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Abstract. A distinguishing feature of today’s large-scale platforms for
distributed computation and communication, such as the Internet, is
their heterogeneity, predominantly manifested by the fact that a wide
variety of communication protocols are simultaneously running over dif-
ferent distributed hosts. A fundamental question that naturally poses
itself for such common settings of heterogeneous distributed systems
concerns their ability to preserve or restore an acceptable level of per-
formance during link failures. In this work, we address this question for
the specific case of stability properties of greedy, contention-resolution
protocols operating over a packet-switched communication network that
suffers from link slowdowns. We focus on the Adversarial Queueing The-
ory framework, where an adversary controls the rates of packet injections
and determines packet paths. In addition, the power of the adversary is
enhanced to include the manipulation of link slowdowns. Within this
framework, we show that the composition of LIS (Longest-in-System)
with any of SIS (Shortest-in-System), NTS (Nearest-to-Source) and FTG
(Furthest-to-Go) protocols is unstable at rates ρ > 0 when the network
size and the link slowdown take large values. These results represent the
current record for instability bounds on injection rate for compositions of
greedy protocols over dynamic adversarial models, and also suggest that
the potential for instability incurred by the composition of two greedy
protocols may be worse than that of some single protocol.

1 Introduction

Motivation-Framework. Some of the most important features of contempo-
rary large-scale platforms for distributed communication and computation, such
as the Internet, is their robustness and heterogeneity. Robustness is the ability of
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communication despite network link failures, while heterogeneity comes around
in many different flavors. For example, the specifics of how the computers in
different parts of the network are connected with each other, and the properties
of the links that foster the interconnection, is difficult to characterize uniformly.
Moreover, although, conceptually, the Internet uses a unified set of protocols,
in practice each protocol has been implemented with widely varying features
(and of course bugs) [9, 11]. As the Internet evolves into a ubiquitous communi-
cation infrastructure that supports multiple protocols running on different net-
work hosts, its dependability in the presence of various failures becomes critical.
These failures can degrade system performance and lead to service disruption.
Thus, the study of performance and correctness properties of heterogeneous dis-
tributed systems which suffer from link failures becomes a necessity. This study
could help on detecting, understanding and overcoming the conditions leading
to these mentioned negative effects, as well as helping to their prevention.

Objectives. We are interested in the behavior of packet-switched networks in
which packets arrive dynamically at the nodes and they are routed in discrete
time steps across the links. Recent years have witnessed a vast amount of work on
analyzing packet-switched networks under non-probabilistic assumptions (rather
than stochastic ones); we work within a model of worst-case continuous packet
arrivals, originally proposed by Borodin et al. [7] and termed Adversarial Queue-
ing Theory to reflect the assumption of an adversarial way of packet generation
and path determination. A major issue that arises in such a setting is that of
stability– will the number of packets in the network remain bounded at all times?
The answer to this question may depend on the rate of injecting packets into
the network, the slowdown of the links, which is the time delay which is suffered
by outgoing packets in order to be forwarded on a link, and the composition
of protocols running on different network hosts in order to resolve packet con-
flicts. The underlying goal of our study is to establish the stability properties of
heterogeneous networks when packets are injected by an adversary and the link
slowdowns are chosen by the same adversary in a dynamic way.

Model of Quasi-Static Slowdowns. Most studies of packet-switched networks as-
sume that one packet can cross a network link (an edge) in a single time step.
This assumption is well motivated when we assume that all network links are
identical. However, a packet-switched network can contain different types of
links, which is common especially in large-scale networks like Internet. Also, a
real network can suffer from link failures due to natural disasters (like hurri-
canes), human action (like hacker attacks) or by unintentional software failures.
Then, it is well motivated to assign a slowdown to each link. Furthermore, if
each link slowdown takes on values in the two-valued set of integers {1, D} for
D > 1, D takes on large values and each value remains fixed for a long time, then
we can consider approximately as a link failure the assigning of slowdown D to
a link, while the assigning of unit slowdown to a link can be considered as the
proper service rate. Therefore, the study of the stability behavior of networks
and protocols under our model of quasi-static slowdowns can be considered as an
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approximation of the fault-tolerance of a network where links can temporarily
fail (infinite slowdown)1. The goal of this study is to provide an insight towards
detecting, understanding, and overcoming the conditions leading to performance
degradation and service disruption of today’s communication networks during
network attacks or failures.

