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Abstract

Lioulemes Alexandros son of Giorgos and Eftalia

MSc, Computer Science Department, University of Ioannina, Greece, July 2013.

Visual homing using a robotic platform.

Thesis Supervisor: Christophoros Nikou.

An algorithm for guiding a robot to its initial position using only a single camera (visual
homing) is presented in this thesis. The implemented procedure has as goal to guide a robot
to a target position, represented by an image, starting from an arbitrary position which has the
initial image in its field of view. Standard visual servoing approaches are based on the epipolar
geometry but this model does not consider the planar constraint for points on 2D images. An
alternative is the homography-based approach. It behaves well with planar scenes, which are
quite usual in man-made environments. At first, scale invariant features (SIFT) are extracted
from the target and current images and they are put into correspondence through matching. As
the two planar scenes differ by a projective transformation (homography), the first step of the
algorithm is to estimate the parameters of the homography. This is accomplished using the four-
point algorithm with random sampling consensus (RANSAC) on the set of corresponding points.
Then, using epipolar geometry, the homography matrix is decomposed in order to compute the
correct rotation matrix and an up-to-scale translation vector which are then used to move the
robot. The performance of our visual homing algorithm was validated in an ideal environment
and was also tested on data degraded by noise in order to simulate conditions of low resolution
cameras and poor illumination.
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Οπτικός προσανατολισμός ρομποτικής πλατφόρμας.

Επιβλέποντας: Χριστόφορος Νίκου.

Η παρούσα εργασία πραγματεύεται τον προσανατολισμό ενός ρομπότ χρησιμοποιώ-
ντας μόνο μία κοινή κάμερα. Συγκεκριμένα, παρουσιάζεται η υλοποίηση ενός συστήμα-
τος που έχει ως σκοπό να οδηγήσει την ρομποτική πλατφόρμα σε μία θέση-στόχο, η
οποία αναπαρίσταται από μία 2Δ εικόνα, ξεκινώντας από οποιαδήποτε άλλη θέση, η
οποία έχει την αρχική 2Δ εικόνα μέσα στο οπτικό της πεδίο. Επειδή οι δύο εικόνες
διαφέρουν κατά έναν προβολικό μετασχηματισμό (ομογραφία), το πρώτο βήμα του
αλγόριθμου είναι η εκτίμηση των παραμέτρων της ομογραφίας. Αυτό επιτυγχάνεται
με τον αυτόματο εντοπισμό και την αντιστοίχιση χαρακτηριστικών σημείων στις δύο
εικόνες. Βασιζόμαστε στους περιγραφείς SIFT οι οποίοι είναι αμετάβλητοι στο χώρο
κλίμακας, στην περιστροφή και στον ομοπαραλληλικό μετασηματισμό. Στην συνέχεια,
με χρήση της 3Δ επιπολικής γεωμετρίας και της ομογραφίας εκτιμούμε τον πίνακα περι-
στροφής και το διάνυσμα μετατόπισης μεταξύ των δύο θέσεων της κάμερας του ρομπότ
(αρχική και τρέχουσα) και δίνεται στο ρομπότ η εντολή κίνησης με αυτές τις παραμέ-
τρους. Ο αλγόριθμος εφαρμόστηκε επιτυχώς και σε δεδομένα με θόρυβο για την προσο-
μοίωση συνθηκών περιβάλλοντος που αντιμετωπίζονται στην πράξη, όπως είναι η κά-
μερα χαμηλής ανάλυσης και μελετήθηκε η ακρίβεια των κινήσεων της ρομποτικής πλατ-
φόρμας σε διαφορετικά περιβάλλοντα.
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Chapter 1

INTRODUCTION

1.1 Navigation

1.2 Related work

1.3 Visual Homing

1.4 Structure of the Thesis

1.1 Navigation
Robot navigation means the robot’s ability to determine its own position in its frame of reference
and then to plan a path towards some goal location. In order to navigate in its environment,
the robot or any other mobility device requires a representation and the ability to interpret that
representation such as to move the robot to the desired position by executing commands. These
commands include the required position and orientation, which assume good measurement of
the motion obtained by the robot. However, odometry errors or slipping and mechanical drifts
may make the desired position not to be reached. Therefore, the use of an additional perception
system is mandatory. Vision is perhaps the most broadly researched perception system.

The navigation systems and the determination of motion by images has a large history [8,9]
in computer vision and in applications with high precision requirements such as space applica-
tions developed by NASA. The usefulness of the orientation system through computer vision
is important in applications where an autonomous vehicle is forced to use only its own sensors
either of their distance from earth or the inability to use systems like GPS [8–10].

Among different types of sensors, the use of computer vision has some distinct advan-
tages [11]. Unlike orientation sensors (such as GPS and gyros), which provide information
only for the movement of the vehicle, the solution of the motion problem of the vehicle through
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computer vision methods offers the potential for three-dimensional reconstruction of the envi-
ronment. Also, in contrast to the use of GPS, which can not work when there is an obstruction
between the antenna and the satellite, computer vision can be used for orientation within an ur-
ban environment and even indoors. However, computer vision methods several times require
high computing power to draw reliable conclusions, while taking multiple images may yield
noisy results.

1.2 Related work
There are three different navigation systems based on vision:

• Map-based navigation, where some autonomous vehicles are able to execute tasks based
on landmarks, which give global localization [12].

• Map-Building-based navigation, where the robots carry out specific task, building maps
of the enviroment similtaneously [13].

• Map less navigation, where robots navigate without landmarks or complex map-building
systems [14].

There are different map less navigation systems which are based on panoramic and monoc-
ular vision. Most of the homing algorithms implemented by robots capturing panoramic images
of their environments. These images are useful because they provide visual information which
is not dependent on the orientation of the agent, as would a single field-of-view perspective
camera. The robot tracks visual features in panoramic views of the environment that it acquires
as it moves [15]. By exploiting only angular information regarding the tracked features, a local
control strategy moves the robot between two positions, provided that there are at least three
features that can be matched in the panoramas acquired at these positions. The strategy is suc-
cessful when certain geometric constraints on the configuration of the two positions relative to
the features are fulfilled. In order to achieve long-range homing, the features’ trajectories are
organized in a visual memory during the execution of the “prior” path.

Also, a system for virtual navigation in real environments using image-based panorama ren-
dering. Multiple overlapping images are captured using a camera and a single cube-aligned
panorama image is generated for each capture location. Panorama locations are connected in a
graph topology and registered with a 2D map for navigation. A real-time image-based viewer
renders individual 360-degree panoramas using graphics hardware acceleration. Real-world
navigation is performed by traversing the graph and loading new panorama images. The system
contains a user-friendly interface and supports standard input and display or a head-mounted
display with an inertial tracking device [16].

Other homing algorithms are implemented using monocular vision systems [17]. This sys-
tem captures images from different positions and uses the discrepancy between this. The target
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positions are specified with images taken and memorized in the teaching phase [18]. In the play-
back phase, the motion correction to reach to the target position is computed from a projective
transformation, which is obtained by processing the current image and the stored reference im-
age. The geometric features extracted and matched are lines which have some advantages with
respect to points [19], especially in man made environments. This kind of navigation using a
representation of the route with a sequence of images has been previously considered by a cor-
relation based matching of the current and the reference images [20]. Extracting and matching
geometric information from images is not currently time costly and geometric based approaches
are less sensitive to noise or illumination changes than others. Actually, the data of the target
images to memorize is lower in method, since only extracted lines are stored. Other authors [21]
also use vertical lines to correct robot motion, but using a calibrated trinocular vision system.

Focusing on the topic of visual homing, we present the most important visual algorithm
found in the literature. These algorithms fall naturally into two categories: feature-based and
image-based (also known as appearance-based). Almost all feature-based algorithms require
reliable solutions to the problems of consistent feature extraction and correspondence to ensure
successful operation. If these problems can be solved consistently, our review indicates that the
epipole-surfing algorithm Basri et al. [22] should be used to home. This algorithm produces
an accurate home vector given just two successive “current” images and requires no external
compass reference (as several homing algorithms do). Consistent feature extraction, though, is
by no means an easy task. It is telling that many experiments in feature-based visual homing take
place in adulterated environments with easy-to-detect artifi-cial landmarks. An exception to this
was the work of Pons et al. [23]. These authors extracted SIFT [1] features from snapshot and
current images and used a robust matching scheme to establish feature correspondence. SIFT
features are relatively invariant to changes in orientation, scale and location in images and so
are appropriate for the visual homing problem. Though Pons et al. [23] offer impressive homing
results in indoor and outdoor static and dynamic environments, their algorithm seems to require
thousands of feature similarity computations for each home vector calculation. Pons et al. [23]
do not offer figures on how long each home vector computation requires. Computationally
efficient SIFT features (e.g. SURFs) [24] have been proposed recently and will probably play a
role in future feature-based visual homing algorithms.

Image-based visual homing problems avoid explicit feature correspondence. This approach
therefore offers a potentially robust and efficient complement to feature-based homing. Image-
based homing schemes infer home vectors by considering every pixel in snapshot and current
images, treating each as a feature in its own right. There are three image-based homing algo-
rithms. Image warping requires a computationally intensive brute force search for every home
vector computation [25]. We consider this a major drawback. The optical flow-based algo-
rithms [26] though impressive assume that the homing agent is constrained to travel on a single
plane. We consider the difference surface homing algorithm pioneered by Zeil et al. [27] to be
the image-based homing algorithm which shows the most promise.
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The recovery of motion from geometric features has been presented using the epipolar geom-
etry [22]. Rotation and direction of translation are initially computed from the essential matrix.
In addition, the steps to collision are also computed using a third image. However, there are
situations where the fundamental matrix is not meaningful (small translations or planar scenes)
and other models are needed to obtain motion [4] [28].

1.3 Visual Homing
We present a method to guide a mobile robot to locations specified by images previously taken
from a home position, which sometimes has been referred as visual homing and can used in
conjunction with dead reckoning to allow a robot to explore an area from a given home position
and later return to that position, for example, gas-refueling or auto-parking.

Classically this task has been carried out using the fundamental matrix. However the fun-
damental matrix is ill conditioned with planar scenes, which are quite usual in man made envi-
ronments. We use a monocular vision system and we compute motion through an homography
obtained from point features extracted from the images.

First, we require a homing agent to capture an image at the target position. When seeking to
return to target position from a nearby initial position, the agent captures image from initial po-
sition and uses the discrepancy between these two to infer the rotation matrix and the translation
vector (Figure 1.1).

The overall procedure may be summarized as follows:

• Compute image detectors and descriptors.

• Extract correspondence points between two images.

• Compute the fundamental and planar homography matrix.

• Camera calibration.

• Estimate the essential matrix.

• Decompose the essential and homography matrix.

• Extract camera extrinsic parameters.

Our system consists of five stages, which all must work efficient in order to have a robust
visual homing process. These stages are illustrated in Figure 1.1. The first stage extracts fea-
tures from images with the SIFT algorithm, which transforms image data into scale-invariant
coordinates relative to local features, and stores them in a database. The second stage, called
correspondence stage, matches each feature from the new image to this previous database and
finds candidate matching features based on Euclidean distance of their feature vectors. This
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Figure 1.1: Visual Homing in robot navigation.

is performed with the nearest-neighbor algorithm. The third stage estimates the homography
matrix from four corresponding points of our two planar scenes, which differ by a projective
transformation (homography). In the fourth stage, our system calculate the rotation matrix and
the translation vector, using the 3D epipolar geometry and the homography. The fifth stage, im-
plements the movement manipulation of our robotic platform and examines if it is located in the
target position. If it is not occurred, our robot feeds back a new current image and makes from
the beginning the same visual homing process. Finally, in our thesis we evaluate a low and high
visual resolution homing process in order to suggest new perspectives that can be implemented
in real indoor environments.

1.4 Structure of the Thesis
In Chapter 2, we present the SIFT algorithm for feature detection and compare it with the SURF.
In Chapter 3, we describe the pinhole camera model and solve the problems for finding the
intrinsic and extrinsic parameters from that model. In Chapter 4, we introduce the epipolar
geometry. First, we explain the meanings of epipole and epipolar lines and estimate the essential
matrix. After that, we describe the decomposition process of essential matrix into a rotation
matrix and a translation vector and solve the triangulation method in order to recover a four-fold
ambiguity. Finally, we estimate the fundamental matrix with the eight-point algorithm and using
the RANSAC procedure, we succeed to eliminate pair of outliers. In Chapter 5, we introduce the
planar homography and estimate the homography matrix between two planar scenes. Using the
homography matrix, we describe the camera calibration method and use it so as to decompose
the homography matrix into a fix rotation matrix and a up to scale translation vector. Lastly, in
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Chapter 6, we examine the robustness of our visual homing process and evaluate the changes of
some parameters.
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Chapter 2

FEATURE DETECTION

2.1 Scale Invariant Feature Transform (SIFT)

2.2 Speeded Up Robust Features (SURF)

2.1 Scale Invariant Feature Transform (SIFT)
In this section we will use the SIFT algorithm in order to find the corresponding points in the
two images. Image matching is a fundamental aspect of many problems in computer vision,
including object or scene recognition, solving for 3D structure from multiple images, stereo cor-
respondence, and motion tracking. The features are invariant to image scaling and rotation, and
partially invariant to change in illumination and 3D camera viewpoint. They are well localized
in both the spatial and frequency domains, reducing the probability of disruption by occlusion,
clutter, or noise. Large numbers of features can be extracted from typical images with efficient
algorithms. In addition, the features are highly distinctive, which allows a single feature to be
correctly matched with high probability against a large database of features, providing a basis
for object and scene recognition.

The cost of extracting these features is minimized by taking a cascade filtering approach,
in which the more expensive operations are applied only at locations that pass an initial test.
Following are the major stages of computation used to generate the set of image features:

• Scale-space extrema detection: The first stage of computation searches over all scales and
image locations. It is implemented efficiently by using a difference-of-Gaussian function
to identify potential interest points that are invariant to scale and orientation.

• Keypoint localization: At each candidate location, a detailed model is fit to determine
location and scale. Keypoints are selected based on measures of their stability.
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• Orientation assignment: One or more orientations are assigned to each keypoint location
based on local image gradient directions. All future operations are performed on image
data that has been transformed relative to the assigned orientation, scale, and location for
each feature, thereby providing invariance to these transformations.

• Keypoint descriptor: The local image gradients are measured at the selected scale in the
region around each keypoint. These are transformed into a representation that allows for
significant levels of local shape distortion and change in illumination.

This approach has been named the Scale Invariant Feature Transform (SIFT), as it transforms
image data into scale-invariant coordinates relative to local features. An important aspect is that
it generates large numbers of features that densely cover the image over the full range of scales
and locations. A typical image of size 500×500 pixels will give rise to about 2000 stable features
(although this number depends on both image content and choices for various parameters). The
quantity of features is particularly important for object recognition, where the ability to detect
small objects in cluttered backgrounds requires that at least 3 features be correctly matched from
each object for reliable identification.

For image matching and recognition, SIFT features are first extracted from a set of reference
images and stored in a database. A new image is matched by individually comparing each feature
from the new image to this previous database and finding candidate matching features based on
Euclidean distance of their feature vectors. We will discuss fast nearest-neighbor algorithms
that can perform this computation rapidly against large databases.

