group are isomorphic. This also takesO(N) time.

Now perform the topological graph computation on any one instance of each group (the canonical in-
stance for that group). Finally, for each duplicate instance, traverse its encoding and the encoding of the
corresponding canonical instance concurrently, transferring the solution from the canonical instance to the
duplicate instance. The exact form this transfer takes depends upon the form of the output to the topological
graph computation. One way to do the transfer is to traverse the encodings of the canonical instance and the
duplicate instance in parallel, constructing pointers between corresponding vertices and edges (or arcs) of
the two instances. Then visit each vertex and edge (or arc) ofthe canonical instance, copying the output to
the duplicate instance but replacing each pointer to a vertex or edge (or arc) by a pointer to the corresponding
vertex or edge (or arc) in the duplicate instance. If the output has size linear in the input, this takesO(N)
time. Summarizing, we have the following theorem.

Theorem 4.1 If the output of a topological graph computation has size linear in the input size, the compu-
tation can be done on a collection of instances of total sizeN in O(N) time on a pointer machine, plus the
time to do the computation on one instance of each group of isomorphic instances.

This method extends to allow the vertices and edges (or arcs)of the instances to be labeled with integers
in the range[1, g], if these labels are represented by pointers to the nodes of aprecomputed master list. We
shall need this extension in our applications to finding dominators and computing component trees (Sections
8 and 9, respectively). In another of our applications, MST verification, the output of the topological graph
computation has exponential size: it is a comparison tree, whose nodes indicate comparisons between the
weights of two edges. In this case, we do not construct a new copy of the comparison tree for each duplicate
instance. Instead, when we are ready to run the comparison tree for a duplicate instance, we construct
pointers from the edges of the canonical instance to the corresponding edges of the duplicate instance and
run the comparison tree constructed for the canonical instance, but comparing weights of the corresponding
edges in the duplicate instance. The total time isO(N) plus the time to build the comparison trees for the
canonical instances plus the time to run the comparison trees for all the instances.

It remains to bound the time required to do the topological graph computation on the canonical instances.
The number of canonical instances isgO(g2). In all but one of our applications, the time to do a topological
graph computation on an instance of sizeg or smaller isO(g2); for MST verification, it isgO(g2). Thus the
following theorem suffices for us:

Theorem 4.2 If a topological graph computation takesgO(g2) time on a graph withg or fewer vertices, and
if g = log1/3 N , then the total time on a pointer machine to do the topological graph computation on a
collection of graphs of total sizeN , each having at mostg vertices, isO(N).

Proof: Immediate from Theorem 4.1, since the total time to do the topological graph computation on the
canonical instances isgO(g2)gO(g2) = gO(g2) = O(N). 2

The ability to recover the answers from the topological graph computations on the instances inG is
subtle yet critical. Alstrup, Secher, and Spork [9] show howto compute connectivity queries on a treeT
undergoing edge deletions in linear time. They partitionT into bottom-level microtrees (discussed in the
next section) and compute, for each vertexv in a microtree, a bit-string that encodes the vertices on thepath
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from v to the root of its microtree. They show how to answer connectivity queries using a constant number
of bitwise operations on these bit-strings and applying theEven and Shiloach decremental connectivity
algorithm [23] to the upper part ofT .

The Alstrup, Secher, and Spork algorithm [9] runs on a pointer machine: since the connectivity queries
return yes/no answers, they need not index tables to recoverthe answers. In contrast, while their method can
be extended to solve the off-line NCAs problem in linear timeon a RAM, and even to simplify the Gabow-
Tarjan linear-time DSU result [30], both of these extensions require indexing tables to map the results of the
bitwise operations back to vertices inT .

The idea of using pointers to buckets in lieu of indexing an array was described in general by Cai and
Paige [17] in the context of multi-sequence discrimination. Their technique leaves the efficient identification
of buckets with specific elements as an application-dependent problem. They solve this problem for several
applications, including discriminating trees and DAGs, but their solutions exploit structures specific to their
applications and do not extend to general graphs.

5 Nearest Common Ancestors

We now have the tools to solve our first application, the off-line nearest common ancestors (NCAs) problem:
given a rootedn-node treeT and a setP of m queries, each of which is a pair{v,w} of nodes inT , compute
nca(v,w) for each query{v,w}. Aho, Hopcroft, and Ullman’s algorithm [2] for this problem, as presented
by Tarjan [58], solves it using DSU. The algorithm traversesT bottom-up, building a shadow copy as a
DSU forest. It maintains, for each subtree built so far, the set of its nodes, with the root of the subtree as
the designated element. Initially, each node is in a singleton set. Each nodev also has a setP (v) of queries
{v,w}; each query is in two such lists, one forv and one forw. The algorithm is as follows.

Visit the nodes ofT in a postorder [54]. (Any postorder will do.) When visiting anodev, for every pair
{v,w} in P (v) such thatw has already been visited, returnfind(w) as the answer to the querynca(v,w).
Finish the visit tov by performingunite(p(v), v) if v is not the root ofT , wherep(v) is the parent ofv in T .

The correctness of this algorithm follows from basic properties of postorder. The DSU operations dom-
inate the running time, which isO(n+mα(m+n, n)) if the standard DSU structure presented in Section 3
is used. In this algorithm, the unordered set of unions is known in advance, since it is given by the input tree
T . Thus the use of the Gabow-Tarjan [30] linear-time RAM DSU algorithm results in a linear-time RAM
algorithm for NCAs. Knowing the set of unions in advance, however, is not sufficient to solve the DSU
problem in linear time on a pointer machine [46]. We exploit adifferent property of the unions: they occur
in a bottom-up order.

We partitionT into a set of small bottom-level trees, calledmicrotrees, andT ′, the rest ofT . For any
nodev, let T (v) be the subtree ofT induced by the descendants ofv, and let|T (v)| be the number of nodes
in T (v). Let g ≥ 1 be a fixed parameter to be chosen later. We defineT (v) to be amicrotreeif |T (v)| ≤ g
but |T (p(v))| > g. For a nodex in T (v), micro(x) = T (v) is themicrotree ofx androot(micro(x)) is the
root of its microtree. Let T ′ be the subtree ofT induced by the vertices inT that are not in microtrees. Each
leaf inT ′ has at leastg descendants inT , and the descendants of two different leaves ofT ′ form disjoint sets,
soT ′ has at mostn/g leaves. We call the microtrees thefringe of T andT ′ thecoreof T . See Figure 4. It
is straightforward to partitionT into its microtrees and core in linear time by visiting the nodes in postorder
and computing their numbers of descendants.

We call a query{v,w} small if v andw are in the same microtree andbig otherwise. We can partition
the queries into big and small and assign each small query to the microtree containing it in linear time.
We answer all the big queries by using the AHU algorithm. We answer all the small queries by doing a
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Figure 4: Partitioning of a treeT with g = 3; fringe nodes are open, and core nodes are filled; bottom-level
microtrees are encircled. Nodesa andb are the leaves of the core.

topological graph computation on the set of graphs defined byeach microtree and its associated queries. By
choosingg appropriately, we get a linear time bound for both parts of the computation.

Specifically, chooseg = log1/3 n. Answer all the big queries by running the AHU algorithm, restricted
to the big queries. To bound the running time, apply Lemma 3.6to the tree built by the parent assignments
done by the unite operations. Mark every leaf ofT ′. Each find occurs in a set containing at least one marked
node. Therefore, settingk = 1, to count the initial parent assignment for each node, satisfies the hypothesis
of the lemma. Since the number of marked nodes is at mostn/g = n/ log1/3 n, the lemma implies an
O(n + m) bound on the time to answer all the big queries.

Answer all the small queries by constructing, for each microtree, a graph containing the microtree arcs
and, for each query with both nodes in the microtree, an arc denoted as a query arc by a bit. Then do a
topological graph computation on these graphs to answer thesmall queries, using the method of Section 4.
With g = log1/3 n, this takesO(n + m) time. Thus we obtain:

Theorem 5.1 The off-line NCAs problem can be solved inO(n + m) time on a pointer machine.