In this work, we embark on a study of the impact of heterogeneity of dis-
tributed systems on their performance properties if the adversary can determine
the paths of packet injections along with the slowdowns of network edges in
each time step. More specifically, we wish to pose the general question of which
performance properties of heterogeneous packet-switched networks (where com-
positions of protocols are running on different network hosts) are maintained
and which are not in the presence of link failures. This subfield of study was
initiated by Borodin et al. in [8] in the case of networks where a single protocol
is responsible for the resolution of packet conflicts. Note that we continue to
assume uniform packet sizes.

Stability. Roughly speaking, a protocol P is stable [7] on a network G against an
adversary A of rate ρ if there is a constant B (which may depend on G and A)
such that the number of packets in the system is bounded at all times by B.
On the other hand, a protocol P is universally stable [7] if it is stable against
every adversary of rate less than 1 and on every network. Here, we consider four
greedy, universally stable, contention-resolution protocols under the Adversarial
Queueing Theory (Table 1).

Table 1. Greedy protocols considered in this paper (USstands for universally stable)

Protocol name Which packet it advances: US
SIS (Shortest-In-System) The most recently injected packet

√
[4]

LIS (Longest-In-System) The least recently injected packet
√

[4]
FTG (Furthest-To-Go) The furthest packet from its destination

√
[4]

NTS (Nearest-To-Source) The nearest packet to its origin
√

[4]

Contribution. We define here the weakest possible adversary of dynamically
changing network link slowdowns in the context of Adversarial Queueing Theory
(AQM) where the adversary may set link slowdowns to any of two integer values
1 and D (D > 1 is a parameter called high slowdown).2 Moreover, once a link
slowdown takes on a value, the value stays fixed for a continuous time period
proportional to the number of packets in the system at the time of setting the
slowdown to the value. We call this the Adversarial, Quasi-Static Slowdown
Queueing Theory model (AQSSQM). In this framework, we establish that the
1 However, infinite link slowdown is only an approximation of link failure, because in

a slowdown the packet has left the queue and is being transmitted; however, when a
failure occurs, the packet is not being transmitted but stored somewhere, and thus
it participates later in the queue scheduling.

2 In AQM only one slowdown value is available to the adversary.
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composition of LIS with any of SIS, NTS and FTG protocols is unstable for
arbitrarily low injection rates. We prove that increasing the network size along
with dynamic changing of link slowdowns can drop to arbitrarily low values
the lower bound on injection rate that guarantees instability for heterogeneous
networks. To show this, we provide interesting combinatorial constructions of a
size-parameterized network where we specify the contention-resolution protocol
to be used to each queue. For purpose of completeness and comparison, we
summarize, in Table 2, all results that are shown in this work and, also, in [16] (for
AQM) and [18] (for the Adversarial Quasi-Static Queueing Model - AQSQM),
concerning instability bounds on the injection rate for the composition pairs
LIS-SIS, LIS-NTS and LIS-FTG.

Table 2. Instability bounds of the compositions of LIS with any of the SIS, NTS, and
FTG protocols in AQM vs. AQSQM vs. AQSSQM

Instability (AQM) Instability (AQSQM) Instability (AQSSQM)
LIS − SIS ρ > 0.5 [16, Thm. 3.1] ρ >

√
2 − 1 [18, Thm. 2] ρ > 0 [Thm. 1]

LIS − NTS ρ > 0.5 [16, Thm. 3.1] ρ >
√

2 − 1 [18, Thm. 2] ρ > 0 [Thm. 2]
LIS − FTG ρ > 0.5 [16, Thm. 3.1] ρ >

√
2 − 1 [18, Thm. 2] ρ > 0 [Thm. 3]

The combinatorial constructions of networks and adversaries that we have em-
ployed for showing that certain compositions of universally stable protocols can
be unstable for arbitrarily low injection rates when link slowdowns can change
dynamically, significantly extend ones that appeared before in [7, 15, 16, 18]. In
more detail, some of the tools we devise in order to obtain constructions of
networks and adversaries that imply improved bounds are the following:

– We employ combinatorial constructions of networks with multiple
successively pairs of parallel queues; we judiciously use such paths for the
simultaneous injection of various non-overlapping sets of packets. Also, this
construction allows the adversary to inject a set of packets at a time period
over a path with unit slowdown edges, while the previously injected sets of
packets are delayed in another queue due to its high slowdown D.

