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Abstract

Nowadays there is an increasing amount of efforts in searching for answers to a
plethora of questions about the world around us. It seems that in the Large Hadron
Collider’s (LHC) era, those efforts are coming to fruition, and at the same time new
triggering questions appear. Among them, the most important are questions about
the nature of dark energy, the particle nature of dark matter, the existence of extra
dimensions, the verification of the mechanism that gives mass to the particle content of
the Standard Model (SM) of particle physics, the existence of supersymmetric particles
etc.

In this thesis, motivated by experimental results in direct connection with some of
the questions above, we first examined scenarios of dark matter interaction with SM
leptons, focusing to the study of low energy recoiling electrons and found promising
results that can be verified in near future experiments. In order to extent these findings,
the dark matter annihilation into photons brought us into the study of triple vertices
with external photons or different gauge bosons in general. Within this framework
we studied in detail the triple gauge boson one-loop vertex containing virtual heavy
fermions and reproduced the most general, analytical expression for that vertex. From
a calculational point of view we developed a new approach to the problem by exclusively
performing calculations in four dimension and by using physical arguments to handle
infinities or anomalously behaved quantities. Analyzing further the triple gauge boson
vertex we examined the decoupling effects that arise when the virtual fermions mass
become very large. The interesting point here was the realization that in fact these
heavy fermions do not decouple completely from the theory. They leave remnants
that are necessary to guaranty the self-consistency of the theory. Moreover, we work
out quite interesting applications of these results in the SM framework, as well as in
theories beyond the SM.

Furthermore, by using the same techniques we clarified some computational issues
about W gauge boson one-loop contribution to Higgs boson decay into two photons
(H → γγ). Performing the calculation in the unitary gauge and strictly in four di-
mensions, we encountered divergent quantities that we managed to handle by inserting
arbitrary four-vectors. The remaining ambiguites were restored by exploiting physical
arguments. The results obtained by using the combination of these two techniques
(introducing four-vectors to reduce divergencies and using physical considerations to
determine unambiguously the result), verify previous similar results. The validity of
those results has been also tested by the use of a new proposed method (Four Dimen-
sional Regularization) FDR.

Certainly there are open problems that the techniques described above, could an-
swer. These problems constitute the inspiration for further extension of this work.



Contents

0.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 The Standard Model of particle physics 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Particle content of the SM . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 The Lagrangian formulation . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Mathematical construction . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Constructing the Quantum Electrodynamic (QED) gauge invari-
ant Lagrangian. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.2 Constructing the Quantum Chromodynamic (QCD) Lagrangian. 8

1.4.3 Electroweak sector . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.4 Spontaneous Breaking of a global gauge Symmetry . . . . . . . 12

1.4.5 Spontaneous Breaking of a local gauge Symmetry. The Higgs
mechanism. Gauge boson masses . . . . . . . . . . . . . . . . . 13

1.4.6 Interactions between fermions and gauge bosons.
Fermion masses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.7 Higgs boson: mass, production and decay. . . . . . . . . . . . 17

1.5 Some selected topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5.1 General aspects about the dark matter . . . . . . . . . . . . . . 19

1.5.2 Chiral anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5.3 Dimensional Regularization . . . . . . . . . . . . . . . . . . . . 23

2 Direct Detection of Dark Matter 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Theory Setup and Model Categories . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Model I : Non-standard Kinetic Mixing K . . . . . . . . . . . . 28

2.2.2 Model II : Non-standard Mass Mixing, M2 . . . . . . . . . . . . 30

2.2.3 Model III : Direct coupling, no mixing . . . . . . . . . . . . . . 31

2.3 Conventional WIMP searches . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Massless Mediator . . . . . . . . . . . . . . . . . . . . . . . . . 32

i



ii CONTENTS

2.3.2 Massive Mediator . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Unconventional WIMP searches . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1 Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.2 Massless Mediator . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.3 Massive mediator . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4.4 Experiment : The prospects of detecting single ultra low energy
electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Heavy Fermion Non-Decoupling Effects 53

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 The Trilinear Gauge Boson Vertex . . . . . . . . . . . . . . . . . . . . . 55

3.2.1 The construction of Γµνρ . . . . . . . . . . . . . . . . . . . . . . 56

3.2.2 Unitarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.3 Goldstone boson Equivalence Theorem and Rξ - independence . 61

3.3 Non-Decoupling Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.1 Non-Decoupling due to large mass splitting . . . . . . . . . . . . 62

3.3.2 Anomaly Driven non-decoupling effects . . . . . . . . . . . . . . 64

3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.1 Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.2 Models with a sequential fourth fermion generation . . . . . . . 79

3.4.3 Minimal Z ′ models . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Anatomy of the H → γ γ in the unitary gauge 87

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 The W -loop contribution to H → γγ in SM . . . . . . . . . . . . . . . 90

4.3 Four Dimensional Regularization (FDR) . . . . . . . . . . . . . . . . . 97

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Conclusions and future directions 101

Appendix A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Appendix B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Appendix C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Appendix D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Appendix E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Appendix F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



CONTENTS iii

Appendix G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Appendix H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Appendix I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Appendix J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Appendix K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Appendix L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Appendix M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Appendix N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151



iv CONTENTS



0.1. OUTLINE 1

0.1 Outline

It is widely accepted that the SM describes in hight accuracy a considerable variety of
phenomena. However there are evidences for the appearance of new phenomena that
do not suit into the SM framework. There appear open questions, which suggest that
the SM must be extended in order to encompass all these new phenomena.

In this thesis we try to shed light on some of them. In particular we are concerned
about dark matter searches, the possible existence of heavy fermions or exotic heavy
bosons and their impact on low energy effective theories such as the SM, as well as
about mass generation mechanism and properties of the Higgs boson which is directly
connected with this mechanism. The outline of this thesis is as follows.

In the first Chapter, we present the basic features of the (SM), emphasizing in
its mathematical construction and the fundamental postulates that it is based on. We
present a list of questions that remain open in the current SM framework. Some selected
issues are presented in more details since they constitute the necessary theoretical basis
into which the following Chapters are developed.

The second Chapter is concentrated on the efforts to reveal the dark matter’s cor-
puscular nature. After introducing a theory setup, where different models that describe
the possible dark matter and ordinary matter connection are presented, it follows a
study of conventional and non-conventional dark matter searches. We have studied the
relevant cross sections and event rates of processes that contain recoiling nuclei or low
energy electrons scattered in dark matter-nucleus collisions and dark matter-hydrogen
like atoms collisions respectively. It follows a detailed calculation of time modulation
effects on non-conventional searches for dark matter. Finally, an experimental proposal
with promising abilities in the detection of dark matter,is presented.

The third Chapter deals with heavy fermions non-decoupling effects in triple gauge
boson vertices containing one-loop diagrams where heavy fermions are circulating. The
calculation is performed in exactly four dimension and since the relevant integrals are
divergent a special treatment has been used in order to remove the divergencies. The
problem is treated by introducing arbitrary vectors that shift the integral variable.
Requiring the final result to satisfy the Ward identities and be gauge invariant, we
have found the more general triple gauge boson vertex with these properties. Next
we consider the case where the internal fermions are extremely heavy and investigate
if there are any remnants in the low energy limit. We find that, if at the beginning
the whole fermionic spectrum (heavy and light fermions) constitutes an anomalous
free model, after integrating out the heavy fermions a term survives and it is exactly
the opposite of an anomalous term appearing in the light fermionic spectrum. This
renders the low energy model anomalous free. These results are generalized further in
SN extentions that contain exotic Z ′ gauge bosons or an extra fermion generation.

In Chapter 4 we extent the method of arbitrary shifting vectors that we used in the
previous Chapter. The objective is to calculate the amplitude for the Higgs boson decay
to two photons and to clarify some problems in this calculation appeared recently in
the literature. Again the calculation is performed in four dimensions, in unitary gauge
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and we find that the arbitrary vectors are capable to reduce high order ultraviolet
divergencies to logarithmic ones. We demand the result to be gauge invariant and
finite and by using the Goldstone Boson Equivalence Theorem we can finally obtain
the desired result. As a cross check we perform the calculation using dimensional
regularization and a recently proposed method useful in performing four-dimensional
integral calculations namely Four Dimensional Regularization (FDR).

We conclude in a short Chapter 5, where we present future directions and possible
extensions of our work.

A considerable supporting material is collected in several Appendices. In Appendix
A are presented the basic properties of Dirac matrices and the main techniques of Dirac
algebra. Also we append a collection of standard dimensional regularization integrals
useful for checking several calculations especially those in Chapters 3 and 4.

Appendices B, C, D, E, F are related to calculations in Chapter 2. In Appendix
B we describe in details the calculation of the Feynman propagator related to the
Lagrangian eq. (2.2) which describes the coupling of SM to an abelian dark sector with
arbitrary kinetic or mass mixing. In Appendix C we analyze the general action related
to the Lagrangian eq. (2.2) for different models. In Appendix D are presented the
calculations about the time modulated effects in WIMP-nucleon or electron scattering.
Subsequently in Appendix E we repeat the calculation of WIMP-electron scattering
cross section using a non-relativistic approach since the WIMP’s velocity is β ≈ 10−3.
In the next Appendix F we carefully analyze the matrix element squared for WIMP-
nucleon or electron scattering when the WIMP is a Dirac or Majorana particle. In
the last case we show that this matrix element squared is suppressed by a factor of
β2 ≈ 10−6.

Appendices G-K deal with issues related to Chapter 3. In Appendix G we construct
a simple toy model relevant to non-decoupling heavy fermion effects in triple gauge
boson vertices. An analytic calculation of the general form of such a vertex, where all
the internal, virtual fermions are considered of the same mass, is performed in Appendix
H. This corresponds to a triple vertex containing neutral gauge bosons. The general
case of charged gauge bosons, where the internal fermions have different masses is
presented in Appendix I. In Appendix J we present some analytical expressions for the
integral representations of form factors that determine the triple vertex and study their
limit in various cases. In the following Appendix K we present necessary conditions for
anomaly cancellation and non-decoupling heavy fermion effects in a model with three
different U(1)’s corresponding to three distinct massive or massless gauge bosons X, Y
, and Z.

In Appendices L and M we present calculations related to Chapter 4. In Appendix
L, the analytical expressions for the coefficients of eq. (4.3), are presented. Appendix M
contains an analytical derivation of the discontinuity of four-dimensional logarithmic
divergent integrals due to surface terms appearing exactly in four dimensions.

Finally in the last Appendix N, some generalized Gordon identities are presented.
These identities are useful during calculations especially in changing from the basis
γµ, γµγ5, kµ, kµγ5 to the basis γµ, γµγ5, σµνkν , σ

µνkνγ
5.



Chapter 1

The Standard Model of particle
physics

In this introductory Chapter, we present the basic formulation of the SM, its math-
ematical structure, the fundamental particle content and the underlying symmetries
which lead to laws that in many cases govern the behavior of the world around us. Sub-
sequently are presented the fundamental principles on which is based the construction
of the SM as a self-consistent quantum field theory. This construction is realized in the
framework of the Lagrangian formalism, and posses a variety of high energy physics
features such as the spontaneous symmetry breaking, the renormalizability, the Higgs
mechanism, the chiral anomalies. It follows a brief description of topics that are not
included in the current status of the SM and therefore are basic ingredients of theories
beyond the SM. Most of these topics are presented in more details in the next Chapters.
Naturally this first Chapter serves as a “building blocks” container that provides the
necessary notions, techniques, notation and tools we will use throughout this thesis.

1.1 Introduction

The SM is a theory that describes the dynamics of subatomic particles and their inter-
actions. It covers most of the study of fundamental interactions in Nature concentrating
on electroweak and strong force. The other fundamental force in Nature, gravity, as
it is described by the General Relativity (GR), is not included in the current frame of
SM. The reason is that gravity is extremely weak and (SM)in the current form fails
at energies that (graviton) is expected to exist. The SM has a dynamical nature in
the sense that posses an interesting ability to supply for possible extensions to other
theoretical models and at the same time to remain in the heart of them.

As a theory SM was developed during the 20th century and especially in 1960-1980
when its final formulation was almost completed [1–3]. Later developments and discov-
eries confirmed many of the predictions of the SM and enforced its role as a powerful
theory in describing the fundamental interactions in Nature. The two main pillars that
the SM is based on, are the Quantum Mechanics which deals with phenomena that take

3
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place in microscopic scales, and the Special Relativity that describes the kinematics
and dynamics of very fast moving objects. These two branches of modern physics coop-
erating with each other create the necessary theoretical framework where a field theory
such as the SM can be developed and operate. Although its formulation is based on
many assumptions, its predictability and the success in explaining various experimental
results are impressive. But certainly the SM is not a theory that describes everything.
There is a plethora of phenomena that do not suit into the SM formulation, since it
does not provide any possible explanation. This fact provides an ideal opportunity to
proceed to theories beyond the SM. Some of these topics, where extensions of the SM
claim to provide a possible explanation, contain the corpuscular nature of dark matter
whose existence has been supposed as a possible scenario to explain cosmological obser-
vations, the experimental verified neutrino oscillations that require that the neutrino is
a massive particle (in contrast with the minimal SM construction where the neutrino
is massless), the hierarchy problem (there is not any explanation in the SM framework
why gravity is ∼ 1032 times weaker than the weak force), and as mentioned previously,
the accession of gravity in the framework of a quantum field theoretical formalism.

1.2 Particle content of the SM

It is widely accepted that our world, at the low energy level of everyday life, is governed
by four fundamental interactions: strong, electromagnetic, weak and gravitational. As
the energy level where we study several phenomena increases, a unification of some of
the above interactions (electromagnetic and weak) appears, and continuing further it is
believed that a similar unification takes place again reducing the number of fundamen-
tal interactions. The SM is a theory that tends to describe our world in the relatively
low energetic level. Among its basic postulates is the fact that all the matter content
of our universe and the fundamental interactions can be described by the existence
and interactions of a finite (relatively small) number of elementary particles. There
are 61 elementary (based on the knowledge that we posses so far) particles in the SM,
taking into account the number of families, the number of colors and the existence
of antiparticles Fig.( 1.1). In this number is included the recently discovered Higgs
boson [4, 5]. All elementary particles are divided into two big categories according to
their spin: fermions that have a spin-1/2 and bosons that have an integer spin.

The first one of these categories is divided again in subcategories according to the
way that fermions interact with each other or with other particles. According to the
force that they are sensitive to, fermions are divided into leptons (electron, muon, tau,
electron neutrino, muon neutrino, tau neutrino) which interact via the electroweak
interaction (neutrinos are electrically neutral and therefore interact only through weak
force) and quarks (up, down, charm, strange, top, bottom) which except from the
electroweak are also sensitive to the strong interactions since they carry a quantity
called color.

The second category includes gauge bosons, particles that have spin 1 and are
responsible for the mediation of different interactions. The electromagnetic interaction
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Figure 1.1: The particle content of SM.

is mediated by the photon, a massless particle that does not carry any electric charge or
color. The fact that the photon is massless characterizes the electromagnetic interaction
as a long-range force. There are eight massless gluons that are the mediators of the
strong nuclear force. As quarks, they are colored and this allows them to self-interact.
Although they are massless, the strong interaction is not a long-range force. The
reason for that is a phenomenon, called asymptotic freedom that enforces the quarks
and gluons not to exist in a free form but to create colorless composite particles called
hadrons (baryons and mesons). Finally the mediators of the weak interaction are the
Z0 and W± bosons. They are massive and therefore the weak interaction has a short
range.

There is also one last boson that is contained into the SM set of particles. It is about
the long-expected and possibly (Fig. 1.1) discovered Higgs boson [4–9]. It does not play
the role of any interaction mediator, has spin 0, is massive and represents the quantum
of the Higgs field that is responsible for giving mass to Z0 and W± bosons and fermions
as well. Since the Higgs boson is massive it possess self-interaction properties. It is
unstable and can decay into other SM particles. Its detection was feasible by studying
these decaying products.