6 Minimum Spanning Trees

6.1 Verification

Our next applications, minimum spanning tree (MST) verification and construction, combine topological
graph processing with use of the simple link-eval structureof Section 3.2. LetT be a spanning tree of a
connected, undirected graphG whose edges have real-valued weights. For any edge{v,w}, let c(v,w) be
the weight of{v,w}. We denote the set of non-tree edges byP . For any pair(v,w) of vertices, we denote
by T (v,w) the unique path fromv to w in T . The treeT is minimum if and only if, for every edge{v,w}
in P , c(v,w) ≥ c(x, y) for every edge{x, y} on T (v,w). Thus to verify thatT is minimum it suffices to
computemax{c(x, y) : {x, y} on T (v,w)} for every edge{v,w} in P . We assume henceforth thatT is
rooted at a fixed but arbitrary vertex and that each vertexv has a setP (v) of the pairs{v,w} in P .
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Tarjan’sO(mα(m,n))-time MST verification algorithm [58] is like the AHU NCAs algorithm, except
that it uses a link-eval structure (withmax instead ofmin) in place of a DSU structure to compute the needed
path maxima. The algorithm builds the link-eval forest during a bottom-up traversal ofT . As part of the
process of computing path maxima, the algorithm computesu = nca(v,w) for each pair{v,w} in P and
stores{v,w} in a setQ(u). Initially each node ofT is in a single-node tree of the link-eval structure, and
Q(u) is empty for each nodeu. The algorithm follows.

Visit the nodes ofT in a postorder. (Any postorder will do.) When visiting a vertex v, for every pair
{v,w} in P (v) such thatw has already been visited, add{v,w} to Q(findroot(w)). For every pair{x, y} in
Q(v), returnmax{eval(x), eval(y)} as the answer to the query{x, y}. Finish the visit tov by performing
link(p(v), v, c(p(v), v)) unlessv is the root ofT .

When the algorithm answers a query{x, y} while visiting a vertexv, v = nca(x, y), and eval(x)
andeval(y) are the maximum costs of the arcs onT (v, x) andT (v, y), respectively. In Tarjan’s original
presentation, the NCA calculations are separate from the path evaluations, but combining them gives a more
coherent algorithm. Ignoring the arc costs andevaloperations, the link-eval structure functions exactly like
the DSU structure in the AHU NCAs algorithm.

If the sophisticated link-eval structure of Section 3.3 or Section 3.4 is used, this algorithm runs in
O(mα(m,n)) time. Unfortunately, these structures delay the effect of the links, so parent assignments
do not necessarily occur in a bottom-up order, and we cannot immediately apply the approach of Section 5
to reduce the running time to linear. This problem was pointed out by Georgiadis and Tarjan [32]. Instead,
we use a result of King [40] to transform the original tree into anO(n)-node balanced tree on which to
compute path maxima. Then we can use the simple link-eval structure of Section 3.2 in combination with
the approach of Section 5 to obtain a linear-time algorithm.

6.2 The Borůvka Tree

A Borůvka step[13] applied to a weighted, undirected graphG is as follows: select a least-weight edge
incident to each vertex, and contract to a single vertex eachconnected component formed by the selected
edges. Repeating this step until only a single vertex remains produces an MST defined by the original edges
corresponding to the edges selected in all the steps, if all edge weights are distinct, which we can assume
without loss of generality.

This algorithm can be enhanced to produce theBorůvka treeB, whose nodes are the connected compo-
nents that exist during the Borůvka steps, with each node having as children those components from which
it is formed during a Borůvka step. If componentC is the parent of componentD, the weight of arc(C,D)
is the weight of the edge selected for the vertex corresponding toD by the Borůvka step in whichD is con-
tracted intoC. The leaves ofB are the vertices ofG, each of which is originally a single-vertex component.
Each Borůvka step reduces the number of vertices by at leasta factor of two; hence,B is 2-balanced. Also,
B contains at most2n − 1 nodes. In general the enhanced Borůvka algorithm runs inO(m log n) time on
a pointer machine. On a tree, however, it runs inO(n) time, because each contracted graph is a tree, and a
tree hasO(n) edges. We apply the enhanced Borůvka algorithm to the treeT that is to be verified, thereby
constructing the Borůvka treeB of T . In addition to being balanced,B has the following key property [40]:
for any pair of vertices{v,w}, max{c(x, y) : (x, y) on T (v,w)} = max{c(x, y) : (x, y) on B(v,w)}.
Thus we can compute path maxima onB instead of onT without affecting the answers to the queries.
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6.3 Comparison Trees for Computing Path Maxima

Now we can apply the approach of Section 5. Letg = log1/3 n. PartitionB into microtrees and a coreB′

as in Section 5. Partition the pairs inP into big pairs, those with ends in different microtrees, andsmall
pairs, those with ends in the same microtree. Compute path maxima for all the big pairs by running Tarjan’s
algorithm onB, restricted to the big pairs and using the simple link-eval structure of Section 3.2.

To bound the running time of this computation, we apply Lemma3.6 toB. Mark every leaf ofB′. Each
findrootandevaloccurs in a subtree ofB containing a marked node, so settingk = 1 satisfies the hypothesis
of the lemma. Since the number of marked nodes is at most2n/g = 2n/ log1/3 n, the lemma implies an
O(m) bound on the time to compute path maxima for all the big pairs.

We would like to compute path maxima for all the small pairs byapplying the method of Section 4. To
this end, construct for each microtree a graph containing the microtree edges and, for each pair with both
ends in the microtree, an edge designated as a query edge by a bit. Now a new difficulty arises: since the arc
costs are arbitrary real numbers, computing path maxima is not a topological graph computation; we cannot
encode the edge costs inO(1) bits, or even inO(log g) bits.

We overcome this difficulty by following the approach of Dixon, Rauch, and Tarjan [22]: do a topologi-
cal graph computation that builds, for each distinct markedgraph, a comparison tree, whose nodes designate
binary comparisons between costs of unmarked edges of the graph (tree edges), such that the output nodes of
the comparison tree designate, for each marked edge (query pair), which of the unmarked edges on the path
between the ends of the edge has maximum cost. Having built all the comparison trees, run the appropriate
comparison tree for each microtree and its associated pairs, using the actual costs of the microtree arcs to
determine the outcomes of the comparisons.

With g = log1/3 n, the time for this computation isO(m), plus the time to build comparison trees
for the topologically distinct instances, plus the time to run the comparison trees for the actual instances.
Komlós [41] proved that the path maxima needed for MST verification can be determined in a number of
binary comparisons of tree edge costs that is linear in the number of graph edges, which implies for each
instance the existence of a comparison tree that has depth linear in the number of edges. Dixon et al. [22]
observed that the comparison tree implied by Komlós’ result can be built in a time per comparison-tree node
that is quadratic in the number of graph vertices. If we use their method to build the comparison trees during
the topological graph computation, theng = log1/3 n implies by the results of Section 4 that the total time
to build the comparison trees isO(m). The total time to run them is linear in the total size of all the actual
instances, which is alsoO(m). Thus we obtain:

Theorem 6.1 Computing all the path maxima needed for MST verification, and doing the verification itself,
takesO(m) time on a pointer machine.

6.4 Construction of Minimum Spanning Trees

The randomized linear-time MST construction algorithm of Karger, Klein, and Tarjan [39] runs on a pointer
machine except for the part that computes the path maxima needed for MST verification. Using the algo-
rithm of Section 6.3, this part can be done (deterministically) in linear time on a pointer machine, resulting
in a randomized linear-time, pointer machine algorithm forconstructing an MST.

6.5 Remarks

It is instructive to compare our MST verification algorithm to those of Dixon, Rauch, and Tarjan [22] and
of King [40]. Our use of King’s Borůvka tree construction asan intermediate step allows us to use only
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bottom-level microtrees, whereas Dixon et al. partition the original tree entirely into microtrees, with an
extramacrotreeto represent the connections between them. It also allows usto use the simple link-eval
structure instead of the sophisticated one. Lemma 3.6 allows us to break big queries into only two parts
(having an NCA in common); Dixon et al. break each big query into as many as six parts. King explicitly
implements Komlós’ comparison algorithm for the Borůvkatree, but her algorithm is heavily table-driven
and requires a RAM. She also must compute NCAs separately.

There is an alternative, though more complicated way to verify an MST in linear time on a pointer
machine. This method replaces the use of the Borůvka tree bya partition of the original tree into bottom-
level microtrees and a set of maximal paths that partition the core. The method does NCA computations on
trees derived from the maximal paths, and it uses a sophisticated link-eval structure instead of the simple
one. We discuss this method in more detail in Section 8.7. Though the use of the Borůvka tree gives us
a simpler algorithm for MST verification, there is no corresponding concept for either of our remaining
applications, and we must rely on the alternative of partitioning the core into maximal paths.