– We use the technical notions of investing flow and short flow; these are some
special cases of packet flows used in our adversarial constructions consisting
of inductive phases. Roughly speaking, an investing flow injects packets in a
phase some of which will remain in the system till the beginning of the next
phase, in order to guarantee the inductive hypothesis for the next phase; on
the other hand, short flows consist of packets injected on judiciously chosen
links of the network and their role is to delay the investing flows.

Related Work. The issue of composing distributed protocols (resp., objects)
to obtain other protocols (resp., objects), and the properties of the resulting
(composed) protocols (resp., objects), has a rich record in Distributed Comput-
ing Theory (see, e.g., [20]). For example, Herlihy and Wing [13] establish that
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a composition of linearizable memory objects (possibly distinct), each managed
by its own protocols, preserves linearizability. Robustness has been extensively
studied in the context of fault-tolerant distributed systems. A landmark paper
on failures in Tandem systems and the techniques to prevent them is [12]. In
parallel and even earlier, a mathematical framework was developed in the Oper-
ations Research world to manage the robustness and risk in systems composed
of various components [5].

Adversarial Queueing Theory [7] received a lot of interest in the study of sta-
bility and instability issues (see, e.g., [2, 4, 10, 15, 17, 21]). The universal stability
of various natural greedy protocols (SIS, LIS, NTS and FTG) was established
by Andrews et al. [4]. Also, several greedy protocols such as NTG (Nearest-To-
Go) have been proved unstable at arbitrarily low rates of injection in [21]. The
subfield of study of the stability properties of compositions of universally sta-
ble protocols was introduced by Koukopoulos et al. in [15, 16, 17] where lower
bounds of 0.683, 0.519 and 0.5 on the injection rates that guarantee instability
for the composition pairs LIS-SIS, LIS-NTS and LIS-FTG were presented.

Borodin et al. in [8] studied for the first time the impact on stability when
the edges of a network can have capacities or slowdowns. They proved that
many well-known universally stable protocols (SIS, NTS, FTG) do maintain their
universal stability when the link capacity or slowdown is changing dynamically,
whereas the universal stability of LIS is not preserved. This work was further
extended by Koukopoulos et al. in [18, Theorems 2, 3] proving lower bounds of√

2−1 on the injection rates that guarantee instability for the LIS protocol and its
compositions with the SIS, NTS and FTG protocols under dynamically changing
link capacities. Also, Koukopoulos in [14] studied the impact of link slowdowns
on network stability when a single protocol is used or a forbidden subgraph for
universal stability is induced. Moreover, in [1, 3] there have been generalizations
of the adversarial queueing theory to networks with dynamic failures. Finally,
in [6] it is proposed a generalization of the adversarial queueing theory where
the network traffic flow is continuous in time and arbitrary packet lengths, link
speeds and link propagation delays are allowed.

2 Preliminaries

The model definitions are patterned after those in [7, Section 3], adjusted to
reflect the fact that the edge slowdowns may vary arbitrarily as in [8, Section 2],
but we address the weakest possible model of changing slowdowns. We consider
that a routing network is modelled by a directed graph G = (V, E). Each node
u ∈ V represents a communication switch, and each edge e ∈ E represents a link
between two switches. In each node, there is a buffer (queue) associated with
each outgoing link. Time proceeds in discrete time steps. Buffers store packets
that are injected into the network with a route, which is a simple directed path
in G. A packet is an atomic entity that resides at a buffer at the end of any step.
It must travel along paths in the network from its source to its destination, both
of which are nodes in the network. When a packet is injected, it is placed in the
buffer of the first link on its route. When a packet reaches its destination, we say
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that it is absorbed. During each step, a packet may be sent from its current node
along one of the outgoing edges from that node. Edges can have different integer
slowdowns, which may or may not vary over time. Denote De(t) the slowdown of
the edge e at time step t. That is, we assume that if a packet p is scheduled to
traverse the edge e at time t, then packet p completes the traversal of e at time
t + De(t) and during this time interval, no other packet can be scheduled on e.