2.1.1 Detection of Scale-Space Extrema
As described in the introduction, we will detect keypoints using a cascade filtering approach that
uses efficient algorithms to identify candidate locations that are then examined in further detail.
The first stage of keypoint detection is to identify locations and scales that can be repeatably
assigned under differing views of the same object. Detecting locations that are invariant to scale
change of the image can be accomplished by searching for stable features across all possible
scales, using a continuous function of scale known as scale space.

A good assumption for the scale-space kernel is the Gaussian function. Therefore, the scale
space of an image is defined as a function, L(x, y, σ), that is produced from the convolution of
a variable-scale Gaussian, G(x, y, σ), with an input image, I(x, y):

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (2.1)

where ∗ is the convolution operation in 2D, and

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

. (2.2)
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To efficiently detect stable keypoint locations in scale space, we have proposed using scale-
space extrema in the difference-of-Gaussian function convolved with the image, D(x, y, σ),
which can be computed from the difference of two nearby scales separated by a constant multi-
plicative factor k:

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y)
= L(x, y, kσ)− L(x, y, σ).

(2.3)

There are a number of reasons for choosing this function. First, it is a particularly efficient
function to compute, as the smoothed images, L, need to be computed in any case for scale
space feature description, and D can therefore be computed by simple image subtraction.

In addition, the difference-of-Gaussian function provides a close approximation to the scale-
normalized Laplacian of Gaussian, σ2∇2G, showed that the normalization of the Laplacian
with the factor σ2 is required for true scale invariance. In detailed experimental comparisons,
the maxima and minima of σ2∇2G produce the most stable image features compared to a
range of other possible image functions, such as the gradient, Hessian, or Harris corner func-
tion[reference].

The relationship between D and σ2∇2G can be understood from the heat diffusion equation
(parameterized in terms of σ rather than the more usual t = σ2):

∂G

∂σ
= σ∇2G. (2.4)

Figure 2.1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians
to produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated. The figure was reproduced from [1].

From this, we see that ∇2G can be computed from the finite difference approximation to
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∂G/∂σ, using the difference of nearby scales at kσ and σ:

σ∇2G =
∂G

∂σ
≈ G(x, y, kσ)−G(x, y, σ)

kσ − σ
(2.5)

and therefore,
G(x, y, kσ)−G(x, y, σ) ≈ (k − 1)σ2∇2G. (2.6)

This shows that when the difference-of-Gaussian function has scales differing by a constant fac-
tor it already incorporates the σ2 scale normalization required for the scale-invariant Laplacian.
The factor (k−1) in the equation is a constant over all scales and therefore does not influence
extrema location. The approximation error will go to zero as k goes to 1.

An efficient approach to construction of D(x, y, σ) is shown in Figure 2.1. The initial image
is incrementally convolved with Gaussians to produce images separated by a constant factor k in
scale space, shown stacked in the left column. We choose to divide each octave of scale space
(i.e., doubling of σ ) into an integer number, s, of intervals, so k = 21/s . We must produce
s + 3 images in the stack of blurred images for each octave, so that final extrema detection
covers a complete octave. Adjacent image scales are subtracted to produce the difference-of-
Gaussian images shown on the right. Once a complete octave has been processed, we resample
the Gaussian image that has twice the initial value of σ (it will be 2 images from the top of the
stack) by taking every second pixel in each row and column. The accuracy of sampling relative
to σ is no different than for the start of the previous octave, while computation is greatly reduced.

Figure 2.2: Maxima and minima
of the difference-of-Gaussian im-
ages  are  detected  by  comparing
a  pixel  (marked  with  X) to  its
26  neighbors  in 3 × 3 regions
at the current and adjacent scales
(marked with circles). The figure
was copied from [1].

2.1.2 Local Extrema Detection
In order to detect the local maxima and minima of D(x, y, σ), each sample point is compared
to its eight neighbors in the current image and nine neighbors in the scale above and below (see
Figure 2.2). It is selected only if it is larger than all of these neighbors or smaller than all of
them. The cost of this check is reasonably low due to the fact that most sample points will be
eliminated following the first few checks.

An important issue is to determine the frequency of sampling in the image and scale domains
that is needed to reliably detect the extrema. Unfortunately, it turns out that there is no minimum
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spacing of samples that will detect all extrema, as the extrema can be arbitrarily close together.
This can be seen by considering a white circle on a black background, which will have a single
scale space maximum where the circular positive central region of the difference-of-Gaussian
function matches the size and location of the circle. For a very elongated ellipse, there will be
two maxima near each end of the ellipse. As the locations of maxima are a continuous function
of the image, for some ellipse with intermediate elongation there will be a transition from a
single maximum to two, with the maxima arbitrarily close to each other near the transition.

2.1.3 Accurate Keypoint Localization
Once a keypoint candidate has been found by comparing a pixel to its neighbors, the next step is
to perform a detailed fit to the nearby data for location, scale, and ratio of principal curvatures.
This information allows points to be rejected that have low contrast (and are therefore sensitive
to noise) or are poorly localized along an edge.

A method which has developed [1] to determine the interpolated location of the maximum,
uses the Taylor expansion (up to the quadratic terms) of the scale-space function, D(x, y, σ),
shifted so that the origin is at the sample point:

D(x) = D +
∂DT

∂x x +
1

2
xT ∂

2D

∂x2
x. (2.7)

where D and its derivatives are evaluated at the sample point and x = (x, y, σ)T is the offset
from this point. The location of the extremum, x̂, is determined by taking the derivative of this
function with respect to x and setting it to zero, giving

x̂ = −∂2D

∂x2

−1
∂D

∂x . (2.8)

The Hessian and derivative of D are approximated by using differences of neighboring sam-
ple points. The resulting 3× 3 linear system can be solved with minimal cost. If the offset x̂ is
larger than 0.5 in any dimension, then it means that the extremum lies closer to a different sample
point. In this case, the sample point is changed and the interpolation performed instead about
that point. The final offset x̂ is added to the location of its sample point to get the interpolated
estimate for the location of the extremum.

The function value at the extremum, D(x̂), is useful for rejecting unstable extrema with low
contrast. This can be obtained by substituting Equation 2.8 into 2.7, giving

D(x̂) = D +
1

2

∂D

∂x
T

x̂. (2.9)

Figure 2.3 shows the effects of keypoint selection on a natural image. In order to avoid
too much clutter, a low-resolution 233 by 189 pixel image is used and keypoints are shown as
vectors giving the location, scale, and orientation of each keypoint (orientation assignment is
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Figure 2.3: This figure shows the stages of keypoint selection. (a) The 233 × 189 pixel original image.
(b) The initial 832 keypoints locations at maxima and minima of the difference-of-Gaussian function.
Keypoints are displayed as vectors indicating scale, orientation, and location. (c) After applying a thresh-
old on minimum contrast, 729 keypoints remain. (d) The final 536 keypoints that remain following an
additional threshold on ratio of principal curvatures. The figure was taken from [1].

described below). Figure 5(a) shows the original image, which is shown at reduced contrast
behind the subsequent figures. Figure 5(b) shows the 832 keypoints at all detected maxima and
minima of the difference-of-Gaussian function, while (c) shows the 729 keypoints that remain
following removal of those with a value of D(x̂) less than 0.03. Part (d) will be explained in the
following section.

2.1.4 Eliminating Edge Responses
For stability, it is not sufficient to reject keypoints with low contrast. The difference-of-Gaussian
function will have a strong response along edges, even if the location along the edge is poorly
determined and therefore unstable to small amounts of noise.

A poorly defined peak in the difference-of-Gaussian function will have a large principal
curvature across the edge but a small one in the perpendicular direction. The principal curvatures
can be computed from a 2 × 2 Hessian matrix, H, computed at the location and scale of the
keypoint:

H =

[
Dxx Dxy

Dxy Dyy

]
(2.10)

The derivatives are estimated by taking differences of neighboring sample points.
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The eigenvalues of H are proportional to the principal curvatures of D. We can avoid ex-
plicitly computing the eigenvalues, as we are only concerned with their ratio. Let α be the
eigenvalue with the largest magnitude and β be the smaller one. Then, we can compute the sum
of the eigenvalues from the trace of H and their product from the determinant:

Tr(H) = Dxx +Dyy = α + β

Det(H) = DxxDyy − (Dxy)
2 = αβ.

(2.11)

In the unlikely event that the determinant is negative, the curvatures have different signs so the
point is discarded as not being an extremum. Let r be the ratio between the largest magnitude
eigenvalue and the smaller one, so that α = rβ. Then

Tr(H)2

Det(H)
=

(α + β)2

αβ
=

(rβ + β)2

rβ2
=

(r + 1)2

r
, (2.12)

which depends only on the ratio of the eigenvalues rather than their individual values. The
quantity (r + 1)2/r is at a minimum when the two eigenvalues are equal and it increases with
r. Therefore, to check that the ratio of principal curvatures is below some threshold, r, we only
need to check

Tr(H)2

Det(H)
<

(r + 1)2

r
. (2.13)

2.1.5 Orientation Assignment
By assigning a consistent orientation to each keypoint based on local image properties, the key-
point descriptor can be represented relative to this orientation and therefore achieve invariance
to image rotation. The scale of the keypoint is used to select the Gaussian smoothed image,
L, with the closest scale, so that all computations are performed in a scale-invariant manner.
For each image sample, L(x, y), at this scale, the gradient magnitude, m(x, y), and orientation,
θ(x, y), is precomputed using pixel differences:

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2

θ(x, y) = tan−1((L(x, y + 1)−L(x, y−1))/(L(x+ 1, y)−L(x−1, y)))
(2.14)

An orientation histogram is formed from the gradient orientations of sample points within
a region around the keypoint. The orientation histogram has 36 bins covering the 360 degree
range of orientations. Each sample added to the histogram is weighted by its gradient magnitude
and by a Gaussian-weighted circular window with a σ that is 1.5 times that of the scale of the
keypoint.

Peaks in the orientation histogram correspond to dominant directions of local gradients. The
highest peak in the histogram is detected, and then any other local peak that is within 80% of
the highest peak is used to also create a keypoint with that orientation. Therefore, for locations
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with multiple peaks of similar magnitude, there will be multiple keypoints created at the same
location and scale but different orientations. Only about 15% of points are assigned multiple
orientations, but these contribute significantly to the stability of matching. Finally, a parabola
is fit to the 3 histogram values closest to each peak to interpolate the peak position for better
accuracy.

2.1.6 The Local Image Descriptor
The next step is to compute a descriptor for the local image region that is highly distinctive yet
is as invariant as possible to remaining variations, such as change in illumination.

One obvious approach would be to sample the local image intensities around the keypoint
at the appropriate scale, and to match these using a normalized correlation measure. However,
simple correlation of image patches is highly sensitive to changes that cause misregistration of
samples, such as affine or 3D viewpoint change or non-rigid deformations.

2.1.7 Descriptor Representation

Figure 2.4: A keypoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4× 4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradient magnitudes near that direction within
the region. This figure shows a 2 × 2 descriptor array computed from an 8 × 8 set of samples, whereas
the experiments in this paper use 4 × 4 descriptors computed from a 16 × 16 sample array. The figure
was reproduced from [1].

Figure 2.4 illustrates the computation of the keypoint descriptor. First the image gradient
magnitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative to
the keypoint orientation.
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A Gaussian weighting function with σ equal to one half the width of the descriptor window
is used to assign a weight to the magnitude of each sample point. This is illustrated with a
circular window on the left side of Figure 2.4, although, of course, the weight falls off smoothly.
The purpose of this Gaussian window is to avoid sudden changes in the descriptor with small
changes in the position of the window, and to give less emphasis to gradients that are far from
the center of the descriptor, as these are most affected by misregistration errors.

The descriptor is formed from a vector containing the values of all the orientation histogram
entries, corresponding to the lengths of the arrows on the right side of Figure 2.4. The figure
shows a 2×2 array of orientation histograms, whereas our experiments below show that the best
results are achieved with a 4× 4 array of histograms with 8 orientation bins in each. Therefore,
the experiments in this paper use a 4× 4× 8 = 128 element feature vector for each keypoint.

2.2 Speeded Up Robust Features (SURF)
In recent years, several scale-invariant features have been proposed and this section presents one
of them, the SURF features. SURF stands for Speeded Up Robust Features, and as we will see,
they are not only scale-invariant features, but they also offer the advantages of being computed
very efficiently [24].

In the previous sections, we learned that the image derivatives of an image can be estimated
using Gaussian filters. Those filters make use of a σ parameter defining the aperture (size) of the
kernel. As we saw, this σ corresponds to the variance of the Gaussian function used to construct
the filter, and it then implicitly defines a scale at which the derivative is evaluated. Indeed, a
filter having a larger σ value smoothed out the finer details of the image. This is why we can
say that it operated at a coarser scale.

Now, if we compute, for instance, the Laplacian of a given image point using Gaussian
filters at different scales, then different values are obtained. Looking at the evolution of the
filter response for different scale factors, we obtain a curve which eventually reaches a maximum
value at some σ value. If we extract this maximum value for two images of the same object taken
at two different scales, the ratio of these two σ maxima will correspond to the ratio of the scales
at which the images were taken. This important observation is at the core of the scale-invariant
feature extraction process. That is, scale-invariant features should be detected as local maxima
in both the spatial space (in the image) and the scale space (as obtained from the derivative filters
applied at the different scales).

SURF implements this idea by proceeding as follows. First, to detect the features, the Hes-
sian matrix is computed at each pixel (equation 2.10).

The determinant of this matrix gives the strength of this curvature. The idea is therefore to
define corners as image points with high local curvature (that is, high variation in more than one
direction). Since it is composed of second-order derivatives, this matrix can be computed using
Laplacian Gaussian kernels of different scale σ. This Hessian then becomes a function of three
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variables: H(x, y, σ). A scale-invariant feature is therefore declared when the determinant of
this Hessian reaches a local maximum in both spatial and scale space (that is, 3x3x3 non-maxima
suppression needs to be performed).

The calculation of all of these derivatives at different scales is computationally costly. The
objective of the SURF algorithm is to make this process as efficient as possible. This is achieved
by using approximated Gaussian kernels involving only few integer additions. These have the
following structure:

Figure 2.5: Gaussian kernels. The figure was copied from [2].

In figure 2.5 the kernel on the left is used to estimate the mixed second derivatives, while
the right one estimates the second derivative in the vertical direction. A rotated version of
this second kernel estimates the second derivative in the horizontal direction. The smallest
kernels have a size of 9 × 9 pixels corresponding to σ ≈ 1.2. Kernels of increasing size are
successively applied. The exact amount of the filter that is applied can be specified by the
additional parameters of the SURF class. By default, 12 different sizes of kernels are used
(going up to size 99 × 99). Note that the fact that integral images are used guarantees that the
sum inside each lob can be computed by the using only 3 additions independently of the size of
the filter.

Once the local maxima is identified, the precise position of each detected interest point is
obtained through interpolation in both scale and image space. The result is then a set of feature
points localized at sub-pixel accuracy and to which is associated a scale value.

2.2.1 Describing SURF features
The SURF algorithm, discussed in the preceding recipe, defines a location and a scale for each
of the detected features. This scale factor can be used to define the size of a window around
the feature point such that the defined neighborhood would include the same visual information
no matter what scale the object to which the feature belongs has been pictured. In addition, the
visual information included in this neighborhood can be used to characterize the feature point
to make it distinguishable from the others.

