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ABSTRACT 

In this paper, we propose a technique for the estimation of the regularization parameter for image resolution 

enhancement (super-resolution) based on the assumptions that it should be a function of the regularized 

noise power of the data and that its choice should yield a convex functional whose minimization would 

give the desired high-resolution image. The regularization parameter acts adaptively to determine the trade-

off between fidelity to the received data and prior information about the image. Experimental results are 

presented and conclusions are drawn. 
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1. INTRODUCTION 

In many imaging systems, the resolution of the detector array of the camera is not sufficiently high for a 

particular application. Furthermore, the capturing process introduces additive noise and the point spread 

function of the lens and the effects of the finite size of the photo-detectors further degrade the acquired 

video frames. The goal of resolution enhancement is to estimate a high-resolution image from a sequence 

of low-resolution images while also compensating for the above-mentioned degradations. 

Resolution enhancement using multiple frames is possible when there exists subpixel motion between the 

captured frames. Thus, each of the frames provides a unique look into the scene. An example scenario is 

the case of a camera that is mounted on an aircraft and is imaging objects in the far field. The vibrations of 

the aircraft will generally provide the necessary motion between the focal plane array and the scene, thus 

yielding frames with subpixel motion between them and minimal occlusion effects. 
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In this paper, we extend our previous results [1] by proposing a technique for the estimation of the 

regularization parameter. The rest of the paper is organized as follows. In section 2, a Maximum A 

Posteriori (MAP) formulation is presented for the super-resolution problem and it is shown that, for 

specific choice of prior model, the MAP cost function is equivalent to a Tikhonov regularization cost 

function. In section 3, we rewrite the cost function in multi-channel form to establish the relationship 

between the overall regularization parameter and the individual parameters for each channel. We then 

develop our technique for the estimation of the regularization parameter. In section 4, experimental results 

are presented. Finally, in section 5, conclusions are drawn. 

2. REGULARIZED COST FUNCTION OF RESOLUTION ENHANCEMENT 

The problem of video super-resolution is an active research area. We next outline a few of the approaches 

that have appeared in the literature. Among the earliest efforts in the field is the work by Tsai and Huang 

[2]. Their method operates in the frequency domain and capitalizes on the shifting property of the Fourier 

Transform, the aliasing relationship between the Continuous Fourier Transform (CFD) and the Discrete 

Fourier Transform (DFT), and the fact that the original scene is assumed to be band limited. The above 

properties are used to construct a system of equations relating the aliased DFT coefficients of the observed 

images to samples of the CFT of the unknown high-resolution image. The system of equations is solved, 

yielding an estimate of the DFT coefficients of the original high-resolution image, which can then be 

obtained using inverse DFT. This technique was further improved by Tekalp et. al. in [3] by taking into 

account a Linear Shift Invariant (LSI) blur Point Spread Function (PSF) and using a least squares approach 

to solving the system of equations. The big advantage of the frequency domain methods is their low 

computational complexity. However, these methods are applicable only to global motion and a priori 

information about the high-resolution image cannot be exploited. 

Most of the other resolution enhancement techniques that have appeared in the literature operate in the 

spatial domain. The most computationally efficient techniques involve interpolation of non-uniformly 

spaced samples. This requires the computation of the optical flow between the acquired low-resolution 

frames are combined in order to create a high-resolution frame. Interpolation techniques are used to 

estimate pixels in the high-resolution frame that did not correspond to pixels in one of the acquired frames. 
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Finally, image restoration techniques are used to compensate for the blurring introduced by the imaging 

device. A method based on this idea is the Temporal Accumulation of Registered Image Data (TARID) [4], 

developed by the Naval Research Laboratory (NRL). 

Another method that has appeared in the literature is the iterated backprojection method [5]. In this method, 

the estimate of the high-resolution image is updated by backprojecting the error between motion-

compensated, blurred and subsampled versions of the current estimate of the high-resolution image and the 

observed low-resolution images, using an appropriate backprojection operator. 