1.3 The Lagrangian formulation

The SM is a quantum field theory. A basic concept of a field theory is the fact that the
fundamental entity capable to represent essential qualities of a system is the concept
of field, which is a continuous function of space-time φ(x0, ~x), or short φ(x). Motivated
by the Lagrangian formalism of classical mechanics, it is postulated that the dynamics
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of a system is described by the action:

S =

∫
d4xL[φi(x), ∂µφi(x)], (1.1)

where L[φi(x), ∂µφi(x)] is the Lagrangian density, a function (usually polynomial) of
the fields and their derivatives. Applying the fundamental principle of the stationary
action under infinitesimal field variations and considering that these variations are equal
to zero on the boundary of a closed region, one obtains the Euler-Lagrange equations,
that is,

δS = 0⇒
∫
d4x
[ ∂L
∂φi

δφi +
∂L

∂(∂µφi)
δ(∂µφi)

]
=

∫
d4x
[ ∂L
∂φi

δφi +
∂L

∂(∂µφi)
∂µ(δφi)

]
=∫

d4x
[ ∂L
∂φi
− ∂µ

( ∂L
∂(∂µφi)

)]
δ(φi) +

∮
S
dS
( ∂L
∂(∂µφi)

)
δ(φi) = 0, (1.2)

where S bounds a particular region and on this S the variation of the fields vanish,
δφi = 0. Therefore the surface integral above vanish. Since the variation δφi is arbi-
trary, in order the first integral in eq. (1.2) to vanish, the integrand should be zero,
i.e.

∂L
∂φi
− ∂µ

( ∂L
∂(∂µφi)

)
= 0. (1.3)

This is the Euler-Lagrange equation for the field φi or its equation of motion. Using
this formalism we can deduce Noether’s theorem which relates symmetries of a system
with conserved quantities. When we refer to a symmetry of a system we mean a
set of transformations of fields under whom the Lagrangian of this system remains
unchanged. Therefore if we assume that φi(x) → φ̃i(x) = φi(x) + α δαφi(x) + O(α2),
where α is a small parameter and require that L[φi(x), ∂µφi(x)] = L[φ̃i(x), ∂µφ̃i(x)] we
can find:

δαL = 0 ⇒
∑
i

[ ∂L
∂φi

δαφi +
∂L

∂(∂µφi)
δα(∂µφi)

]
= 0⇒

⇒
∑
i

[ ∂L
∂φi

δαφi +
∂L

∂(∂µφi)
∂µ(δαφi)

]
= 0⇒

⇒
∑
i

[( ∂L
∂φi
− ∂µ(

∂L
∂(∂µφi)

)
)
δαφi + ∂µ

( ∂L
∂(∂µφi)

δαφi

)]
= 0. (1.4)

Taking into account the Euler-Lagrange equations, the first bracket is equal to zero.
Therefore ∑

i

[
∂µ

∂L
∂(∂µφi)

δαφi

]
= ∂µ

∑
i

[ ∂L
∂(∂µφi)

δαφi

]
= ∂µJ

µ = 0, (1.5)

where Jµ ≡
∑

i[
∂L

∂(∂µφi)
δαφi] represents a conserved current. This fact constitutes the

Noether’s theorem which claims that for every continuous symmetry of a system, there
is a conserved quantity (generalized charge). We can mention here the conservation of
momentum, energy, angular momentum, electric charge etc., that corresponds to the
invariance of the Lagrangian of this system under spatial translation, time translation,
rotation invariance or other internal symmetries (gauge invariance) respectively.
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1.4 Mathematical construction

The mathematical construction of SM is based on several postulates. First of all, the
global Poincare symmetry is postulated. It contains space-time symmetries (invariance
under translations and rotations), as well as internal symmetries e.g the local SU(3)C⊗
SU(2)L⊗U(1)Y gauge symmetry that definitely characterizes the SM. A second basic
postulate of SM is the fact that each particle is represented by a dynamical entity known
as field. In fact the different fields except of being represented by continuous functions
of space-time, in many cases posses a quantum-mechanical character in the sense that
are represented by non-commutative operators. A third postulate is that the operating
framework of SM is constructed based on the Lagrangian formalism, whose fundamental
quantity is the Lagrangian density, an entity invariant under Lorentz transformations,
that describes the whole dynamics of a system. A last but not least postulate is
that the SM Lagrangian remains unchanged under local gauge transformations. This
fact has remarkable consequences in the whole theory and constitutes one of the basic
foundations of the SM. We will return to this point later and will discuss the importance
of gauge invariance in more details.

Certainly all the above postulates are driven by undeniable experimental facts.
The SM is a chiral theory i.e within the SM framework left-handed and right-handed
fermions are treated differently. This is an experimentally verified occurrence. The
name left-handed (right-handed) characterizes the way a particle transforms according
to the left (right)-handed representation of Poincare group (the group of isometries of
Minkowski spacetime).

1.4.1 Constructing the Quantum Electrodynamic (QED) gauge
invariant Lagrangian.

A free Dirac fermion is described in the coordinate space by the Dirac equation:

iγµ∂µΨ(x) = mΨ(x), (1.6)

where γµ are the Dirac matrices (for definition and properties see Appendix A) and
Ψ represents the wave function of a Dirac spinor with mass m. This equation can be
derived from the following Lagrangian:

L0 = iΨ(x)γµ∂µΨ(x)−mΨ(x)Ψ(x), (1.7)

with Ψ(x) ≡ Ψ†(x)γ0. Obviously, this is invariant under the global transformation
Ψ′(x) = ei αΨ(x), where α a real parameter, but if we require that the Lagrangian
above be invariant under a local transformation Ψ′(x) = ei α(x)Ψ(x), where α(x) a
real-valued function of space-time, then we should also add an extra field Aµ which
has the following transformation A′µ(x) = Aµ(x)− 1/q ∂µα(x) property, where q is the
fermion’s electric charge. In this way we can modify the eq. (1.7) in the following form:

L = iΨ(x)γµDµΨ(x)−mΨ(x)Ψ(x) =

= L0 − qΨ(x)γµAµΨ(x), (1.8)
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where Dµ ≡ ∂µ + i q Aµ is the gauge covariant derivative. This expression is invariant
under the above transformation which is called local gauge transformation. In the sec-
ond form of eq. (1.8), it is clear that the requirement the Lagrangian remains invariant
under the local gauge transformations, generates a term that represents an interac-
tion between the fields Ψ(x) and Aµ(x). On the other hand, requiring that the field
Aµ is a propagating field, one should add the following gauge invariant kinetic term
−1/4FµνF

µν , where Fµν ≡ ∂µFν − ∂νFµ represents the electromagnetic field strength.
Therefore eq. (1.8) now becomes:

L = −1

4
FµνF

µν + iΨ /DΨ−mΨΨ

= −1

4
FµνF

µν + Ψ(x)(i/∂ −m)Ψ(x)− qΨ(x)γµΨ(x)Aµ(x) =

= LMaxwell + LDirac + Lint, (1.9)

where /D ≡ γµDµ, /∂ ≡ γµ∂µ and Lint ≡ −qΨ(x)γµΨ(x)Aµ(x) represents the interac-
tion part of the Lagrangian above. The Euler-Lagrange equation for the field Aν(x)
is:

∂µF
µν = qΨ(x)γνΨ(x) = q jν , (1.10)

with the current density given by jν = Ψ(x)γνΨ(x). A mass term for the field Aµ(x)
of the form 1/2m2

AAµ(x)Aµ(x) is forbidden because it clearly breaks the local gauge
invariance. This leads to the fact that the field Aµ(x) represents a massless particle, the
photon. The important fact of this subsection is that the requirement the Lagrangian
of a system to be invariant under local gauge transformations, generates interactions
between different fields in a natural way. This is a general fact not only applied in the
case of QED theory.

1.4.2 Constructing the Quantum Chromodynamic (QCD) La-
grangian.

There are experimental hints and theoretical requirements that hadrons (baryons and
mesons) are composite particles and are constituted by other elementary particles,
called quarks. Baryons contain 3 quarks and mesons contain a quark-antiquark pair.
They carry a quantity called color which allows them to coexist in bound states al-
though they are fermions (they obey the Fermi-Dirac statistic), and to interact via
strong interactions. The experiment indicates that the number of colors is NC = 3
(red, green, blue). In order to construct the QCD gauge invariant Lagrangian, as the
QED case, we start from the free quark Lagrangian:

L0 =
∑
f

Ψf (iγ
µ∂µ −mf )Ψf , (1.11)

where Ψf is the wavefunction of the quark with flavor f . Obviously this is invariant un-
der the global gauge transformation Ψ′f = U Ψf where U †U = U U † = I, det U = 1 and
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U = exp{iαiti}. Here, ti are the SU(3) generators in the fundamental representation
(3 × 3 hermitian matrices) with the commutation relation [ta, tb] = i fabctc where fabc

the SU(3) structure constants (chosen totally antisymmetric) and αi real constants.
If we require, the Lagrangian remains unchanged under local gauge transformations,
αi → αi(x), the partial derivative should be transformed into a covariant derivative
and additional terms that contain extra fields should appear, among them terms that
show the possible interactions. The covariant derivative related to the above local
transformation is:

Dµ = ∂µ − igAaµta, (1.12)

where g is the strong coupling and for each generator ta (eight in total in the SU(3)
case), corresponds the field Aaµ. These fields represent the gauge bosons of strong
interaction that are called gluons. Imposing the following infinitesimal transformations
for Ψf and Aµ:

Ψ′f = UΨf ≈ (1 + iαata)Ψf

A′aµ = Aaµ +
1

g
∂µα

a + fabcAaµα
c, (1.13)

and adding the gauge invariant kinetic term for the Aaµ field, the QCD Lagrangian
takes the following form:

LQCD = −1

4
F a
µνF

µν
a +

∑
f

Ψf (i /D −mf )Ψf =

= −1

4
(∂µA

a
ν − ∂νAaµ)(∂µAνa − ∂νAµa) +

∑
f

Ψf (i/∂ −mf )Ψf +

+ g Aaµ
∑
f

Ψfγ
µtaΨf − g fabc(∂µAaν)Aµ

b

Aν
c −

− 1

4
g2 fabc faedAbµA

c
νA

µeAν
d

, (1.14)

where F a
µν = ∂µA

a
ν − ∂νA

a
µ + g fabcAbµA

c
ν represents the strength tensor for the field

Aaµ. The second line of eq. (1.14) represents the kinetic term for the Aaµ field and
the kinetic and mass term for the quark field Ψf . The first term in the third line
expresses the interaction between the Aaµ and Ψf field and involves the SU(3) matrices
ta. The next two terms manifest the non-Abelian character of strong interactions
corresponding to cubic and quartic gluon self-interactions respectively. There is not a
similar gauge bosons self-interaction in QED Lagrangian. This new feature of strong
interactions is responsible for two basic properties that they manifest themselves: the
asymptotic freedom, where the interactions become weaker in short distances, and the
confinement, where they become stronger as the distance increases. As in the case of
QED, any mass term for the gauge bosons is forbidden, because it breaks the gauge
invariance. Therefore the gauge bosons of the strong interaction, the gluons, remain
massless.
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1.4.3 Electroweak sector

Weak interactions constitute on of the fundamental interactions in nature and are re-
sponsible for flavour changing processes governing the fermionic sector of SM. There
is a considerable amount of experimental facts (especially β-decay,π− → µ−νµ) that
have made clear that the left-handed and right-handed chiral fermions are treated dif-
ferently by weak interactions. Data from neutrino scattering, as well as measures of
neutrino emission from astrophysical sources show clearly that there are different neu-
trino flavours and also that neutrinos of one flavour can be transformed to another
flavour, a phenomenon known as neutrino oscillation. The mediators of weak interac-
tions are the massive W± and Z0 gauge bosons which posses the following properties
with respect to their interactions to fermions:

• W±-bosons couple only to left-handed fermions and right-handed antifermions.
This is a clear breaking of parity and charge conjugation. Also they interact
with fermionic doublets that contain fermions which differ by one unit of electric
charge. This kind of interactions has the same universal strength.

• Fermionic interactions with the Z0 boson are characteristic for flavour conserving
vertices. Interactions with neutrinos involve only left-handed chiralities.

Experimental facts suggest that d′, s′ and b′ quarks flavours eigenstates, are a linear
combination of their mass eigenstates and are related by the expression: d′

s′

b′

 = V

 d
s
b

 , (1.15)

where V is a 3 × 3 unitary matrix VV† = V†V = I, called Cabibbo-Kobayashi-
Maskawa (CKM) matrix present in flavour mixing processes. An analogous situation
shows the neutrino sector, since as it is suggested by neutrino oscillation phenomena,
neutrinos posses a tiny but non-zero mass and the neutrino flavour eigenstates are a
mixture of their mass eigenstates requiring an analogous to CKM matrix that relates
the two eigenbases.

To construct the electroweak Lagrangian we should take into account left-handed
chiral fermions that transform as doublets and right-handed chiral fermions as siglets
under the weak interactions. Firstly, we define the fermionic doublets and singlets as
follows:

EL(x) =

(
νe
e−

)
L

, QL(x) =

(
u
d

)
L

, eR(x), uR(x), dR(x), (1.16)

where L refers to left-handed and R to right-handed fermions. In terms of the fields
above the free Lagrangian takes the form:

L = EL(i/∂)EL + eR(i/∂)eR +QL(i/∂)QL + uR(i/∂)uR + dR(i/∂)dR. (1.17)
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The Lagragrian in eq. (1.17) is obviously invarinat under the global gauge transforma-
tions:

E ′L(x) = exp{iα y1L}ULEL(x), Q′L(x) = exp{iα y2L}ULQL(x),

e′R(x) = exp{iα y1R}eR(x) u′R(x) = exp{iα y2R}uR(x),

d′R(x) = exp{iα y3R} dR(x), (1.18)

where y1L, y2L are real parameters called hypercharges and UL ≡ exp{iσi
2
αi} is the

SU(2) transformation acting on doublets EL and QL and σi the Pauli matrices with
i = 1, 2, 3. The parameters y1R, y2R, y3R are called hypercharges and are analogous to
phase transformation in QED. On the other hand UL is non-Abelian as in the QCD case.
Requiring the Lagrangian eq. (1.17) to be invariant under local gauge transformations,
the recipe is already known. The derivatives transform into covariant derivatives and
new fields that represent gauge bosons are introduced as follows:

Dµ ≡ ∂µ − i gAaµτa − i
1

2
g′Bµ, (1.19)

where Aaµ and Bµ represent the SU(2) and U(1) gauge bosons respectively, τa = σa/2
and g and g′ are the coupling constants of SU(2) and U(1) fields. As in the case of
QED and QCD the fields Bµ and Aaµ have the following transformation:

B′µ = Bµ +
1

g′
∂µβ(x),

A′aµ = Aaµ +
1

g
∂µα

a(x) + εa b cAbµ α
c(x). (1.20)

Constructing the field strength tensors for Bµ and Aaµ respectively,

Bµν = ∂µBν − ∂νBµ,

F a
µν = ∂µA

a
ν − ∂νAaµ + g εa b cAbµA

c
ν , (1.21)

we can see that they remain invariant under transformations in eq. (1.20). Subsequently
we can write down the properly transformed kinetic terms for Aaµ and Bµ and the final
Lagrangian reads:

L = −1

4
F µν
a F a

µν −
1

4
BµνBµν + EL(i /D)EL + eR(i /D)eR +

+QL(i /D)QL + uR(i /D)uR + dR(i /D)dR. (1.22)

The last term of F µν , that constitutes its non-Abelian part, generates cubic and quar-
tic self-interactions among gauge fields that have the same SU(2) coupling g. The
Lagrangian above describes a set of massless fermions. Any mass term for fermionic
fields is forbidden by global gauge invariance. For example any term of the form
−me(eL eR + eR eL), is not allowed because the fields eL and eR belong to different
SU(2) representations and have different U(1) couplings. Also any mass term for the
gauge bosons is also forbidden since it violates the local gauge invariance. Therefore this
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Lagrangian describes a completely massless set of particles. However, this Lagrangian
is far from reality. Since the weak force does not represent a long range interaction,
the physical W± and Z0 bosons should be massive. On the other hand, although it
can describe the fermionic sector in high energies, where fermions can be considered
massless, the description fails at low energies where fermions appear clearly massive.
In order to generate masses we need to break the gauge symmetry somehow. For this,
it is necessary to introduce a new mechanism that respects the gauge invariance of the
Lagrangian, but generates stable minimal energy states that are transformed under
gauge transformations in a specific way. Choosing one of these states, it is said that
the symmetry is spontaneously broken.