7 Interval Analysis

We turn now to two problems on flowgraphs. The first isinterval analysis. LetG = (V,A, r) be a flowgraph,
and letD be a given depth-first search tree rooted atr. Identify vertices by their preorder number with
respect to the DFS:v < w means thatv was visited beforew. Reverse preorderof the vertices is decreasing
order by (preorder) vertex number. For each vertexv, theheadof v is

h(v) = max{u : u 6= v and there is a path fromv to u containing only descendants ofu};

h(v) = null if this set is empty. The heads define a forestH called theinterval forest: h(v) is the parent
of v in H. Each subtreeH(v) of H induces a strongly connected subgraph ofG, containing only vertices
in D(v) (the descendants ofv in D). See Figure 5. Tarjan [57] proposed an algorithm that uses an NCA
computation, incremental backward search, and a DSU data structure to computeH in O(mα(m,n)) time
on a pointer machine. We shall add microtrees, a maximal pathpartition of the core, and a stack to Tarjan’s
algorithm, thereby improving its running time toO(m) on a pointer machine.

Tarjan’s algorithm proceeds as follows. Delete all the arcsfrom the graph. For each vertexu, form a
set of all deleted arcs(x, y) such thatnca(x, y) = u. Process the vertices in any bottom-up order; reverse
preorder will do. To process a vertexu, add back to the graph arcs corresponding to all the deleted arcs
(x, y) with nca(x, y) = u. Then examine each arc(v, u) enteringu. If v 6= u, seth(v) = u, and contractv
into u; for all arcs havingv as an end, replacev by u. This may create multiple arcs and loops, which poses
no difficulty for the algorithm. Continue until all arcs intou have been examined, including those formed by
contraction. When adding arcs back to the graph, the arc corresponding to an original arc is the one formed
by doing end replacements corresponding to all the contractions done so far.

To keep track of contractions, Tarjan’s algorithm uses a DSUstructure whose elements are the graph
vertices. The algorithm also uses a reverse adjacency setR(u), initially empty, for each vertexu. A more
detailed description of the algorithm is as follows. To processu, for each arc(x, y) such thatnca(x, y) = u,
addx to R(find(y)). (The replacement forx is done later.) Then, whileR(u) is non-empty, delete a vertex
x from R(u); let v ← find(x); if v 6= u, seth(v)← u, setR(u)← R(u) ∪R(v), and dounite(u, v).

With the setsR(u) represented as singly linked circular lists (so that set union takes constant time), the
running time of this algorithm on a pointer machine is linearexcept for the NCA computations and the DSU
operations, which takeO(mα(m,n)) time in Tarjan’s original implementation. We shall reduce the running
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Figure 5: (a) A DFS treeD of the input flowgraphG; non-tree arcs are dashed. (b) The interval forestH of
G with respect toD; arrows are parent pointers.

time to linear by using microtrees to eliminate redundant computation and by reordering the unites into a
bottom-up order.

As in Section 5, partitionD into a set of bottom-level microtrees (the fringe), each with fewer than
g = log1/3 n vertices, andD′, the remainder ofD (the core). Use a topological graph computation to
computeh(v) for every vertexv such thath(v) is in the fringe. The definition of heads implies that for any
such vertexv, h(v) andv are in the same microtree, and furthermore that the only information needed to
compute heads in the fringe is, for each microtree, the subgraph induced by its vertices, with non-tree edges
marked by a bit. Withg = log1/3 n, this computation takesO(m) time by Theorem 4.2.

It remains to compute heads for vertices whose heads are in the core. Our approach is to run Tarjan’s
algorithm starting from the state it would have reached after processing the fringe. This amounts to con-
tracting all the strong components in the fringe and then running the algorithm. This approach does not
quite work as stated, because the DSU operations are not restricted enough for Lemma 3.6 to apply. To
overcome this difficulty, we partition the core into maximalpaths. Then we run Tarjan’s algorithm path-
by-path, keeping track of contractions with a hybrid structure consisting of a DSU structure that maintains
contractions outside the path being processed and a stack that maintains contractions inside the path being
processed. The latter structure functions in the same way asthe one Gabow used in his algorithm [28] for
finding strong components. Now we give the complete description of our algorithm.

Partition the vertices inD′ into a set of maximal paths by choosing, for each non-leaf vertex v in D′, a
child c(v) in D′. (Any child will do.) The arcs(v, c(v)) form a set of paths that partition the vertices inD′.
For such a pathP , we denote the smallest and largest vertices onP by top(P ) andbottom(P ), respectively;
bottom(P ) is a leaf ofD′. SinceD′ has at mostn/g leaves, the number of paths is at mostn/g. Partitioning
D′ into paths takesO(n) time.

After constructing a maximal path partition of the core, initialize a DSU structure containing every
vertex (fringe and core) as a singleton set. Visit the fringevertices in bottom-up order, and, for each fringe
vertex v with h(v) also in the fringe, performunite(h(v), v); for such a vertex,h(v) has already been
computed. InitializeR(u)← ∅ for every vertexu. For every arc(x, y) with x andy in the same microtree,
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addx to R(find(y)). For every remaining arc(x, y), computeu = nca(x, y) and add(x, y) to the set of arcs
associated withu. These NCA computations takeO(m) time using the algorithm of Section 5. Indeed, every
NCA query is big, so the AHU algorithm answers them in linear time. This completes the initialization.

Now process each pathP in the path partition, in bottom-up order with respect totop(P ). To process a
pathP , initialize an empty stackS. Process each vertexu of P in bottom-up order. To processu, for each
arc(x, y) such thatnca(x, y) = u, addx to R(find(y)). Then, whileR(u) is non-empty, delete a vertexx
from R(u). Let v ← find(x). If v is not onP , seth(v)← u, setR(u)← R(u) ∪R(v), and dounite(u, v).
If, on the other hand,v is onP , v 6= u, andv is greater than the top vertex onS, pop fromS each vertex
w less than or equal tov, seth(w) ← u, and setR(u) ← R(u) ∪ R(w). OnceR(u) is empty, pushu onto
S. After processing all vertices onP , visit each vertexu onP again, in bottom-up order, and ifh(u) is now
defined, performunite(h(u), u). See Figure 6

This algorithm delays the unites for vertices on a path untilthe entire path is processed, using the stack to
keep track of the corresponding contractions. Specifically, the algorithm maintains the following invariant:
if vertex u on pathP is currently being processed andx is any original vertex, then the vertex into whichx
has been contracted isv = find(x) if v is not onP , or the largest vertex onS less than or equal tov if v is
onP andS is non-empty, oru otherwise. It is straightforward to verify this invariant by induction on time;
the correctness of this implementation of Tarjan’s algorithm follows.

Theorem 7.1 The interval analysis algorithm runs inO(m) time on a pointer machine.

Proof: The running time is linear except for the find operations: each vertex gets added toS once and has
its head set at most once. To bound the time for the find operations, we apply Lemma 3.6 to the tree built by
the parent assignments done by the unite operations. Mark the tops of all paths. Since there are at mostn/g
paths, there are at mostn/g = n/ log1/3 n marked vertices. We claim thatk = 4 satisfies the hypothesis of
the lemma. We need a property of the interval forestH: if h(v) = u, then every vertexw 6= u on the path
in D from u to v is a descendant ofu in H. This holds because there is a path containing only verticesin
D(u) from w to v (via D) to u.

The unites occur in batches, one initial batch for all the microsets and one batch per path. Consider any
vertexv. We bound the number of times the set containingv in the DSU structure can change, as a result of
a batch of unites, beforev is in a set with a marked vertex. Vertexv can change sets once as a result of the
initialization (from a singleton set to a larger set). Afterthe initialization,v is in some set, whose designated
vertex may be fringe or core. The first batch of unites that changes the set containingv putsv in a set with a
designated vertexu that is in the core, specifically on some pathP . The second batch of unites that changes
the set containingv putsv in the same set astop(P ) (by the property above), andv is now in a set with a
marked node. Thusv can change sets at most thrice before it is in a set with a marked vertex. The parent
of v can only change once, as a result of a compression, withoutv changing sets. Therefore, the parent ofv
can change at most four times beforev is in a set with a marked vertex, so the claim is true.

With k = 4 andℓ ≤ n/ log1/3 n, Lemma 3.6 gives a bound ofO(m) on the time for thefind operations.
2

Interval analysis is an important component of program flow analysis [3]. It also has other applications,
including testing flow graph reducibility [60], finding a pair of arc-disjoint spanning trees in a directed
graph [57] and verifying a dominator tree [33]. Our intervalanalysis algorithm givesO(m)-time algorithms
on a pointer machine for these applications as well.