This recipe will show you how to describe a feature point’s neighborhood using compact
descriptors. In feature matching, feature descriptors are usually N-dimensional vectors that
describe a feature point, ideally in a way that is invariant to change in lighting and to small
perspective deformations. In addition, good descriptors can be compared using a simple distance
metric (for example, Euclidean distance). Therefore, they constitute a powerful tool to use in
feature matching algorithms.
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Good feature descriptors must be invariant to small changes in illumination, in viewpoint,
and to the presence of image noise. Therefore, they are often based on local intensity differences.
This is the case of the SURF descriptors which apply the following simple kernels inside a larger
neighborhood around a keypoint:

Figure 2.6: Haar wavelet filters. The figure was reproduced from [2].

In figure 2.6 the first one simply measures the local intensity difference in the horizontal
direction (designated as dx), and the second measures this difference in the vertical direction
(designated as dy. The size of the neighborhood used to extract the descriptor vector is defined
as 20 times the scale factor of the feature (that is, 20σ). This square region is then split into 4×4

smaller square sub-regions. For each sub-region, the kernel responses dx and dy are computed
at 5×5 regularly spaced locations (the kernel size being 2σ). All of these responses are summed
as follows in order to extract four descriptor values for each subregion:[∑

dx
∑

dy
∑

|dx|
∑

|dy|
]

(2.15)
Since there are 4× 4 = 16 sub-regions, we have a total of 64 descriptor values. Note that in

order to give more importance to the neighboring pixel values closer to the keypoint, the kernel
responses are weighted by a Gaussian centered at the keypoint location (with a σ = 3.3).

The dx and dy responses are also used to estimate the orientation of the feature. These
values are computed (with a kernel size of 4σ) within a circular neighborhood of radius 6σ

at locations regularly spaced by intervals of σ. For a given orientation, the responses inside
a certain angular interval (π/3) are summed, and the orientation giving the longest vector is
defined as the dominant orientation [24].

2.2.2 Descriptors matching
In order to find the corresponding points, we proceed to feature matching by finding the two
best matching points for each feature. This is accomplished by performing this matching in two
directions, that is, for each point in the first image we find the two best matches in the second
image, and then we do the same thing for the feature points of the second image, finding their
two best matches in the first image.

Given a feature descriptor q and a set of known feature P , the nearest neighbor of q is the
point p1 ∈ P with smallest Euclidean distance ||q − p1|| (see Figure 2.7). The feature q is
assumed to belong to the same class as p1 if the ration p1

p2
between the two closest neighbors

is smaller that a threshold Θ. In [1], Θ = 0.8 was determined to be a good value for SIFT
descriptors, eliminating 90% of the false matches while keeping more than 95% of the correct
matches.
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Figure 2.7: A point q and its two nearest neighbors p1 and p2, with distances d1 and d2 respectively.

The simplest way to find the nearest neighbors is exhaustive or naïve search, where the
feature to be classified is directly compared to every element in the database. In figure 2.8 is an
example showing the 8 best matches in a match pair containing two images at different view.

2.2.3 SIFT vs SURF
The SIFT algorithm also defined its own descriptor. It is based on the gradient magnitude and
orientation computed at the scale of the considered keypoint. As for the SURF descriptors,
the scaled neighborhood of the keypoint is divided into 4 × 4 sub-regions. For each of these
regions, an 8-bin histogram of gradient orientations (weighted by their magnitude and by a global
Gaussian window centered at the keypoint) is built. Therefore, the descriptor vector is made of
the entries of these histograms. There are 4 × 4 regions and 8 bins per histogram, which leads
to a descriptor of length 128.

As for feature detection, the difference between SURF and SIFT descriptors is mainly speed
and accuracy. Since SURF descriptors are mostly based on intensity differences, they are faster
to compute. However, SIFT descriptors are generally considered to be more accurate in finding
the right matching feature.
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Figure 2.8: Corresponding points between two different image positions.
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Chapter 3

THE PINHOLE CAMERA

3.1 The pinhole camera

3.2 Geometric problems

3.3 Homogeneous coordinates

3.4 Learning extrinsic parameters

This chapter introduces the pinhole or projective camera. This is a purely geometric model
that describes the process whereby points in the world are projected into the image. Clearly,
the position in the image depends on the position in the world, and the pinhole camera model
captures this relationship.

3.1 The pinhole camera
In real life, a pinhole camera consists of a closed chamber with a small hole (the pinhole) in the
front (figure 3.1). Rays from an object in the world pass through this hole to form an inverted
image on the back face of the box or image plane. Our goal is to build a mathematical model of
this process.

It is slightly inconvenient that the image from the pinhole camera is upside-down. Hence,
we instead consider the virtual image that would result from placing the image plane in front
of the pinhole. Of course, it is not physically possible to build a camera this way, but it is
mathematically equivalent to the true pinhole model (except that the image is the right way up)
and it is easier to think about. From now on, we will always draw the image plane in front of
the pinhole.

Figure 3.2 illustrates the pinhole camera model and defines some terminology. The pinhole
itself (the point at which the rays converge) is called the optical center. We will assume for
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Figure 3.1: The pinhole camera model. Rays from an object in the world pass through the pinhole in the
front of the camera and form an image on the back plane (the image plane). This image is upside-down,
so we can alternatively consider the virtual image that would have been created if the image plane was
in front of the pinhole. This is not physically possible, but it is more convenient to work with. Figure
from [3].

now that the optical center is at the origin of the 3D world coordinate system in which points
are represented as w = [u, v, w]T . The virtual image is created on the image plane, which is
displaced from the optical center along the w-axis or optical axis. The point where the optical
axis strikes the image plane is known as the principal point. The distance between the principal
point and the optical center (i.e., the distance between the image plane and the pinhole) is known
as the focal length.

The pinhole camera model is a generative model that describes the likelihood Pr(x|w) of
observing a feature at position x = [x, y]T in the image, given that it is the projection of a 3D
point w = [u, v, w]T in the world. Although light transport is essentially deterministic, we will
nonetheless build a probability model; there is noise in the sensor, and unmodeled factors in the
feature detection process can also affect the measured image position. However, for pedagogical
reasons we will defer a discussion of this uncertainty until later, and temporarily treat the imaging
process as if it were deterministic.

Our task then is to establish the position x = [x, y]T where the 3D point w = [u, v, w]T is
imaged. Considering figure 3.2, it is clear how to do this. We connect a ray between w and the
optical center. The image position x can be found by observing where this ray strikes the image
plane. This process is called perspective projection. In the next few sections, we will build a
more precise mathematical model of this process. We will start with a very simple camera model
(the normalized camera) and build up to a full camera parameterization.

3.1.1 The normalized camera
In the normalized camera, the focal length is one, and it is assumed that the origin of the 2D
coordinate system (x,y) on the image plane is centered at the principal point. Figure 3.3 shows
a 2D slice of the geometry of this system (the u- and x-axes now point upward out of the page
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Figure 3.2: Pinhole camera model terminology. The optical center (pinhole) is placed at the origin of
the 3D world coordinate system (u, υ, w), and the image plane (where the virtual image is formed) is
displaced along the w-axis, which is also known as the optical axis. The position where the optical axis
strikes the image plane is called the principal point. The distance between the image plane and the optical
center is called the focal length. The figure was copied from [3].

Optical 
center Ray

1

Image 
plane

Figure 3.3: Normalized camera. The focal length
is one, and the 2D image coordinate system (x,y)
is  centered  on  the  principal  point  (only  y-  axis
shown). By similar triangles, the y position in the
image of a point at (u, υ, w) is given by υ/w. This
corresponds to our intuition: as an object gets more
distant, its projection becomes closer to the center
of the image. Figure from [3].

and cannot be seen). By similar triangles, it can easily be seen that the y-position in the image
of the world point at w = [u, v, w]T is given by υ/w. More generally,in the normalized camera,
a 3D point w = [u, v, w]T is projected into the image at x = [x, y]T using the relations

x =
u

w
, y =

v

w
(3.1)

where x, y, u, υ and w are measured in the same real-world units (e.g., mm).

3.1.2 Focal length parameters
The normalized camera is unrealistic; for one thing, in a real camera, there is no particular reason
why the focal length should be one. Moreover, the final position in the image is measured in
pixels, not physical distance, so the model must take into account the photoreceptor spacing.
Both of these factors have the effect of changing the mapping between points w = [u, v, w]T in
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the 3D world and their 2D positions x = [x, y]T in the image plane by a constant scaling factor
φ (figure 3.4), so that

x =
ϕu

w
, y =

ϕv

w
. (3.2)
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a) b)

Focal length Focal length

Focal length Focal length

Figure 3.4: Focal length and photoreceptor spacing. a-b) Changing the distance between the optical
center and the image plane (the focal length) changes the relationship between the 3D world point w and
the 2D image point x. In particular, if we take the original focal length (a) and halve it (b), the 2D image
coordinate is also halved. The field of view of the camera is the total angular range that is imaged (usually
different in the x- and y-directions). When the focal length decreases, the field of view increases. c-d)
The position in the image x is usually measured in pixels. Hence, the position x depends on the density of
the receptors on the image plane. If we take the original photoreceptor density (c) and halve it (d), then
the 2D image coordinate is also halved. Hence, the photoreceptor spacing and focal length both change
the mapping from rays to pixels in the same way. The figure was reproduced from [3].

To add a further complication, the spacing of the photoreceptors may differ in the x- and
y-directions, and so the scaling may be different in each direction, giving the relations

x =
ϕxu

w
, y =

ϕyv

w
. (3.3)

where φx and φy are separate scaling factors for the x- and y-directions. These parameters are
known as the focal length parameters in the x- and y-directions, but this name is somewhat
misleading - they account for not just the distance between the optical center and the principal
point (the true focal length) but also the photoreceptor spacing.
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3.1.3 Offset and skew parameters
The model so far is still incomplete in that pixel position x = [0, 0]T is at the principal point
(where the w-axis intersects the image plane). In most imaging systems, the pixel position x
= [0, 0]T is at the top-left of the image rather than the center. To cope with this, we add offset
parameters δx and δy so that

x =
ϕxu

w
+ δx, y =

ϕyv

w
+ δy. (3.4)

where δx and δy are the offsets in pixels from the top-left corner of the image to the position
where the w axis strikes the image plane. Another way to think about this is that the vector
[δx, δy]

T is the position of the principal point in pixels.
If the image plane is exactly centered on the w-axis, these offset parameters should be half

the image size: for a 640 × 480 VGA image δx and δy would be 320 and 240, respectively.
However, in practice it is difficult and superfluous to manufacture cameras with the imaging
sensor perfectly centered, and so we treat the offset parameters as variable quantities.

We also introduce a skew term γ which moderates the projected position x as a function of the
height υ in the world. This parameter has no clear physical interpretation, but can help explain
the projection of points into the image in practice. The resulting camera model is

x =
ϕxu+ γυ

w
+ δx, y =

ϕyv

w
+ δy. (3.5)

3.1.4 Position and the orientation of camera
Finally, we must account for the fact that the camera is not always conveniently centered at the
origin of the world coordinate system with the optical axis exactly aligned with the w-axis. In
general, we may want to define an arbitrary world coordinate system that may be common to
more than one camera. To this end, we express the world points w in the coordinate system of
the camera before they are passed through the projection model, using the coordinate transfor-
mation: 

u′

v′

w′

 =


r11 r12 r13

r21 r22 r23

r31 r32 r33



u

v

w

+


tx

ty

tz

 , (3.6)

or
w′ = Rw + T, (3.7)

where w′ is the transformed point, R is a 3 × 3 rotation matrix, and T is a 3 × 1 translation
matrix.
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3.1.5 Full pinhole camera model
We are now in a position to describe the full camera model, by combining equations 3.5 and 3.6.
A 3D point w=[u, v, w]T is projected to a 2D point x = [x, y]T by the relations

x =
ϕx(r11u+ r12v + r13w + tx) + γ(r21u+ r22v + r23w + ty)

r31u+ r32v + r33w + tz
+ δx

y =
ϕy(r21u+ r22v + r23w + ty)

r31u+ r32v + r33w + tz
+ δy.

(3.8)

There are two sets of parameters in this model. The intrinsic or camera parameters {ϕx, ϕy, γ, δx, δy}
describe the camera itself, and the extrinsic parameters {R,T} describe the position and orien-
tation of the camera in the world. For reasons that will become clear in section 3.3.1, we will
store the intrinsic parameters in the intrinsic matrix Λ where

Λ =


ϕx γ δx

0 ϕy δy

0 0 1

 . (3.9)

We can now abbreviate the full projection model (equations 3.8) by just writing

x = pinhole[w,Λ,R,T]. (3.10)

Finally, we must account for the fact that the estimated position of a feature in the image
may differ from our predictions. There are a number of reasons for this, including noise in
the sensor, sampling issues, and the fact that the detected position in the image may change at
different viewpoints. We model these factors with additive noise that is normally distributed
with a spherical covariance to give the final relation

Pr(x|w,Λ,R,T) = Normx[pinhole[w,Λ,R,T], σ2I], (3.11)

where σ2 is the variance of the noise.
The multivariate normal or Gaussian distribution models D-dimensional variables x where

each of the D elements x1 . . . xD is continuous and lies in the range [−∞,+∞]. As such the
univariate normal distribution is a special case of the multivariate normal where the number of
elements D is one. In machine vision the multivariate normal might model the joint distribution
of the intensities of D pixels within a region of the image. The state of the world might also
be described by this distribution. For example, the multivariate normal might describe the joint
uncertainty in the 3D position (x, y, z) of an object in the scene.

The multivariate normal distribution has two parameters: the mean μ and covariance Σ.
The mean μ is a D × 1 vector that describes the mean of the distribution. The covariance Σ is
a symmetric D×D positive definite matrix so that zTΣz is a positive for any real vector z. The
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probability density function has the following form

Pr(x) = 1

(2π)D/2|Σ|1/2 exp[−0.5(x − μ)TΣ−1(x − μ)], (3.12)

or for short

Pr(x) = Normx[μ,Σ]. (3.13)
Note that the pinhole camera is a generative model. We are describing the likelihood

Pr(x|w,Λ,R,T) of observing a 2D image point x given a 3D world point w and the parameters
{Λ,R,T}

3.1.6 Radial distortion
In the previous section, we introduced the pinhole camera model. However, it has probably not
escaped your attention that real-world cameras are rarely based on the pinhole: they have a lens
(or possibly a system of several lenses) that collects light from a larger area and re-focuses it
on the image plane. In practice, this leads to a number of deviations from the pinhole model.
For example, some parts of the image may be out of focus, which essentially means that the
assumption that a point in the world w maps to a single point in the image x is no longer valid.

a) b)

Figure 3.5: Radial distortion. a) An image that suffers from radial distortion is easily spotted because
lines that were straight in the world are mapped to curves in the image (e.g., red dotted line). b) After
applying the inverse radial distortion model, straight lines in the world now correctly map to straight lines
in the image. The distortion caused the magenta point to move along the red radial line to the position of
the yellow point. The figure was taken from [3].