Let D > 1 be an integer parameter. We demand that ∀e and ∀t De(t) ∈ {1, D}.
We also demand for each edge e that De(t) stays at some value for a continuous
period of time at least equal to f(ρ, D)s time steps, where s is the number of
packets in the system at the time of setting the link slowdown to the value and
f(ρ, D) is a function of the injection rate ρ of the adversary in the network and
the high link slowdown D. We call this the Adversarial, Quasi-Static Slowdown
Queueing Theory Model. Our model is different from the failure model in [1, 3]
because in our model a packet p is delayed after leaving the queue of the edge
e, while in the failure model p waits in the queue of e.

Any packets that wish to travel along an edge e at a particular time step, but
are not sent, wait in a queue for e. At each step, an adversary generates a set
of requests. A request is a path specifying the route that will be followed by a
packet.3 We say that the adversary generates a set of packets when it generates
a set of requested paths. Also, we say that a packet p requires an edge e at time
t if e lies on the path from its position to its destination at time t.

Fix any arbitrary positive integer w ≥ 1. For any edge e of the network and
any sequence of w consecutive time steps, define N(w, e) to be the number of
paths that are injected by the adversary during the time interval of w consecutive
time steps requiring to traverse the edge e. For any constant ρ, 0 < ρ ≤ 1, a
(w, ρ)-adversary is an adversary that injects packets subject to the following load
condition: For every edge e and for every sequence τ of w consecutive time steps,
N(τ, e) ≤ ρ

∑
t∈τ

1
De(t)

. We say that a (w, ρ)-adversary injects packets at rate ρ

with window size w. The assumption that ρ ≤ 1 ensures that it is not necessary
a priori that some edge of the network is overloaded.

In order to formalize the behavior of a network, we use the notions of system
and system configuration. A triple of the form 〈G, A, P〉 where G is a network, A
is an adversary and P is the used protocol (or list of protocols) on the network
queues is called a system. In every time step t, the current configuration Ct of
a system 〈G, A, P〉 is a collection of sets {St

e : eεG}, such that St
e is the set of

packets waiting in the queue of the edge e at the end of step t.
In the adversarial constructions we study here for proving instability, we split

time into phases. In each phase, we study the evolution of the system configura-
tion by considering corresponding time rounds. For each phase, we inductively
prove that the number of packets of a specific subset of queues in the system
increases in order to guarantee instability. This inductive argument can be ap-
plied repeatedly, thus showing instability. Furthermore, we assume that there is
a sufficiently large number of packets s0 in the initial system configuration. This

3 In this work, it is assumed, as it is common in packet routing, that all paths are
simple paths where edges cannot be overlapped, while vertices can be overlapped.
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will imply instability results for networks with an empty initial configuration,
as it was established in [4, Lemma 2.9]. For simplicity, and in a way similar to
that in [4], we omit floors and ceilings from our analysis, and we, sometimes,
count time steps and packets only roughly. This may only result to loosing small
additive constants, while it implies a gain in clarity.

3 Unstable Compositions of Protocols

In this section, we prove that the composition of the LIS protocol with any of
SIS, NTS and FTG protocols can become unstable for arbitrarily low injection
rates. Before proceeding to the adversarial constructions for proving instability
we give two basic definitions.

Definition 1. We denote by Xi the set of packets that are injected into the
system in the ith round of a phase. These packet sets are characterized as in-
vesting flows because only packets from these sets will remain in the system at
the beginning of the next phase contributing in packet accumulation.