1.4.4 Spontaneous Breaking of a global gauge Symmetry

Let consider first the notion of spontaneous breaking of a global gauge symmetry. For
this we introduce a complex scalar field φ, with Lagrangian:

L = ∂µφ
†∂µφ− V (φ), V (φ) = µ2φ†φ+ λ(φ†φ)2. (1.23)

This Lagrangian is invariant under the global transformation φ′ = exp(i α)φ. The
parameter λ > 0 in order the potential posses a stable ground state. For the other
parameter µ2 there are two possibilities: µ2 > 0 where the only ground state corre-
sponds to φ0 = 0 and is stable, and µ2 < 0 where an unstable state appears at φ0 = 0

and a stable minimum appears for field configurations satisfying | φ0 |=
√
−µ2

2λ
≡ v√

2
,

where v is the vacuum expectation value. In fact there is an infinite number of de-
generate states all related via the U(1) transformation φ = v√

2
exp(iθ). We can choose

everyone of this states. For simplicity we choose θ = 0 and the symmetry is sponta-
neously broken. In order to investigate the particle spectrum we have to move in a
perturbative way around the vacuum. We can decompose the initial field φ as follows
φ(x) = 1√

2
(φ1(x) + i φ2(x)), and using the shift ϕ1 ≡ φ1 − v along φ1 direction and

ϕ2 ≡ φ2 along the φ2 direction, obtain φ(x) = 1√
2
(v+ϕ1(x) + i ϕ2(x)). In terms of new

fields ϕ1 and ϕ2 the Lagrangian above read:

L =
1

2
∂µϕ1∂

µϕ1 +
1

2
∂µϕ2∂

µϕ2 −
µ2

2

(
(v + ϕ1)2 + ϕ2

2

)
− λ

4

(
(v + ϕ1)2 + ϕ2

2

)2

=

=
1

2
∂µϕ1∂

µϕ1 +
1

2
∂µϕ2∂

µϕ2 − λv2ϕ2
1 − 0ϕ2

2 −

− λ
(
v ϕ3

1 + v ϕ1 ϕ
2
2 +

1

2
ϕ2

1 ϕ
2
2 +

1

4
(ϕ4

1 + ϕ4
2)− v4

4

)
=

=
[1

2
∂µϕ1∂

µϕ1 − λv2ϕ2
1

]
+
[1

2
∂µϕ2∂

µϕ2 − 0ϕ2
2

]
+ interaction terms, (1.24)

where the relation µ2 = −λv2 has been used. Comparing the last line of the Lagrangian
above with the Lagrangian of a scalar particle L = 1

2
∂µφ∂

µφ− 1
2
m2 φ2, with mass m, it

is clear that eq. (1.24) describes a massive scalar particle ϕ1 with mass mϕ1 =
√

2λv2

and a massless scalar ϕ2. The spontaneous breaking of the global gauge symmetry has
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generated massless excitations, a result related to Goldstone’s theorem [32]: for each
broken generator of a continuous symmetry there appears a massless scalar particle.

1.4.5 Spontaneous Breaking of a local gauge Symmetry. The
Higgs mechanism. Gauge boson masses

In this section we will investigate what happens when a local gauge symmetry is spon-
taneously broken. Local gauge invariance requires the Lagrangian to be invariant under
the transformation φ′(x) = exp(i α(x))φ(x) and also, through the covariant derivative,
introduces gauge fields that have a special transformation rule. We are interested for
the case of SU(2)L ⊗ U(1)Y Lagrangian, since we expect the spontaneous breaking of
local gauge symmetry will generate mass terms for weak gauge bosons. In this point
we introduce the Higgs boson field, a doublet of complex scalar fields:

φ(x) =

(
φ+(x)
φ(0)(x)

)
(1.25)

and eq. (1.23) reads:

L = (Dµφ
†)(Dµφ)− µ2φ†φ− λ(φ†φ)2, (1.26)

where Dµφ =
(
∂µ − i gAaµτa − i1

2
g′Bµ

)
φ and as previously µ2 < 0 and λ > 0. This

Lagrangian is invariant under the local gauge transformation φ′(x) = exp(i α(x))φ(x)
and those described in eq. (1.20). The potential term guaranties that there is an infinity

of degenerate ground states located at |φ0|2 =
√
−µ2

2λ
. We can choose one of them by

parametrizing the field φ ,“ala Kibble”, as follows:

φ(x) = exp{iσ
i

2
θi(x)} 1√

2

(
0

v + h(x)

)
, (1.27)

where θi(x) and h(x) real fields. We can simplify the situation by working in unitary
gauge where θi(x) = 0. This is allowed by the fact that the local SU(2) invariance of
the Lagrangian since we can rotate away any θi(x) dependence. The potential term
in eq. (1.26) will generate self-interactions of Higgs boson and also a mass term for it.
The gauge boson mass terms should come from the first term of eq. (1.26) evaluated
at the scalar field expectation value. We work out only the relevant terms:

∆L = Dµφ
†Dµφ ∼ 1

2
(0, v)

(
gAaµτ

a +
1

2
g′Bµ

)(
gAb

µ

τ b +
1

2
g′Bµ

)( 0
v

)
. (1.28)

Considering that τa = σa/2 and using the explicit form of Pauli matrices (see Appendix
A), we find:

∆L =
1

2

v2

4

[
g2(A1

µ)2 + g2(A2
µ)2 + (−gA3

µ + g′Bµ)2
]
. (1.29)
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It is convenient to define the following linear combinations of fields:

W±µ =
1√
2

(
A1
µ ∓ iA2

µ

)
, Z0

µ =
1√

g2 + g′2

(
gA3

µ − g′Bµ
)
, Aµ =

1√
g2 + g′2

(
g′A3

µ + g Bµ

)
.

(1.30)

Now eq. (1.29) takes the form:

∆L =
1

2

(g v
2

)2
(W+

µ )†Wµ+
+

1

2

(g v
2

)2
(W−µ )†Wµ− +

1

2

(
g2 + g′2

)
(
v

2
)2Z0

µZ
0µ + 0AµA

µ.

(1.31)

From this expression it is clear that the combinations W±
µ acquires a mass mW = gv

2
,

the Z0
µ acquires a mass mZ0 =

√
g2 + g′2 v

2
, since in the Lagragian a general mass term

for the massive gauge bosons has the form 1
2
m2VµV

µ. The last combination Aµ remains
massless. The W±

µ and Z0
µ are identified with the weak gauge bosons and the field Aµ

with the photon. In this way it is evident that the spontaneous breaking of a local
gauge symmetry has generated massive gauge bosons and also a massless particle as
well. In the general case of considering the coupling of vector fields to fermions the
covariant derivative takes the form:

Dµ = ∂µ − ig AaµT a − ig′Y Bµ, (1.32)

where T a = 1
2
σa and Y the U(1) hypercharge. We are interested in writing this

expression as a function of mass eigenstate fields W±, Z0 and Aµ. First we define
T± = T 1 ± i T 2 = 1

2
(σ1 ± iσ2). Therefore the expression for the covariant derivatives

becomes:

Dµ = ∂µ − i
g√
2

(
W+
µ T

+ +W−
µ T

−
)
− i 1√

g2 + g′2
Z0
µ

(
g2T 3 − g′2Y

)
−

−i gg′√
g2 + g′2

Aµ

(
T 3 + Y

)
. (1.33)

In this expression it is clear that the massless gauge boson couples to the gauge genera-
tor T 3 +Y . This leaves the vacuum unaffected. Since the gauge boson Aµ corresponds
to the photon, the mediator of electromagnetism, we conclude that the symmetry re-
lated to the electromagnetism leaves the vacuum invariant, which has as a consequence
the presence of the massless photon. In order to simplify the eq. (1.33) further, we
define the factor next to Aµ field as the electron charge e = gg′√

g2+g′2
and also identify

the quantum number of the electric charge as Q = T 3 + Y . In terms of T 3 and Q, the
term next to Zµ field in eq. (1.33), takes the form g2T 3−g′2Y = (g2 +g′2)T 3−g′2Q and

also define cos θw = g√
g2+g′2

and sin θw = g′√
g2+g′2

, where θw is the weak mixing angle.

After the above definitions and abbreviations eq. (1.33) is written in a simplified form:

Dµ = ∂µ − i
g√
2

(
W+
µ T

+ +W−
µ T

−
)
− i g

cos θw
Z0
µ

(
T 3 − sin2 θw

)
− ieAµQ. (1.34)
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We can use the θw to express different useful relations as for example the parametriza-
tion of mixing between (Z0, A) and (A3, B) gauge fields through the change from one
base to the other as follows:(

Z0

A

)
=

(
cos θw − sin θw
sin θw cos θw

)(
A3

B

)
, (1.35)

or the relation e = g sin θw, between the electron charge and SU(2) coupling, or finally
the relation between the W and Z0 masses: mW = mZ0 cos θw. From the last relation
we can define the ρ parameter:

ρ ≡ m2
W

m2
Z0 cos2 θw

, (1.36)

and ρ = 1 at the lowest order of perturbation theory. The experimental measurements
of mW , mZ0 and cos θw confirm this relation. It is interesting that the total number
of degrees of freedom remains the same before and after symmetry breaking. Before
breaking there where four massless gauge fields (A1, A2, A3, B) each one with two de-
grees of freedom due to the two possible transverse polarizations and four real scalar
fields(the components of the complex Higgs field). In total 4 × 2 + 4 = 12 degrees of
freedom. After spontaneous symmetry breaking appear three massive gauge bosons,
each one with three degrees of freedom, a massless photon with two degrees of freedom
and the remaining Higgs field with one degree of freedom, in total 3×3+2+1 = 12. So
far we have described how the introduction of a scalar field with non-zero expectation
value allows the system to reach in a spontaneously broken state and this mechanism
generates the gauge boson masses and a massless photon. But this mechanism provides
a mass term for the Higgs boson, the quantum of Higgs field, describes Higgs boson’s
self-interaction and interactions of Higgs boson and gauge bosons, and finally explains
how fermions acquire their masses.

1.4.6 Interactions between fermions and gauge bosons.
Fermion masses.

So far the model we have described, contains massless fermions, since any mass term for
fermions is forbidden by the gauge invariance. For example a term of the form ∆L =
−me(eLeR + eReL) contains fields that have different transformation properties under
SU(2) or U(1) transformation groups. This information is encoded in the fermionic
part of the Lagrangian eq. (1.22):

∆Lf ∼ EL(i /D)EL + eR(i /D)eR +QL(i /D)QL + uR(i /D)uR + dR(i /D)dR, (1.37)

where in general Dµ = ∂µ − igAaτa − ig′Y Bµ. Since the different fermionic fields in
the Lagrangian above belong to different representations, they have different values for
the hypercharge Y . Using the relation Q = T 3 + Y , the hypercharge is chosen in such
a way to reproduce the correct electric charge. For example, for right handed fermions
the hypercharge coincides with the electric charge since in this case T 3 = 0. For the
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left handed fermions it is determined from the relation Y = Q− T 3 where considering
that T 3 = ±1/2 for the upper and lower component of fermionic doublet respectively.
Therefore the left handed doublets:

EL =

(
νe
e−

)
L

, QL =

(
u
d

)
L

, (1.38)

have hypercharge Y = −1/2 and Y = +1/6 respectively. We can use the expression of
covariant derivative as a function of mass eigenstates gauge fields, in order to express
eq. (1.37) as follows:

∆Lf ∼ EL(i/∂)EL + eR(i/∂)eR +QL(i/∂)QL + uR(i/∂)uR + dR(i/∂)dR +

+ g
(
W+
µ J

µ+
W +W−

µ J
µ−
W + Z0

µ J
µ
Z

)
+ eAµJ

µ
EM , (1.39)

where the corresponding currents are:

JµW+ =
1√
2

(
νLγ

µeL + uLγ
µdL

)
,

JµW− =
1√
2

(
eLγ

µνL + dLγ
µuL

)
,

JµEM = eγµ(−1)e+ uγµ(+
2

3
)u+ dγµ(−1

3
)d, (1.40)

and

JµZ =
1

cos θW

[ 1

2
νLγ

µνL +
(
− 1

2
+ sin2 θW

)
eLγ

µeL + sin2 θW eRγ
µeR +

+
(1

2
− 2

3
sin2 θW

)
uLγ

µuL +
(
− 2

3
sin2 θW

)
uRγ

µuR +

+
(
− 1

2
+

1

3
sin2 θW

)
dLγ

µdL +
(1

3
sin2 θW

)
dRγ

µdR

]
. (1.41)

Let see now how the introduction of the Higgs field produces mass term for fermions.
The scalar field must have Y = 1/2 and should be a spinor under SU(2) in order to
generate the correct gauge boson masses. It is interesting that the same scalar field,
with these quantum numbers plays a crucial role in writing down a coupling term in
the Lagrangian invariant under SU(2)L ⊗ U(1)Y of the form:

∆Le = −λe(EL · φ eR + eRφ
† · EL), (1.42)

where λe is a new dimensionless parameter. We notice that the hypercharges of the

different fields sum to zero. If the scalar field has the form φ = 1√
2

(
0

v + h

)
then

eq. (1.42) is written:

∆L =
−λe√

2

(
(νeL , eL) ·

(
0

v + h

)
eR + eR(0, v + h) ·

(
νeL
eL

))
=

=
−λe√

2
[v(eLeR + eReL) + h(eLeR + eReL)] =

= −mee e−
λe√

2
he e, (1.43)



1.4. MATHEMATICAL CONSTRUCTION 17

where me = λev√
2

and eLeR + eReL = e e. From this expression it is clear that except of
the fermionic mass term a coupling term between the Higgs boson and fermions has
been generated. The eq. (1.42) seems to contribute to the mass generation of the lower
component of the fermion doublet. In order to give mass to the upper component we
write down the following SU(2)L ⊗ U(1)Y Lagrangian:

∆Lu = −λu
(
QL · φ̃cuR + uR(φ̃c)† ·QL

)
, (1.44)

where φ̃c = iσ2φ∗ = 1√
2

(
v + h

0

)
. In this case the Lagrangian eq. (1.44) takes the

form:

∆Lu =
−λu√

2
(v + h)

(
uL uR + uR uL

)
= −muuu−

λu√
2
huu, (1.45)

where mu = λuv√
2

is the mass term for the u quark and uLuR + uRuL = uu.

1.4.7 Higgs boson: mass, production and decay.

By working out the terms in the potential part of eq. (1.26) for φ = 1√
2

(
0

v + h

)
and

using the relation −µ2 = λ v2 we find for the Higgs boson mH =
√

2λv. The vacuum
expectation value is v ≈ 246GeV as it is evaluated from muon decay processes by
taking into account the Fermi coupling and the relation v = (

√
2GF )−1/2. Also there

appear interaction terms of the form −λvh3 − λh4

4
(some constant terms have been

neglected) giving rise to third and fourth power self-interactions. From the kinetic
part of eq. (1.26) one also finds the interaction terms between the Higgs boson and
weak gauge bosons. Manipulating the relevant terms one obtains:

∆Lkin. ∼
1

2
∂µh∂

µh+
[
m2
wW

µ+

W−
µ +

1

2
m2
ZZ

µZµ

](
1 +

h

v

)2

. (1.46)

From this expression we conclude that there are four different couplings of Higgs field
to the gauge bosons (the triple and quartic interaction with each one gauge boson).
There is no direct coupling of the Higgs boson to photon, since, as we know, the photon
couples only to charged particles and the Higgs boson is a neutral one, or alternatively
the Higgs boson couples to massive particles and the photon is massless. However there
appears a loop induced hγγ coupling involving fermions or W -bosons in the loop. On
the other hand the coupling to the massive gauge bosons has the characteristic of being
proportional to gauge boson’s mass squared as it is clear from eq. (1.46).

At this point we want to discuss about Higss boson’s production and decay. In
previous sections we recognized the major role of the introduction of a scalar field in
the theory, since it provides the framework where a mechanism that generates massive
gauge bosons and also gives mass to fermions takes place. The quantum representative
of this scalar field is the Higgs boson. The importance of the existence of the Higgs
boson has rendered the search for this particle, one of the fundamental goals in physics
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last decades. These searches have been realized in Tevatron and LHC and seems to
have given encouraging results with the discovery of a new boson which is at very high
possibility, identified with the Higgs boson [4, 5]. Before discussing about production
and decay of the Higgs boson, lets provide some general information about the LHC.
The main purpose of this accelerating machine is to shed light in some fundamental
questions in modern physics:

1. Are the masses of elementary particles produced by the Higgs mechanism?

2. Is the recently discovered boson identified with the Higgs boson?

3. Are there supersymmetric partners of the SM particles ?

4. What is the possibility that extra dimensions exist?

5. What is the nature of dark matter?

6. Why the fundamental interactions have so different magnitude (hierarchy prob-
lem)?

7. What is the deeper cause of matter-antimatter asymmetry?

8. What is the neutrino mass?

This thesis deals with points 1, 2 and 5. From the technical point of view, the LHC’s
“operating system” consist of a large underground tunnel (∼ 27km circumference),
where two proton beams travel in opposite directions in extreme conditions (∼ 10−13

atm pressure, 1.9K temperature and ∼ 8.3 T magnetic field). After accelerating in
very high speeds, the two beams collide and the products of this collision are detected
and analyzed. Each beam has a 7 TeV energy, giving a 14 TeV total collision energy.
During the collision are created the conditions where some of the questions above
possibly find their answer.