However, there is one deviation from the pinhole model that must be addressed. Radial
distortion is a nonlinear warping of the image that depends on the distance from the center of
the image. In practice, this occurs when the field of view of the lens system is large. It can easily
be detected in an image, because straight lines in the world no longer project to straight lines in
the image (figure 3.5).

Radial distortion is commonly modeled as a polynomial function of the distance r from the
center of the image. In the normalized camera, the final image positions (x΄,y΄) are expressed as
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functions of the original positions (x, y) by

x΄ = x(1 + β1r
2 + β2r

4)

y΄ = y(1 + β1r
2 + β2r

4),
(3.14)

where the parameters β1 and β2 control the degree of distortion. These relations describe a family
of possible distortions that approximate the true distortion closely for most common lenses.

This distortion is implemented after perspective projection (division by w) but before the
effect of the intrinsic parameters (focal length offset, etc.), so the warping is relative to the optical
axis and not the origin of the pixel coordinate system. We will not discuss radial distortion further
in this volume.

3.2 Geometric problems
Now that we have described the pinhole camera model, we will consider two important geomet-
ric problems. Each is an instance of learning or inference within this model.

3.2.1 Problem 1: Learning extrinsic parameters
We aim to recover the position and orientation of the camera relative to a known scene. This is
sometimes known as the perspective-n-point (PnP) problem or the exterior orientation problem.
One common application is augmented reality, where we need to know this relationship to render
virtual objects that appear to be stable parts of the real scene.

The problem can be stated more formally as follows: we are given a known object, with
I distinct 3D points {wi}Ii=1, their corresponding projections in the image {xi}Ii=1, and known
intrinsic parameters Λ. Our goal is to estimate the rotation R and translation T that map points
in the coordinate system of the object to points in the coordinate system of the camera so that

R̂, T̂ = arg max
R,T

[ I∑
i=1

log[Pr(xi|wi,Λ,R,T)]
]
. (3.15)

This is a maximum likehood learning problem, in which we aim to find parameters R,T that
make the predictions pinhole[wi,Λ,R,T] of the model agree with the observed 2D points xi.

3.2.2 Problem 2: Learning intrinsic parameters
We aim to estimate the intrinsic parameters Λ hat relate the direction of rays through the optical
center to coordinates on the image plane. This estimation process is known as calibration.
Knowledge of the intrinsic parameters is critical if we want to use the camera to build 3D models
of the world.
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Figure 3.6: Camera calibration target. One way
to calibrate the camera (estimate its intrinsic pa-
rameters) is to view a 3D object (a camera cali-
bration target) for which the geometry is known.
The marks on the surface are at known 3D posi-
tions in the frame of reference of the object, and
are easy to locate in the image using basic image-
processing techniques. It is now possible to find
the intrinsic and extrinsic parameters that optimally
map the known 3D positions to their 2D projections
in the image. On chapter 5 it is noted that calibra-
tion is more usually based on a number of views of
a known 2D planar object. The figure was taken
from [4].

The calibration problem can be stated formally as follows: given a known 3D object, with
I distinct 3D points {wi}Ii=1 and their corresponding projections in the image {xi}Ii=1, estimate
the intrinsic parameters:

Λ̂ = arg max
Λ

[
max
R,T

[ I∑
i=1

log[Pr(xi|wi,Λ,R,T)]
]]

. (3.16)

Once more, this is a maximum likelihood learning problem in which we aim to find parame-
ters Λ,R,T that make the predictions of the model pinhole[wi,Λ,R,T] agree with the observed
2D points xi. We do not particularly care about the extrinsic parameters R,T; finding these is
just a means to the end of estimating the intrinsic parameters Λ.

The calibration process requires a known 3D object, on which distinct points can be iden-
tified, and their projections in the image found. A common approach is to construct a bespoke
3D calibration target that achieves these goals (figure 3.6).

3.2.3 Solving the problems
We have introduced two geometric problems, each of which took the form of a learning or
inference problem using the pinhole camera model. We formulated each in terms of maximum
likelihood estimation, and in each case this results in an optimization problem.

Unfortunately, none of the resulting objective functions can be optimized in closed form;
each solution requires the use of nonlinear optimization. In each case, it is critical to have a good
initial estimate of the unknown quantities to ensure that the optimization process converges to
the global maximum. In the remaining part of this chapter we develop algorithms that provide
these initial estimates. The general approach is to choose new objective functions that can be
optimized in closed form, and where the solution is close to the solution of the true problem.
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3.3 Homogeneous coordinates
To get good initial estimates of the geometric quantities in the preceding optimization problems,
we play a simple trick: we change the representation of both the 2D image points and 3D world
points so that the projection equations become linear. After this change, it is possible to find
solutions for the unknown quantities in closed form. However, it should be emphasized that
these solutions do not directly address the original optimization criteria: they minimize more
abstract objective functions based on algebraic error whose solutions are not guaranteed to be
the same as those for the original problem. However, they are generally close enough to provide
a good starting point for a nonlinear optimization of the true cost function.

We convert the original Cartesian representation of the 2D image points x to a 3D homoge-
neous coordinate x̃ so that

x̃ = λ


x

y

1

 , (3.17)

where λ is an arbitrary scaling factor. This is redundant representation in that any scalar multiple
λ represents the same 2D point. For example, the homogeneous vectors x̃ = [2, 4, 2]T and
x̃ = [3, 6, 3]T both represent the Cartesian 2D point x = [1, 2]T , where scaling factors λ = 2

and λ = 3 have been used, respectively.
Converting between homogeneous and Cartesian coordinates is easy. To move to homo-

geneous coordinates, we choose λ = 1 and simply append a 1 to the original 2D Cartesian
coordinate. To recover the Cartesian coordinates, we divide the first two entries of the homoge-
neous 3-vector by the third, so that if we observe the homogeneous vector x̃ = [ ˜x, y, z]T , then
we can recover the Cartesian coordinate x = [x, y]T as

x =
x̃

z̃
, y =

ỹ

z̃
. (3.18)

Further insight into the relationship between the two representations is given in figure 3.7.
It is similarly possible to represent the 3D world point w as a homogeneous 4D vector w̃ so

that

w̃ = λ


u

v

w

1

 , (3.19)

where λ is again an arbitrary scaling factor. Once more, the conversion from Cartesian to ho-
mogeneous coordinates can be achieved by appending a 1 to the original 3D vector w. The
conversion from homogeneous to Cartesian coordinates is achieved by dividing each of the first
three entries by the last.
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1

Figure 3.7: Geometric interpretation of homo-
geneous coordinates. The different scalar mul-
tiples λ of the homogeneous 3-vector x̃ define a
ray through the origin of a coordinate space. The
corresponding 2D image point x can be found by
considering the 2D point that this ray strikes on
the plane at z = 1. An interesting side-effect of
this representation is that it is possible to represent
points at infinity (known as ideal points). For ex-
ample, the homogeneous coordinate defines a ray
[0, 1, 0]T that is parallel to z = 1 and so never in-
tersects the plane. It represents the point at infin-
ity in direction [0, 1]T . The figure was reproduced
from [3].

3.3.1 Camera model in homogeneous coordinates
It is hard to see the point of converting the 2D image points to homogeneous 3-vectors and con-
verting the 3D world point to homogeneous 4-vectors until we re-examine the pinhole projection
equations,

x =
ϕxu+ γυ

w
+ δx

y =
ϕyv

w
+ δy,

(3.20)

where we have temporarily assumed that the world point w = [u, v, w]T same coordinate system
as the camera.

In homogeneous coordinates, these relationships can be expressed as a set of linear equations

λ


x

y

1

 =


ϕx γ δx 0

0 ϕy δy 0

0 0 1 0



u

v

w

1

 . (3.21)

To convince ourselves of this, let us write these relations explicitly:

λx = ϕxu+ γv + δxw

λy = ϕyv + δyw

λ = w.

(3.22)

We solve for x and y by converting back to Cartesian coordinates: we divide the first two rela-
tions by the third to yield the original pinhole model (equation 3.20)
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Let us summarize what has happened: the original mapping from 3D Cartesian world points
to 2D Cartesian image points is nonlinear (due to the division by w). However, the mapping
from 4D homogeneous world points to 3D homogeneous image points is linear. In the homoge-
neous representation, the nonlinear component of the projection process (division byw) has been
side-stepped: this operation still occurs, but it is in the final conversion back to 2D Cartesian
coordinates, and thus does not trouble the homogeneous camera equations.

To complete the model, we add the extrinsic parameters {R,T} that relate the world coor-
dinate system and the camera coordinate system, so that

λ


x

y

1

 =


ϕx γ δx 0

0 ϕy δy 0

0 0 1 0



r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1




u

v

w

1

 , (3.23)

or in matrix mode
λx̃ =

[
Λ 0

] [R T
0T 1

]
w̃, (3.24)

where 0 = [0, 0, 0]T . The same relations can be simplified to

λx̃ = Λ
[
R T

]
w̃. (3.25)

In the next two sections, we revisit the two geometric problems. In each case, we will use
algorithms based on homogeneous coordinates to compute good initial estimates of the variable
of interest. These estimates can then be improved using nonlinear optimization.

3.4 Learning extrinsic parameters
Given a known object, with I distinct 3D points {wi}Ii=1, the corresponding projections in the
image {xi}Ii=1, and known intrinsic parameters Λ, estimate the geometric relationship between
the camera object determined by the rotation R and the translation T,

R̂, T̂ = arg max
R,T

[ I∑
i=1

log[Pr(xi|wi,Λ,R,T)]
]
. (3.26)

This is a non-convex problem, so we make progress by expressing it in homogeneous coordi-
nates. The relationship between the ith homogeneous world point w̃i and the ith corresponding
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homogeneous image point x̃i is

λi


xi

yi

1

 =


ϕx γ δx

0 ϕy δy

0 0 1



r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz



ui

vi

wi

1

 , (3.27)

We would like to discard the effect of the (known) intrinsic parameters Λ. To this end, we
pre-multiply both sides of the equation by the inverse of the intrinsic matrix Λ to yield

λi


x′
i

y′i

1

 =


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz



ui

vi

wi

1

 . (3.28)

The transformed coordinates x̃′ = Λ−1x̃ are known as normalized image coordinates: they
are the coordinates that would have resulted if we had used a normalized camera. In effect,
pre-multiplying by Λ−1 compensates for the idiosyncrasies of this particular camera.

We now note that the last of these three equations allows us to solve for the constant, λi so
that

λi = r31ui + r32vi + r33wi + tz (3.29)
and we can now substitute this back into the first two equations to get the relations

(r31ui + r32vi + r33wi + tz)x
′
i

(r31ui + r32vi + r33wi + tz)y
′
i

 =

r11 r12 r13 tx

r21 r22 r23 ty



ui

vi

wi

1

 . (3.30)

These are two linear equations with respect to the unknown quantities R and T. We can take the
two equations provided by each of the I pairs of points in the world w and the image x to form
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the system of equations



u1 v1 w1 1 0 0 0 0 −u1x
′
1 −v1x

′
1 −w1x

′
1 −x′

1

0 0 0 0 u1 v1 w1 1 −u1y
′
1 −v1y

′
1 −w1y

′
1 −y′1

u2 v2 w2 1 0 0 0 0 −u2x
′
2 −v2x

′
2 −w2x

′
2 −x′

2

0 0 0 0 u2 v2 w2 1 −u2y
′
2 −v2y

′
2 −w2y

′
2 −y′2... ... ... ... ... ... ... ... ... ... ... ...

uI vI wI 1 0 0 0 0 −uIx
′
I −vIx

′
I −wIx

′
I −x′

I

0 0 0 0 uI vI wI 1 −uIy
′
I −vIy

′
I −wIy

′
I −y′I





r11

r12

r13

tx

r21

r22

r23

ty

r31

r32

r33

tz



= 0. (3.31)

This problem is now in the standard form Ab = 0 of a minimum direction problem. We seek
the value of b that minimizes ∥Ab∥2 subject to the constraint ∥b∥2 = 1 (to avoid the uninteresting
solution b = 0). The solution can be found by computing singular value decomposition (SVD)
(see Appendix [3]) A = USVT and setting b̂ to be the last column of V (see Appendix [3]).

The estimates of R and T that we extract from b have had an arbitrary scale imposed on
them, and we must find the correct scaling factor. This is possible because the rotation R has a
pre-defined scale (its rows and columns must all have norm one). In practice, we first find the
closest true rotation matrix to R which also forces our estimate to be a valid orthogonal matrix.
This is an instance of the orthogonal Procrustes problem (see Appendix [3]). The solution is
found by computing the singular value decomposition R = USVT and setting R̂ = UVT . Now,
we re-scale the translation T. The scaling factor can be estimated by taking the average ratio of
the nine entries of our initial estimate of R to the final one R̂ so that

T̂ =
3∑

m=1

3∑
n=1

R̂mn

Rmn

T. (3.32)

Finally, we must check that the sign of tz is positive, indicating that the object is in front of
the camera. If this is not the case then be multiply both T̂ and R̂ by minus one.

This scrappy algorithm is typical of methods that use homogeneous coordinates. The result-
ing estimates T̂and R̂ can be quite inaccurate in the presence of noise in the measured image po-
sitions. However, they usually suffice as a reasonable starting point for the subsequent nonlinear
optimization of the true objective function (equation 3.26) for this problem. That optimization
must be carried out while ensuring that R remains a valid rotation matrix.

Note that this algorithm requires a minimum of 11 equations to solve the minimum direction
problem. Since each point contributes two equations, this means we require I = 6 points for
a unique solution. However, there are only really six unknowns (the rotation and translation in
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3D) and so a minimal solution would require only I = 3 points.
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Chapter 4

EPIPOLAR GEOMETRY

4.1 Two-view geometry

4.2 The essential matrix

4.3 Triangulation

4.4 The fundamental matrix

4.5 The Gold Standard method

4.1 Two-view geometry
In this chapter, we show that there is a geometric relationship between corresponding points in
two images of the same scene. This relationship depends only on the intrinsic parameters of the
two cameras and their relative translation and rotation.

4.1.1 The epipolar constraint
Consider a single camera viewing a 3D point w in the world. We know that w must lie some-
where on the ray that passes through the optical center and position x1 on the image plane (figure
4.1). However, from one camera alone, we cannot know how far along this ray the point is.

Now consider a second camera viewing the same 3D world point. We know from the first
camera that this point must lie along a particular ray in 3D space. It follows that the projected
position x2 of this point in the second image must lie somewhere along the projection of this ray
in the second image. The ray in 3D projects to a 2D line which is known as an epipolar line.

This geometric relationship tells us something important: for any point in the first image,
the corresponding point in the second image is constrained to lie on a line. This is known
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as the epipolar constraint. The particular line that it is constrained to lie on depends on the
intrinsic parameters of the cameras and the relative translation and rotation of the two cameras
(determined by the extrinsic parameters).

optical 
center 1

camera 
plane 1

camera 
plane 2

optical 
center 2

ray

epipolar
line

Figure 4.1: Epipolar line. Consider point x1 in the first image. The 3D point w that projected to x1 must
lie somewhere along the ray that passes from the optical center of camera 1 through the position x1 in
the image plane (dashed green line). However, we don’t know where along that ray it lies (4 possibilities
shown). It follows that x2, the projected position in camera 2 must lie somewhere on the projection of this
ray. The projection of this ray is a line in image 2 and is referred to as an epipolar line. Figure from [3].