Definition 2. We denote by Si the set of packets the adversary injects into the
system in the ith round of a phase. These packet sets are characterized as short
flows because they are injected on judiciously chosen links of the network for
delaying investing flows.

3.1 A Parameterized Network Family Gl

We provide here a parameterized family of networks Gl (see Figure 1). The
motivation that led us to such a parameterization in the network topology is
two-fold: (a) The existence of many pairs of parallel queues in the network al-
lows the adversary to inject an investing flow at a time round over a path with
unit slowdown edges, while the previously injected investing flows are delayed in
another queue due to its high slowdown D. Also, this structure permits the si-
multaneous injection of an investing flow on one queue of a pair, and a short flow
on the other, without violating the rule of the restricted adversarial model. (b)
Such a parameterized network topology construction, enables a parameterized
analysis of the system configuration evolution into distinguished rounds whose
number depends on the parameterized network topology. In LIS-FTG composi-
tion, the parameterization, besides the parallel edges, includes additional chains
of queues for the exploitation of FTG in blocking investing flows.

3.2 Parameterized Adversarial Constructions

The main ideas of the adversarial constructions we present are: (a) the accurate
tuning of the duration of each round of every phase j (as a function of the high
slowdown D, the injection rate ρ and the number of packets in the system at the
beginning of phase j, sj) to maximize the growth of the packet population in the
system, (b) the careful setting of the slowdowns of some edges to D for specified
time intervals in order to accumulate packets, and (c) the careful injections of
packets that guarantee that the load condition is satisfied.
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Fig. 1. The network Gl

Theorem 1. Let ρ′ = 0.0056. For the network Gl where l > 1000 is a parameter
linear to the number of network queues there is an adversary A1 of rate ρ that
can change the link slowdowns of Gl between the two integer values 1 and D >
1000 such that the system 〈Gl, A1, LIS, SIS〉 is unstable for every ρ > ρ′. When
{D, l} → ∞ the system 〈Gl, A1, LIS, SIS〉 is unstable for ρ > 0.

Proof. Consider an instance of the parameterized network family (network Gl,
see Figure 1). The edges e0, e1, f1, f3, f5, . . . , f4l−7 f

′

1, f
′

3, f
′

5, . . . , f
′

4l−7 of Gl use
the LIS protocol, while the remaining edges of Gl use the SIS protocol. The
construction of the adversary A1 is broken into phases.

Inductive Hypothesis. At the beginning of phase j (suppose j is even), there
are sj packets that are queued in the queues f

′

4l−9, f
′

4l−6 (in total) requiring to
traverse the edges e0, f1.

Induction Step. At the beginning of phase j + 1, there will be sj+1 > sj packets
that will be queued in the queues f4l−9, f4l−6 (in total) requiring to traverse the
edges e1, f

′

1.
We will construct an adversary A1 such that the induction step will hold.

Proving that the induction step holds, we ensure that the inductive hypothesis
will hold at the beginning of phase j + 1 for the symmetric edges with an in-
creased value of sj , sj+1 > sj . By the symmetry of the network, repeating the
phase construction an unbounded number of times, we will create an unbounded
number of packets in the network.

From the inductive hypothesis, initially, there are sj packets (that constitute
the set of packets S) in the queues f

′

4l−9, f
′

4l−6 requiring to traverse the edges
e0, f1. In order to prove the induction step, it is assumed that the set S has
a large enough number of |S| = sj packets in the initial system configuration.
During phase j, the adversary plays l rounds of injections as follows:

Round 1: It lasts |T1| = sj time steps. During this round the edge f1 has high
slowdown D, while all the other edges have unit slowdown. The adversary injects
a set X1 of |X1| = ρ|T1| packets in the queue e0 wanting to traverse the edges
e0, f2, f3, f6, f7, f10, . . . , f4l−9, f4l−6, e1, f

′

1.
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Evolution of the system configuration. The packets of the set S delay the packets
of the set X1 in the queue e0 that uses the LIS protocol because they are longer
time in the system than the packets of the set X1. At the same time, the packets
of the set S are delayed in f1 due to the high slowdown of the edge f1. At the end
of this round, the remaining packets of the set S in f1 are |S′ | = |S| − |T1|/D.