Another proposed method is the Projection Onto Convex Sets (POCS) [6], [7]. In this method, the space of 

high-resolution images is intersected with a set of convex constraint sets representing desirable image 

characteristics, such as positivity, bounded energy, fidelity to data, smoothness, etc. 

Another class of resolution enhancement algorithms is based on stochastic techniques. Methods in this class 

include Maximum Likelihood (ML) [8] and Maximum A Posteriori (MAP) approaches [9], [10], [11], [12].  

MAP estimation with an edge preserving Huber-Markov random field image prior is studied in [9], [10], 

[11]. MAP based resolution enhancement with simultaneous estimation of registration parameters (motion 

between frames) has been proposed in [1], [12]. The MAP methods lead to solving a regularized cost 

function. The regularization parameter of the cost function plays a very important role in the reconstruction 

of high-resolution image, while its selection is a kind of art. The L-curve method chooses the “L-corner”, 

the point with maximum curvature on the L-curve, as the one corresponding to regularization parameter 

[13]. Iterative adaptive algorithms with automatically updated regularization parameter have been proposed 

for image restoration [14], [15]. However, little research has been done for the super-resolution scenario. 

The objective of this paper is to extend these results to super-resolution. 

In the following, we use the same formulation and notation as in [12]. The image degradation process can 

be modeled by a linear blur, motion, subsampling by pixel averaging and an additive Gaussian noise 

process. In the following, we order all vectors lexicographically. We assume that p low-resolution frames 

are observed, each of size 21 NN × . The desired high-resolution image [ ]TNzzz ,,, 21 L=z is of 

size 2211 NLNLN = , where 1L  and 2L  represent the down-sampling factors in the horizontal and 
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vertical directions respectively. Let the kth low-resolution frame be denoted as 

[ ]TMkkkk yyy ,2,1, ,, L=y  for pk L,2,1= and where 21NNM = . The full set of p observed low-

resolution images can be denoted as 

[ ] [ ]TpM
TT

p
TT yyy ,,,,,, 2121 LL == yyyy .                         (1) 

The observed low-resolution frames are related to the high-resolution image through the following model:  

∑
=

+=
N

r
mkrkrmkmk zwy

1
,,,, )( ηs ,                              (2) 

for Mm L,2,1=  and pk L,2,1= . The weight )(,, krmkw s represents the “contribution” of the rth 

high-resolution pixel to the mth low-resolution observed pixel of the kth frame, which implements blur, 

motion and pixel averaging. The vector [ ]TKkkkk sss ,2,1, ,, L=s contains the K registration parameters 

for frame k, representing translational shift, rotation, affine transformation parameters, or other motion 

parameters. This motion is measured in reference to a fixed high-resolution grid. The term mk ,η  

represents additive noise samples that are assumed to be independent and identically distributed (i.i.d.) 

Gaussian noise samples with variance 2
ησ . We can rewrite Equation (2) in matrix notation  

nzWy s += ,                                        (3) 

where matrix [ ]TT
p

TT
,2,1, ,,, ssss WWWW L= contains the values rmkw ,, and [ ]TpMηηη L,, 21=n . The 

multivariate p.d.f of y given z and s is 

( ) ( )












−−−= zWyzWysz,y ss
T
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pMrP 2
2

2
1exp

)2(

1)(
η

η

σ
σπ

.        (4) 

We can form a MAP estimate of the high-resolution image z and the registration parameters 

s simultaneously, given the observed y . The estimates can be computed as 
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                   )(maxarg ysz,s,z
sz,

rP=)) .                                  (5) 

Using Bayes’ rule, the above equation can be expressed as 

)(
)()(

maxarg
y

sz,sz,y
s,z

sz, r

rr

P
PP

=)) .                            (6) 

Clearly, the denominator of the above equation is not a function of z or s . If we further assume z and s are 

statistically independent and all possible vectors s  are equally probable, we have 