In the next section we shall need a compressed version of the interval forestH ′ that is defined with
respect to the fringe-core partition: the parenth′(v) of a vertexv is its nearest core ancestor inH if it has
one,null otherwise. We can easily computeH ′ from H in linear time, but if we only wantH ′ and notH,
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Figure 6: Idealized execution of the algorithm on the graph in (a), with circled microtree. Arcs depict the
effects of contractions: wheneverx ∈ R(y), (find(x), find(y)) is an arc in the corresponding graph. The
first vertex in each labeled set is the corresponding original vertex in (a). (a→b) During preprocessing,
h(v)← u1, andv is inserted into the set ofu1. (b→c) When processingu2, h(u1)← u2 via the arc(v, u2).
(c→d) When processingu3, the stackS is (top-down)(u2, bottom(P )). Hence, when processing the arc
(bottom(P ), u3), S is popped so thath(u2)← u3 andh(bottom(P ))← u3. (d) shows the state after doing
theunite(·)’s for pathP . (d→e) When processingu4, S is (w, z, bottom(Q)). Arc (u2, u4) setsh(u3)← u4

and addstop(P ) andz to R(u4). Processingtop(P ) causesh(top(P )) ← u4, and processingz pops the
stack so thath(w)← u4 andh(z)← u4. (f) After processing pathQ.
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we can avoid the topological graph computation on the microtrees: First, find the strong components of the
graphs induced by the vertex sets of the microtrees. For eachsuch component, find its smallest vertexu, and
performunite(u, v) for every other vertexv in the component. Then run the algorithm above for the core.
This computesh(v) = h′(v) for every vertexv with head in the core. Complete the computation by setting
h′(v) = h′(u) for each vertexv 6= u in a fringe strong component with smallest vertexu.

8 Dominators

Our second flowgraph problem is finding immediate dominators. Let G = (V,A, r) be a flowgraph. We
denote the immediate dominator of any vertexv by idom(v). Let D be an arbitrary but fixed depth-first
search (DFS) tree rooted atr. As in Section 7, we identify vertices by their preorder number with respect to
the DFS; reverse preorder is decreasing order by vertex number. We use the notationv

∗→ w to denote that
v is an ancestor ofw in D, andv

+→ w to denote thatv is a proper ancestor ofw in D. Sometimes we use
the same notation to denote the respective paths inD from v to w. We denote byp(v) the parent ofv in D.
We shall need the following basic property of depth-first search:

Lemma 8.1 [54] Any path from a vertexv to a vertexw > v contains a common ancestor ofv andw.

We shall describe an algorithm to compute immediate dominators inO(m) time on a pointer machine.
This is our most complicated application: it uses all the ideas and algorithms we have developed so far.
Our algorithm is a re-engineering of the algorithms presented by Buchsbaum et al. [15] and Georgiadis and
Tarjan [31, 32]. As we proceed with the description, we shallpoint out the relationships between concepts
we introduce here and the corresponding ideas in those previous works.

8.1 Semi-Dominators, Relative Dominators, Tags, and Extended Tags

Lengauer and Tarjan (LT) [43] devised a three-pass,O(mα(m,n))-time algorithm to compute immediate
dominators. We shall improve their algorithm by speeding upthe first two steps. Central to the LT algorithm
is the concept ofsemi-dominators. A pathx0, x1, . . . , xk in G is a high pathif xi > xk for i < k. As a
degenerate case, a single vertex is a high path. A high path avoids all proper ancestors of its last vertex. The
semi-dominatorof a vertexw is

sdom(w) = min({w} ∪ {u : for some(u, v) in A there is a high path fromv to w}).

Therelative dominatorof a vertexw is

rdom(w) = argmin{sdom(u) : sdom(w)
+→ u

∗→ w}.

With this definition, relative dominators are not unique, but for any vertex any relative dominator will do.
The LT algorithm operates as follows:

Step 1: Compute semi-dominators.

Step 2: Compute relative dominators from semi-dominators.

Step 3: Compute immediate dominators from relative dominators.

Step 3 relies on the following lemma:
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Lemma 8.2 ( [43, Cor. 1]) For any vertexv 6= r, idom(v) = sdom(v) if sdom(rdom(v)) = sdom(v);
otherwise, idom(v) = idom(rdom(v)).

Using Lemma 8.2, the LT algorithm performs Step 3 in a straightforward top-down pass overD that
takesO(n) time on a pointer machine.

The LT algorithm performs Steps 1 and 2 in a single pass that visits the vertices ofD in reverse preorder
and uses a link-eval data structure to compute semi-dominators and relative dominators. We shall present
separate algorithms for Steps 1 and 2, although these steps can be partially combined, as we discuss in
Section 8.7.

Step 2 is almost identical to MST verification. Indeed, suppose we assign a costsdom(v) to each tree
edge(p(v), v) and apply the MST verification algorithm to the treeD with query setQ = {(sdom(v), v) :
v 6= r}, with the modification that the answer to a query is an edge of minimum cost on the query path rather
than the cost of such an edge. Then forv 6= r, rdom(v) is the vertexu such that(p(u), u) is the answer to
the query(sdom(v), v). Modifying the link-eval structure to replace maximum by minimum and to return
edges (or, better, vertices) rather than costs is straightforward. The algorithm of Section 6 thus performs
Step 2 inO(n) time on a pointer machine. (The number of queries isO(n).)

It remains to implement Step 1, the computation of semi-dominators. Lengauer and Tarjan reduce this
computation, also, to a problem of finding minima on tree paths, using the following lemma:

Lemma 8.3 ( [43, Thm. 4]) For any vertexw,

sdom(w) = min
(

{w} ∪ {nca(u,w) : (u,w) ∈ A} ∪ {sdom(v) : ∃(u,w) ∈ A, nca(u,w)
+→ v

∗→ u}
)

.

The lemma gives a recurrence forsdom(w) in terms ofsdom(v) for v > w. The LT algorithm performs
Step 1 by visiting the vertices in reverse preorder and usinga link-eval structure to perform the computations
needed to evaluate the recurrence.

Even though Step 1 is now reduced to computing minima on tree paths, we cannot use the MST verifica-
tion algorithm directly for this purpose, because that algorithm answers the queries in an order incompatible
with the requirements of the recurrence. Instead we developan alternative strategy. For convenience we
restate the problem, which allows us to simplify slightly the recurrence in Lemma 8.3. Suppose each vertex
w has an integertag t(w) in the range[1, n]. Theextended tagof a vertexw is defined to be

et(w) = min{t(v) : there is a high path fromv to w}.

Lemma 8.4 If t(w) = min({w} ∪ {v : (v,w) ∈ A}) for every vertex, then sdom(w) = et(w) for every
vertex.

Proof: Immediate from the definitions of semi-dominators and extended tags. 2

We can easily compute the tag specified in Lemma 8.4 for every vertex inO(m) time. Thus the problem
of computing semi-dominators becomes that of computing extended tags.

Lemma 8.3 extends to give the following recurrence for extended tags:

Lemma 8.5 For any vertexw,

et(w) = min({t(w)} ∪ {et(v) : ∃(u,w) ∈ A, nca(u,w)
+→ v

∗→ u}).
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Figure 7: Extended tags and arc tags. The number inside each bracket is the extended tag of the correspond-
ing vertex. The number on each arc is its tag; the arc tag of a tree or forward arc is infinite and not shown in
the figure.

Proof: Analogous to the proof of Lemma 8.3. Letx be the right side of the equation in the statement
of the lemma. First we proveet(w) ≤ x. If x = t(w), et(w) ≤ x is immediate from the definition of
et(w). Supposex = et(v) for v such thatnca(u,w)

+→ v
∗→ u and(u,w) in A. By the definition ofet(v),

et(v) = t(z) for some vertexz such that there is a high path fromz to v. Extending this path by the tree
path fromv to u followed by the arc(u,w) gives a high path fromz to w. Henceet(w) ≤ et(v) = x.