Round 2: It lasts |T2| = |S′ | time steps. During this round the edge f2 has high
slowdown D, while all the other edges have unit slowdown. The adversary injects
a set X2 of |X2| = ρ|T2| packets in the queue f1 requiring to traverse the edges
f1, f3, f6, f7, f10, . . . , f4l−9, f4l−6, e1, f

′

1 and a set S2 of |S2| = ρ|T2|/D packets in
the queue f2 requiring to traverse the edge f2.

Evolution of the system configuration. The packets of the set X2 are delayed by
the packets of the set S

′
in the queue f1 that uses the LIS protocol because the

packets of the set S
′

are longer time in the system than the packets of the set
X2. At the same time, the packets of the set X1 are delayed in the queue f2 that
uses the SIS protocol due to its high slowdown D and the packets of the set S2
that are shorter time in the system than the packets of the set X1. Therefore,
the remaining packets of the set X1 in the queue f2 are |X1| + |S2| − |T2|/D =
|X1| + (ρ − 1)|T2|/D.

Round 3: It lasts |T3| = |X1| + |X2| + (ρ − 1)|T2|/D time steps. During this
round the edge f6 has high slowdown D, while all the other edges have unit
slowdown. The adversary injects a set X3 of |X3| = ρ|T3| packets in the queue
f3 requiring to traverse the edges f3, f5, f7, f10, . . . , f4l−9, f4l−6, e1, f

′

1 and a set
S3 of |S3| = ρ|T3|/D packets in the queue f6 requiring to traverse the edge f6.

Evolution of the system configuration. The packets of the sets X1, X2 delay the
packets of the set X3 in the queue f3 that uses the LIS protocol because they
are longer time in the system than the packets of the set X3. At the same time,
the packets of the sets X1, X2 are delayed in f6 that uses the SIS protocol due to
the high slowdown of the edge f6 and the packets of the set S3 that are shorter
time in the system than the packets of the sets X1, X2. Therefore, the remaining
packets of the sets X1, X2 in the queue f6 are |X1| + |X2| + (ρ − 1) |T2|+|T3|

D .

Round l: It lasts |Tl| =
∑l−1

i=1 |Xi| − (ρ − 1)
∑l−1

i=2 |Ti|/D time steps. During
this round the edge f4l−6 has high slowdown D, while all the other edges have
unit slowdown. The adversary injects a set Xl of |Xl| = ρ|Tl| packets in the
queue f4l−9 requiring to traverse the edges f4l−9, f4l−7, e1, f

′

1 and a set Sl of
|Sl| = ρ|Tl|/D packets in the queue f4l−6 requiring to traverse the edge f4l−6.

Evolution of the system configuration. The packets of the sets X1, . . . , Xl−1 delay
the packets of the set Xl in the queue f4l−9 that uses the LIS protocol because
they are longer time in the system than the packets of the set Xl. At the same
time, the packets of the sets X1, . . . , Xl−1 are delayed in f4l−6 that uses the SIS
protocol due to the high slowdown of the edge f4l−6 and the packets of the set
Sl that are shorter time in the system than the packets of the sets X1, . . . , Xl−1.
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Therefore, the remaining packets of the sets X1, . . . , Xl−1 in the queue f4l−6 are
∑l−1

i=1 |Xi| + (ρ − 1)
∑l

i=2 |Ti|/D.
Thus, the number of packets in the queues f4l−9, f4l−6 requiring to traverse

e1, f
′

1 at the end of this round is sj+1 = ρsj + (ρ + ρ−1
D )

∑l
i=2 |Ti|. Moreover,

∑l
i=3 |Ti| = (ρ+ D+ρ−1

D )
∑l−1

i=3 |Ti|+(2ρ− 1
D − ρ−1

D2 )|T1|. Thus, sj+1 = ρsj +(ρ+
ρ−1
D )D−1

D sj+(ρ+ ρ−1
D )(2ρ− 1

D− ρ−1
D2 )1−(ρ+ D+ρ−1

D )l−2

1−(D+1)ρ
D

sj . In order to have instability,

we must have sj+1 > sj. Therefore, for instability it suffices ρ + (ρ + ρ−1
D )D−1