The epipolar constraint has two important practical implications.

1. Given the intrinsic and extrinsic parameters, we can find point correspondences relatively
easily: for a given point in the first image, we only need to perform a 1D search along the
epipolar line in the second image for the corresponding position.

2. The constraint on corresponding points is a function of the intrinsic and extrinsic param-
eters; given the intrinsic parameters, we can use the observed pattern of point correspon-
dences to determine the extrinsic parameters and hence establish the geometric relation-
ship between the two cameras.

4.1.2 Epipoles
Now consider a number of points in the first image. Each is associated with a ray in 3D space.
Each ray projects to form an epipolar line in the second image. Since all the rays converge at the
optical center of the first camera, the epipolar lines must converge at a single point in the second
image plane; this is the image in the second camera of the optical center of the first camera and
is known as the epipole (figure 4.2). Similarly, points in image 2 induce epipolar lines in image
1, and these epipolar lines converge at the epipole in image 1. This is the image in camera 1 of
the optical center of camera 2.
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Figure 4.2: Epipoles. Consider several observed points {xi}Ii=1 in image 1. For each point, the corre-
sponding 3D world position wi lies on a different ray. Each ray projects to an epipolar line li in image
2. Since the rays converge in 3D space at the optical center of camera 1, the epipolar lines must also
converge. The point where they converge is known as the epipole e2. It is the projection of the optical
center of camera 1 into camera 2. Similarly, the epipole e1 is the projection of the optical center of camera
2 into camera 1. The figure was reproduced from [3]

The epipoles are not necessarily within the observed images: the epipolar lines may con-
verge to a point outside the visible area. Two common cases are illustrated in figure 4.3. When
the cameras are oriented in the same direction (i.e., no relative rotation) and the translation is per-
pendicular to their optical axes (figure 4.3a) then the epipolar lines are parallel and the epipoles
(where they converge) are hence at infinity. When the cameras are oriented in the same direc-
tion and the translation is parallel to their optical axes (figure 4.3b), then the epipoles are in the
middle of the images and the epipolar lines form a radial pattern. These examples illustrate that
the pattern of epipolar lines provides information about the relative position and orientation of
the cameras.

4.2 The essential matrix
Now we will capture these geometric intuitions in the form of a mathematical model. For sim-
plicity, we will assume that the world coordinate system is centered on the first camera so that
the extrinsic parameters (rotation and translation) of the first camera are {I, 0}. The second
camera may be in any general position {R,T}. We will further assume that the cameras are
normalized so that Λ1 = Λ2 = Ι. In homogeneous coordinates, a 3D point w is projected into
the two cameras as
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Figure 4.3: Epipolar lines and epipoles. a) When the camera movement is a pure translation perpendic-
ular to the optical axis (parallel to the image plane) the epipolar lines are parallel and the epipole is at
infinity. b) When the camera movement is a pure translation along the optical axis the epipoles are in the
center of the image and the epipolar lines form a radial pattern. The figure was copied from [3].

λx̃1 = [Ι, 0]w̃
λx̃1 = [R,T]w̃.

(4.1)

where x̃1 is the observed position in the first camera, x̃2 is the observed position in the second
camera, and both are expressed in homogeneous coordinates.

Expanding the first of these relations we get

λ1


x1

y1

1

 =


1 0 0 0

0 1 0 0

0 0 1 0



u

v

w

1

 =

u

v

w

 , (4.2)

This simplifies to

λ1x̃1 = w. (4.3)
By a similar process, the projection in the second camera can be written as

λ2x̃2 = Rw + T. (4.4)

Finally, substituting equation 4.3 into equation 4.4 yields

λ2x̃2 = λ1Rx̃1 + T. (4.5)

This relationship represents a constraint between the possible positions of corresponding points

38



x1 and x2 in the two images. The constraint is parameterized by the rotation and translation
{R,T} of the second camera relative to the first.

We will now manipulate the relationship in equation 4.5 into a form that can be more easily
related to the epipolar lines and the epipoles. We first take the cross product of both sides with
the translation vector t. This removes the last term as the cross product of any vector with itself
is zero. Now we have

λ2T × x̃2 = λ1T × Rx̃1. (4.6)
Then we take the inner product of both sides with x̃2. The left hand side disappears since T× x̃2

must be perpendicular to x̃2, and so we have

x̃T
2 T × Rx̃1 = 0, (4.7)

where we have also eliminated the scaling factors λ1 and λ2 by dividing by them. Finally, we
note that the cross product operation T× can be expressed as multiplication by the rank 2 skew-
symmetric 3× 3 matrix T×:

T× =

 0 −tz ty

tz 0 −tx

−ty tx 0

 . (4.8)

Hence equation 4.7 has the form

x̃T
2 Ex̃1 = 0, (4.9)

where E = T×R is known as the essential matrix. Equation 4.9 is an elegant formulation of
the mathematical constraint between the positions of corresponding points x1 and x2 in two
normalized cameras.

4.2.1 Properties of the essential matrix
The 3 × 3 essential matrix captures the geometric relationship between the two cameras and
has rank 2 so that det[E] = 0. The first two singular values of the essential matrix are al-
ways identical and the third is zero. It depends only on the rotation and translation between the
cameras, each of which has 3 parameters, and so one might think it would have 6 degrees of
freedom. However, it operates on homogeneous variables x̃1 and x̃2 and is hence ambiguous up
to scale: multiplying all of the entries of the essential matrix by any constant does not change
its properties. For this reason, it is usually considered as having 5 degrees of freedom [4].

Since there are fewer degrees of freedom than there are unknowns, the nine entries of the
matrix must obey a set of algebraic constraints. These can be expressed compactly as

2EETE − trace[EET ]E = 0. (4.10)
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These constraints are sometimes exploited in the computation of the essential matrix, although
in this volume we use a simpler method (section 4.4).

The epipolar lines are easily retrieved from the essential matrix. The condition for a point
being on a line is ax+ by + c = 0 or

[
a b c

]xy
1

 = 0. (4.11)

In homogeneous co-ordinates, this can be written as lx̃ = 0 where l = [a, b, c] is a 1× 3 vector
representing the line.

Now consider the essential matrix relation

x̃T
2 Ex̃1 = 0, (4.12)

Since x̃T
2 E is a 1 × 3 vector, this relationship has the form l1x̃1 = 0. The line l1 = x̃T

2 E is the
epipolar line in image 1 due to the point x2 in image 2. By a similar argument, we can find the
epipolar line l2 in the second camera due to the point x1 in the first camera. The final relations
are

l1 = x̃T
2 E

l2 = x̃T
1 ET .

(4.13)

The epipoles can also be extracted from the essential matrix. Every epipolar line in image 1
passes through the epipole ẽ1, so at the epipole ẽ1 we have x̃T

2 Eẽ1 = 0 for all x̃2. This implies
that ẽ1 must lie in the right null-space of E (see Appendix [3]). By a similar argument, the
epipole ẽ2 in the second image must lie in the left null space of E. Hence, we have the relations

ẽ1 = null[E]
ẽ2 = null[ET].

(4.14)

In practice, the two epipole points can be retrieved by computing the singular value decomposi-
tion E = ULVT of the essential matrix, and setting ẽ1 to the last column of V and ẽ2 to the last
row of U.

4.2.2 Decomposition of the essential matrix
We saw previously that the essential matrix is defined as

E = T×R, (4.15)

40



where R and T are the rotation matrix and translation vector that map points in the coordinate
system of camera 2 to the coordinate system of camera 1, and T× is a 3× 3 matrix derived from
the translation vector.

We will defer the question of how to compute the essential matrix from a set of corresponding
points until section 4.3. For now, we will concentrate on how to decompose a given essential
matrix E to recover this rotation R and translation T. This is known as the relative orientation
problem.

In due course, we shall see that we can compute the rotation exactly, whereas it is only
possible to compute the translation up to an unknown scaling factor. This remaining uncertainty
reflects the geometric ambiguity of the system; from the images alone, we cannot tell if these
cameras are far apart and looking at a large distant object or close together and looking at a small
nearby object.

To decompose E, we define the matrix

W =

0 −1 0

1 0 0

0 0 1

 , (4.16)

and then take the singular value decomposition E = ULVT . We now choose

T× = ULWUT

R = UW−1VT
.

(4.17)

It is convention to set the magnitude of the translation vector T that is recovered from the
matrix T× to unity. The above decomposition is not obvious, but it is easily checked that mul-
tiplying the derived expressions for T× and R yields E = ULVT . This method assumes that
we started with a valid essential matrix where the first two singular values are identical and the
third is zero. If this is not the case (due to noise) we can substitute L′ = diag[1, 1, 0] for L in
the solution for T× [4].

This solution is only one of four possible combinations of R and T that are compatible with E
(figure 4.4). This four-fold ambiguity is due to the fact that the pinhole model cannot distinguish
between objects that are behind the camera (and are not imaged in real cameras) and those that
are in front of the camera. Part of the uncertainty is captured mathematically by our lack of
knowledge of the sign of the essential matrix (recall it is ambiguous up to scale) and hence
the sign of the recovered translation. Hence, we can generate a second solution by multiplying
the translation vector by -1. The other component of the uncertainty results from an ambiguity
in the decomposition of the essential matrix; we can equivalently replace W for W−1 in the
decomposition procedure, and this leads to two more solutions.

Fortunately, we can resolve this ambiguity using a corresponding pair of points from the two
images and the Triangulation algorithm which is developed in the next section.

41



camera 1 camera 2

camera 1

camera 1 camera 1camera 2 camera 2

camera 2

a) b)

c) d)

Figure 4.4: Four-fold ambiguity of reconstruction from two pinhole cameras. The mathematical model
for the pinhole camera does not distinguish between points that are in front of and points that are behind
the camera. This leads to a four-fold ambiguity when we extract the rotation R and translation T relating
the cameras from the essential matrix. a) Correct solution. Points are in front of both cameras. b)
Incorrect solution. The images are identical, but with this interpretation, the points are behind camera 2.
c) Incorrect solution with points behind camera 1. d) Incorrect solution with points behind both cameras.
The figure was copied from [3].

4.3 Triangulation
As shown a world point, projected into the pair of corresponding points xl and xr, lies at the in-
tersection of the two raysOl through xl and fromOr through xr respectively. In our assumptions,
the rays are known and the intersection can be computed. The problem is, since parameters and
image locations are known only approximately, the two rays will not actually intersect in space;
their intersection can only be estimated as the point of minimum distance from both rays. This
is what we set off to do.

Let axl (a ∈ R) be the ray, l, through Ol and xl. Let T+bRTxr (b ∈ R) be the ray, r, through
Or and xr expressed in the left reference frame. Let w be a vector orthogonal to both l and r.
Our problem reduces to determining the midpoint, P ′, of the segment parallel to w that joins l
and r (Figure 4.5).

This is very simple because the endpoints of the segment, say a0xl and T + b0RTxr, can be
computed solving the linear system of equations
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Figure 4.5: Triangulation with nonintersecting rays. The figure was reproduced from [5].

axl − bRTxr + c(xl × RTxr) = T (4.18)
for a0, b0, and c0. We summarize this simple method in the Algorithm 1 below. All vectors
and coordinates are referred to the left camera reference frame. The input is formed by a set of
corresponding points; let xl and xr be a generic pair.

Algorithm 1 Triangulation
Let axl, a ∈ R be the ray, l, through Ol (a = 0) and xl (a = 1). Let T + bRTxr b,∈ R be
the ray, r, through Or (b = 0) and xr (b = 1). Let w = xl × RTxr the vector orthogonal to
both l and r, and axr + cw, c ∈ R, the line w through axl (for some fixed a) and the parallel
to w.

1. Determine the endpoints of the segment, s, belonging to the line parallel to w that joins l
and r, a0xl and T + b0RTxr, by solving equation 4.18.

2. The trinagulated point, P ′, is the midpoint of the segment s.
The output is the set of reconstructed 3-D points.

4.4 The fundamental matrix
The derivation of the essential matrix in section 4.2 used normalized cameras (where Λ1 = Λ2 =

I). The fundamental matrix plays the role of the essential matrix for cameras with arbitrary
intrinsic matrices Λ1 and Λ2. The general projection equations for the two cameras are

λ1x̃1 = Λ1[I, 0]w̃
λ2x̃2 = Λ2[R,T]w̃,

(4.19)
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and we can use similar manipulations to those presented in section 4.2 to derive the constraint

x̃T
2 Λ−T

2 EΛ−1
1 x̃2 = 0, (4.20)

or
x̃T
2 Fx̃2 = 0, (4.21)

where the 3× 3 matrix F = Λ−T
2 EΛ−1

1 = Λ−T
2 T×RΛ−1

1 is termed the fundamental matrix [29].
Like the essential matrix, it also has rank two, but unlike the essential matrix it has seven degrees
of freedom.

If we know the fundamental matrix F and the intrinsic matrices Λ1 and Λ2, it is possible to
recover the essential matrix E using the relation

E = ΛT
2 FΛ1, (4.22)

and this can further be decomposed to find the rotation and translation between the cameras
using the method of Section 4.2.2. It follows that for calibrated cameras, if we can estimate the
fundamental matrix, then we can find the rotation and translation between the cameras. Hence,
we now turn our attention on how to compute the fundamental matrix.

4.4.1 Estimation of the fundamental matrix
The fundamental matrix relation (equation 4.21) is a constraint on the possible positions of
corresponding points in the first and second images. This constraint is parameterized by the
nine entries of F. It follows that if we analyze a set of corresponding points, we can observe
how they are constrained, and from this we can deduce the entries of the fundamental matrix F.

Figure 4.6: The cost function is the sum of the squares of the distances between these epipolar lines and
the points (yellow arrows). This is termed symmetric epipolar distance. Figure from [3].

A suitable cost function for the fundamental matrix can be found by considering the epipolar
lines. Consider a pair of matching points xi1, xi2 in images 1 and 2, respectively. Each point
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induces an epipolar line in the other image: the point xi1 induces line li2 in image 2 and the point
xi2 induces the line li1 in image 1. When the fundamental matrix is correct, each point should lie
exactly on the epipolar line induced by the corresponding point in the other image (figure 4.6).
We hence minimize the squared distance between every point and the epipolar line predicted by
its match in the other image so that

F̂ = arg min
F

[ I∑
i=1

(
(dist[xi1, li1])2 + (dist[xi2, li2])2

)]
, (4.23)

where the distance between a 2D point x = [x, y]T and a line l = [a, b, c] is

dist[x, l] = ax+ by + c√
a2 + b2

. (4.24)

Here too, it is not possible to find the minimum of equation 4.23 in closed form, and we
must rely on nonlinear optimization methods. It is possible to get a good starting point for this
optimization using the eight-point algorithm.

4.4.2 The eight-point algorithm
The eight-point algorithm converts the corresponding 2D points to homogeneous coordinates
and then solves for the fundamental matrix in closed form. It does not directly optimize the cost
function in equation 4.23, but instead minimizes an algebraic error. However, the solution to
this problem is usually very close to the values that optimize the desired cost function.