Next we provex ≤ et(w). Let z be a vertex such thatet(w) = t(z) and there is a high path fromz to
w (by the definition of the extended tags). Ifz = w, thenx ≤ et(w) from the definition ofx. If not, let
(u,w) be the last edge on the high path fromz to w. Let v be the first vertex along the high path such that
nca(u,w)

+→ v
∗→ u. Such av exists sinceu is a candidate (nca(u,w) ≤ w < u). We claim that the part

of the high path fromz to v is itself a high path. Suppose to the contrary that this part contains a vertex less
thanv, and lety be the last such vertex. Theny must be an ancestor ofv by Lemma 8.1, and sincey is on a
high path forw, nca(u,w)

+→ y
+→ v. This contradicts the choice ofv. It follows thatet(v) ≤ t(z); that is,

x ≤ et(w). 2

We introduce one more definition that simplifies some of our formulas and discussion. For an arc(u,w),
thearc tagof (u,w) is

at(u,w) = min{et(v) : nca(u,w)
+→ v

∗→ u}

if this minimum is over a non-empty set, and infinity otherwise (whennca(u,w) = u). An example is
shown in Figure 7. Using arc tags, the recurrence in Lemma 8.5becomes

et(w) = min({t(w)} ∪ {at(u,w) : (u,w) ∈ A}). (1)
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8.2 The Interval Forest

We could use Eq. (1) to compute extended tags just as the LT algorithm uses Lemma 8.3 to compute semi-
dominators, but we seek a faster method. Note that there are two kinds of arcs(u,w) that must be handled:
those such thatu andw are unrelated (cross arcs), and those such thatw

+→ u (back arcs). (Arcs such that
u

+→ w do not contribute to the recurrence.) We apply different techniques to the cross arcs and the back
arcs, which allows us to tease apart the intertwined computations implied by Eq. (1) and reorder them to
apply our techniques.

To handle the back arcs, we use the interval forest discussedin Section 7. Recall the following defi-
nitions. For each vertexw, the headh(w) of w is the maximum vertexu 6= w such that there is a path
from w to u containing only descendants ofu, if this maximum is over a non-empty set, andnull otherwise.
Lemma 8.1 implies that the constraint onu in the definition ofh(w) is equivalent tou

+→ w and there is a
high path fromw to u. The heads define a forestH called theinterval forest: h(w) is the parent ofw in H.
The following lemma allows us to compute extended tags by computing arc tags only for the cross arcs and
propagating minima up the interval forest.

Lemma 8.6 For any vertexw,

et(w) = min({t(v) : v ∈ H(w)} ∪ {at(u, v) : (u, v) ∈ A, v ∈ H(w), u 6∈ D(w)}).

Proof: Let x be the right side of the equation in the statement of the lemma. First we proveet(w) ≤ x. Let
v be inH(w). Since there is a high path fromv to w, et(w) ≤ t(v). Let (u, v) be inA such thatv is in
H(w) butu is not inD(w). Let y be a vertex of minimumet(y) such thatnca(u, v)

+→ y
∗→ u, and letz be

a vertex of minimumt(z) such that there is a high path fromz to y. Then there is a high path fromz to y to
u to v to w, which implieset(w) ≤ t(z) = et(y) = at(u, v). We conclude thatet(w) ≤ x.

Next we provex ≤ et(w). Let z be a vertex such thatet(w) = t(z) and there is a high path fromz to
w. If z is in H(w), thenx ≤ t(z) = et(w). Supposez is not in H(w). Let (u, v) be the first arc along
the high path fromz to w such thatv is in H(w). Thenu cannot be inD(w), or it would be inH(w),
contradicting the choice of(u, v). Thusnca(u, v)

+→ u. Let y by the first vertex along the high path such
thatnca(u, v)

+→ y
∗→ u. By Lemma 8.1, the part of the high path fromz to y is itself a high path. Thus

x ≤ at(u, v) ≤ et(y) ≤ t(z) = et(w). 2

Corollary 8.7 For any vertexw,

et(w) = min({t(w)} ∪ {et(v) : h(v) = w} ∪ {at(v,w) : (v,w) is a cross arc}).

Corollary 8.7 gives an alternative recursion for computingextended tags by processing the vertices in
reverse preorder. Lemma 8.6 also allows us to compute extended tags for all the vertices on a tree path,
given only arc tags for arcs starting to the right of the path.

8.3 Microtrees and Left Paths

As in Section 5, we partitionD into a set of bottom-level microtrees (the fringe), each containing fewer than
g = log1/3 n vertices, andD′ (the core), the remainder ofD. We call a cross arcsmall if both its ends are
in the same microtree andbig otherwise. We also partitionD′ into maximal paths as in Section 7, but a
particular set of maximal paths. Specifically, we partitionD′ into left paths, as follows: an arc(p(v), v) of
D′ is a left arc if v is the smallest child ofp(v) in D′. A left pathis a maximal sequence of left arcs. We can
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partitionD into microtrees and left paths inO(m) time during the DFS that definesD. If P is a left path, as
in Section 7 we denote bytop(P ) andbottom(P ) the smallest and largest vertices onP , respectively. The
importance of left paths is twofold. First, there are at mostn/g of them. Second, if(p(v), v) is a left arc,
any child ofp(v) smaller thanv must be in the fringe, not the core. That is, left paths have only microtrees
descending on their left. Left paths serve in place of thelinesof Georgiadis and Tarjan [31, 32]; left paths
are catenations of those lines.

Our hypothetical plan for computing extended tags in lineartime is to use a topological graph computa-
tion to handle the microtrees and a link-eval structure to compute arc tags for the big cross edges. This plan
does not quite work: computing extended tags is unlike the previous problems we have considered in that
there is an interaction between the fringe and the core. In particular, we need at least some information about
the small cross arcs in order to compute extended tags in the core, and information about the big cross arcs
to compute extended tags in the fringe. For the former computation we do not, however, need to compute
arc tags for the small cross arcs: the recurrence in Lemma 8.6expresses the extended tags of vertices in
the core in terms only of tags of vertices and arc tags of big cross arcs. To handle the limited interaction
between fringe and core, we use a two-pass strategy. During the first pass, we compute arc tags of big cross
arcs and extended tags in the core while computing limited information in the fringe. In the second pass, we
use the information computed in the first pass in a topological graph computation to compute extended tags
in the fringe.

The information we need in the fringe is a set of values definedas follows. For a vertexw in a microtree
D(s), themicrotagof w is

mt(w) = min
(

{t(v) : there is a path fromv to w in D(s)} ∪
{at(u, v) : (u, v) is a cross arc, v ∈ D(s), u /∈ D(s), and there is a path inD(s) from v to w}

)

.

Our microtags correspond to thepushed external dominatorsof Buchsbaum et al. [15] (also used by Geor-
giadis and Tarjan [31, 32]). The next lemma shows that, when computing the arc tags of big cross arcs, we
can use microtags in place of extended tags for fringe vertices; that is, we shall use microtag values in the
link-eval structure, when linking fringe vertices.

Lemma 8.8 Letw be a vertex in a microtreeD(s). Then

min{et(v) : s
∗→ v

∗→ w} = min{mt(v) : s
∗→ v

∗→ w}.

Proof: Let x andy be the values of the left and right sides of the equation in thestatement of the lemma,
respectively. First we prove thatx ≥ y. Let v be a vertex such thatx = et(v) ands

∗→ v
∗→ w. Let z be

a vertex such thatt(z) = et(v) and there is a high path fromz to v. If z is in D(s), then this high path is
in D(s), which implies thatx = t(z) ≥ mt(v) ≥ y. Suppose on the other hand thatz is not inD(s). Let
(p, q) be the last arc along the high path such thatp is not inD(s), and letz′ be the first vertex along the
high path such thatnca(p, q)

+→ z′
∗→ p. Note that(p, q) must be a cross arc, sincep is not inD(s) and is

on a high path tov in D(s). See Figure 8. As in the proof of Lemma 8.5, the part of the highpath fromz to
z′ is itself a high path, which impliesx = t(z) ≥ et(z′) ≥ at(p, q) ≥ mt(v) ≥ y.

Next we prove thatx ≤ y. Let v be a vertex such thaty = mt(v) and s
∗→ v

∗→ w. Suppose
mt(v) = t(z) for somez in D(s) from which there is a path tov in D(s). Let u be the first vertex on this
path that is an ancestor ofw. Then the path fromz to u is a high path by Lemma 8.1 and the choice of
u. Thusx ≤ et(u) ≤ t(z) = y. Suppose on the other hand thatmt(v) = at(p, q) for an arc(p, q) such
that q but notp is in D(s) and there is a path fromq to v. Let u be the first vertex on this path that is an
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Figure 8: Proof of Lemma 8.8. Dashed curves represent graph paths. Solid edges represent tree paths. Each
gray vertex can be in the core or in the fringe.

ancestor ofw. By Lemma 8.1, the part of the path fromq to u is a high path. Letz be a vertex such that
t(z) = at(p, q) and there is a high path fromz to a vertexz′ such thatnca(p, q)

+→ z′
∗→ p. See Figure 8.