After this short parenthesis about LHC, we return again to Higgs boson’s pro-
duction and decay features. The Higgs boson’s production mechanism, at LHC, is
dominated by gluon fusion, vector boson fusion and associative production with W
boson or a top quark pair. Especially the gluon fusion has a major contributions to
the Higgs boson’s production, since the involved top quarks have a large coupling to
Higgs boson due to their large mass. The Higgs boson, after its production is unsta-
ble and for a mass of about 126 GeV the Standard Model prediction is that its life
time is about 1.6 × 10−22s. The Higgs boson can decay through different channels
with different probabilities. In general, more favorite are channels that contain heavy
fermion-antifermion pairs, since the strength of interaction is proportional to fermion
mass. Since for a 126 GeV Higgs boson, the decay to top-antitop pair is forbidden (
because mH ≤ 346GeV which is twice the mass of top quark), the most probable decay
channel contains a bottom-antibottom quark pair. An other alternative is the Higgs
boson to decay into W and Z0 gauge bosons, where each one of them subsequently
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decays into a pair of leptons. The products of these subsequent decays, provide in-
formation about the properties of the initial Higgs boson. The W boson decays into
quarks which in general are very difficult to distinguish from the background, or de-
cays into charged leptons and neutrinos that also have a detecting difficulty due to
neutrinos very low detectability especially in collision experiments. On the other hand
the Z0 boson decays into a pair of charged fermions that in general are easy to detect.
A third possibility is the Higgs boson to decay into a pair of gluons or a a pair of
photons. These two decay modes are indirect since the Higgs boson does not posses
color or electric charge. It can be realized through loop induced interactions where
are involved W bosons or virtual heavy fermions. The case where the final particles
are gluons, again expresses a difficulty due to the background. However the case of
final photons is a very interesting process since the energy and momentum of these
photons can be measured precisely and therefore this process plays a crucial role to
the mass reconstruction of the initial decaying particle. In Chapter 4 we investigate an
interesting behavior of the last possibility where the loop involved particles are virtual
W -bosons. The decay mode h → γγ has definitively contributed to the identification
in the recently discovered boson with the Higg boson [4, 5].

1.5 Some selected topics

In what follows, we describe some selected topics related to the concepts and problems
that we study in this thesis. This description serves as an introduction to issues that we
analyze in more details in the following Chapters. In particular we briefly describe some
general aspects about the dark matter, chiral anomalies and dimensional regularization.

1.5.1 General aspects about the dark matter

There is an increasing number of evidences about the existence of dark matter. It
is believed that dark matter is a type of matter that does not emit or absorb elec-
tromagnetic radiation and its direct effects on the visible matter and radiation have
gravitational nature. Among evidences about the existence of dark matter we refer
the tentative to explain the orbital velocities of stars in the Milky Way or the evidence
for the “missing mass” in the velocities of galaxies in clusters by Fritz Zwisky [10,11],
the “missing mass” in the explanation of rotational speed of galaxies by Vera Ru-
bin in 1960-1970 [12, 13], the gravitational lensing effects in the background radiative
structures, the distribution of anisotropies in the cosmic microwave background [14].
According to cosmological data our universe contains 4.9% ordinary matter, 26.8%
dark matter and 68.3% dark energy [15].

This is a considerable percentage and has motivated several theoretical and experi-
mental groups to focus on the search for dark matter [15–25]. Although the corpuscu-
lar nature of dark matter is still unknown, there are theories, such as supersymmetry
or other extensions of the Standard Model of particle physics that provide possible
candidates from a variety of subatomic particles (neutralinos, axions, heavy sterile
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neutrinos). The nature of dark matter however can not be baryonic. If this were
the case then the cosmic microwave background will have a completely different form
and also there would have been a conflict with the data about the abundance of light
elements created during the big-bang nucleosynthesis. On the other hand, very light
particles are also excluded since they are relativistic at early Universe and then es-
cape rapidly from low density condensations. Any electric charge or magnetic moment
are also forbidden since this would have allowed interactions with the photon-baryon
plasma before recombination and clearly a different microwave background would have
appeared. However, there are restrictions on this and we study models where dark
sector gauge boson Xµ mixes to photon Aµ. The most accepted candidates are the
WIMPs, (weakly interacting massive particles) [26] that interact with the rest of the
ordinary matter via weak (possibly) and gravitational interactions. Since both these
interactions are very weak, the detection of dark matter is extremely difficult, at least
based on the detecting abilities that we possess so far.

There are two main kinds of detecting strategies: direct and indirect WIMP detec-
tion. The direct detection is based on the analysis of low background recoiling nuclei
caused by the WIMP-nucleus scattering. The effectiveness of this method depends on
the local dark matter density and velocity distribution. Two are the main techniques
to detect recoiling nuclei: cryogenic detection, where the heat produced when a particle
hits an atom in a crystal (Si,Ge) is measured and scintillator detection, where scintil-
lation light is produced when a particle collides with the atoms in a liquid noble gas
(Xe,Ar). The indirect detection techniques are based on the experimental search for
particles that WIMPs could decay or annihilate. The final particles may be photons,
neutrinos, electrons, positrons or other Standard Model particles. Since the annihi-
lation rate is proportional to the square of the WIMPs density, the ideal places to
search for dark matter annihilation are dark matter dense objects (clusters of galaxies,
galaxies halos, dwarf galaxies) [27–29]. An alternative detecting choice provide particle
colliders. Large Hadron Collider (LHC) is an ideal place to search for physics beyond
the Standard Model. Future experiments in the LHC may be able to search for WIMP’s
production in proton-proton collisions. In principle, during a p−p collision, quarks and
gluons may annihilate in other colored particles (squarks, gluinos) and these particles
may decay to WIMPs. Since the WIMP interacts extremely weak with the ordinary
matter, it can be detected indirectly as missing energy and momentum.

However, alternative theories have been developed to explain the astronomical ob-
servations. Their philosophy is not to include large amounts of undetermined matter,
but to modify laws of gravity.

1.5.2 Chiral anomalies

In quantum field theory there are phenomena that have not analog in classical theories.
Their dynamics is affected completely by quantum effects. Such a problem is the
decay rate of neutral pion π0 → 2γ that leads to the concept of symmetry braking
anomalies. Here we will discuss the symmetry breaking of chiral anomalies. Chiral
symmetry is a possible symmetry of the Lagrangian where the left and right handed
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Figure 1.2: Feynman diagrams contributing to two-photon matrix element of the di-
vergence of the axial current.

fields transform independently. The massless Dirac Lagrangian has a symmetry related
to the conservation of left and right handed fermions, leading to the conserved axial
current jµ5 = Ψγµγ5Ψ. In the massless case it is ∂µj

µ5 = 0. As we will see this equation
is affected be quantum corrections. In order to understand this fact let us calculate the
matrix element that corresponds to the creation of two photons by this axial current
jµ5. The matrix element for this process is :∫

d4x e−iq·x〈k1k2|jµ5(x)|0〉 = (2π)4δ(4)(k1 + k2 − q)ε∗λ(k1)ε∗ν(k2)Mµνλ(k1, k2), (1.47)

where k1, k2 the momenta of the outgoing photons, ε∗λ(k1), ε∗ν(k2) their polarization
vectors and Mµνλ the matrix element for the process shown in Fig. 1.2. The virtual
particles in the loop are fermions that we assume massless. For the contribution from
the first diagram one obtains:

Mµνλ
1 = −1(−ie)2

∫
d4p

(2π)4
Tr[γµγ5 i (/p− /k1)

(p− k1)2
γλ
i /p

p2
γν
i (/p+ /k2)

(p+ k2)2
]. (1.48)

The minus sign corresponds to the fermion loop. From the second diagram one obtains
the same result after interchanging (k1, λ) with (k2, ν). If in eq. (1.47) one takes the
divergence, the result is similar to doting eq. (1.48) with iqµ. Using the following
identity:

qµγ
µγ5 = (/p+ /k2 − /p+ /k1)γ5 = (/p+ /k2)γ5 + γ5(/p− /k1), (1.49)

where we have used the fact that qµ = kµ1 + kµ2 and the anti-commuting properties of
gamma matrices ( for properties of gamma matrices see Appendix A). Therefore the
eq. (1.48), after doting with iqµ and using the identity above, takes the form:

i qµMµνλ
1 = e2

∫
d4p

(2π)4
Tr[γ5 (/p− /k1)

(p− k1)2
γλ

/p

p2
γν + γ5γλ

/p

p2
γν

(/p+ /k2)

(p+ k2)2
]. (1.50)

Shifting the momentum of integration p → p + k1 in the first integral and using the
cyclic property of trace and the anti-commutation property of γ5 in the second integral
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the expression eq. (1.50) takes the form:

i qµMµνλ
1 = e2

∫
d4p

(2π)4
Tr[γ5 /p

p2
γλ

(/p+ /k1)

(p+ k1)2
γν − γ5 /p

p2
γν

(/p+ /k2)

(p+ k2)2
γλ]. (1.51)

This expression is obviously antisymmetric under (k1, λ)→ (k2, ν). Therefore the con-
tribution from the second diagram exactly cancels this result. Finally it seems that
the total result is zero. But in the argumentation above there is something illegal. As
we see, the integrals in eq. (1.50) are divergent and the shift in divergent integrals is
not allowed in general. One method to evaluate the integrals in eq. (1.50) is to use di-
mensional regularization. In principle, in the framework of dimensional regularization,
any integral is performed in d dimensions and the physical result is obtained taking
the limit d → 4. But the anti-commutation relations of γ5 with γµ in d dimensions
should be used carefully. In their original paper t’Hooft and Veltman used the def-
inition γ5 = iγ0γ1γ2γ3. From this definition it is clear that γ5 anticommutes with
γµ for µ = 0, 1, 2, 3 and commutes with γµ with other values of µ. In eq. (1.50) the
external momenta k1 and k2 have at lest one non-zero component for d = 0, 1, 2, 3, but
the internal momentum p has components in all dimensions. We can use the following
decomposition p = p|| + p⊥, where p|| has zero components in d− 4 dimensions and p⊥
has zero components in d = 0, 1, 2, 3. Since γ5 commutes with γµ in d− 4 dimensions
we can write the following identity:

qµγ
µγ5 = (/p+ /k1)γ5 + γ5(/p− /k2)− 2γ5/p⊥. (1.52)

Since in the framework of dimensional regularization the shift is allowed, the first two
terms after adding the contribution from the second diagram, vanish (we use the same
argument as above). However there is something that survives; the contribution from
the third term. This contribution in eq. (1.48) is :

i qµMµνλ
1 = e2

∫
d4p

(2π)4
Tr
[
− 2γ5/p⊥

(/p− /k1)

(p− k1)2
γλ

/p

p2
γν

(/p+ /k2)

(p+ k2)2

]
. (1.53)

In order to evaluate this integral we can introduce Feynman parameters x, y, and shift
the integration variable p→ p+xk1− yk2. The denominator takes the form (p2−∆)3,
where ∆ is a function of k1, k2 and x, y. In the numerator, terms with odd powers
of p vanish due to symmetric integration. We can eliminate terms that give a non-
zero result. This contribution comes from a term containing /p⊥/p⊥. Then, we have to
evaluate the integral: ∫

d4p

(2π)4

/p⊥/p⊥
(p2 −∆)3

. (1.54)

Using the fact that /p⊥/p⊥ = p2
⊥ →

(d−4)
d

p2 and standard dimensional regularization
integrals we find:

i

(4π)d/2
(d− 4)

2

Γ(2− d/2)

Γ(3)∆2−d/2 →
−i

2(4π)2
, (1.55)
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when d→ 4. After a little standard algebra in eq. (1.53) we obtain:

i qµMµνλ
1 = e2

( −i
2(4π)2

)
Tr[2 γ5(−/k1)γλ/k2γ

ν ] =
e2

4π2
εαλβνk1αk2β . (1.56)

The contribution from the second diagram is the same. Therefore the final result is:

〈k1, k2|∂µjµ 5(0)|0〉 = − e2

2π2
εανβλ(−i k2α)ε∗ν(k2)(−ik1β)ε∗λ(k1). (1.57)

This equation shows an anomalous non-conservation of the four-dimensional axial cur-
rent. It is correct to all orders of perturbation theory and does not receive any other
radiative correction. This is a simple QED example where a chiral current appears a
problem at one loop corrections [30,31]. In general, theories that contain gauge bosons
that couple to axial currents, are gauge invariant, only if the anomalous terms disap-
pear. This is possible if the fermionic quantum numbers of all fermions are chosen in a
suitable way, or if new particles are introduced in the particle spectrum of the theory.
For three gauge bosons Aaµ, A

b
ν and Acλ the anomalous term is proportional to the quan-

tity Tr[γ5ta{tb, tc}], where the trace is taken over all fermions and ta, tb, tc are group
representation matrices. The anticommutator is related to the sum of two diagrams
where internal fermions circle in opposite directions. The γ5 expresses the fact that
the anomaly comes from chiral currents. Gauge theories satisfying the condition that
the trace above is zero, are called anomaly free. In Chapter 3 we present a systematic
method in order to generalize this result in the case of a triple gauge boson vertex. We
use there a different approach to derive the generalization of the result above. Instead
of working in d dimensions, we prefer to perform the calculation in d = 4 dimensions
and introduce some arbitrary vectors to handle the divergencies that appear during
the calculations (for details about these calculations see Appendix H).

1.5.3 Dimensional Regularization

Dimensional Regularization is a method that enables us to evaluate integrals related
to calculations that involve Feynman diagrams containing loops. In fact it is a set
of self-consistent formal rules that respect gauge invariance and renormalizability of a
theory. The method has been developed in early 70s by t’Hooft and Veltman [33]. The
basic idea behind dimensional regularization is the modification of divergent integrals
that appear often in calculations in such a way that the infinities that they involve,
are isolated from their finite parts. The main ingredient of this modification is the
analytic continuation of the integral

∫
ddpf(p), which is consider a function of the

complex parameter d, from a region that it converges to a meromorphic function of all
values of d. In general the parameter d is a complex number, not necessarily identified
with the number of space-time dimensions. This identification occurs only in the case
that d is a positive integer number. The following axioms constitute the foundations
that dimensional regularization is based on:

1. Linearity: For every a and b complex numbers,∫
ddp[af(p) + bg(p)] = a

∫
ddpf(p) + b

∫
ddp g(p). (1.58)
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2. Scaling: For any number s,∫
ddpf(sp) = s−d

∫
ddpf(p). (1.59)

3. Translation Invariance: For any vector q,∫
ddpf(p + q) =

∫
ddpf(p). (1.60)

In order to obtain the result that corresponds to the physical case, one should take
the limit d → 4 in the dimensional regularization result. In exactly d = 4, some
surface integrals appear and the obtained result is not gauge invariant. This case
requires a special treatment and it is discussed in more details in Chapter 4. In Ap-
pendix A are presented some d-dimensional integrals and mathematical tricks relevant
to dimensional regularization. Although we have used a different method to perform
the four-dimensional integrals especially in Chapters 3 and 4 (shifting the integration
variable by arbitrary constant vectors and requiring the result to be gauge invariant),
we have used the dimensional regularization method to check our results in several
intermediated calculational steps.



Chapter 2

Direct Detection of Dark Matter

Motivated by cosmic ray experimental results, in this Chapter we propose a scenario
where a secluded dark matter particle annihilates, primarily, into Standard Model lep-
tons through a low mass mediator particle. We consider several varieties of this scenario
depending on the type of mixing among gauge bosons and we study the implications
in direct dark matter experiments for detecting low energy recoiling electrons. We find
significant event rates and time modulation effects, especially in the case where the
mediator is massless, that may be complementary to those from recoiling nuclei. This
Chapter is based on the published work [35].