In homogeneous coordinates, the relationship between the ith point xi1 = [xi1, yi1]
T in image

1 and the ith point xi2 = [xi2, yi2]
T in image 2 is

[
xi2 yi2 1

]
f11 f12 f13

f21 f22 f23

f31 f31 f33


xi1

yi1

1

 = 0, (4.25)

where fpq represents one of the entries in the fundamental matrix. When we write this constraint
out in full, we get

xi2xi1f11+xi2yi1f12+xi2f13+yi2xi1f21+yi2yi1f22+yi2f23+xi1f31+yi1f32+f33 = 0. (4.26)

This can be expressed as an inner product[
xi2xi1, xi2yi1, xi2, yi2xi1, yi2yi1, yi2, xi1yi1, 1

]
f = 0, (4.27)

where f = [f11, f12, f13, f21, f22, f23, f31, f32, f33]
T is a vectorized version of the fundamental

matrix, F.
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This provides one linear constraint on the elements of F. Consequently, given I matching
points, we can stack these constraints to form the system

Af =


x12x11 x12y11 x12 y12x11 y12y11 y12 x11 y11 1

x22x21 x22y21 x22 y22x21 y22y21 y22 x21 y21 1
... ... ... ... ... ... ... ... ...

xI2xI1 xI2yI1 xI2 yI2xI1 yI2yI1 yI2 xI1 yI1 1

 f = 0. (4.28)

Since the elements of f are ambiguous up to scale, we solve this system with the constraint
that ∥f∥ = 1. This also avoids the trivial solution f = 0. This is a minimum direction problem
(see Appendix [3]). The solution can be found by taking the singular value decomposition,
A = USVT and setting f to be the last column of V. The matrix F is then formed by reshaping
f to form a 3× 3 matrix [4].

Algorithm 2 Eight-point algorithm for Fundamental matrix
Input : Point pairs {x1i, x2i}Ii=1

Output: Fundamental matrix F
// Compute statistics of data
μ1 =

∑I
i=1 x1i/I

Σ1 =
∑I

i=1(x1i − μ1)(x1i − μ1)/I

μ2 =
∑I

i=1 x2i/I

Σ2 =
∑I

i=1(x2i − μ2)(x2i − μ2)/I
for k = 1 to K do

// Compute transformed coordinates
x1i = Σ−1/2

1 (x1i − μ1)

x2i = Σ−1/2
2 (x2i − μ2)

// Compute constraint
Ai = [xi2xi1, xi2yi1, xi2, yi2xi1, yi2yi1, yi2, xi1, yi1, 1]

end for
// Append constraints and solve
A = [A1;A2; ...AI]
[U, S,V] = svd[A]
F = [v19, v29, v39; v49, v59, v69; v79, v89, v99]
// Compensate for transformation
T1 = [Σ−1/2

1 ,Σ−1/2
1 μ1; 0, 0, 1]

T2 = [Σ−1/2
2 ,Σ−1/2

2 μ2; 0, 0, 1]
F = TT

2FT1
// Ensure that matrix has rank 2
[U, S,V] = svd[F]
σ33 = 0
F = USVT

There are 8 degrees of freedom in the fundamental matrix (it is ambiguous with respect to
scale) and so we require a minimum of I = 8 pairs of points. For this reason, this algorithm

46



is called the eight-point algorithm. This algorithm takes a set of I ≥ 8 point correspondences
xi1, xi2

I
i=1 between two images and computes the fundamental matrix using the 8 point algorithm.

To improve the numerical stability of the algorithm, the point positions are transformed to have
unit mean and spherical covariance before the calculation proceeds. The resulting fundamental
matrix is modified to compensate for this transformation. This algorithm 2 is usually used to
compute an initial estimate for a subsequent non-linear optimization of the symmetric epipolar
distance.

In practice, there are several further concerns in implementing this algorithm:

• Since the data are noisy, the singularity constraint of the resulting fundamental matrix
will not be obeyed in general (i.e., the estimated matrix will be full rank, not rank two).
We re-introduce this constraint by taking the singular decomposition of F, setting the
last singular value to zero, and multiplying the terms back out. This provides the closest
singular matrix under a Frobenius norm.

• Equation 4.28 is badly scaled since some terms are on the order of pixels squared (∼
10000) and some are of the order ∼ 1. To improve the quality of the solution, it is wise to
pre-normalize the data. We transform the points in image 1 as x̃′

i1 = T1x̃i1 and the points
in image 2 as x̃′

i2 = T2x̃i2. The transformations T1 and T2 are chosen to map the mean of
the points in their respective image to zero, and to ensure that the variance in the x- and
y-dimensions is one. We then compute the matrix F′ from the transformed data using the
eight-point algorithm, and recover the original fundamental matrix as F = TT

2 F′T1.

• The algorithm will only work if the three-dimensional positions wi corresponding to the
eight pairs of points xi1, xi2 are in general position. For example, if they all fall on a
plane, then the equations become degenerate and we cannot get a unique solution; here,
the relation between the points in the two images is given by a homography (see chapter
Homography). Similarly, in the case where there is no translation (i.e., t = 0), the re-
lation between the two images is a homography and there is no unique solution for the
fundamental matrix.

• In the subsequent nonlinear optimization, we must also ensure that the rank of F is two.
In order to do this, it is usual to re-parameterize the fundamental matrix to ensure that this
will be the case.

4.4.3 Robust computation of fundamental matrix with RANSAC
The goal of this algorithm is to estimate the fundamental matrix from 2D point pairs {xi1, xi2}Ii=1

to another in the case where some of the point matches are known to be wrong (outliers). The
robustness is achieved by applying the Random sample consensus (RANSAC) algorithm. Since
the fundamental matrix has a eight unknown quantities, we randomly select eight point pairs at
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each stage of the algorithm (each pair contributes one constraint). The goal of RANSAC is to
identify which points are outliers and to eliminate them from the final fit.

a) b) c)

3 Inliers 8 Inliers 12 Inliers

Figure 4.7: RANSAC procedure. a) We select a random minimal subset of points to fit the line (red
points). We fit the line to these points and count how many of the other points agree with this solution
(blue points). These are termed inliers. Here there are only three inliers. b,c) This procedure is repeated
with different minimal subsets of points. After a number of iterations, we choose the fit that had the most
inliers. We refit the line using only the inliers from this fit.

RANSAC works by repeatedly fitting models based on random subsets of the data. The hope
is that sooner or later, there will be no outliers in the chosen subset, and so we will fit a good
model. To enhance the probability of this happening, RANSAC chooses subsets of the minimal
size required to uniquely fit the model. For example, in the case of the line, it would choose
subsets of size two. We repeat this procedure a number of times: on each iteration we choose
a random minimal subset of points, fit a model, and count the number of data points that agree
(the inliers). After a predetermined number of iterations, we then choose the model that had
the most inliers and refit the model from these alone. The complete RANSAC algorithm hence
proceeds as follows (figure 4.7)

Algorithm 3 RANSAC: Robust fit of a model to a data set S which contains outliers.
1. Randomly select a sample of s data points from S and instantiate the model from this subset.
2. Determine the set of data points Si which are within a distance threshold t of the model.

The set S1, is the consensus set of the sample and defines the inliers of S.
3. If the size of Si (the number of inliers) is greater than some threshold T , re-estimate the

model using all the points in Si and terminate.
4. If the size of Si is less than T , select a new subset and repeat the above,
5. After N trials the largest consensus set Si is selected, and the model is re-estimated using

all the points in the subset Si.

4.5 The Gold Standard method
The Maximum Likelihood (ML) estimate of the fundamental matrix depends on the assumption
of an error model. We make the assumption that noise in image point measurements obeys a
Gaussian distribution. In that case the ML estimate is the one that minimizes the geometric

48



distance (which is reprojection error)∑
i

d(xi2, xi1)
2 + d(x′

i2, x′
i1)

2 (4.29)

where xi ↔ x′
i are the measured correspondence, and x̂i and x̂′

i are the estimated ”true” corre-
spondences that satisfy x̂′T

i Fx̂i = 0 exactly for some rank-2 matrix F, the estimated fundamental
matrix [4].

Algorithm 4 The Gold Standard algorithm for estimating F from image correspondences.
1. Make an initial estimate of F̂ using the normalized 8-point algorithm.
2. From this F̂ extract two camera matrices P = [I, 0] and P′ = [[e′]×F̂, e′] where e′ obtained

from F̂.
3. From the correspondences and F̂ estimate the 3D positions of the real-world points ŵi using

the triangulation method.
4. Given this 3D points project them back to both image planes using the estimate of the camera

projection matrices x̂i = Pŵi, x̂′
i = P′ŵi (that were based on F̂).

5. The difference in the real points and the backprojected points is what we want to minimize
by varying the camera matrices P and P′ and the coordinates of the 3D points

6. Minimize the geometric distance from equation 4.29 over F̂ and ŵi, i = 1, ..., n. The cost
is minimized using the Levenberg-Marquardt algorithm over 3n + 12 variables: 3n for the
n 3D points ŵi, and 12 for the camera matrix.

49



Chapter 5

HOMOGRAPHY

5.1 Planar homography

5.2 Estimating the planar homography matrix

5.3 Camera Calibration

5.4 Decomposing the planar homography matrix

5.5 Decomposing the Rotation matrix

In order for the eight-point algorithm to give a unique solution (up to a scalar factor) for
the camera motion, it is crucial that the feature points in 3D be in general position. When the
points happen to form certain degenerate configurations, the solution might no longer be unique.
When all the feature points happen to lie on certain 2D surfaces, this is called critical surfaces.
Many of these critical surfaces occur rarely in practice and their importance is limited. However,
2D planes, which happen to be a special case of critical surfaces, are ubiquitous in man-made
environments and in aerial imaging [6]. Therefore, if one applies the eight-point algorithm to
images of points all lying on the same 2D plane, the algorithm will fail to provide a unique
solution. On the other hand, in many applications, a scene can indeed be approximately planar
(e.g., the landing pad for a helicopter) or piecewise planar (e.g., the corridors inside a building).

5.1 Planar homography
Let us consider two images of a point p on a 2D plane P in 3D space. For simplicity, we will
assume throughout the section that the optical center of the camera never passes through the
plane, as illustrated in Figure 5.1.

Now suppose that two images (x1, x2) are given for a point p ∈ P with respect to two camera
frames. Let the coordinate transformation between the two frames be
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X2 = RX1 + T, (5.1)
where X1,X2 are the coordinates of p relative to camera frames 1 and 2, respectively. As we
have already seen, the two images x1, x2 of p satisfy the epipolar constraint

xT
2 Ex1 = xT

2 T×Rx1 = 0. (5.2)

Figure 5.1: Two images x1, x2 ∈ R3 of a 3-D point p on a plane P . They are related by a homography
H that is induced by the plane. The figure was copied from [6].

However, for points on the same plane P , their images will share an extra constraint that
makes the epipolar constraint alone no longer sufficient.

Let N = [n1, n2, n2]
T ∈ S2 be the unit normal vector of the plane P with respect to the first

camera frame, and let d > 0 denote the distance from the plane P to the optical center of the
first camera. Then we have

NTX1 = n1X + n2Y + n3Z = d ⇔ 1

d
NTX1 = 1, ∀X1 ∈ P. (5.3)

Substituting equation (5.3) into equation (5.1) gives

X2 = RX1 + T = RX1 + T1

d
NTX1 =

(
R +

1

d
TNT

)
X1. (5.4)

We call the matrix
H = R +

1

d
TNT ∈ R3×3 (5.5)

the (planar) homography matrix, since it denoted a linear transformation from X1 ∈ R3 to
X1 ∈ R3 as

X2 = HX1. (5.6)
Note that the matrix H depends on the motion parameters {R,T} as well as the structure

parameters {N, d} of the plane P . Due to the inherent scale ambiguity in the term 1
d
T in equation
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(5.5), one can at most expect to recover from H the ratio of the translation T scaled by the
distance d. From

λ1x1 = X1, λ2x2 = X2, X2 = HX1, (5.7)
we have

λ2x2 = Hλ1x1 ⇔ x2 ∼ Hx1, (5.8)
where we recall that ∼ indicates equality up to scalar factor. Often, the equation

x2 ∼ Hx1 (5.9)

itself is referred to as a (planar) homography mapping induces by a plane P. Despite the scale
ambiguity H introduces a special map between points in the first image and those in the second
in the following sense:

1. For any point x1 in the first image, that is the image of some point, say p on the plane
P , its corresponding second image x2 is uniquely determined as x2 ∼ Hx1 since for any
other point, say x′

2, on the same epipolar line ℓ2 ∼ Ex1, the ray o2x′
2 will intersect the

ray o1x1 at a point p′ out of the plane.

2. On the other hand, if x1 is the image of some point, say p′, not on the plane P , then x2 ∼
Hx1 is only a point that is on the same epipolar line ℓ2 ∼ Ex1 as its actual corresponding
image x′

2. That is, ℓT2 x2 = ℓT2 x′
2 = 0.

In addition to the fact that the homography matrix H encodes information about the cam-
era motion and the scene structure, knowing it directly facilitates establishing correspondence
between points in the first and the second images. As we will see soon, H can be computed
in general from a small number of corresponding image pairs. Once H is known, correspon-
dence between images of other points on the same plane can then be fully established, since the
corresponding location x2 for an image point x1 is simply Hx1.

5.2 Estimating the planar homography matrix
We begin with a simple linear algorithm for determining H given a set of four 2D to 2D point
correspondences, xi ↔ x′

i. The transformation is given by the equation x′
i = Hxi. Note that this

is an equation involving homogeneous vectors; thus the 3-vectors x′
i and Hxi, are not equal, they

have the same direction but may differ in magnitude by a non-zero scale factor. The equation
may be expressed in terms of the vector cross product as x′

i × Hxi = 0. This form will enable
a simple linear solution for H to be derived.
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If the j-th row of the matrix H is denoted by hjT , then we have

Hxi =

h1Txi

h2Txi

h3Txi

 (5.10)

Writing x′
i = (x′

i, y
′
i, w

′
i)
T , the cross product can be given explicitly as

x′
i × Hxi =

y′ih3Txi − w′
ih2Txi

w′
ih1Txi − x′

ih3Txi

x′
ih2Txi − y′ih1Txi

 . (5.11)

Since hjTxi = xT
i hj for j = 1 . . . , 3, this gives a set of three equations in the entries of H, which

may be written in the form  0T −w′
ixT

i y′ixT
i

w′
ixT

i 0T −x′
ixT

i

−y′ixT
i x′

ixT
i 0T


h1

h2

h3

 = 0. (5.12)

These equations have the form Aih = 0, where Ai, is a 3 × 9 matrix, and h is a 9-vector
made up of the entries of the matrix H,

h =

h1

h2

h3

 , H

h1 h2 h3

h4 h5 h6

h7 h8 h9

 (5.13)

Although equation 5.12 constrains three equations, only two of them are linearly indepen-
dent. Thus each point correspondence gives two equations in the entries of H. The set of equa-
tions can be written as

[
0T −w′

ixT
i y′ixT

i

w′
ixT

i 0T −x′
ixT

i

]h1

h2

h3

 = 0. (5.14)

Given a set of four point correspondences from the plane, a set of equations Ah = 0 is ob-
tained, where A is the matrix obtained by stacking the rows of Ai contributed from each corre-
spondence and h is the vector of unknown entries of H.