)()(maxarg zsz,ys,z
sz,

rr PP=)) .                               (7) 

It is very important to choose an appropriate model for the p.d.f of the desired image z. As in [12], we 

choose Gauss-Markov random field (GMRF) as the image prior, with density of the form: 

( ) 





−= − zCz

C
z 1

2
1

2
2
1exp

2

1)( T
NrP

π
,                         (8)                  

where matrix C is the NN × covariance matrix of z. For a specific choice of the covariance matrix C, the 

above equation can be written as 

( ) 










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


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
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= =

N

i
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jjiNr zdP
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2
1

2
2
1exp

2
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λπ C

z ,                (9) 

where [ ]TNiiii dddd ,2,1, ,, L= is the coefficient vector andλ is called temperature parameter. The above 

equation results if we assume that the elements 1
,
−

jiC of the inverse of C satisfy 

∑
=

− =
N

r
jrirji ddC

1
,,

1
,

1
λ

.                                 (10) 

jid , can be chosen as the 2-D Laplacian kernel 
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Following the same procedure as in [12], we can reach the following regularized cost function to minimize 

( ) ( ) zCzzWyzWysz, ss
1

2 2
1

2
1)( −+−−= TTL
ησ

.                  (12) 

Or, equivalently, 
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where rmw , is the “contribution” of rz to my , for pMm ,,2,1 L= and Nr L,2,1= , andα is the 

regularization parameter defined as 

λ
σ

α η
2

= ,                                         (14) 

and D is the NN × matrix representing the 2-D Laplacian kernel, which is a high-pass filter.  

The above cost function can be minimized using the coordinate-descent method [12]. This iterative method 

starts with an initial estimate of z obtained using interpolation from a low-resolution frame. Then, for a 

fixed z, the cost function is minimized with respect to s, using Equation (15)  





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

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
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


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M

m

N

r

n
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2

1
,,, ˆ)(minargˆ ss

ks
.                  (15) 

Thus, the motion of each frame is estimated. n is the iteration number starting from 0. Then, for fixed s, a 

new estimate for z is obtained (Equation (16))  
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n
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The gradient )ˆ,ˆ( nn
rg sz can be obtained from 
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1 1
,, )()(2),(),( αssszsz . (17) 

The choice of step sizeε is addressed in the paper later. 

3. ESTIMATION OF REGULARIZATION PARAMETERS 

It can be seen that the cost function in Equation (13) is a Tikhonov regularization cost function. Thus, for 

the specific choice of prior model )(zrP considered here, the MAP formulation is equivalent to a 

Tikhonov regularization formulation. Equation (13) has two terms: a term representing the fidelity of the 

solution to the received data (residual norm
2zWy s− ) and a term representing a priori information 

about the high-resolution image (smoothness norm
2Dz ). The latter involves a high-pass filter and thus 

dictates that the solution be smooth by penalizing discontinuities. The relative weighting of the two terms is 

determined by a regularization parameterα , which is the ratio of the power of noise 2
ησ over the 

temperature parameterλ . In the most general case, we have no prior information for both 2
ησ andλ . In 

this case, the regularization parameter can be explicitly expressed as a function of the original image [14]. 

We rewrite the regularized cost function as 

22 )(),( DzzzWysz s α+−=L .                            (18) 

Furthermore, we can rewrite the cost function as the sum of individual smoothing functionals for each of 

the p low-resolution images as:  

{ }∑
=

+−=
p

k
kkkL

1

22
, )(),( DzzzWysz s α .                      (19) 
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We drop the subscript k from kD in the above equation because DD =k , i.e., the same high-pass filter 

(Laplacian kernel) is used for all low-resolution image pk L,2,1= . Then we can define the individual 

functional for each low-resolution image (channel) as: 

pkL kkkkk L,2,1,)(),),(( 22
, =+−= DzzzWyszz s αα .       (20) 

Following the same procedure as in [14], we impose the following requirements for each )(zkα : it should 

be a function of the regularized noise power of the data and its choice should yield a convex functional 

whose minimization would give the high-resolution image. Then we reach the same iteration expressions as 

in equations (15), (16) and (17), except for thatα is replaced with ∑
=

=
p

k
k

1
)()( zz αα .  