2.1 Introduction

The analysis of the positrons excess (vs electrons) seen in cosmic ray spectra from
PAMELA [16,17] in the energy region above 10 GeV confirming previous results from
HEAT [18, 19] and AMS-01 [36] experiments together with results from FERMI [20]
and HESS [21] collaborations seems to suggest the presence of a WIMP that annihilates
into leptons without any indication of annihilation into (p, p) pairs or other hadrons
(see Refs. [37,38] for relevant analysis). This is also reinforced by ATIC [22] experiment
which reports excess of electron plus positron cosmic ray events in the energy region
300 . E . 800 GeV and also by signals from WMAP and EGRET [39–41] experiments.
These phenomena can be explained by a scenario, originally proposed in ref. [42] - a
subset of the so called secluded Dark Matter scenarios [43] - involving a new gauge
boson Xµ [45] 1, which couples to Standard Model (SM) particles and the WIMP
through kinetic vector boson mixing with the following properties [46–48] :

2me . mX . mχβ . mχαDM , (2.1)

where mχβ is a typical non-relativistic WIMP momentum and velocity β ∼ 10−3

inside the galactic halo and αDM is the dark matter coupling. It has been shown
that if eq. (2.1) is satisfied then dark matter annihilation inside the halo to leptons is

1In earlier models [44] of secluded dark matter, WIMPs could be annihilated into new light scalar
and gauge bosons.

25
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enhanced by a Sommerfeld factor of O(αDM/β) [49] while annihilation to protons is
simply kinematically forbidden. A typical range of parameters that are going to be
exploited in our analysis and satisfy eq. (2.1) are : mX = 0.1 − 1 GeV, mχ = 0.1 − 1
TeV and αDM = αem. The new force mediated by the X-boson is a long range force
indeed. We must note here that there is a choice of another viable possibility with an
even lighter mediator in MeV range that has been studied in ref. [50]. Our results for
detecting low energy electrons are even more pronounced in this case.

There is also a possibility for the gauge boson mediator Xµ that couples to the SM
gauge bosons through a mass mixing matrix in a generalized gauge invariant way. These
models are frequently called Stückelberg models [51,52] and are denoted as model type
II in our classification. A characteristic of these models is that the electromagnetic
current couples to the dark sector through a massless pole identified as the physical
photon. As we shall see, this results in considerable and comparable rates in both
nucleon or electron recoiling experiments. Alternatively, it could be that there is a
symmetry that renders dark matter particles leptophylic [53–57]. This symmetry is
spontaneously broken resulting in a massive gauge boson Xµ that couples directly to
both leptons and WIMP at tree level. Again Sommerfeld enhancement dictates the
mass of the X-boson to be in the GeV (or sub GeV) range. This is the model III that
is considered in section 2.

Within the three model categories mentioned above we want :

1. to study the implications of this new force carrier on both traditional nucleon
recoil, and untraditional electron recoil direct dark matter searches, and,

2. to suggest new dark matter experiments involving the detection of electrons scat-
tered by this carrier providing a direct link to observed cosmic ray anomalous
electron/positron events.

So far there is a dedicated analysis for electron recoils in DAMA experiment [58]
with energies approximately 5 KeV. Our analysis investigates recoiling electrons with
energies as low as 10 eV, and suggests an experimental method on how to reach such
low energies. It is therefore complementary to the analysis of Ref. [58].

In what follows we present a field theory setup which helps to categorize three
representative model examples that have been studied in detail and we present event
rate predictions for conventional nucleon recoil detection for the models studied. Also
we deal with the not so familiar methods of electron recoil detection rates together
with time modulation effects and make a proposition of a prototype experiment to be
exploited in discovering low energy electrons ejected from WIMP + atom collisions.
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2.2 Theory Setup and Model Categories

In this section, we formulate the problem of the Standard Model coupled to, for sim-
plicity, an Abelian dark sector with arbitrary kinetic or mass mixing terms allowed
by Lorentz, gauge symmetries and renormalizability. Our formulae are then applied
in subsequent sections to make predictions for event rates in dark matter detection
experiments.

To read out the gauge boson propagators we start by writing the general renormal-
izable form of the Lagrangian :

L = −1

4
ΦT
µν KΦµν +

1

2
ΦT
µM2 Φµ − 1

2
∂µΦT

µ Ξ ∂νΦν + Jµ
T Φµ , (2.2)

where Φµν = (∂µΦν − ∂νΦµ) is a N -column matrix field strength tensor corresponding
to a N -column Φµ vector field, “T” denotes the transpose of a matrix, K and M2 are
real and symmetric N × N matrices with model dependent elements to be specified
below and Ξ is the gauge fixingN×N symmetric matrix necessary to remove unphysical
gauge degrees of freedom. Interaction terms are encoded in the last term of eq. (2.2)
where an external current Jµ associated with symmetries, couples to the gauge fields.

One has to notice that elements of the mass matrixM2 should be further restricted
by electromagnetic gauge invariance. Phenomenologically speaking, there should al-
ways be a pole on the propagator 〈ΦµΦν〉 corresponding to the massless photon i.e., the
determinant of the inverse propagator at zero momentum must be exactly zero. Fur-
thermore, without loss of generality, we can always assume that the diagonal elements
of K are normalized to unity.

In Appendix B we calculate the Feynman propagator, D̃µν(p) with momentum p,
for the gauge field Φµ which in momentum space reads,

i D̃µν(p) = (K p2 −M2)−1

(
gµν −

pµpν
p2

)
+
(
Ξ p2 −M2

)−1 pµpν
p2

. (2.3)

At lowest order in ~, interactions among fields are stored in the action functional

S[J̃] =
1

2

∫
d4p

(2π)4
J̃Tµ (p) [iD̃µν(p)] J̃ν(−p) , (2.4)

where J̃µ(p) is the vector current in momentum space. Eqs. (2.3) and (2.4) are what
we actually need to describe observables that arise from mixing dark (or hidden) and
visible gauge bosons. As a simple example, consider the electromagnetic and the dark
gauge boson current. Then in eq. (2.2), it is JTµ = (eJe.m

µ , gXJ
dark
µ )T . It is then clear

from eq. (2.4) that interactions between the visible and the dark sector will involve off
diagonal elements of the propagator (2.3). Observables, like nucleon recoil event rates
can easily be described using the above propagator mixing formalism [59], by simply
finding the inverse matrices such in eq. (2.3) for a given model. We remark here that
the propagator mixing formalism works equally well in different current basis such as
Q − T3 or Y − T3, where Q and Y are the charge and hypercharge of the particles
respectively.
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Figure 2.1: Diagramatic form of Feynman propagator appeared in eq. (2.3) between
gauge boson “flavours” i and j. For explicit expressions in model I see Eqs.(2.6)-(2.11);
for model II see eq. (2.14).

2.2.1 Model I : Non-standard Kinetic Mixing K

Models in this category [42, 43] have been exploited in ref. [47] as candidates for ex-
plaining positron excess in cosmic ray data experiments. In its simplest form, the dark
matter particle, χ, is charged under a ‘dark’ U(1)X and the corresponding ‘dark’ gauge
boson Xµ mixes with the photon Aµ and Z-gauge boson, Zµ. Annihilations of dark
matter particles into only SM leptons (and not quarks) are kinematically allowed when
the intermediate gauge boson has a mass at the GeV scale.

In notation of ref. [60] and in basis (Aµ, Xµ, Zµ) (or else Q − T3) our matrices K
and M2 appeared in eq. (2.3), become:

K =

 1 −ε cos θW 0
−ε cos θW 1 ε sin θW

0 ε sin θW 1

 , M2 =

 0 0 0
0 m2

X 0
0 0 m2

Z

 , (2.5)

where mX is the mass of the exotic gauge boson, mZ is the mass of Z-boson, θW is
the weak mixing angle and ε is a small (≈ 10−3) mixing parameter between U(1)Y and
U(1)X field strength tensors. Working in Feynman gauge (Ξ = 13×3) and keeping up

to ε2-terms it is easy to work out the mixed propagators D̃ijµν(p), depicted in Fig.4.1,
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between photon, X and Z-gauge bosons, labeled 1,2,3, respectively :

i D̃11
µν(p) =

gµν
p2

+
ε2 cos2 θW
p2 −m2

X

(
gµν −

pµpν
p2

)
+ O(ε3) , (2.6)

i D̃12
µν(p) =

ε cos θW
p2 −m2

X

(
gµν −

pµpν
p2

)
+ O(ε3) , (2.7)

i D̃13
µν(p) = − ε2 p2 cos θW sin θW

(p2 −m2
X)(p2 −m2

Z)

(
gµν −

pµpν
p2

)
+ O(ε3) , (2.8)

i D̃22
µν(p) =

gµν
p2 −m2

X

+
ε2 p2 (p2 − cos2 θWm

2
Z)

(p2 −m2
X)2(p2 −m2

Z)

(
gµν −

pµpν
p2

)
+ O(ε3) ,(2.9)

i D̃23
µν(p) = − ε p2 sin θW

(p2 −m2
X) (p2 −m2

Z)

(
gµν −

pµpν
p2

)
+ O(ε3) , (2.10)

i D̃33
µν(p) =

gµν
p2 −m2

Z

+
ε2 p4 sin2 θW

(p2 −m2
X)(p2 −m2

Z)2

(
gµν −

pµpν
p2

)
+ O(ε3) .(2.11)

Some remarks are in order : i) among the three physical masses only m2
X mass is

shifted by an amount of m2
Xε

2 that we ignore ii) gauge invariance for the off diagonal
propagator terms is preserved as should be the case. As far as the effective action
eq. (2.4) is concerned, additional statements are in order:

• The single pole [1/p2] appears only in Je.m · Je.m exchange as usual in the SM.

• A pole [1/(p2−m2
X)] for the exotic bosonXµ appears, apart from JX ·JX exchange,

also in Jem · JX exchange at O(ε).

• There is exchange of current JX · JZ i.e., neutrinos and dark matter particles,
through a double pole of X and Z at order ε.

• There is exchange of Jem · JZ at order ε2 via double pole of X and Z.

The ε ≈ 10−3-term in the kinetic mixing can naturally arise as a result of mixing
two U(1)’s at high energies - a mechanism first proposed in Ref. [42]. Furthermore,
X-boson contributions to the muon anomalous magnetic moment relative to the SM
expectation, ∆αµ = αexp

µ −αSM
µ = (290±90)×10−11 [61], are easily found using eq. (2.6)

to be

∆αµ =
αem

3π
ε2 cos2 θW

(
mµ

mX

)2

, for
mµ

mX

� 1 . (2.12)

This requires ε . 3×10−2 for mX ' 1 GeV where the equality accounts for the 2σ upper
limit on ∆αµ. Of course there are many other constraints on the mixing parameter ε
from direct or indirect collider searches and we refer the reader to Refs. [62–65]. For
example, as we see from eqs. (2.6), (2.9) and (2.11) corrections to oblique electroweak
observables arise at order ε2 similar to the case of muon anomalous magnetic moment.
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2.2.2 Model II : Non-standard Mass Mixing, M2

Models belonging to this category are usually referred to as Stueckelberg models [51].
An account on “Stueckelberg” extensions of the Standard Model can be found in
Ref. [66]. Here, it is more convenient to work on Y − YX − T3 basis (Bµ, Xµ, A

3
µ).

We now assume that only the matrix M2 is nontrivial,

K =

 1 0 0
0 1 0
0 0 1

 , M2 =

 1
4
g2
Y v

2 +m2
Y mY mX −1

4
gY g v

2

mY mX m2
X 0

−1
4
gY g v

2 0 1
4
g2v2

 , (2.13)

where gY , g are the U(1)Y , SU(2)L gauge couplings respectively, m2
Y is a mass term for

the hypercharge gauge field Bµ and v is the vacuum expectation value. The form of the
upper left 2× 2M2 matrix guarantees electromagnetic gauge invariance i.e., massless
photon. Furthermore, the zero elements (23) and (32) guarantee that neutrinos are not
charged under electromagnetism. Demanding that the inverse propagator has poles at
the physical masses, det[p2 −M2]|p2=m2

i
= 0 where mi = 0,mX ,mZ , we find that the

photon mass is zero to all orders in mY , the dark gauge boson and the Z-boson masses
are not altered up to O(m2

Y ), and thus m2
Z = 1

4
(g2 + g2

Y )v2 +O(m2
Y ).

Following eq. (2.4), we obtain the following effective action (see Appendix C)

S[J ] =
1

2

∫
d4p

(2π)4

{[
e2 Je.m(p) · Je.m(−p)− 2 e2 gX

gY

mY

mX

Je.m(p) · JX(−p)
]

1

p2
+

+

[
g2
X JX(p) · JX(−p)

(
1− m2

X

m2
Z

)
+ 2 e2 gX

gY

mY

mX

Je.m(p) · JX(−p) −

− 2 gY gX
mX mY

m2
Z

JX(p) · JY (−p)
]

1

p2 −m2
X

( m2
Z

m2
Z −m2

X

)
+

+

[
g2 JZ(p) · JZ(−p)

(
1− m2

X

m2
Z

)
− 2 e2 gX

gY

mX mY

m2
Z

Je.m(p) · JX(−p) +

+ 2gY gX
mX mY

m2
Z

JX(p) · JY (−p)
]

1

p2 −m2
Z

( m2
Z

m2
Z −m2

X

)}
+ O(m2

Y ) ,(2.14)

where e ≡ gY g/
√
g2
Y + g2 is the electron charge. Furthermore, Je.m(p) = JA3(p) +

JY (p) is the momentum space Fourier transform of the electromagnetic current, i.e.,
Jµe.m =

∑
f Qffγ

µf with Qfe being the charge of a generic fermion f . The dark
current JX obtains an analogous formula with obvious replacement of charge Qfe by
another (hyper)charge, QX . Of course, if fermions under consideration are Majorana
particles then the corresponding current has only axial-vector form. In addition, JZ
denotes the Fourier transform of the Standard Model neutral current JµZ = 1

cos θw
(JµA3
−

sin2 θw J
µ
e.m) where the electromagnetic current is, as usual in the SM, the sum of the

third component of the isospin JµA3
and hypercharge currents JµY .

The physics of eq. (2.14) is now transparent : to order O(mY ), there are interactions
between the electromagnetic Je.m and dark current JX mediated by the photon i.e.,
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the dark matter particle is charged, and interactions between the hypercharge JY and
dark current JX mediated by (X or Z) gauge bosons, respectively. An estimate of the
dominant contribution to ∆αµ results in an upper bound mY

mX
. 9× 10−4, where a 2σ

bound on ∆αµ is taken from Ref. [61]. As normal in the SM, when the limit of gY → 0
is taken, weak currents in eq. (2.14) exhibit a global SU(2) “custodial” symmetry. In
present, this symmetry is further enhanced to a global SO(4) ∼ SU(2)⊗ SU(2) if, in
addition to gY → 0, we take the limits gX → g and mX → mZ or mX → 0. In the
former case the “hypercahrge-dark” current mixing cancels out in the effective action,
eq. (2.14). However, there is still Je.m ·JX current mixing. In the latter case (mX → 0)
the off-diagonal, “e.m - dark” currents cancel out to all orders in mY , even for general
values of gauge couplings since the remaining gauge symmetry is now U(1)e.m⊗U(1)X .
In this limit, eq. (2.13) tells us there is no connection between the SM and the Dark
sector.

2.2.3 Model III : Direct coupling, no mixing

In this model, some of the SM leptons (but not quarks) `L, eR and the WIMP particle χ
are coupled directly to the dark gauge boson Xµ in principle with different couplings2:

JµX = g′ Y ′(eL) `Lγ
µ`L + g′ Y ′(eR) eRγ

µeR + gX Y
′(χ)χγµχ , (2.15)

where Y ′(eL, eR) = (1,−1) denotes the particle hypercharge under the new gauge
symmetry. As it has been suggested in Ref. [37,53,54,56,57], this could be an anomaly
free gauged U(1)Le−Lτ . Of course a new Dirac fermion χ would be playing the role
of dark matter particle is also gauged under this symmetry with Y ′(χ) = 1. Because
we have already discussed the effects of the kinetic and mass mixing in the previous
models, without loss of generality, we assume that these mixing matrices are trivial in
this model at tree level3. If Xµ does not couple to the muon then the most important
constraint on α′ = g′2/4π will arise from the ν − e scattering at low q2 :

α′

m2
X

. 7× 10−7 . (2.16)

We shall use this bound when discussing electron recoil detection rates in section 2.4
as is typically comparable with other direct experimental bounds arising from LEP or
meson factories. If the Xµ vector boson couples to electrons and muons instead then
there is a comparable bound to eq. (2.16) from the muon anomalous magnetic moment.