This path, together with the pathz′
∗→ p, the arc(p, q), and the high path fromq to u, is a high path. Thus

x ≤ et(u) ≤ t(z) = at(p, q) = mt(v) = y. 2

To help compute extended tags during the first pass, we use a compressed interval forestH ′ in place of
the interval forestH. Recall that inH ′, the parenth′(v) of a vertexv is the nearest ancestor ofv in H that
is a core vertex. ForestsH andH ′ are identical on the core; each subtree ofH consisting of fringe vertices
with a core root is compressed inH ′ to the root with all the fringe vertices as children. The use of H ′ in
place ofH is an optimization only: we can build eitherH or H ′ in linear time using the algorithm of Section
7, but, as noted in Section 7, buildingH ′ instead ofH avoids the use of topological graph computations on
the microtrees and thus is simpler. The algorithm of Section7 buildsH ′ by partitioningD into microtrees
and maximal paths. We can use the set of left paths as the maximal paths, avoiding the need for two different
partitions.

To compute extended tags in the core, we use the following corollary of Lemma 8.6:

Corollary 8.9 If w is a core vertex

et(w) = min
(

{t(v) : v = w or v is fringe withh′(v) = w} ∪ {et(v) : v is core withh′(v) = w} ∪
{at(u, v) : (u, v) is a big cross arc such thatv = w or v is fringe withh′(v) = w}

)

.

The algorithm of Georgiadis and Tarjan [32] for computing dominators does not useH ′ explicitly, but
it does do an incremental backward search using a stack to maintain strongly connected parts of lines, in
effect doing a just-in-time computation of (part of)H ′. Making this computation separate, as we have done,
breaks the overall algorithm into smaller, easier-to-understand parts, which could be combined if desired.

8.4 Computation of Arc Tags

The heart of the algorithm is the computation of arc tags. We split each such computation into two parts,
either of which can be void: atop part, which computes a minimum of extended tags over part or all ofa
left path, and abottom part, which computes a minimum of extended tags of core vertices and microtags
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Figure 9: Examples of non-emptynca(u, v)
+→ mid(u, v) paths. (a) Caseu > bottom(P ). (b) Case

u < bottom(P ).

of fringe vertices using a sophisticated link-eval structure. Specifically, let(u, v) be a big cross arc. LetP
be the left path containingnca(u, v), and letQ be the intersection ofP and the pathnca(u, v)

+→ u. We
denote the last vertex onQ by mid(u, v). Note thatQ can be non-empty (contain no arcs) only ifv is a
fringe vertex. See Figure 9.

For a given left pathP , we compute minima of extended tags for all such non-empty paths Q at the
same time. We do not need to know any of these minima until all the extended tags for vertices onP have
been computed. This allows us to compute the minima for such pathsQ in arbitrary order. One way to
compute these minima is to use the MST verification algorithm, as suggested above for doing Step 2 of
the LT algorithm. In this application, however, the tree being verified is actually a path, and we can use
an algorithm that is at least conceptually simpler, if not asymptotically faster. The problem we need to
solve is that of computing minima for given subsequences of asequence of numbers. This is therange
minimum query(RMQ) problem [29]. This problem has a linear-time reduction [29] to an NCA problem
on a Cartesian tree [65]. We can thus compute minima for pathsQ by constructing the Cartesian tree and
applying our NCA algorithm. Either method allows us to compute the top parts of arc tags inO(m) time on
a pointer machine.

To compute the bottom parts of arc tags, we use a sophisticated link-eval structure. We delay the links
for arcs on a left path until the top of the left path is reached, and for arcs in a microtree until its root is
reached. This allows us to establish a linear time bound for all the link-eval operations using Lemma 3.6.

8.5 The First Pass

We now have all the pieces necessary to describe the first passof our algorithm for computing extended
tags. Before the first pass, build the compressed interval forestH ′, computenca(u, v) for each big cross
arc (u, v), and construct, for each core vertexw, the set of big cross arcs(u, v) with nca(u, v) = w. This
takesO(m) time on a pointer machine using the method of Section 6: the NCAs are computed as part of the
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algorithm that buildsH ′. Each vertexv has acomputed tag ct(v) that is initialized tot(v) and that decreases
as the first pass proceeds, untilct(v) = mt(v) if v is fringe, orct(v) = et(v) if v is core. Each fringe vertex
v also has an associated set of cross arcs, initially empty. For each fringe vertexv, if v has a parent inH ′

andct(h′(v)) > ct(v), replacect(h′(v)) by ct(v). Finally, initialize a sophisticated link-eval data structure
with no edges and each vertex ofG as a node.

The first pass visits each microtree once and each left path twice. The visits are in reverse preorder with
respect to the roots of the microtrees and the top and bottom vertices of the left paths; the first visit to a left
path corresponds to its bottom (largest) vertex; the secondvisit, to its top (smallest) vertex. Conceptually,
envision a reverse preorder traversal ofD, with actions taken as described below whenever a microtreeroot
or bottom or top vertex of a left path is visited.

When visiting a microtreeD(s), it will be true that, for each vertexv in D(s),

et(v) ≤ ct(v) ≤ min({t(v)} ∪ {at(u, v) : (u, v) ∈ A, u 6∈ D(s)}). (2)

Compute microtags for all vertices inD(s) by finding the strong components of the subgraph induced by
the vertices inD(s) and processing the strong components in topological order.To process a component,
compute a microtag for the component, equal to the minimum ofthe ct(·) values for all vertices in the
component and the microtags for all preceding components (those with an arc leading to the component).
Then setct(v) for every vertex in the component equal to the computed microtag. The assigned value of
ct(v) must bemt(v), assuming Eq. (2) holds. The time required for this computation is linear in the size
of the subgraph induced byD(s) [54]. Having computed microtags forD(s), performlink(p(v), v, ct(v))
for every vertex inD(s), in bottom-up order. Finally, for each cross arc(u, v) in the set of cross arcs of a
vertexu in D(s), setct(v)← min{ct(v), eval(u)}, and then setct(h′(v))← min{ct(h′(v)), ct(v)} if v has
a parent inH ′. Such computations happen here only for arcs(u, v) such thatu is in a microtree hanging on
the left of some left path. It will become clear later that, for such an arc, the top part of the evaluation of
at(u, v) gets done first, when the left path is processed. Theeval(u) operation does the bottom part of the
evaluation, finishing the job. We describe below when these arcs are entered in the set associated withu.

When visiting a left pathP for the first time, begin by visiting the verticesw of P in bottom-up order
and settingct(h′(w))← min{ct(h′(w)), ct(w)} if w has a parent inH ′. Once these updates are completed,
ct(w) = et(w) for every vertexw on P . Then collect all the arcs(u, v) in the sets associated with the
vertices onP ; i.e., the arcs(u, v) such thatnca(u, v) ∈ P . For each such arc(u, v), setmid(u, v) ←
p(root(micro(u))) if u < bottom(P ), andmid(u, v)← findroot(u) otherwise. Thefindrootoperation in the
latter case is an operation on the link-eval structure. Having computed all themid values for all the cross
arcs, evaluate the top parts of their arc tags, using either of the methods discussed in Section 8.4. For each
such arc(u, v) with computed arc tag top partx, do the following. Ifu > bottom(v) (see Figure 9a), set
x ← min{x, eval(u)}; otherwise (see Figure 9b), add(u, v) to the set of cross arcs ofu. In the former
case, theeval(u) operation computes the bottom part of the arc tag; in the latter case, the computation of
the bottom part is done when the microtree containingu (which hangs to the left ofP ) is visited. In either
case, setct(v)← min{ct(v), x}, and then setct(h′(v))← min{ct(h′(v)), ct(v)} if v is a fringe vertex with
a parent inH ′.

When visiting a left pathP for the second time, performlink(p(w), w, ct(w)) for each vertex onP in
bottom-up order, unlessP is the last path, in which case the first pass is done.

Based on the results of the previous sections, it is straightforward (but tedious) to prove that this algo-
rithm correctly computes extended tags. Note that the algorithm eagerly pushesct(·) values upH ′, rather
than lazily pulling them; the latter would require computing sets of children forH ′, whereas the former can
be done using just parent pointers.
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Lemma 8.10 The first pass takesO(m) time on a pointer machine.