The imposed properties on )(zkα require a linear function between )(zkα and each term of the cost 

function: 

( ) { }22
, )()),(()( DzzzWyzzz s kkkkkkk Lf αγαα +−== .         (21) 

Thus, the choice of regularization parameter for the multichannel regularization functional is given by 

2

2
,

1
)(

Dz

zWy
z s

−

−
=

k

kk
k

γ

α .                               (22) 

Also, following the same procedure for convergence requirement as in [14], we get  

2

,,max

max
2

,

)(2
)(1 Dz

WW
DDzWy

ss

s +
−

−
>

k
T

k

T
kk

k p
p

φε

φε

γ
                   (23) 

where )(max ⋅φ stands for the maximum eigenvalue of a matrix.  
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For the image resolution enhancement, the NN × degradation matrix k,sW for 

channel pk ,,2,1 L= can be expressed as the multiplication of subsampling matrix S , motion 

matrix kM and blur matrix kB , with size NNN ×21 , NN × , and NN ×  respectively. 

kkk BSMWs =, .                                   (24) 

Therefore, 

)()( max,,max kk
TT

k
T
kk

T
k BSMSMBWW ss φφ = .                 (25)    

Now, for subsampling by pixel averaging, we can easily verify 

( )
ISS 2

21

1
LL

T = ,                                  (26) 

where I is the identity matrix with size NN × . 

Since no information is lost or added due to motion operation kM , the element of kM are “1”s and “0”s, 

with each column and each row having only a single “1”. For such kind of matrix kM , we can easily 

verify that 

IMM =k
T
k .                                      (27) 

For a PSF generated from Gaussian blur, we can assume that the impulse response coefficients are 

normalized to add to 1, which is equivalent to 

1)(max =k
T
k BBφ .                                   (28) 

By substituting equations (26), (27) , and (28) into (25), we have 

( ) ( )2
21

max2
21

,,max
1)(1)(
LLLL k

T
kk

T
k == BBWW ss φφ .            (29) 
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Therefore, inequality (23) becomes 

( )( )
22

,2
21

max

2
)(1 DzzWy

DD
s +−

−
> kk

T

k LLp
p
ε
φε

γ
               (30) 

Now, we can select step sizeε  to make  

( )( ) 1
2

)(
2

21

max =
− LLp
p T

ε
φε DD

.                                (31) 

That is, 

( )
( ) 











+
=

1)(
2

max
2

21

2
21

DDTLL
LL

p φ
ε .                            (32) 

Then, inequality (30) becomes 

22
,

1 DzzWy s +−> kk
kγ

.                             (33) 

Now,
2

,
2 zWyy s kkk −≥ , since the low-resolution image is assumed to have more energy than the 

additive noise, and 
2

21

2
2 Dz

z
y >≈

LLk for small subsampling ratio 421 == LL , since z is assumed 

to have much less energy at high frequencies than at low frequencies and each low-resolution image yk 

has 211 LL of the energy of z for noiseless cases. We list two commonly used examples (“Cameraman” 

and “Lena”) in Tables 4, 5 in the Appendix with subsampling ratio 421 == LL as an example to show the 

validity of the above inequalities. From the two ratios in the tables (Ratio 1 and Ratio 2), we can see that 

the inequalities are satisfied for all cases.  

For a subsampling ratio 421 == LL , as used in this paper, we can safely say that the choice of 

221
k

k

y=
γ

                                      (34) 
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satisfies the condition for convergence and also provides a positive ( )zkα  

22

2
,

2
)(

Dzy

zWy
z s

−

−
=

k

kk
kα .                            (35) 

We can see from the experimental results that the choice of kγ1 in Equation (34) not only provides a 

fixed, simple and tight choice for inequality (33), but also results in good reconstructions. During the 

iterations, the regularization parameter )(zkα is adaptively updated according to the current estimate of 

high-resolution image z.  