Following ∆αµ = α′

3π

m2
µ

m2
X

for mµ � mX , there is a bound

α′

m2
X

. 4.4× 10−6 . (2.17)

2Various possibilities on how this is realized can be found in Ref. [53].
3Of course mixing of the Xµ gauge boson with the U(1)Y is inevitable at one loop. Its magnitude

is calculable : ε ' α′2 log mτ
mµ

= 2×10−4 for α′ = αem. All the rest will then proceed following eqs.(2.6

- 2.11) of model I.
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Figure 2.2: A Feynman diagram leading to the direct interaction of the WIMP χ to
the quarks relevant for direct detection of dark matter. The process is mediated by the
physical photon. The cross indicates merely that the exotic gauge boson has a small
admixture of the photon. Similarly the WIMP can also couple to electrons.

2.3 Conventional WIMP searches

Conventional DM searches deal with phenomena of WIMPs scattered of a nucleus.
The study of the recoil energy spectrum is the primary goal of experiments such as
CDMS [23], XENON [24] and DAMA [25]. For models we described in the previous
section there are two cases which have been discussed in the literature that could
explain the anomalous cosmic ray events:

a) The lightest mediator is massless and

b) the lightest mediator is massive with mass around the proton mass (mp),

in addition to the assumption that

mp � mχ , (2.18)

where mχ is the WIMP mass. Only model II belongs to the first category and models
I,II belong to the second since by definition, there is no direct coupling of X-boson to
quarks in model III. In the following subsections we present the WIMP-nucleon cross
section for both cases (a) and (b).

2.3.1 Massless Mediator

The differential WIMP-proton cross section in the rest frame of the initial proton is
given by:

dσ =
s(β)

β

e2 (gXκ)2

q4

d3p′

(2π)3

d3q

(2π)3
(2π)3 δ(3) (p− p′ − q) (2π) δ(T − T ′ − Tq) . (2.19)
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In the above equation p′,p are the momenta of the initial WIMP and the final WIMP
and q the momentum transfer to the nucleon and T = p2/2mχ, T

′ = (p′)2/2mχ and
Tq = q2/2mp, are respectively the corresponding kinetic energies in the non relativistic
limit. Furthermore, β is the WIMP velocity and s(β) = 1 for a WIMP which is a Dirac
fermion, while s(β) = β2 in case it is Majorana one [67](For a detailed derivation of
this result see Appendix F) .4 One finds that the momentum transfer and the final
nucleon energy are given by:

q = 2µrυξ ≈ 2mpυξ , Tq ≈ 2mpυ
2ξ2 , (2.20)

where µr is the WIMP-nucleon reduced mass, mp is the proton mass and 0 ≤ ξ ≤ 1
is the cosine of the angle between the incoming WIMP and the outgoing nucleon.
Integrating over the momentum of the outgoing WIMP and the magnitude of the
momentum of the final hadron as well as the φ-angle one finds :

dσ =
s(β)

β

e2 (gXκ)2

2π

1

(2mp)2

dξ

υ3ξ3
. (2.21)

The above expression exhibits, of course, the infrared divergence. We will impose a
low momentum cut off Eth/A provided by the energy threshold Eth, where A is the
mass number of the target, i.e.

ξmin =

√
Eth

(2Ampβ2)
. (2.22)

Thus the total cross-section for a Majorana WIMP is given by:

σ =
α

2
(gXκ)2 1

(mp)2

(
Amp

Eth

− mp

Tmax

)
≈ α

2
(gXκ)2 1

(mp)2

Amp

Eth

. (2.23)

Eq. (2.23) shows a much stronger dependence of the event rate on the threshold energy
Eth due to the adopted cut-off Ecut−off = Eth/A. It is interesting to note that this
cross section is independent of the WIMP velocity (in the case of a Dirac WIMP the
extracted from the data cross section must be multiplied by β2). We distinguish two
cases :

1. The case of Majorana WIMP. We find:

σ ≈ 1.6× 10−30 cm2 (gXκ)2 2Amp

Eth
. (2.24)

The direct dark matter experiments have set on the coherent nucleon cross section
the limits:

4The Majorana fermion does not possess electromagnetic properties. Hence only the γµγ5 of the
WIMP –X-boson interaction contributes.
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• The CDMSII experiment [23]:
The best limit is 6.6×10−44 cm2. The extracted value depends, however, on
the assumed WIMP mass. So it can vary between 6.6×10−44 and 6.6×10−42

cm2.

• The XENON10 collaboration [24]
They extract 8.8× 10−44 cm2 and 4.5× 10−44 cm2 for WIMP masses of 100
and 30 GeV respectively.5

For our purposes we will assume that the extracted from the data nucleon cross
section is 10−7pb = 10−43cm2. Furthermore we will take as a reference a threshold
energy of 5.0 KeV and examine the sensitivity of our results to the experimental
threshold. Using the experimental limit, σp ≤ 1.0× 10−43 cm2, we can write:

Rate(new)

Rate(conventional)
= 1.6× 106Z

2

A2
(gXκ)2 Amp

Eth
. (2.25)

Note that the coherence factor now is Z2, since in the case of the photon only
the protons of the target contribute. Adopting a threshold value of 5 KeV, we
get

Rate(new)

Rate(conventional)
= 3.0× 1018Z

2

A
(gXκ)2 . (2.26)

For the Ge target (A = 73, Z = 32) we get

Rate(new)

Rate(conventional)
= 4.3× 1019 (gXκ)2 , (2.27)

which leads to the limit:

|gXκ| ≤
√

1

0.43× 1019
= 1.6× 10−10 . (2.28)

From the second term in eq. (2.14) and assuming that αDM = g2
X/4π = αem one

can easily translate this into bounds on the model II parameters for Majorana
WIMP :

QX
mY

mX

. 0.54× 10−10 , model II . (2.29)

2. The case of a Dirac WIMP. We find:

σ ≈ 1

β2

α

2

1

(mp)2
(gXκ)2 Amp

Eth
. (2.30)

If we knew the coupling |gXκ| we could incorporate this into the evaluation of the
nuclear cross section, fold it with the velocity distribution and proceed with the

5These limits however, have been improved. For the CDMSII experiment the extracted value is
2.4× 10−41 cm2 for WIMP mass ∼ 10 GeV with 90% upper confidence level. For XENON10 the spin
independent dark matter-nucleon cross section is > 3.5 × 10−42 cm2 for a dark matter particle with
mass 8 GeV.
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evaluation of the event rate. Since, however, we like to constrain the parameter
|gXκ| we will employ an average velocity:

σ →< σ > ≈ <
1

β2
>
α

2

1

(mp)2
(gXκ)2 Amp

Eth
. (2.31)

But for a Maxwell - Boltzmann distribution i.e., < 1
β2 > → 3

<β2>
, we obtain

the constraint:

|gXκ| ≤ 1.6× 10−10

√
< β2 >√

3
≈ 0.8× 10−13 , (2.32)

from which the bound on model II for αDM = αem,

QX
mY

mX

. 0.27× 10−13 , model II , (2.33)

is found. As expected the limit is now more stringent than in eq. (2.29).

The results for the Xe target are similar. This bound is by many orders of magnitude
stronger than the one obtained from electroweak fits [66] or (g − 2)µ [see discussion
towards the end of section (2.2.2)]. The corresponding bound for Dirac WIMP is about
three orders of magnitude more stringent. This means that additional mechanisms
should be added in model II (Stückelberg type of Ref. [66] for example) in order to
efficiently depleting the WIMP in the early universe.
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Figure 2.3: The total rates for traditional WIMP searches assuming a nucleon cross
section σN = 10−43 cm2 in (a). The case of the photon mediated process considered
in this work is exhibited in (b). Both refer to the case of a heavy target (A=131)
and were computed assuming an energy threshold of 5 KeV. The results for the Iodine
target used by the DAMA experiment are almost identical.
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Figure 2.4: The same as in Fig. 2.3 in the case of the light target 19F .

Although eq. (2.29) [or eq. (2.33)] provides a very stringent limit, we should not
forget that in this case we have a much stronger dependence of the rates on the energy
threshold through the need for a low energy cut off on the elementary cross section.

Alternatively we may extract from the data for Xe (A=131,Z=54) an elementary
cross section assuming it to be of the form6 :

σSN,χ0 (A,Eth) = σ0
A

131

5 keV

Eth

, (2.34)

where σ0 is the elementary cross section obtained in the particle model for a target with
nuclear mass number A and threshold energy Eth. Then by fitting to the experiment
we obtain

(131/54)2σSN,χ0 = 0.5× 10−7 ⇒ σ0 = 2.9× 10−7pb = 2.9× 10−43 cm2 . (2.35)

In spite of the (Z/A)2 factor we obtain a smaller value than in the standard experiment.
This is due to the small cut off energy Eth/A employed. With the above ingredients
the number of events in time T due to the coherent scattering [68], can be cast in the
form:

R ' 1.07 10−5 ×
T

1y

ρ(0)

0.2 GeVcm−3

100 GeV

mχ0

m

1 kg

√
〈v2〉

280 km s−1

σSN,χ
10−43 cm2

fcoh(A, µr(A)) ,(2.36)

where the elementary cross section σSN,χcan be treated as a phenomenological parameter
independent of the WIMP mass in units of 10−43 cm2. The quantity fcoh(A, µr(A)) can
be obtained from the published in Ref. [68] values of t for the standard MB velocity
distribution (n=1). For the photon mediated mechanism examined here the above

6This treatment does not distinguish between a Majorana and a Dirac WIMP.
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Figure 2.5: The quantity R(Eth)/R((Eth)min, i.e. the ratio of the event rate at a
given threshold divided by that at the lowest threshold considered, as a function of
the threshold energy. In (a) as predicted by traditional mechanisms (lowest threshold
assumed zero). In (b) as predicted by the present model (now due to the need for a
cut off the lowest threshold energy employed was 5 keV). The thick line, short dash,
long dash, fine line and long short dash correspond to WIMP masses 10, 50, 100, 200
and 500 GeV respectively.

equation must be modified by multiplying fcoh(A, µr(A)) with the factor Z2/A2 and
employing eq. (2.34) for the elementary cross section (in units of 10−43 cm2). The
event rate per kg of target per year for the traditional experiments for a heavy isotope
like Xe and a light isotope like 19F, as a function of the WIMP mass is exhibited in
Figs 2.3 and 2.4. On the same plots we show the event rate for the photon mediated
process examined in the present work. It is not surprising that the agreement is
good since the elementary cross section was fitted to the data. The small difference
is understood, since in the extraction of the elementary cross section from the data
a zero threshold value was used in the phase space integrals. The event rates are
sensitive functions of the threshold energy, R = R(Eth). In the case of the Xe isotope
the ratio R(Eth)/R((Eth)min is exhibited in Fig. 2.5. The threshold dependence is
much more profound in the case of the light WIMP, since, then, the average energy
transfered is small. As expected the threshold dependence is more dramatic in the case
of the present model (this is a bit obscured in the figure since in this case the graphs
are normalized at 5 keV). In the case of a Dirac fermion the extracted limit will be
smaller, but the traditional calculations are not adequate for the analysis, due to the
different velocity dependence of the elementary cross section.
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2.3.2 Massive Mediator

In this case the WIMP - nucleon cross section reads :

σ = s(β)
16παem κ2 αDM m2

p

m4
X

= 1.2× 10−30 cm 2 s(β)
α

137−1

αDM

137−1
κ2

(
mp

mX

)4

, (2.37)

where the cross section refers to Dirac (Majorana) WIMP and s(β) = 1(β2) respec-
tively. Taking β2 → < β2 > ≈ 10−3 we find:

κ . 3× 10−7 (3× 10−4) . (2.38)

From these we obtain bounds for parameters in models I,II [see eqs. (2.8) and (2.14)] ,

ε . 3.0× 10−7 (3.0× 10−3) , Model I (2.39)

QX
mY

mX

. 1.6× 10−6 (1.6× 10−3) , Model II , (2.40)

where the number in parenthesis corresponds to Majorana WIMP dark matter particle.
These limits are less stringent than those obtained in the case of the massless mediator.
In the case of the massive mediator, with the possible exception of the velocity depen-
dence in the case of Majorana WIMP, the cross section behaves as in the standard
CDM case, since in this case we do not encounter an energy cutoff. Since, however, we
do not know the values of the parameters ε and mY

mX
, we cannot make predictions about

the event rates. Instead we have used the present experimental limits to constrain
these parameters. Thus we saw that the current experimental limits impose the most
stringent limits on these parameters. If, on the other hand, we use the previous con-
strains we can conclude that WIMPs in models I,II scatter off nuclei too many times.
These effects should have been seen in experiments [23,24] (or may have already been
seen [25]). An exception is a Majorana WIMP candidate in model I which results in
current sensitivity event rates.

2.4 Unconventional WIMP searches

2.4.1 Cross Section

The other possibility is the direct scattering of WIMPs by electrons that are bound in
atoms. The relevant Feynman diagram is obtained replacing the quarks by electrons.
In this case only the electron flavor can be detected since the other flavors are not
energetically allowed. Since the outgoing electrons are expected to have energies in
the eV region one cannot ignore atomic binding effects. The binding energy b is found
from the tables of ionization potential (energy) of an atom.7

7Tables are normally given in kJ/mol, but they can easily be translated in eV, since 96.485 kJ/mol
= 1 eV. Thus for Cs we find b = 375.7/96.485 = 3.89 eV.
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The problem is to find the cross section for WIMP scattered off an electron bounded
in an atom. In order to proceed we shall make two simplifying assumptions :

1. As a working example, we shall assume that the target is a hydrogenic atom
denoted by H i.e., a nucleus with charge +Ze and a single bounded electron
with charge −e. We shall discuss deviations from this assumption throughout.

2. The gauge boson mediator X couples only to WIMP and leptons but not to
quarks. This is a necessary condition to explain PAMELA positron excess of
events. Therefore, this discussion refers strictly to model III in eq. (2.15)

There are four processes that could take place in WIMP + H-like atom collisions :

χ + H −→ χ + H (elastic) , (2.41)

χ + H −→ χ + H∗ (inelastic) , (2.42)

χ + H −→ χ + e− + H+ (production) (2.43)

χ + H −→ (χ + H) (bound state) . (2.44)

For the rest we shall consider only the situation (2.43). The elastic scattering (2.41)
cannot be detected, and although we cannot exclude the inelastic one (2.42) from being
experimentally probed through final state photons, we believe that it would be easier to
detect the electrons from (2.43). We shall assume that the electron emerges with high
momenta, p′e, such that in the final state its interaction with the Coulomb potential in
H-like atom is negligible, i.e, we can use plane wave states for incoming and outgoing
particles. Using standard textbook [34] wavepacket analysis our starting point will be
the cross section formula in the lab frame:

dσ =
1

2Eχ2Ee

1

|v|
d3p′χ

(2π)32E ′χ

d3p′e
(2π)32E ′e

|M|2 (2π) δ(Tχ − T ′χ − T ′e − b)

× d3pe (2π)3 δ(3)(pχ + pe − p′χ − p′e) |φ(Z,pe)|2, (2.45)

where pχ,pe (p′χ,p
′
e) are the incoming (outgoing) three vector momenta of the WIMP

and electron particles respectively, andM is the matrix element of the process χ+e→
χ+e averaged over the spins of the initial states calculated in Born approximation. We
also ignore local velocity effects from the bound electron in the (static in lab frame)
atom i.e., that is the relative velocity is v ' vχ. Ti = p2

i /2mi, i = χ, e are the
kinetic energies and b is the binding energy of the electron in H-atom (≈ 13.6 eV).
Moreover, in non-relativistic limit Eχ ' E ′χ ≈ mχ and Ee ' E ′e ≈ me with mχ � me,
while φn`m`(p), normalized at

∫
V
d3p|φn`m`(p)|2 = 1, is the Fourier transform of the

coordinate wave function ψn`m`(r). Using the δ(3)-function to perform the integration
over pe, we obtain:

dσ =
|M|2

16m2
χm

2
eβ

d3p′χ d
3p′e

(2π)2
δ

(
|pχ|2

2mχ

−
|p′χ|2

2mχ

− |p
′
e|2

2me

− b(Z)

)
|φn`m`(Z,p′χ + p′e − pχ)|2, (2.46)
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where the energy conservation delta-function has been written out explicitly. The
result of eq. (2.46) is a product of two parts : a part that contains the dynamics of the
WIMP-electron interaction through the matrix element |M| times the probability of
finding the target electron with momentum pe = p′χ + p′e − pχ in H-atom. In addition
the matrix element of the process χ+ e→ χ+ e averaged over the spins of the initial
states in Born approximation reads :

|M|2 '
(16π)2αDMα

′m2
em

2
χ

(|pχ − p′χ|2 −m2
X)2

s(β) , (2.47)

where the factor s(β) ≡ 1 (β2) for Dirac WIMP (Majorana WIMP) particle. Note that
the cross section for Majorana WIMP is always smaller by a factor of β2 compared to
the one involving Dirac WIMP (details in Appendix F). We now use the kinetic energy
δ-function appearing in eq. (2.46) in order to perform the |p′χ| integration and arrive
at:

dσ = s(β)
16π2αDMα

′m2
χ

(|pχ − p′χ|2 −m2
X)2

|p′χ|
|pχ|
|p′e|2d|p′e| |φn`m`(Z,p′χ + p′e − pχ)|2 dξ dη

,(2.48)

where the initial WIMP momentum is |pχ| = mχβ and the scattering angles are defined
as

ξ = p̂χ · p̂′χ , η = p̂χ · p̂′e , ξ, η ∈ [−1, 1] . (2.49)

The integration over the azimuthal angles has been carried out trivially in eq. (2.48)
and the momentum |p′χ| of the scattered WIMP is found to be

|p′χ| =

√
m2
χ β

2 − 2mχ b(Z) − mχ

me

p′2e , with p′e =
√

2meE ′e , (2.50)

where b(Z) is the ground state energy for hydrogenic atoms is

b(Z) =
Z2

2a

e2

4π
=

Z2

2
me α

2
em , a ' 1

me αem

, (2.51)

in the approximation µ ' me where µ is the reduced mass, with αem = e2

4π
≈ 1/137,

me ' 0.5 MeV and a = a0 ≈ 0.5 Å being the Bohr radius for Z = 1. Throughout this
chapter, we are going to use the ground state momentum distribution of hydrogenic
atoms which reads:

φ100(Z, p) =
23/2

πa

(Za)5/2

(Z2 + p2a2)2
. (2.52)

Notice that since φ100(p) depends on |p|2 and therefore from the scattering angles η and

ξ and electron energy E ′e. A term in eq. (2.48),
|p′χ|
|pχ| =

|v′χ|
|vχ| , arises from the fact that we

treated the H-atom as a brick wall potential. Had we not done so, the influence of the
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Coulomb potential on the emerging electron would not have been uniquely correlated
to p′χ,pχ and the back reaction of the proton should have been taken into account.