D +

(ρ + ρ−1
D )(2ρ − 1

D − ρ−1
D2 )1−(ρ+ D+ρ−1

D )l−2

1−(D+1)ρ
D

> 1. If we let ρ = 0.0056, D = 1000 and

l = 1000, the inequality holds. Thus, for {D, l} > 1000 the inequality holds, too.
When D → ∞, it holds that 1

Dk → 0 for all k ≥ 1. Then, our inequality
becomes 2ρ(ρ+1)l−2 > 1. Thus, ρ > 1

2(ρ+1)l−2 . When l → ∞ and x > 0, it holds
that (1 + x)l−2 → ∞. Therefore, for {D, l} → ∞ the inequality ρ > 1

2(ρ+1)l−2

holds for ρ > 0. Note that if we have a sequence of equations fD,l(ρ) and there
exists the limit lim{D,l}→∞ fD,l(ρ) = f∞(ρ), then it holds fundamentally by
the theory of function limits that if ρ(D, l) is the root of fD,l(ρ) = 0, then
lim{D,l}→∞ ρ(D, l) is the root of f∞(ρ). Therefore, for ρ > 0 the system is un-
stable. This argument can be repeated for an infinite number of phases showing
that the number of packets in the system increases forever for ρ > 0. ��

With a similar adversarial construction to Theorem 1, we show that the com-
position of the LIS and NTS protocols can become unstable for arbitrarily low
injection rates considering an instance of the parameterized network family (net-
work Gl, see Figure 1). The network Gl is also used for proving the instability
of the composition of the LIS and SIS protocols. However in this case, the edges
f2, f4, f6, . . . , f4l−6 f

′

2, f
′

4, f
′

6, . . . , f
′

4l−6 of Gl use the NTS protocol instead of the
SIS protocol, while the remaining edges of Gl use the LIS protocol. Thus, the
following theorem, analogous to Theorem 1, holds.

Theorem 2. Let ρ′ = 0.0056. For the network Gl where l > 1000 is a parameter
linear to the number of network queues there is an adversary A2 of rate ρ that
can change the link slowdowns of Gl between the two integer values 1 and D >
1000 such that the system 〈Gl, A2, LIS, NTS〉 is unstable for every ρ > ρ′. When
{D, l} → ∞ the system 〈Gl, A2, LIS, NTS〉 is unstable for ρ > 0.

Similarly, we show that the composition of the LIS and FTG protocols can be-
come unstable for arbitrarily low injection rates considering an instance G′

l of
the parameterized network family Gl (see Figure 2). The topology of the net-
work G′

l has a significant difference with the networks that are used for proving
Theorems 1, and 2. The network G′

l contains additional paths, comparing to the
other three cases, that start at queues that use the FTG protocol. These paths
have sufficient lengths, such that the injected short flows have the same blocking
effects over the injected investing flows when they conflict in queues that use
FTG, as happens in LIS-SIS and LIS-NTS cases. Thus, the following theorem,
analogous to Theorem 1 and Theorem 2, holds.
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Fig. 2. The network G′
l

Theorem 3. Let ρ′ = 0.0056. For the network G′

l where l > 1000 is a parame-
ter linear to the number of network queues there is an adversary A3 of rate ρ
that can change the link slowdowns of G′

l between the two integer values 1 and
D > 1000 such that the system 〈G′

l , A3, LIS, FTG〉 is unstable for every ρ > ρ′.
When {D, l} → ∞ the system 〈G′

l , A3, LIS, FTG〉 is unstable for ρ > 0.

4 Conclusions

In this work, we studied how the dynamic changing of link slowdowns affects
the instability properties of compositions of contention-resolution protocols that
include LIS. However, we do not have any clue what happens with compositions
of protocols that do not include LIS. Also, our results suggest that, for every
unstable network, its instability bound in the model of quasi-static slowdowns
may be lower than for the classical adversarial queueing model or other dynamic
adversarial model. Proving (or disproving) this remains an open problem.
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