4. EXPERIMENTAL RESULTS 

A number of experiments were conducted, some of which are presented here. To test the performance of 

our algorithm, we first use the 256x256 “Cameraman” and “Lena” test images for a synthetic test. Four 

cases, Case I-IV, as listed in Table 1, are tested. The first frame is selected as reference frame and bilinear 

interpolation of the first frame is chosen as the first estimate of high-resolution image z. Algorithm is 

carried out for 20 iterations or while convergence is reached when 6221 10ˆ/ˆˆ −+ <− nnn zzz .  

In the above four cases, global shift is implemented as the motion degradation. 

Therefore [ ]Tkkk ss 2,1, ,=s , i.e., K=2 registration parameters for frame k. 

To compare with the proposed algorithm, an exhaustive search over the parameter space was conducted, 

each time with one fixed value ofα . We then find theα corresponding to the maximum value of 

 2

2

10
ˆ

255log10
α

α
zz −
×

×=
NPSNR ,                         (36) 

and denote it as fixedα . The plots of αPSNR versusα  for “Cameraman” and “Lena” are shown in Fig. 1 

and 3 respectively. The PSNR of the reconstructed image for “Cameraman” and “Lena” using the three 

methods (Bilinear, Method with fixedα , Proposed Method) are listed in Tables 2 and 3 respectively. 
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The reference frame, bilinear interpolation of the reference frame and the reconstructed images from 

Method with fixedα and Proposed Method of “Cameraman” in Case I are shown in Fig. 2(a)-(d), 

respectively. In Fig. 2(e) and 2(f), the absolute convergence curve (the plot of
22

ˆ zzz −n versus 

iteration number n) and relative convergence curve (the plot of
221 ˆˆˆ nnn zzz −+ versus iteration 

number n) are shown for the Proposed Method. 

The reference frame, bilinear interpolation of the reference frame and the reconstructed images from 

Method with fixedα and Proposed Method of “Lena” in Case I are shown in Fig. 4(a)-(d), respectively. In 

Fig. 4(e) and 4(f), the absolute convergence curve and relative convergence curve are shown for Proposed 

Method.  

For all the four cases in Tables 2 and 3, the Proposed Method gives the highest PSNR and best visual 

quality for both “Cameraman” and “Lena” (2~3 dB better than bilinear interpolation, and up to 0.25dB 

better than Method with fixedα ). For real data, the original high-resolution image is not available, 

thus αPSNR in Equation (36) can not be evaluated. We will show next that Proposed Method provides a 

good regularization parameter without exhaustive search or trial and error method.  

Next, we used real data of an infrared video sequence provided to us by the Naval Research Laboratory, 

Washington, D.C., to test the proposed algorithm. 20 frames of low-resolution image with size 128x128 

pixels were used. Up-sample ratio is L1=L2=4. We assumed a Gaussian point spread function for the lens 

and estimated its variance at 1.7 using trial and error. Bilinear interpolation of the first frame was chosen as 

the first estimate of high-resolution image z. Joint MAP registration technique was applied to estimate the 

motion, with the high-resolution estimate partitioned into macro blocks (Equation (15)). Three Point Search 

(TSS) with search window ±7 and Sum of Squared Errors (SSE) criteria was applied to decide the motion 

vector between the 16x16 macro block in the high-resolution estimate and the corresponding 4x4 macro 

block in the low-resolution image. When reconstructing the high-resolution image, these motion vectors 
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(registration parameters) were used to compensate the motion. We assumed that convergence was reached 

when 6221 10ˆ/ˆˆ −+ <− nnn zzz .  

There were totally ( ) ( ) 10241616512512 =×÷× macro blocks in the high-resolution image, and each 

macro block had two translational shift parameters. Therefore [ ]Tkkkk sss 2048,2,1, ,, L=s , i.e., 

204810242 =×=K registration parameters for frame k. 