Exactly the same result as in eq. (2.48) can be found by using simpler time-
dependent perturbation theory for transitions to continuum in non-relativistic quantum
mechanics [69](for more details see Appendix E). In a more refined analysis however,
when the recoiling energy is in the neighborhood of the binding energy of the atom one
should take into account effects from the continuum hydrogenic wave functions instead
of treating the final electron as plane wave. This analysis, though more accurate, is far
more complicated and does not change the qualitative features of our results.

We analyze below the corresponding cross sections for a massless and a massive
mediator as we did in section 2.3 for the nucleons.

Event Detection Rates

In general for an atom, due to binding energy effects only the loosely bound electrons
can contribute to the process (2.43). So we will convolute the elementary cross section
with the WIMP velocity distribution, which, with respect to the galactic center, we
will take to be Maxwell-Boltzmann form:

f(β) =

(
3

2 < β2 >

)3/2
1

π3/2
e
− 3β2

2<β2> . (2.53)

Transforming this into the local coordinate system:

β → ββ̂ + β0ẑ = ββ̂ +

√
2 < β2 >

3
ẑ , β2 → β2 +

2

3
< β2 > +2β cos(θ)

√
2

3
< β2 > ,

(2.54)

where θ is the angle between β̂ and ẑ and β0 =
√

2<β2>
3

is the sun’s velocity with

respect to the center of the galaxy and < β2 >≈ 10−6. Then we obtain the local
distribution of speeds f`(β) relative to the detector to be

f`(β) =

(
3

2 < β2 >

)3/2
1

π3/2
e
−
(

3β2

2<β2>
+ 2β cos(θ)

√
3

2<β2>
+ 1

)
. (2.55)

The integration over the angles of the distribution can be done analytically. In eval-
uating the rate one has to incorporate the oncoming flux. So, adopting appropriate
normalization, in the convolution we introduce the factor 1/

√
< β2 >. This way, as

we find in Appendix D, the rate is proportional to :

β f`(β) d3β√
< β2 >

=

(
3

2 < β2 >

)3/2
2√
π
e
−
(

3β2

2<β2>
+1

)
β3√
< β2 >

sinh
(

2β
√

3/(2 < β2 >)
)

β
√

3/(2 < β2 >)
dβ .

(2.56)

Combining this with the cross section of eq. (2.48) obtained previously we arrive
at: 〈

dσ

dE ′e

β√
< β2 >

〉
=

∫ βesc

βmin

dβ
βf`(β)√
< β2 >

dσ

dE ′e
, (2.57)
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Figure 2.6: The kinematics relevant to time modulation effects.

where the lower velocity in the integral can be read from the positivity of the square
root quantity in eq. (2.50)

βmin =

√
2E ′e
mχ

+
2b(Z)

mχ

, (2.58)

and βesc = 2.84
√

(2/3) < β2 > is the escape velocity. It is now easy to calculate the
differential event rate per eV ejected electron energy per year and per kilogram of
target material, to be

dR

dE ′e
=

ρ0

mχ

√
< β2 >Ne

〈
dσ

dE ′e

β√
< β2 >

〉
, (2.59)

where ρ0 = 0.2 GeV/cm3 is the WIMP energy density and Ne is the number of tar-
get electrons. Integration of eq. (2.59) upon E ′e over the region from E ′emin = 0 to
[mχβ

2
esc/2 − b(Z)] results in the total event number per unit time and mass of the

target which among other parameters depends on the mass and atomic numbers of
the target atom. Moreover we shall display results on the total event rate R(Z) when
E ′emin = Eth with varying experimental threshold energy Eth.

Time Modulation Effects for Electrons

In the convolution of the elementary cross section we have so far considered only the
motion of the sun with respect to the center of galaxy. More realistically, one should
consider also the Earth’s velocity and then find the modulated event rate that might
be detected on Earth. In this case the WIMP velocity is read from

v′ = v + v0 ẑ + v1 (sinα x̂ + cosα cos γ ŷ + cosα sin γ ẑ) , (2.60)

where v0 is Sun’s velocity, v1 is Earth’s annual velocity, γ ≈ π
6

is the angle between
the projection of vector v1 on the plane yOz and the ŷ direction and α = a(t) is the
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complementary angle of the angle between v1 and x̂ (see Fig. 2.6 above). Then the
WIMP cross section has to be convoluted with(

β f`(β) dβ√
< β2 >

)
=

(
β f`(β) dβ√
< β2 >

)
0

(1 + k δ cosα) , (2.61)

where the expression with the subscript “0” refers to eq. (2.56) with δ = v1

v0
≈ 0.135

and

k =

2β

√
3

2 < β2 >

cosh
(

2β
√

3
2<β2>

)
sinh

(
2β
√

3
2<β2>

) − 3

 sin γ . (2.62)

It is now trivial to extend the distribution with energies event rate of eq. (2.59) with

dR

dE ′e
=

〈
dR

dE ′e

〉
0

+

〈
dR

dE ′e

〉
mod

× cosα, (2.63)

where
〈
dR
dE′e

〉
0

is the unmodulated differential event rate while
〈
dR
dE′e

〉
mod

contains also

the factor k in eq. (2.62). For a detailed derivation of these expressions, see Appendix D.

2.4.2 Massless Mediator

In this case dark matter scattering happens via the coupling of the exotic gauge bo-
son to the photon (model II). In general case the WIMP-electron cross section is not
independent of the velocity. Thus, we will first estimate the cross section by using an
average velocity

√
< β2 > = 10−3. Following eq. (2.48) for a photonic mediator we

find the differential cross section:

dσ

dE ′e
= s(β)16π2α′αDM κ2 m2

χme

|p′χ|
|pχ|
|p′e|

∫ 1

−1

dξ

∫ 1

−1

dη
|φn`m`(Z,p′χ + p′e − pχ)|2

(p′χ − pχ)4
,

(2.64)

where q = p′χ− pχ is the WIMP momentum transfer which is ξ dependent. The cross
section peaks up the most from the forward direction ξ ≈ 1. It should be mentioned
that since the initial electron is bound, there is no infrared divergence in this case.
Moreover, the momentum transfer can be as low as :

|q| ' 2
b(Z) + E ′e

β
. (2.65)

This relation is important for explaining our numerical results below. Furthermore, in
presenting the results we assume a Dirac WIMP fermion i.e. s(β) = 1. Furthermore,
we choose a benchmark scenario inspired by our findings in nucleon decay :

β =
√
< β2 > = 10−3 , Z = 1 , αDM = α′ = αem , mχ = 100 GeV , κ = 10−10 .

(2.66)
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As it is obvious from eq. (2.64) it is very easy to apply our numerical results to any
other parameters, β, αDM, α

′, κ, than those shown in eq. (2.66). We must note here
that there is no parameter analogous to κ in model III. This parameter is used here
as a rescale factor and its very small value is adjusted so that we obtain rates of few
events.

In Fig. 2.7a are shown the results for the dσ/dE ′e as a function of final electron’s
energy E ′e for three different cases of hydrogenic atoms with Z = 1 , Z = 3 and Z =
6 respectively. The differential cross section takes on its maximum values for final
electron energy of around few eV for Z = 1, around few tens of eV for Z = 3 and
around a hundred eV for Z = 6. For the case Z = 1, the extremum happens because

of a fast increase of the term
|p′χ|
|pχ| |p

′
e| ∼

√
E ′e and the almost constant value of |φ100|2

until 5 eV. For higher electron energies, e.g., E ′e & 10 eV, the probability density factor
|φ100|2 drops fast as 1/E

′8
e and the term in the denominator of the integral increases as

E
′2
e , resulting in overall decreasing of the cross section as E

′−19/2
e . The same analysis

can be used to describe the behavior of dσ/dE ′e in the other cases (Z = 3, Z = 6). We
must note here the in the limit E ′e → 0 we obtain dσ/dE ′e → 0 as the case should be.
This is obscured in Fig. 2.7 due to the range choice of E ′e.

Corresponding to the input parameters noted in (2.66) we calculate the total cross
section from eq. (2.64) after numerical integration over E ′e in the region [Eth,mχβ

2/2−
b(Z)]. Our results for σ vs. the threshold energy Eth are depicted in Fig. 2.7b. We
have chosen two extreme cases of binding energies : b = 0.74 eV that is the the binding
energy of the electron bounded in the two electron atom H− and b = 13.6 eV that
is the one corresponding to the H- atom we have been dealing so far. For Eth . 10
eV the difference in cross section is about three to six orders of magnitudes while for
higher threshold energies becomes unimportant.

Following eq. (2.64) it turns out that the total cross section for process (2.43) is
WIMP mass independent. It is experimentally useful to know how the cross section
depends on the threshold energy Eth that a given experiment can accomplish. This is
plotted in Fig. 2.7b. For Eth . 1 eV, the cross section is essentially independent of
Eth. When the threshold becomes 5 eV, in the case of b(Z) = 13.6 eV, the cross section
drops by a factor of 5 eV while up to 10 eV by a factor of 50. For smaller binding
energy though, i.e., b(Z) = 0.74 eV, and up to 10 eV the cross section decreases by
three orders of magnitude.

Furthermore, the dependence of differential event rate dR/dE ′e as a function of the
ejected electron energy E ′e for three different WIMP masses, mχ = 10, 100, 1000 GeV,
is shown in Fig. 2.7c. There is a maximum which follows the behavior of differential
cross section. The event rate falls as 1/mχ as the WIMP mass increases in accordance
with eq. (2.59). For energy of few eV’s and mχ = 10 GeV we obtain a handful of events
for κ = 10−10. A total event rate is obtained after integrating over the differential rate
in Fig. 2.7c. As a typical value, for mχ = 100 GeV and the parameters in (2.66) we
find R(Z = 1, κ = 10−10) ≈ 1 events/yr/target kgr. We must recall here that this
assumes a mixing parameter as small as κ = 10−10 !!

Finally, following the theoretical discussion of the previous subsection we examine
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Figure 2.7: a) Predictions for dσ/dE ′e as a function of the ejected electron energy E ′e.
The target is assumed to be a hydrogenic atom in the ground state with Z=1,3,6 (from
top to bottom). b) The total cross section for process (2.43) as a function of the
experimental threshold energy for two binding energies. c) The differential event rate
as a function of the electron energy and various WIMP masses (10,100,1000) GeV from
(top to bottom). Other parameters not shown, are taken from eq. (2.66).

effects of the WIMP time modulation. In Table 1 we display both the unmodulated
and modulated differential event rate for four representative values of E ′e in the case
of a massless mediator and parameters of eq. (2.66). The dimensionless parameter
H, which is the ratio of the modulated by the non modulated differential amplitude,
is constant around 9 − 13% independent of the energy and the WIMP mass. So the
modulation h = δ · k of the total rate is also going to be around 10%, which means
that the difference between the maximum (here always in June 3rd) and the minimum
(here always in December) is 18− 26%, a result should not to be overlooked.

2.4.3 Massive mediator

By taking the non-relativistic limit of eq. (2.48) and the assumption that the momen-
tum transfer in eq. (2.65) is much less than the mediator’s mass, q2 � m2

X , we arrive
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E ′e [eV]
〈
dR
dE′e

〉
[events/kgr target/year/eV]

unmod. mod. H
0.1 0.11 0.01 0.09
1 0.24 0.03 0.13
10 0.02 0.002 0.10
100 8.21× 10−9 1.04× 10−9 0.13

Table 2.1: Time modulation effects in case of a photonic mediator following eq. (2.63)
in the text. Various input parameters are given in eq. (2.66). H is the ratio of the
modulated divided by the unmodulated differential rate.

at

dσ

dE ′e
= s(β)

16π2α′αDMκ
2

m4
X

m2
χme

|p′χ|
|pχ|
|p′e|

∫ 1

−1

dξ

∫ 1

−1

dη |φn`m`(Z,p′χ + p′e − pχ)|2.

(2.67)

In what follows we assume a Dirac WIMP fermion, i.e., s(β) = 1. We assume the
following input parameters :

β =
√
< β2 > = 10−3 , Z = 1 , αDM = α′ = αem ,

mX = 1 GeV , mχ = 100 GeV , κ = 1 . (2.68)

Although this parameter space violates the bounds in eqs. (2.16) and (2.17) it serves
as a benchmark in comparing results with those of section 3 if possible. The value of
κ is chosen such that the resulting rate presented in the figures assumes no mixing of
the X-boson mediator which is formally the case of model III.

Results for the differential cross section dσ/dE ′e for the electron in the ground state
of three hydrogenic atoms are shown in Fig. 2.8a. The differential cross section takes on
its maximum values for final electron energy of around few eV for Z = 1, ten of eV for
Z = 3 and around hundred eV for Z = 6. For the case Z = 1, the extremum happens

because of a fast increase of the term
|p′χ|
|pχ| |p

′
e| ∼

√
E ′e and the almost constant value

of |φ100|2 until 5 eV [see eq. (2.67)]. For higher electron energies, e.g., E ′e & 10 eV, the
probability density factor |φ100|2 drops fast as 1/E

′8
e resulting in overall decreasing of

the cross section as E
′−15/2
e . In physical terms, the outgoing electrons of high energy

demand high momenta in the initial electron wavefunction, which leads to suppression.
The dependence on the Z is easily explained if we recall that for hydrogenic atoms,
〈p2〉n=1 = Z2p2

0 where p0 is the Bohr momentum for Hydrogen. Furthermore, despite
appearances in eq. (2.67), the differential cross section depends only very mildly on
the WIMP mass. One can show analytically that the double integral over the wave
function squared, is approximately proportional to 1/m2

χ which cancels the m2
χ in the

numerator.

Corresponding to the input parameters noted in (2.68) we calculate the total cross
section from eq. (2.67) after numerical integration over E ′e in the region [Eth,mχβ

2/2−
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Figure 2.8: a) Predictions for dσ/dE ′e as a function of the ejected electron energy E ′e.
The target is assumed hydrogenic atom with Z=1,3,6 (from top to bottom) in the
ground state. b) The total cross section as a function of threshold energy. c) The total
cross section as a function of mX for two different binding energies. We assume a Dirac
WIMP, Eth = 0 eV and input parameters from eq. (2.68) if not stated otherwise.

b(Z)]. For fixed velocity, β = 0.001, and Eth = 0 we find the following representative
values :

Z σ[cm2]
1 3× 10−40

10 2× 10−44

50 3× 10−48

The total cross section increases by a factor of about 32 when β = βesc is taken. The
cross section decreases with Z [see also Fig.2.8a], the reason being the fact that the
binding energy increases with Z2 [see eq. (2.51)] and therefore we need to go to larger
- compared to ground state - momenta where the wavefunction is small despite their
maximum value displacement towards larger momenta.