Proof: The running time of all parts of the algorithm is linear basedon previous results, except for the
findrootandevaloperations. To bound the time for these, we apply Lemma 3.6 tothe shadow subtrees built
by the link operations. These subtrees are

√
2-balanced by Corollary 3.2 for linking-by-size and Corollary

3.4 for linking-by-rank. Mark the parents (inD) of the tops of all the left paths. This marks at most
n/g = n/ log1/3 n vertices. We claim thatk = 5 satisfies the hypothesis of the lemma.

We need to use details of the link implementation, for which we refer the reader to Section 3.3 for
linking-by-size and 3.4 for linking-by-rank. The links occur in batches with no intermixedfindrootor eval
operations, one batch per microtree and one batch per left path. Letv be any vertex. We count the number
of times the subroot of the shadow subtree containingv can change, as the result of a batch of links, before
v is in a subtree containing a marked node. Letv0 = v, v1, v2, . . . be the successive roots of the shadow
trees containingv. The subroot of the shadow subtree containingv can change only as the result of a batch
of links that include the currentvi as one of the vertices being linked. Supposev is fringe. The first batch of
links to includev0 is the one formicro(v). This batch of links makesp(root(micro(v))) the root of the tree
containingv; that is,v1 = p(root(micro(v))). The next batches of links that includev1 are those for other
microtrees whose roots are children ofv1 in D. Such a batch does not change the root of the tree containing
v but can change the subroot of the subtree containingv, making it equal tov1. Once such links are done,
the only remaining batch of links that includesv1 is the one for the left pathP1 containingv1. This batch
makesv2 = p(top(P1)), which means that the shadow tree containingv (but not necessarily the shadow
subtree containingv) has a marked vertex. The next batches of links that includev2 are those for microtrees
whose roots are children ofv2 in D. Such a batch cannot change the root of the tree containingv, but it
can change the subroot of the subtree containingv, making it equal tov2, which is marked. Otherwise, the
next (and last) batch of links that includesv2 is the one for the left pathP2 containingv2. This batch makes
v3 = p(top(P2)).

Now v is either in the subtree rooted atv3, and hence in a subtree with a marked vertex, or it is a shadow
descendant ofv2, which is no longer the root of the shadow tree containingv. No subsequent link can
change the root of the subtree containingv without puttingv andv2, which is marked, in the same subtree.
Tracing through the analysis above, we see that the subroot of the shadow subtree containing a fringe vertex
v can change at most four times beforev is in a subtree with a marked vertex. Ifv is a core vertex, the last
part of the same analysis applies: the first batch of links that can change either the root of the tree containing
v or the subroot of the subtree containingv is the one for the left path containingv; the subroot of the subtree
containingv can change at most twice beforev is in a subtree with a marked vertex. The shadow parent
of vertexv can change at most once before the root of the shadow subtree containingv changes. Thus the
shadow parent ofv can change at most five times beforev is in a shadow subtree with a marked vertex. This
verifies the claim. Withk = 5 andℓ ≤ n/ log1/3 n, Lemma 3.6 gives a bound ofO(m) on the time for the
findrootandevaloperations. 2

8.6 The Second Pass

Having computed extended tags for all core vertices, we compute extended tags for all fringe vertices by
using a topological graph computation on the microtrees. Inthe first pass, just before a microtreeD(s) is
processed, each vertexv in D(s) hasct(v) = min({t(v)} ∪ {at(u, v) : (u, v) ∈ A, u 6∈ D(s)}). It follows
that if we compute extended tags within the subgraph inducedby the vertices ofD(s), using thesect(·)
values as the initial tags, we will obtain the correct extended tags for the vertices inD(s) with respect to the
original tags in the entire graph. Thect(·) values are in the range[1, n], but we can map them to the range
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[1, g] by sorting all thect(·) values using a pointer-based radix sort, extracting a sorted list of ct(·) values
for each subproblem, and mapping each such sorted list to[1, g]. To do this on a pointer machine, we need
to maintain a singly linked master list of lengthn, whose nodes correspond to the integers 1 throughn, and
store with each integer a pointer to its corresponding position in the master list, and we need to track such
pointers through the entire running of the algorithm. We assume that each input tag is given along with a
corresponding pointer into the master list. For the specialcase of computing semi-dominators, we construct
the master list and the corresponding pointers as we performthe depth-first search and number the vertices.
The only manipulations of vertex numbers are comparisons, so it is easy to track these pointers through the
entire computation.

Once the tags are mapped to[1, g], the computation of extended tags on the microtrees is a topological
graph computation, which we perform using the method described in Section 5. With the choiceg =
log1/3 n, the second pass requiresO(m) time on a pointer machine.

Combining all the parts of the algorithm, we obtain the following theorem:

Theorem 8.11 Finding immediate dominators takesO(m) time on a pointer machine.

8.7 An Alternative Method for Step 2

We conclude our discussion of dominators by sketching an alternative method for performing Step 2 (com-
puting relative dominators) that does some of the work in thesecond pass of Step 1 and then uses a simpli-
fication of the algorithm for the first pass of Step 1 to do the rest.

For a microtreeD(s), the ct(·) values of its vertices just beforeD(s) is processed provide enough
information not only to compute the semi-dominators of eachof its vertices but also to compute the relative
dominator of each vertexv such thatsdom(v) is in D(s). This we can do as part of the topological graph
computation that forms the second pass of Step 1. The remaining part of Step 2 is to computerdom(v) =

argmin{sdom(u) : sdom(v)
+→ u

∗→ v} for each vertexv with sdom(v) in the core. We can do this by
running a simplified version of the first pass of Step 1. We modify the link-eval structure so that aneval
returns a vertex of minimum value, rather than the value itself. We compute the relative dominators in the
same way that pass 1 of Step 1 computes the arc tags of big crossarcs, but without using the interval tree
H ′ and without using nearest common ancestors. We begin by storing each pair(sdom(v), v) with sdom(v).
Then we performlink(p(v), v, sdom(v)) for every fringe vertexv, in reverse preorder. Finally, we process
each left pathP , in reverse preorder with respect tobottom(P ). To process a left pathP , we collect all
the pairs(u, v) stored with its vertices. For each such pair, we setmid(u, v) ← findroot(v). We evaluate
each top part fromu to mid(u, v) using an NCA computation on a derived Cartesian tree as discussed in
Section 8.4, modified to return a candidate relative dominator rd(u, v) for each pair. For each pair we set
rdom(v) ← argmin{sdom(eval(v)), sdom(rd(u, v))}. Finally, we performlink(p(v), v, sdom(v)) for every
vertex onP in reverse preorder, unlessP is the last path, in which case we are done. This method for doing
Step 2 takesO(n) time.

This approach also leads to an alternative algorithm for MSTverification, as mentioned in Section 6.5,
which avoids the use of the Borůvka tree as an intermediate step, replacing it with NCA computations on
Cartesian trees derived from the paths of a partition of the core of the original treeT into maximal paths.
We must still do verification within microtrees, but these are microtrees of the original tree rather than of
the Borůvka tree.
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8.8 Remarks

From the definition of microtags we have that for anyw in a microtreeD(s), mt(w) ≤ mt(v) for any
s

∗→ v
∗→ w. This inequality implies that the eval function need only operate on the core tree. The

algorithms of Buchsbaum et al. [15] and Georgiadis and Tarjan [31, 32] rely on this fact but also require
a hybrid link-eval structure for the evaluation of path minima on the core. Lemma 3.6 allows us to use a
standard (simpler) link-eval structure that can include the fringe, which also yields a more uniform treatment
of the core and fringe vertices.

Our dominators algorithm uses the linear-time offline NCA algorithm for two subproblems: interval
analysis and range minimum queries. Georgiadis [31] observed that a refined partition of the core tree
into unary paths of sizeO(g) enables us to use trivial algorithms to compute NCAs; topological graph
computations are still required, but they are performed on Cartesian trees corresponding to each unary path.

9 Component Trees

Our final application is a tree problem, unusual in that it seems to require partitioning all of the given tree,
rather than just the bottom part, into microtrees.

9.1 Kruskal Trees

The Borůvka tree discussed in Section 6 represents the connected components that are formed as Borůvka’s
MST algorithm is run. We can define the analogous concept for other MST algorithms. For example, the
Kruskal treeis the tree whose nodes are the connected components formed as Kruskal’s MST algorithm [42]
is run. Kruskal’s algorithm starts with all vertices in singleton components and examines the edges in
increasing order by weight, adding an edge to the MST being built, and combining the two corresponding
components when the edge has ends in two different components. The Kruskal treeK is binary, with one
node per component, whose children are the components combined to form the given component. Each leaf
of K is a vertex of the original graph; each non-leaf node is a non-singleton component. See Figure 10.