The first frame of the low video sequence, bilinear interpolation of the first frame, Proposed Method, the 

relative convergence curve for Proposed Method (compared with the previous estimate of high-resolution 

image “truck”) are shown in Fig. 5(a)-(d). From the relative convergence curves, we can see the Proposed 

Method converges very fast. 

The visually best reconstructed image using a fixed valued regularization parameter is obtained 

with 1.0=α , shown in Fig. 5(e) via trial and error, with the help of human interaction. Although it 

provides a good result, the computation cost is huge and involves human’s subjective influence. 

Reconstructed images using two fixed valued regularization parameters 310=α and 310−=α are shown 

in Fig. 5(f) and Fig. 5(g). As expected, image in Fig. 5(f) is “over-smoothened” and the image in Fig. 5(g) 

is “noise-amplified”, which means arbitrarily selected and fixed valued regularization parameter may lead 

to bad results. On the contrary, reconstructed high-resolution image using the proposed method with 

simultaneous estimation of regularization parameter provides the best visual effect and much less 

computation cost efficiently.  

5. CONCLUSIONS 

We have proposed a technique for the estimation of the regularization parameter for digital image 

resolution enhancement. Our experimental results demonstrate the performance of the proposed algorithm. 

Experimental results using both synthetic and real data are presented. For the synthetic results, in addition 

to a subjective evaluation, we also present objective PSNR results. In all the cases considered, the proposed 

algorithm gives a better reconstruction than results obtained using an optimal fixed-valued choice of the 

regularization parameter, obtained using exhaustive search.  
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7. APPENDIX: JUSTIFICATION OF INEQUALITY (33)  

 We define the following two ratios for the convenience to test inequality (33).  

Ratio 1: { }2
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2

,,2,1
min zWyy s kkkpk

−
= L
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Ratio 2: { }22

,,2,1
min Dzy kpk L=

 

256x256 “Cameraman” and “Lena” are used as the two original high-resolution images. The results are 

summarized in Tables 4, 5. 
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Table 1. Four cases of synthetic test for “Cameraman” and “Lena” 

 Variance of 

Gaussian 

blur 

21 , LL : 

Subsampling ratio 

p: Number of 

frames of low-

resolution 

images 

[ ]2,1, , kk
T
k ss=s : Global 

shift of z to obtain low-

resolution image k. 

T
ks belongs to the set 

generated from the 

Cartesian product below 

2
ησ : 

variance 

of 

AWGN 

noise 

Case I 1.7 4 16 { } { }3,2,1,03,2,1,0 ×  1 

Case II 1.7 4 16 { } { }3,2,1,03,2,1,0 ×  20 

Case III 1.7 4 16 { } { }3,2,1,03,2,1,0 ×  65.025 

Case IV 1.7 4 16 { } { }3,2,1,03,2,1,0 ×  100 

 

Table 2. Results of “Cameraman” using the three methods 

PSNR (dB) Bilinear Method with fixedα  Proposed Method 

Case I 21.2597 23.9752 24.1319 

Case II 21.1919 23.6352 23.8105 

Case III 21.0088 23.1422 23.1929 

Case IV 20.9008 22.8038 22.8881 
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Table 3. Results of “Lena” using the three methods 

PSNR (dB) Bilinear Method with fixedα  Proposed Method 

Case I 23.2106 26.7533 27.0913 

Case II 23.1044 26.2251 26.4797 

Case III 22.8536 25.4049 25.4085 

Case IV 22.6685 24.8298 24.8895 

 

Table 4. Justification of (33) for “Cameraman” 

 Case I Case II Case III Case IV 

{ }2min ky * 6.8784e+007 6.8843e+007 6.9009e+007 6.9082e+007 

21

2

LL
z

 
7.3654e+007 7.3654e+007 7.3654e+007 7.3654e+007 

2
, zWy s kk −

 