In practise, the extracted image points do not satisfy the relation x′ = Hx because of noise
in the extracted image points. Let us assume that x′

i is corrupted by Gaussian noise with the
mean 0 and covariance matrix Σx′ . Then, the maximum likehood estimation of H is obtained by
minimizing the following functional

J =
∑

(x′
i − x̂′

i)
TΣ−1

x′ (x′
i − x̂′

i), (5.15)
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where
x̂′
i =

1
h3Txi

[
h1Txi

h2Txi

]
(5.16)

with hi being the ith row of H. In practice, assume Σx′ = σ2I for all i. The above problem
becomes a nonlinear least-squares estimation problem, i.e., finding H such that ∥x′

i − x̂′
i∥2 is

minimum. Then [
xT 0 −uxT

0 xT −vxT

]
h = 0. (5.17)

Given n points, they can be written in matrix equation as Ah = 0, where A, is a 2n×9matrix.
We seek a non-zero solution h that minimizes a suitable cost function subject to the constraint
∥h∥ = 1. This is identical to the problem of finding the minimum of the quotient ∥Ah∥/∥h∥. The
solution is the (unit) eigenvector of ATA with the least eigenvalue. Equivalently, the solution is
the right singular vector associated with the smaller singular value of A [4].

Algorithm 5 Direct Linear Transformation (DLT) in points
Goal: Given n ≥ 4 2D to 2D point correspondences xi ↔ x′

i determine the 2D homography
matrix H such that x′

i = Hxi.
1. For each correspondence xi ↔ x′

i compute Ai. Usually only two rows needed.
2. Assemble n2× 9 matrices Ai into a single 2n× 9 matrix A.
3. Obtain SVD of A as USVT with S diagonal with positive diagonal entries, arranged in

descending order down the diagonal, then h is the last column of V.
4. Determine H from h.

In A, some elements are constant 1, some are in pixels, some are in world coordinates, and
some are multiplication of both. This makes A poorly conditioned numerically. Much better is
suggested as follows.

1. Transform the image coordinates according to the transformations x̃i = Txi and x̃′
i = T′x′

i.

2. Find the transformation H̃ from the correspondences x̃i ↔ x̃′
i.

3. Set H = T′H̃T.

Hartley et al. [4] shows that data normalization gives dramatically better results and hence
should be considered as an essential step in the algorithm 5. One of the commonly used trans-
formation is to translate the points so that their centroid is at the origin and the points are scaled
such that the average distance from the origin is equal to √

2.
So far it was assumed that the only source of error in the set of correspondences, xi ↔ x′

i

is in the measurement of positions. In many practical situations this assumption is not valid
because correspondences are computed automatically (SIFT and SURF detectors) and are often
mismatched. The mismatched points can be considered as outliers to a Gaussian distribution
that explains the error in measurements. These outliers can severely disturb the estimated ho-
mography and should be identified. The goal then is to determine a set of inliers from the
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presented correspondences so that the homography can be estimated in an optimal manner from
these inliers. This is robust estimation sice the estimation is robust or tolerant to outliers, i.e.,
measurements following a different, and possibly unmodelled, error distribution.

The RANSAC algorithm can be applied to the putative correspondences to estimate the ho-
mography and the (inlier) correspondences which are consistent with this estimate. The sample
size is four, since four correspondences determine a homography. The number of samples is set
adaptively as the proportion of outliers is determined from each consensus state.
Algorithm 6 RANSAC for Homography.
Goal: Compute the homography between the two images given a set of candidate matches
1. Select four points from the set of candidate matches, and compute homography.
2. Select all the pairs which agree with the homography. A pair xi ↔ x′

i, is considered to agree
with a homography H, if d(Hxi, x′

i) < t, for some threshold t and d(.) is the Euclidean
distance between two pairs.

3. Repeat steps 1 and 2 until a sufficient number of pairs are consistent with the computed
homography.

4. Recompute the homography using all consistent correspondences.

There are some important issues in robust estimation using the above procedure. The dis-
tance threshold t should be chosen, such that the point is an inlier with a probability a. This
calculation requires known probability distribution for the distance of an inlier from the model.
In practice, the distance threshold t is chosen empirically so that the probability a that the point
is an inlier is high, such as, 0.95. Secondly, trying every possible sample may be prohibitively
expensive. Instead a large number of samples is used so that at least one of the random samples
of 4 points is free from outliers with a high probability, such as, 0.99. Another rule of thumb
employed is to terminate the iterations if the size of the consensus set T is similar to the number
of inliers believed to be in the data set. Given the assumed proportion of outliers, we can use
T = (1− t)n for n data points.

5.3 Camera Calibration
From Chapter 3, we learned that the essential parameters of a camera under the pinhole model
are its focal length and the size of the image plane (which defines the field of the view of the
camera). Also, since we are dealing with the digital images, the number of pixels on the image
plane is another important characteristic of a camera. Finally, in order to be able to compute
the position of an image’s scene point in pixel coordinates, we need one additional piece of
information. Considering the line coming from the focal point that is orthogonal to the image
plane, we need to know at which pixel position this line pierces the image plane. This point is
called the principal point. It could be logical to assume that this principal point is at the center
of the image plane, but in practice, this one might be off by few pixels depending at which
precision the camera has been manufactured.
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Figure 5.2: Images of a chessboard being held at various orientations (left) provide enough information
to completely solve for the locations of those images in global coordinates (relative to the camera) and
the camera intrinsics. The figure was copied from [7].

To calibrate a camera, the idea is to show to this camera a set of scene points for which
their 3D position is known. You must then determine where on the image these points project.
Obviously, for accurate results, we need to observe several of these points. One way to achieve
this would be to take one picture of a scene with many known 3D points. A more convenient
way would be to take several images from different viewpoints of a set of some 3D points. This
approach is simpler but requires computing the position of each camera view, in addition to the
computation of the internal camera parameters which fortunately is feasible.

Although there are many ways to solve for the camera parameters, OpenCV choose one
that works well on planar objects. The algorithm OpenCV uses to solve for the focal lengths
an the offsets is based on Zhang’s method [30]. For each view of the chessboard, we collect a
homography H as described previously. We will write H out as column vectors, H = [h1, h2, h3],
where each h is a 3-by-1 vector. Then, in view of the preceding homography discussion, we can
set H equal to the intrinsic matrix Λ multiplied by a combination of the first two rotation matrix
columns, r1 and r2, and the translation vector t; after including the scale factor s, this yield:

H = [h1, h2, h3] = sΛ[r1, r2, t]. (5.18)
Reading off these equations, we have:

h1 = sΛr1 or r1 = λΛ−1h1

h2 = sΛr2 or r2 = λΛ−1h2

h3 = sΛt or t = λΛ−1h3

(5.19)
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where λ = 1/s

The rotation vectors are orthogonal to each other by construction, and since the scale is
extracted it follows that r1 and r2 are orthogonal. Orthogonal implies two things: the rotation
vector’s dot product is 0, and the vector’s magnitudes are equal. Starting with the dot product,
we have:

rT1 r2 = 0. (5.20)
For any vectors a and b we have (ab)T = bT sT , so we can substitute for r1 and r2 to derive

our first constraint:

hT
1 Λ−TΛ−1h2 = 0, (5.21)

where A−T is shorthand for (A−1)T . We also know that the magnitudes at the rotation vectors
are equal:

∥r1∥ = ∥r2∥ or rT1 r1 = rT2 r2. (5.22)
Substituting for r1 and r2 yields our second constraint:

hT
1 Λ−TΛ−1h1 = hT

2 Λ−TΛ−1h2 (5.23)
To make things easier, we set B = Λ−TΛ−1. Writing this out, we have:

B = Λ−TΛ−1 =

B11 B12 B13

B21 B22 B23

B31 B32 B33

 . (5.24)

It so happens that this matrix B has a general closed-form solution:

B =


1
f2
x

0 −cx
f2
x

0 1
f2
y

−cy
f2
y

−cx
f2
x

−cy
f2
y

−c2x
f2
x
+

−c2y
f2
y
+ 1

 . (5.25)

Using the B-matrix, both constraints have the general form hiTBhj in them. Let’s multiply
this out to see what the components are. Because B is symmetric, it can be written as one six-
dimensional vector dot product. Arranging the necessary elements of B into the new vector b,
we have:
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hT
i Bhj = vT

ijb =



hi1hj1

hi1hj2 + hi2hj1

hi2hj2

hi3hj1 + hi1hj3

hi3hj2 + hi2hj1

hi3hj3



T 

B11

B12

B22

B13

B23

B33



T

(5.26)

Using this definition for vijT our two constraints may now be written as:[
v12T

(v11 − v22)T

]
b = 0. (5.27)

If we collect K images of chessboards together, then we can stack K of these equations
together:

Vb = 0 (5.28)
where V is a 2K-by-6 matrix. If K ≥ 2 then this equation can be solved for our b = [B11, B12,

B22, B13, B23, B33]
T . The camera intrinsics are then pulled directly out of our closed-form so-

lution for the B-matrix:

fx =
√
λ/B11

fy =
√
λB11/(B11B22 −B2

12)

cx = −B13f
2
x/λ

cy = (B12B13 −B11B23)/(B11B22 −B2
12)

(5.29)

where λ = B33 − (B2
13 + cy(B12B13 −B11B23))/B11.

The extrinsics (rotation and translation) are then computed from the equations we read off
the homography condition:

r1 = λΛ−1h1

r2 = λΛ−1h2

r3 = r1 × r2
t = λΛ−1h3

. (5.30)

Here the scaling parameter is determined from the orthonormality conditionλ = 1/∥Λ−1h1∥.
Some care is required because, when we solve using real data and put the r-vectors together =
(R = [r1, r2, r3]), we will not end up with an exact rotation matrix for which RTR = RRT = I
holds. This is an instance of the orthogonal Procrustes problem (see Appendix [3]).
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Figure 5.3: Chessboard corners.

OpenCV proposes to use a chessboard pattern to generate the set of 3D scene points required
for calibration. This pattern creates points at the corners of each square, and since this pattern is
flat, we can freely assume that the board is located at Z = 0 with the X and Y axes well aligned
with the grid. In this case, the calibration process simply consists of showing the chessboard
pattern to the camera from different viewpoints. In figure 5.2 a number of 10 to 20 chessboard
images are sufficient, but these must be taken from different viewpoints at different depths.
The nice thing is that OpenCV has a cvFindChessboardCorners function that automatically
detects the corners of this chessboard pattern. You simply provide an image and the size of
the chessboard used (number of vertical and horizontal inner corner points) (figure 5.3). The
function will return the position of these chessboard corners on the image.

In our calibration example, the reference frame was placed on the chessboard. Therefore,
there is a rigid transformation (rotation and translation) that must be computed for each view.
These are in the output parameter list of the cvCalibrateCamera2 function. The rotation and
translation components are often called the extrinsic parameters of the calibration and they are
different for each view. The intrinsic parameters remain constant for a given camera/lens sys-
tem. The intrinsic parameters of our test camera obtained from a calibration based on 20 chess-
board images are ϕx = 9.89290588e + 02, ϕy = 9.89290588e + 02, δx = 6.34555359e + 02,
δy = 3.76046478e + 02. These results are obtained by cvCalibrateCamera2 through an opti-
mization process aimed at finding the intrinsic and extrinsic parameters that will minimize the
difference between the predicted image point position, as computed from the projection of the
3D scene points, and the actual image point position, as observed on the image. The sums of
this difference for all points specified during the calibration is called the re-projection error. It
is used to quantify how closely an estimate of a 3D point x̂ recreates the point’s true projection
x.
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5.4 Decomposing the planar homography matrix
After we have recovered H of the form H = (R+ 1

d
TNT ), we now study how to decompose such

a matrix into its motion and structure parameters, namely {R, T
d
,N} (figure 5.4). First notice

x̂cam

ŷcam

ẑcam

d

x 0

x 1

x 2

x 3

N

Figure 5.4: The second camera is looking at the plane at distance d. The figure was reproduced from
Wikipedia.

that H preserves the length of any vector orthogonal to N, i.e. if N ⊥ a, we have ∥Na∥2 =

∥Ra∥2 = ∥a∥2. Also, if we know the plane spanned by the vectors that are orthogonal to N, we
then know N itself. Let us first recover the vector N based on this knowledge.

The symmetric matrix HTH will have three eigenvalues σ2
1 ≥ σ2

2 ≥ σ2
3 ≥ 0. Since HTH is

symmetric, it can be diagonalized by an orthogonal matrix V such that

HTH = VSVT , (5.31)

when S = diag{σ2
1, σ

2
2, σ

2
3}. If [υ1, υ2, υ3] are the three column vectors of V, we have

HTHυ1 = σ2
1υ1, HTHυ2 = υ2, HTHυ3 = σ2

3υ3. (5.32)

Hence υ2 is orthogonal to both N and T, and its length is preserved under the map H. Also, it is
easy to check that the length of two other unit-lenght vectors defined as

u1 =

√
1− σ2

3υ1 +
√

σ2
1 − 1υ3√

σ2
1 − σ2

3

, u2 =

√
1− σ2

3υ1 −
√
σ2
1 − 1υ3√

σ2
1 − σ2

3

(5.33)

is also preserved under the map H. Furthermore, it is easy to verify that H preserves the length
of any vectors inside each of the two subspaces

S1 = span{υ2, u1}, S2 = span{υ2, u1}. (5.34)

Since υ2 is orthogonal to u1 and u2, υ2 × u1 is a unit normal vector to S1, and υ2 × u2 a unit
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normal vector to S2. Then {υ2, u1, υ2 × u1} and {υ2, u2, υ2 × u2} form two sets of orthogonal
bases for R3. Notice that we have

Rυ2 = Hυ2, Rui = Hui, R(υ2 × ui) = Hυ2 × Hui (5.35)

if N is the normal to the subspace Si, i = 1, 2, as show show in Figure 5.5.

Figure 5.5: In terms of singular vectors (υ1, υ2, υ3) and singular values (σ1, σ2, σ3) of the matrix H,
there are two candidate subspaces S1 and S2 on which the vectors’ length is preserved by the homography
matrix H.

Define the matrices each of the two subspaces

U1 = [υ2, u1, υ2 × u1], W1 = [Hυ2,Hu1,Hυ2 × Hu1], (5.36)

U2 = [υ2, u2, υ2 × u2], W2 = [Hυ2,Hu2,Hυ2 × Hu2]. (5.37)
We then have

RU1 = W1, RU1 = W1. (5.38)
This suggests that subspaces S1 and S2 may give rise to a solution to the decomposition. By
taking into account the extra sign ambiguity in the term 1

d
TNT , we then obtain four solutions

for decomposing H = (R + 1
d
TNT ) to {R, T

d
,N}. They are given in Table 5.1

Solution 1
R1 = W1UT

1

N1 = υ2 × u1
1
d
T1 = (H − R1)N1

Solution 2
R2 = W2UT

2

N2 = υ2 × u2
1
d
T2 = (H − R2)N2

Solution 3
R3 = R1

N3 = −N1
1
d
T3 = −1

d
T1

Solution 4
R4 = R2

N4 = −N2
1
d
T4 = −1

d
T2

Table 5.1: Four solutions for the planar homography decomposition, only two of which satisfy the posi-
tive depth constraint.