Even if the given graph is a tree, constructing the Kruskal tree is equivalent to sorting the edges by
weight, because the Kruskal tree for a star (a tree of diameter two) contains enough information to sort the
edges. If we are given the edges in order by weight, however, the problem of constructing the Kruskal tree
becomes more interesting. We shall develop anO(n)-time, pointer machine algorithm to build the Kruskal
treeK of a treeT , given a list of the edges ofT in order by weight.

9.2 Bottom-Up Construction of a Kruskal Tree

It is straightforward to buildK bottom-up using a DSU structure whose nodes are the nodes ofT and whose
sets are the node sets of the current components. As the algorithm proceeds, each designated node of a set
stores the node ofK corresponding to the set. RootT at an arbitrary vertex; letp(v) denote the parent ofv
in the rooted tree. Initialize a DSU structure with each nodein a singleton set, storing itself (a leaf ofK).
Process the edges (now arcs) in the given order. To process anarc(p(v), v), let u = find(p(v)). Add a new
nodex to K, whose two children are the nodes stored atu andv. Storex atu, and performunite(u, v). (For
example, in Figure 10, the node corresponding to(f, j) is stored atb.)

This algorithm runs inO(nα(n, n)) time on a pointer machine; only the finds take non-linear time.
Although it buildsK bottom-up, it does not processT bottom-up but in the given arc order. As in Sections
6–8, we thus cannot directly apply the method of Section 5 to reduce the running time to linear. On the
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Figure 10: (a) The input weighted treeT ; the filled nodes are subtree roots whenT is partitioned with
g = 3. (b) The Kruskal treeK of T . Leaves correspond to the nodes ofT ; internal nodes correspond to
edges ofT .

other hand, if we generalize the DSU structure to allowunite operations to have arbitrary nodes, rather
than just designated nodes, as parameters, and we replace each unite(u, v) operation in the algorithm by
unite(p(v), v), then the (unordered) set of unions is known in advance, because the unions correspond to
the arcs ofT . As Thorup [62] observed in the context of solving an equivalent problem (see Section 9.4),
this means that the algorithm runs in linear time on a RAM if the linear-time DSU algorithm of Gabow and
Tarjan [30] is used.

Not only are the unions not bottom-up onT , but also there is no obvious way to transform the problem
into one on a balanced tree as in Section 6. Instead, we partition all of T into microtrees and do a topological
graph computation to precompute the answers to finds within the microtrees. Once these answers are known,
running the algorithm to buildK takesO(n) time. Number the arcs ofT from 1 throughn− 1 in the given
order. For any non-root vertexv, let num(v) be the number of(p(v), v); let num(v) = ∞ if v is the root.
For any non-root vertexv, let f(v) be the node returned byfind(p(v)) in the algorithm that buildsK. (For
example, in Figure 10,f(j) = b.) Thenf(v) is the nearest ancestoru of v that hasnum(u) > num(v). We
will precomputef(v) if v andf(v) are in the same microtree.

9.3 Linear-Time Construction

Let g = n/ log1/3 n. Partition all of T into microtrees, each of size at mostg, using the method of
Dixon, Rauch, and Tarjan [22], slightly modified. Visit the nodes ofT in a bottom-up order, computing,
for each nodev, a sizes(v) and possibly markingv as a subtree root. The value ofs(v) is the num-
ber of descendantsw of v such that no node on the path fromv to w is marked. When visitingv, set
s(v) ← 1 +

∑

w is a child ofv s(w). If s(v) > g, mark every child ofv and sets(v) to 1. Every marked
nodev determines a microtree whose nodes are the descendantsw of v such thatv is the only marked node
on the path fromv to w. The construction guarantees that every microtree contains at mostg nodes. It
also guarantees that there are at mostn/g parents of marked nodes, since, for each such parent, the setof
microtrees rooted at its children contains at leastg nodes. PartitioningT into microtrees takesO(n) time.

To precompute the answers to finds in the microtrees, begin byinitializing f(v) ← null for every non-
root nodev. Then use a pointer-based radix sort to renumber the nodes ineach microtree consecutively from
1 up to at mostg in an order consistent with their original numbers (given bynum). This does not affect
the answers to the finds for any vertex whose answer is in the same microtree. To do the pointer-based radix
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sort, build a master list of nodes representing the numbers 1throughn, and use pointers to these nodes in
lieu of the actual numbers. For each microtree, build a similar master list of nodes representing the numbers
1 through the number of nodes in the microtree, and use pointers to these nodes in lieu of numbers. Now the
problem of answering the finds within microtrees is actuallya topological graph computation as defined in
Section 4, and withg = n/ log1/3 n it can be done inO(n) time by Theorem 4.2. This computation gives a
non-null valuef(v) for every vertexv such thatv andf(v) are in the same microtree.

Having precomputed the answers to some of the finds, we run thealgorithm that buildsK, but using the
precomputed answers. Specifically, to process an arc(p(v), v), let u = f(v) if f(v) 6= null, u = find(p(v))
otherwise. Then proceed as in Section 9.2.

Theorem 9.1 Suppose that the edges of a weighted treeT are given in order by weight. Then the Kruskal
tree ofT can be built inO(n) time on a pointer machine.

Proof: The algorithm runs on a pointer machine; the running time isO(n) except for the time to do the
finds. We bound the time for the finds by applying Lemma 3.6 to the tree built by the parent assignments
done by the unite operations. Mark every parent of a microtree root. This marks at mostn/g nodes. If an
operationfind(p(v)) is actually done, because its answer is not precomputed,f(v) andv are in different
microtrees. The union operations are such that ifx andy are in the same set andx is an ancestor ofy, every
vertex on the tree path fromx to y is also in the same set. Thus whenfind(p(v)) is done,f(v), p(v), and
p(root(micro(v))) are all in the same set. Sincep(root(micro(v))) is marked, this find occurs in a set with
a marked node. We conclude that Lemma 3.6 applies withk = 1, giving anO(n) time bound for the finds
that are not precomputed. 2

We do not know whether there is a way to buildK in linear time using only bottom-level microtrees. If
there is, it is likely to be considerably more complicated than the algorithm we have proposed.

9.4 Compressed Kruskal Trees

We can generalize the Kruskal tree to allow equal-weight edges: when adding edges, we add all edges of the
same weight at the same time and add a node to the Kruskal tree for every new component so formed, whose
children are the components connected together to form it. The resulting component tree is not necessarily
binary. Thorup [62] and Pettie and Ramachandran [48] have used such a compressed Kruskal tree in shortest
path algorithms. Given a tree and a partition of its edges into equal-weight groups, ordered by weight, we
can construct the generalized Kruskal tree in linear time ona pointer machine as follows. Break ties in
weight arbitrarily. Build the Kruskal tree, labeling each component node with the group of the edge that
formed it. Contract into a single node each connected set of nodes labeled with the same group. The last
step is easy to do inO(n) time.

10 Concluding Remarks

We have presented linear-time pointer-machine algorithmsfor six tree and graph problems, all of which have
in common the need to evaluate a function defined on paths in a tree. Linear time is optimal and matches the
previous bound for RAM algorithms for these problems; our algorithms improve previous pointer-machine
algorithms by an inverse-Ackermann-function factor. Our improvements rely mainly on three new ideas:
refined analysis of path compression when the compressions favor certain nodes; pointer-based radix sort to
help process small subproblems in batches; and careful partitioning of the tree corresponding to the original
problem into a collection of microtrees and maximal paths, as appropriate to the particular application.

36



Our algorithms are simpler than the previous linear-time RAM algorithms. Indeed, our approach pro-
vides the first linear-time dominators algorithm that couldfeasibly be implemented at all: the linear-time
algorithm of Alstrup et al. [8] requires Q-heaps [26], implying an impossibly-large constant factor. Buchs-
baum et al. implemented their original RAM algorithm [15], of which our pointer-machine algorithm is
an improvement, and presented experimental results demonstrating low constant factors, though the simpler
Lengauer-Tarjan algorithm was faster. Georgiadis, Tarjan, and Werneck [34] report more recent experiments
with algorithms for finding dominators, with results that vary depending on input size and complexity.

Our methods are sufficiently simple and general that we expect them to have additional applications,
which remain to be discovered.
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