4.096e+003 8.192e+003 2.6634e+005 4.096e+005 

2Dz  1.0509e+007 1.0509e+007 1.0509e+007 1.0509e+007 

Ratio 1 1.6793e+004 840.3708 259.0986 168.6582 

Ratio 2 6.5450 6.5507 6.5665 6.5735 

 

* The minimum value is calculated based on the low-resolution images used in the synthetic simulations. 
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Table 5. Justification of (33) for “Lena” 

 Case I Case II Case III Case IV 

{ }2min ky * 8.9106e+007 8.9063e+007 8.9487e+007 8.9531e+007 

21

2

LL
z

 
9.3498e+007 9.3498e+007 9.3498e+007 9.3498e+007 

2
, zWy s kk −  

4.096e+003 8.192e+003 2.6634e+005 4.096e+005 

2Dz  7.0386e+006 7.0386e+006 7.0386e+006 7.0386e+006 

Ratio 1 2.1755e+004 1.0872e+003 335.9853 218.5827 

Ratio 2 12.6598 12.6535 12.7138 12.7201 

 

* The minimum value is calculated based on the low-resolution images used in the synthetic simulations. 
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10. LIST OF FIGURES 

Fig. 1(a). Plot of αPSNR versusα for “Cameraman” using fixed regularization parameter in Case I  

Fig. 1(b). Plot of αPSNR versusα for “Cameraman” using fixed regularization parameter in Case II 

Fig. 1(c). Plot of αPSNR versusα for “Cameraman” using fixed regularization parameter in Case III 

Fig. 1(d). Plot of αPSNR versusα for “Cameraman” using fixed regularization parameter in Case IV 

Fig. 2(a). Reference frame of “Cameraman” (Case I) 

Fig. 2(b). Bilinear interpolation of reference frame of “Cameraman” (Case I) 

Fig. 2(c). Reconstructed image of “Cameraman” from Method with fixedα (Case I)  

Fig. 2(d). Reconstructed image of “Cameraman” using Proposed Method (Case I) 

Fig. 2(e). Absolute convergence curve of “Cameraman” using Simultaneous (Case I) 

Fig. 2(f). Relative convergence curve of “Cameraman” using Proposed Method (Case I) 

Fig. 3(a). Plot of αPSNR versusα for “Lena” using fixed regularization parameter in Case I 

Fig. 3(b). Plot of αPSNR versusα for “Lena” using fixed regularization parameter in Case II 

Fig. 3(c). Plot of αPSNR versusα for “Lena” using fixed regularization parameter in Case III 

Fig. 3(d). Plot of αPSNR versusα for “Lena” using fixed regularization parameter in Case IV 

Fig. 4(a). Reference frame of “Lena” (Case I) 

Fig. 4(b). Bilinear interpolation of “Lena” (Case I) 

Fig. 4(c). Reconstructed image of “Lena” from Method with fixedα (Case I) 

Fig. 4(d). Reconstructed image from of “Lena” using Proposed Method (Case I) 

Fig. 4(e). Absolute convergence curve of “Lena” using Proposed Method (Case I) 

Fig. 4(f). Relative convergence curve of “Lena” using Proposed Method (Case I) 
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Fig. 5(a). Original image (first frame of “truck” sequence) 

Fig. 5(b). Bilinear interpolation of first frame of “truck” sequence 

Fig. 5(c). Reconstructed high-resolution “truck” image using MAP with simultaneous estimation of 

regularization parameter 

Fig. 5(d). Relative convergence curve of constructed high-resolution “truck” image using MAP with 

simultaneous estimation of regularization parameter 

Fig. 5(e). Reconstructed high-resolution “truck” image using joint MAP with fixed regularization 

parameter 1.0=α  

Fig. 5(f). Reconstructed high-resolution “truck” image using joint MAP with fixed regularization 

parameter 310=α  

Fig. 5(g). Reconstructed high-resolution “truck” image using joint MAP with fixed regularization 

parameter 310−=α  