In order to reduce the number of physically possible solutions, we may impose the positive
depth constraint since the camera can see only points that are in front of it, we must have NT e3 =
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n3 > 0. Suppose that solution 1 is the true one; this constraint will then eliminate solution 3 as
being physically impossible. Thus, one of solutions 2 or 4 will be eliminated.

Algorithm 7 The four-point algorithm for planar scene.
Goal: For a given set of image pairs (x1i, x2i), i = 1, 2, . . . , n(n ≥ 4), of points on a plane

NTX = d, this algorithm finds {R, T
d
,N} that solves

xT
2i × (R + 1

d
TNT )x1i = 0, i = 1, 2, . . . , n.

1. Compute a first approximation of the homography matrix using the DLT and RANSAC
algorithm.

2. Normalization of the homography matrix. Compute the eigenvalues {σ1, σ2, σ3} of the ma-
trix HTH and normalize it as H = H/σ2.

3. Decomposition of the homography matrix. Compute the singular value decomposition of
HTH = VSVT

and compute the four solutions for a decomposition {R, T
d
,N} as in Table 5.1.

4. Select the two physically possible ones by imposing the positive depth constraint NT e3 > 0.

Similarly with the decomposition of the Essential Matrix in the previous chapter, we have
2-fold ambiguity for the decomposition of Homography. Fortunately, we can resolve this ambi-
guity using the corresponding pair of points from the two images and the Triangulation algorithm
which is developed in the previous Chapter.

5.5 Decomposing the Rotation matrix
From decomposition of H we recover a rotation matrix R and a translation matrix T up to an
unknown scaling factor.

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 . (5.39)

Now, we will decompose the given 3× 3 rotation matrix to 3 Euler angles [31]

θx = atan2(r32, r33)

θy = atan2(−r31,
√

r232 + r233)

θz = atan2(r21, r11)

(5.40)

Given 3 Euler angles θx, θy, θz, the rotation matrix is calculated as follows:

X =

1 0 0

0 cos(θx) −sin(θx)

0 sin(θx) cos(θx)

 , (5.41)
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Y =

 cos(θy) 0 sin(θy)

0 1 0

−sin(θy) 0 cos(θy)

 , (5.42)

Z =

cos(θz) −sin(θz) 0

sin(θz) cos(θz) 0

0 0 1

 . (5.43)

Multiplying the three basic rotation matrices we have

R = ZYX. (5.44)
The Euler angles returned when doing a decomposition will be in the following ranges:

θx → (−π, π)

θy → (−π

2
,
π

2
)

θz → (−π, π)

(5.45)

If we keep angles within these ranges, then we will get the same angles on decomposition.
Conversely, if our angles are outside these ranges we will still get the correct rotation matrix,
but the decomposed values will be different to our original angles.
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Chapter 6

EXPERIMENTAL EVALUATION

6.1 Corresponding points

6.2 Experimental results

6.3 Performance of approximate motion from homography

6.4 Visual homing

Our system consists of five stages, which all must work efficient in order to have an accu-
racy visual homing process. These stages are illustrated in Figure 6.1. The first stage extracts
features from images with the SIFT algorithm, which transforms image data into scale-invariant
coordinates relative to local features, and stores them in a database. The second stage, matches
each feature from the new image to this previous database and finds candidate matching features
based on Euclidean distance of their feature vectors. This is performed with the nearest-neighbor
algorithm.

The third stage estimates the homography matrix from four corresponding points of our
two planar scenes, which differ by a projective transformation. In the fourth stage, our system
calculate the rotation matrix and the translation vector, using the 3D epipolar geometry and the
homography. The fifth stage, implements the movement manipulation of our robotic platform
and examines if it is located in the target position. If it is not occurred, our robot feeds back a
new current image and restart the same visual homing process.

In this chapter, we will examine the robustness of our visual homing process. This will
be done by changing some parameters of our homing process and we will evaluate how these
parameters affect the visual homing algorithm. Also, we will show how we manipulate the robot
movements and how we succeed to move it in the target position.
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Figure 6.1: Visual homing process.

6.1 Corresponding points
In our visual homing process the rotation must be computed accurately, because even a small
rotation error produces high drifts when the robot advances. Also, the rotation is depended
from the correct corresponding points. In the application of robot homing we obtain about 25%
of wrong matches, but using the appropriate parameters in SIFT descriptors, by eliminating
keypoints that have a ratio between the principal curvatures greater than 10, we obtain less than
5% of wrong final matches and even in many cases (depending on the motion and the scenes)
we obtain 100% of correct matches.

6.2 Experimental results
We have performed several experiments to evaluate the accuracy with real images computing
the motion from homography. We center our attention in the computation of rotation because
the translation is recovered at a position only to within a scale factor.
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6.2.1 Coordinate system
In order to make the movement manipulations of our robotic platform, we need to know the
coordinates system of the motion directions. By decomposing the homography matrix, we take
this coordinate systems which is shown in Figure 6.2. As we can see, the y-axis is vertical to
our coordinate system and the rotation process is depended by this axis. Also, we can see that
the x and z axes, state the distance from the target position.

Butter�y

Tx

Tz

Target

Position

Initial

Position

θy

Figure 6.2: Coordinate system of robot’s environment.

6.2.2 Homing vectors
We estimate the homography from two planar scenes. First planar scene is shown in Figure 6.3
consider this as a target position. Second planar scenes are Figure 6.4-6.6. We set these, initials
position. In each image, we export the rotation matrix and translation vector which are estimated
from the decomposition process and we interpret these, in order to move the robotic platform to
the target position.
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(a)

(b)

Figure 6.3: a) The robot is situated in the target position. b) Image captured by robot in the target position.

In that position we capture an image from the target position, which is useful for our visual
homing process (Figure 6.3). All the other images captured by robot in a arbitrary position, are
compared with this image. The advantage with this is that it has all the information that we need
in order to find good keypoints and descriptors, by the SIFT and SURF algorithm, and to match
them with the descriptors found in the new image, with the nearest-neighbor method. Also, our
experimental environment is ideal, because the background is a white wall, and this means that
we have no influences from other object. This help us to extract features only from the butterfly
image without having outliers by external object, like an indoor environment.
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(a)

(b)

Figure 6.4: a) The robot is situated behind our target. b) Image captured by robot in that position

Figure 6.4 has rotation matrix:

 0.9947 −0.1011 0.0162

0.1020 0.9921 −0.0729

−0.0087 0.0741 0.9972

 and translation vector:

−0.0985

0.0451

−0.3550

. By decomposing the rotation matrix according to the equation (5.40) in Chapter 5,

we have θx = 0.0742 , θy = 0.0087 and θz = 0.1022. Making the transformation from radians
to degrees we take a small rotation. This means that we do not have intense rotation in any axis
and the robot is situation behind the target position cause the tz < 0.
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(a)

(b)

Figure 6.5: a) The robot is situated left the target position. b) Image captured from left position.

Figure 6.5 has rotation matrix:

0.9805 −0.0986 −0.1697

0.0916 0.9946 −0.0491

0.1736 0.0326 0.9843

 and translation vector:

−0.4908

0.0043

−0.5676

. Making the decomposition of rotation matrix, we have θx = 0.0331 , θy =

−0.1745 and θz = 0.091. This means that we have rotation in y-axis by -20 degrees, the robot
is situated behind the target position and has translated left to the target.
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(a)

(b)

Figure 6.6: a) The tobot is situated right to the target position. b) Image captured from right position.

Figure 6.6 has rotation matrix:

 0.9797 −0.0738 0.1864

0.0837 0.9955 −0.0455

−0.1822 0.0601 0.9814

 and translation vector:

 0.2809

0.0064

−0.3750

. Making the decomposition of the rotation matrix, we have θx = 0.0612 , θy =

0.1833 and θz = 0.0852. This means that we have rotation in y-axis by 20 degrees, the robot is
situation behind the target position and has translated right to the target.
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6.2.3 Back-reprojection error
To compute the homography, we have implemented the RANSAC algorithm, which is robust
method to consider the existence of outliers. The automatic computing of the homography in-
cludes two steps. The first steps is to obtain interest points and determine putative correspon-
dences, while the second one is to estimate the homography and the correspondences which are
consistent with this estimate by RANSAC algorithm.

In order to estimate the homography between two planar scenes, we need four corresponding
points. When we are not sure for the accuracy of the four corresponding points, we find more
pairs with outliers. The RANSAC algorithm can be applied to the putative correspondences to
estimate the homography and the (inlier) correspondences which are consistent with this esti-
mate. In Chapter 5, algorithm 5, we set a threshold t which represents the minimum distance
where a pair of xi ↔ x′

i considered to agree with the homography H.
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Figure 6.7: Back-reprojection error in rotation angle of the robot using a low resolution camera.

In our experiments we considered this threshold t as maximum allowed reprojection error to
treat a point pair as an inlier. That is, if ||dstPointxi−H×srcPointx′

i|| > ransacReproThresh

then the point i is considered an outlier. We measure the srcPoints and dstPoints in pixels and
set this parameter somewhere in the range of 1 to 10. So, we estimate 10 times the homography
with different value of the back-projection error. After that, we decompose each homography to
find the rotation matrix and the rotation angle in degrees in y-axis (θy). Figure 6.7 represents the
rotation error in degrees with the ground truth rotation, as the distance of the pair points, treated
as inliers, is increasing in pixels. To test these experiments we take 100 pairs of points from two
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standard image position and we check the ground truth error with the estimate rotation from our
process.

We can observe that when the threshold is increasing, we have bigger rotation error in our
application. This rotation error can produces high drifts when the robot advances. The threshold
value 0 is considered to be the ground truth rotation. So we set this threshold to be 1, in order
to have the smallest drifts in our navigation. Also, our rotation values are depended from the
calibration parameters of our camera. So an important factor for this plot is the accuracy of the
calibrated camera. For the first threshold experiments, we use the images taken from Canon
VC-C50i Mount PTZ Camera, which adjusted in P3-DX. Their size are 640 x 480 pixels.
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Figure 6.8: Back-reprojection error in rotation angle of the robot using a high resolution camera.

In the second set of experiments we use laptop’s camera (iSight) with image resolution 1280
x 960, captured from the same image position with the first experiment. Figure 6.8 shows the im-
provement, as we have significant reduction in the rotation error estimated by the decomposing
process of homography.

6.3 Homography performance with noise
”Image noise” is the digital equivalent of film grain for analogue cameras. Alternatively, one can
think of it as analogous to the subtle background hiss you may hear from your audio system at
full volume. For digital images, this noise appears as random speckles on an otherwise smooth
surface and can significantly degrade image quality. In our application we have to do with digital
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images and we set this random noise as a gaussian noise.
We have built a simulator of scenes and motions and we have compared homography de-

compositions result in different situations in relation to the rotation motion. Image processing
and the other not considered errors will be simulated as gaussian random noise added to image
coordinate of keypoints found from SIFT algorithm. We can appreciate the influence, on the ro-
tation taken from homography, of image gaussian random noise of zero mean and [0-1] standard
deviation in pixels.
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Figure 6.9: Effect of gaussian random noise on computation of the rotation in a low resolution camera.

Figure 6.9 shows the influence of gaussian random noise in a number of keypoints. In order
to do that experiments we got a ground truth image take from -18 angles rotation. This means
18 degrees left the target position. We computed the homography matrix from 4 precise corre-
sponding points. Now we try to shift these keypoints from the initial image in order to estimate
the different rotation angle in our system. This shift was bounded from 0 to 1 pixel. These re-
sults show us that the gaussian noise, affects the estimation of rotation angle and these rotation
affects the convergence of our robot in the target. But in our ideal experimental environment
these influences are small. In real indoor environments these influences will affect the visual
homing navigation and the robotic platform could not reach the target.

In order to overcome these influences, we suggest the robotic platform been occupied with
high resolution cameras. Our visual homing process works better with that cameras. We test
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these values of gaussian noise in 1280 x 1024 image resolution.
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Figure 6.10: Effect of gaussian random noise on computation of the rotation in a high resolution camera.

Figure 6.10 prove the great impact of a high resolution images. Here we have smaller rotation
error than the previous resolution images. In a large scale environment like the indoor, this
reduction in rotation error is a significant factor for accuracy in robot navigation because it
produces low drifts when the robot advances.

6.4 Visual homing experiments
Our experiments were tested in the Robotic Lab in the Department of Computer Science in Ioan-
nina. We use the robotic platform P3-DX with updated operating system Debian 6.0 ”squeeze”,
OpenCV library 2.4 and Canon VC-C50i Mount PTZ Camera.

The only information needed by our system is each current image taken during the naviga-
tion and the goal image previously taken at the target position. We set a region near the target
position, which our visual homing process could work efficiently. This region play the roll
of boundaries, as inside this, the robot can move in the target position without having strange
behaviors (lose the target). This happen in indoor environment because the estimated image key-
points are influenced from the low analysis camera of the robot. So, we have the target image
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position and the initial image position inside our region. Also, we put the camera’s field-of-view
at the same object as in the target position. We do that cause our system understand his position
relative to this image position. Finally, we start the visual homing process, by estimating the
homing vectors which move the robot toward the target position.

The only certain moving command in our robot is the rotation angle relative to the target
position. The translation is recovered at another position only to within a scale factor. So, in
order to move forward the target position, we make constant movements of 100 mm.

Our experiments are presented in this link:
https://www.youtube.com/watch?v=MJsVNUrlBVo
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Chapter 7

CONCLUSION - FUTURE WORK

In the present dissertation, we present a robot navigation procedure using a monocular vision
system. The only information needed by the robot P3-DX is each current image taken during
navigation and the goal image previously taken at the desired position. The only problem in
image-based visual servoing is to deal with the field-of-view constraints of the camera. We
overcome this by capturing the same object in our environment. Traditional visual control ap-
proaches are based on the epipolar geometry, but this model is ill conditioned for planar scenes.
A good alternative is the homography-based approach. It behaves well with planar scenes, which
are quite usual in man made environments.

First, in Chapter 2, based on SIFT descriptors which is invariant to image scaling and rota-
tion, we extract features and matching them in the two images. Because the two planar scenes
differ by a projective transformation (homography), the first step of the algorithm is to estimate
the parameters of the homography. This is done by using the four-point algorithm and RANSAC
procedure, presented in Chapter 5. Then, we decompose homography into a rotation matrix and
translation vector. Due to a two-fold ambiguity, we use 3D epipolar geometry and the triangu-
lation method to find the correct rotation and an up to scale translation. After that, we import
these homing vectors into the robot to estimate his position relative to the target position.

Finally, the performance of our visual homing algorithm was applied in a ideal environment
situation and was tested for noise data to simulate environmental conditions, such as the low
resolution camera. From our experimental evaluation, we conclude that a high resolution camera
make our visual homing process more robust for indoor environment where the accuracy of robot
movements are very significant, to reach the target, without lose it. Having look the constraints
and the abilities of our visual homing system we can suggest some future work. Occupied our
robot with a high resolution camera, and by changing some motion parameters, we can have
a better indoor navigation process. Also using a number of different image position in our
indoor environment, we can navigate the robot in a certain path. This will be very useful for
house navigation. The robot by following different image positions can be in different rooms or
ambients, without knowing the localization maps. Furthermore, using the BumbleBee2 stereo
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camera, helps the navigation to obtain more information for the relative depth which is strange
to received, as our problem have been up to scale.
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