Assuming that the sensitivity of detecting low energy electrons will be analogous
to the ongoing experiments (≈ 10−43 cm2), we could even extract bounds on various
parameters in models I, II or III. From all running experiments, DAMA [25,58] is the
one that triggers on final state electrons with energy around 5 KeV. From Fig. 2.8a one
obtains that, around that energy, the cross section is too small for mX = 1 GeV and
all other inputs in eq. (2.68). However, dσ/dE ′e ∝ m−4

X and therefore for mX ≈ 1 MeV
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Figure 2.9: a) Differential event rate of Dirac WIMP scattered off hydrogen (Z=1,
A=1) target electrons per year per Kgr as a function of ejected electron energy E ′e in
eV. Three different WIMP masses have been assumed : mχ = 10, 100, 1000 GeV, from
top to bottom, respectively. b) The total event rate as a function of the experimental
threshold energy for mχ = 100 GeV for two different binding energies. Other input
parameters are taken from eq. (2.68) for the massive mediator.

i.e., model types proposed in ref. [50], DAMA is a relevant experiment. Additionally,
this is demonstrated in Fig. 2.8c where the total cross section as a function of mX is
plotted for two reference values of binding energies.

In Fig. 2.8b we examine the total cross section as a function of the experimental
energy threshold for low energies, relevant to our proposal. As we can see, the total
cross section reduces by a factor of six in the region 0 . Eth . 10 eV. Above 10 eV
the cross section drops drastically [see total rate in Fig. 2.9b].

Although not shown, we have also examined departures of the wavefunction from
the ground state. The maximum value dσ/dE ′e|max appears at the same place in E ′e ≈
1− 10 eV. As an example, the difference in dσ/dE ′e|max is an enhancement by a factor
20 when going from 1s → 2s. Furthermore, the size of the momentum transfer in
conjunction with the non-zero binding energy are such that never let the wavefunctions
to reach their zero nodes.

Assuming one electron per target atom, and the average cross section of Fig. 2.8a
for Z = 1, the differential event rate per eV of electrons energy per year per Kgr
of hydrogen material as a functions of E ′e for various WIMP masses is depicted in
Fig. 2.9a. The differential event rate again exhibits a maximum which follows that of
the differential cross section calculated in Fig. 2.8a. The event rate is of course higher
for smaller WIMP mass [recall eq. (2.59)] and for electron energy of few eV’s it varies
from 0.01 up to 2 events/yr/kgr/eV for mχ = 1000, 10 GeV respectively. For electron
energy of around 100 eV the role of the wave function is to reduce the differential rate
by an order of magnitude i.e., from 10−4÷10−3 events/yr/kgr/eV. The total event rate
for mχ = 100 GeV and the other parameters in eq. (2.68) is predicted to be:

R(Z = 1, κ = 1) ' 2 [events/yr/target kgr] . (2.69)

It is useful to know how the total rate (2.69) varies with an experimental threshold
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E ′e [eV]
〈
dR
dE′e

〉
[events/kgr target/year/eV]

unmod. mod. H
0.1 0.06 0.01 0.17
1 0.19 0.02 0.11
10 0.079 0.008 0.10
100 1.84× 10−5 1.78× 10−6 0.097

Table 2.2: Time modulation effects in case of a massive mediator following eq. (2.63)
and various input parameters in eq. (2.68). H is the ratio of the modulated by the
unmodulated differential amplitude.

energy. This information can be extracted from Fig. 2.9b for two different but judi-
ciously chosen, values of binding energies. As in the case of the total cross section
in Fig. 2.8b, the total rate drops by only a factor of five until Eth ≈ 10 eV while it
drops very rapidly after about this scale. For example, it drops by a factor of 104 for
Eth = 100 eV. Smaller binding energies [upper line in Fig. 2.9b] result in up to two
order of magnitude bigger rates but for threshold energies as low as Eth . 5 eV.

Finally, in Table 2 we calculate the effects of time modulation and present the
differential event rate for four different values of E ′e in the case of massive mediator
with mX = 1 GeV. We assume also a WIMP mass mχ = 100 GeV and Z = 1. The
H ratio is constant around 10% independent of the energy and the WIMP mass. So
the modulation h of the total rate is also going to be around 10 − 17%, which means
that the difference between the maximum (here always in June 3nd) and the minimum
(here always in December) is 20− 34%.

2.4.4 Experiment : The prospects of detecting single ultra
low energy electrons

As discussed in a previous section observation of light X-boson would require detectors
with sub-keV sensitivities. The development of such detectors, having a low energy
threshold and low noise, remains generally a daunting challenge for present-day and
future low background experiments.

As shown in Fig. 6 the signal of low energy electrons produced by elastic collision
process exhibits a maximum at energies around or even lower than 10 eV. At such
energies a detector with single electron sensitivity will be required to reach a reasonable
efficiency. A notable effort to develop ultra low threshold detectors in order to address
low energy neutrino physics [70–73] is going on. This has been achieved for low mass
detectors. We are, however, seeking an even lower energy threshold.

Usual solid state detectors employed for dark matter projects have typical thresh-
olds of a few keV. It is very difficult to combine sub-keV and big mass at the same time.
For instance Ultra-Low-Energy Germanium detectors [23] are able to reach a threshold
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of a few hundred eV’s, but they are limited to a modular mass of a few grams. Anyway
the achieved energy threshold is still below our requirements.

Single electron efficiency is achieved using detectors reaching very-high gains in
order to cope with electronic noise. Gaseous detectors are good candidates. In such
detectors high gains may easily be achieved. Having been conceived as a TPC Mi-
cromegas detector (•MS) [74], it is compatible with large drift volumes and operation
at high pressure, an example of which are the HELLAZ [75] prototypes. A great ad-
vantage of this detector is the versatility of target material: various gases from the
lightest (H2) to heaviest (Xe) could be used offering a large choice.

One idea to increase the mass of the target material is to use the recently developed
Spherical Proportional Counter (SPC). This detector consists of large spherical gas
volume with central electrode and radial electric field. Charges deposited in the drift
volume are drifting to the central sensor where are amplified and collected. A novel
concept of a proportional sensor, a metallic ball having a radius of about 15 mm, located
at the center of curvature, acting as a proportional amplification structure is used. It
allows to reach high gas gains (≥ 104) and operates from low to high gas pressure. At
such gains, provided the low electronic noise of this detector, single electron efficiency
is easily achieved.

The main advantages of the new structure relevant to our project are:

• Simplicity of the design.

• A single channel is used to read-out a large volume.

• Robustness

• The depth of the interaction, related to the rise time of the signal, is measured.
This is important to apply fiducial cuts for background rejection purpose.

• Low detector capacity ≤ 0.1 pF, independent of the vessel size, allows very-low
electronic noise, which is a key point toward achieving low energy threshold.

• Versatility of the target material and density; the detector is compatible with a
large variety of gases and could operate from low pressure to high pressure. This
could be a precious tool to identify a possible signal out of backgrounds.

A main concern of the proposed detection scheme is the minimal background level
that will be reached by our system. By this one means that detector body and appro-
priate shield will be built with materials which are screened for low levels of natural
and man-made radioactive impurities. Ordinary construction and shielding materials,
however, do contain trace amounts of naturally occurring and man-made radionuclides
which result in elevated background level; we need to design and fabricate the detector
by careful material selection made out of low level activity.

Unfortunately, however, there exists very little experience at the very low energy
(sub keV) region where our detector will be operating. An example is a low background
gaseous detector with sub KeV energy threshold developed for solar axion search [77];
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the reached background level is quite low and is flat in the sub KeV energy range down
to 250 eV. Our purpose is to further decrease the energy threshold down to about 10
eV. This region has never been explored and therefore reaching the desired low level
activity becomes a new experimental challenge. Single electron backgrounds could be
emitted by materials pulled by the electric field through thermionic emission. The
advantage of the spherical detector is that at the external vessel the electric field is
extremely low and therefore highly reduced thermionic emission is expected.

The present prototype having a volume of 1m3, filled with a gas at high pressure
with a target mass of the order of 10 kg could fulfills sensitivity requirements for our
project. We will search appropriate molecular gases having low binding energies and
compatible with operation in the Spherical Proportional Counter detector [78].

At present it looks realistic to soon have a sphere of radius of 5 meters, which can
be under a pressure of 5 bars. Thus, if one fills it with 80% Ar and 20% Isobutane
(C4H10), one can have 212 Kg of Hydrogen. With this much Hydrogen using eq. (2.69)
and a threshold of ≈10 eV, we expect around 200 events per year for the parameters
in (2.68). In models [50] where the mediator mass is very low, e.g. mX ≈ 1 MeV, we
expect an increase of the event rate by almost six orders of magnitude. Therefore, if a
low energy experiment will be built it would possibly set the best limits on these kind
of models.

2.5 Conclusions

Cosmic ray results from PAMELA, HESS and FERMI collaborations show an unex-
pected rising of positron events with energy that may be due to Dark Matter particle
(χ) annihilations in the halo of our Galaxy. This Dark Matter particle “sees” the
SM ones only through its interactions with an X-boson that couples to the SM gauge
sector. Depending on the model, the mediator can be massless or massive with differ-
ent couplings. We have studied direct detection of this secluded type of dark matter
employing nucleons or electrons with main emphasis in the latter case.

Due to the small momentum transfer8 the massless case results in a large number
of events that should have been seen by current nucleon recoiling direct detection
experiments and therefore strong bounds on mixing parameters and couplings exist.
Our work emphasizes the role of the low energy electron recoil in direct detection
experiments and proposes a novel experimental avenue on how to proceed in searching
for such low energy electrons. For simple hydrogenic atoms, and at low energy, E ′e ≈ 10
eV, the cross section is enhanced by order of magnitudes compared to KeV recoil
energies. In the neighborhood of low energies, the results depend highly on the binding
energy of the ejected electron: the more loose the electron is the bigger the event rate
becomes as expected. In this regard we considered two possibilities:

1. The process is mediated by the massive mediator X (our model III).

8For nucleons, the momentum transfer is ≈ 2 MeV and energy transfer is ≈ 2 KeV, while for low
energy electron recoils they are ≈ 50 KeV and ≈ 10 eV, respectively.
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In this case we do not have scattering off hadrons at tree level. So we do not have
dominant constraints on the parameters of the model coming from the ongoing
WIMP searches. Using the parameters of eq. (2.68) we have obtained fairly
large cross sections for a Dirac WIMP. Employing the spherical TPC detector
described above with a radius of 5 m under pressure of 5 Atm we have found
that we could have about 200 counts in a year, assuming a threshold of 10 eV.
It is possible, however, that our choice of parameters is a bit optimistic and we
may have not considered all available constraints. Our results are also applicable
to model-I. In this case however, due to the fact that couplings of the X-boson
to hadrons appear at tree level, there exist strong constraints on the mixing
parameter already from the nucleon direct searches [see eq. (2.38)] .

2. The process is accommodated by the massless mediator (leptophylic version of
model II)
This mechanism is similar to that involving hadrons in section 3, one simply
replaces the quarks by leptons. In this case we have found that the most stringent
constraints on the parameters come from the standard WIMP searches. Thus
using the parameters of Eq. (4.65) we have obtained with the above detector
hundreds of events per year even with a (reduction) mixing coupling constant as
low as κ = 10−10 for a Dirac WIMP. Such a huge signal cannot be seen by current
experiments either due to lack of low energy threshold or because, experiments, like
CDMS and XENON, are keeping only nuclear recoil events. We were surprised
to find so large cross section. We now understand it, however, to be due to
the photon propagator (1/q2)2, which is favored by the fact that the momentum
transfer is very low in the case of electrons. We should mention that, since the
initial electron is bound, there is no infrared divergence and no need for a low
energy cut off. It should be also noted that quark couplings to X-boson will
come back through loop corrections even if they are forbidden at tree level by a
symmetry which is eventually broken. Then current nucleon recoil experiments
will be as important [see eq. (2.32)] and complementary to the electron ones.

In conclusions above the assumption that the WIMP is a Dirac particle has been made.
If the WIMP is Majorana particle, as we have shown (see Appendix F) the rates are
suppressed by approximately a factor β2 ≈ 10−6. For both the above cases, annual
time modulation effects are of the order of 20-30%, important enough to be noticed.

We have limited the discussion of the rates in the case of hydrogen, since our cross
section was evaluated using hydrogenic wave functions. Certainly the obtained rates
will increase, if one can exploit the other atomic electrons with smaller binding energy.
This situation was made manifest in our work with a judicious change of the binding
energy [see Figs. 6b,7c,8b]. But then one should employ realistic wave functions.

In a similar fashion one can treat other dark matter candidates like right handed
neutrinos, which arise in models in which the ordinary Dirac type mass is forbidden
due to a discreet symmetry, but communication with the leptons is allowed via exotic
scalars [79–81] with masses in the 50 GeV region. It may also apply to other models
involving exotic fermions and scalars proposed and reviewed in ref. [82].



Chapter 3

Heavy Fermion Non-Decoupling
Effects

In the previous Chapter we analyzed different varieties of a scenario where a dark mat-
ter particle could annihilate in other particles, especially into Standard Model fermions.
In this Chapter, within a spontaneously broken gauge group, we carefully analyze
and calculate triple gauge boson vertices dominated by triangle one-loop Feynman
diagrams involving heavy fermions compared to external momenta and gauge boson
masses. Since a complete one particle irreducible vertex for three off-shell gauge bosons
is a useful tool in analyzing low energy inelastic scattering processes, we can use it to
study scattering processes with a photon in the final state, as an example. This can
be useful in dark matter scattering off atomic electrons and nuclei, mediated by light
gauge boson particles, as one application among many (see refs. [35, 84, 85]). This is
an other possible scenario that constitutes an alternative to the effects that we studied
in the previous Chapter. We perform our calculation strictly in four dimensions and
derive a general formula for the off-shell, one-particle irreducible (1PI) effective ver-
tex which satisfies the relevant Ward Identities and the Goldstone boson equivalence
theorem. In the technical level we introduce arbitrary four-vectors in our calculation.
These vectors are associated with different types of divergences that appear during the
calculation and help in the reduction of these divergencies as much as possible. Our
goal is to search for non-decoupling heavy fermion effects highlighting their synergy
with gauge chiral anomalies. Particularly in the Standard Model, we find that when
the arbitrary anomaly parameters are fixed by gauge invariance and/or Bose symme-
try, the heavy fermion contribution cancels its anomaly contribution leaving behind
anomaly and mass independent contributions from the light fermions. We apply these
results in calculating the corresponding CP-invariant one-loop induced corrections to
triple gauge boson vertices in the SM, minimal Z ′-models as well as their extensions
with a fourth generation, and compare with experimental data. This Chapter is based
on the published work [86].

53
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3.1 Introduction

In general, the Appelquist-Carazzone [87] theorem states that the effect from a heavy
fermion mass m at low energy observables is suppressed by powers of m. However, this
theorem does not hold for theories with chiral gauge couplings or large mass splitting
within gauge multiplets, a situation known to take place in the minimal Standard
Model (SM) of particle physics [1–3]. Failure of the decoupling of heavy fermion from
radiative corrections requires breaking of a local gauge symmetry and, in addition,
breaking of a global symmetry by these corrections [88,89].

Another aspect of theories with chiral gauge couplings is the Adler-Bell-Jackiw or
chiral anomaly [30,31,90,91]. This is the situation where certain classical Ward Iden-
tities (WIs) are violated by quantum corrections (for reviews see [92–94]). For a model
that is non-anomaly free, anomalous Ward Identities render it non-renormalizable and
non-unitary. This problem shows up in every symmetry breaking stage of the model.
In order to cancel chiral anomalies associated with axial (AAA) or vector-axial (VVA)
currents in gauge theories, we either need to stick to only by-construction anomaly-free
gauge groups, or, to introduce additional chiral femionic fields [95,96].

An energy region of experimental interest corresponds to the case where a fermion
mass m is very heavy, m2

Z < s� m2, so that it cannot be pair-produced at Tevatron,
LHC or a future lepton-collider. If this fermion is chiral i.e., it receives its mass
from the Higgs mechanism which is also responsible for the gauge boson mass, then
the question of the decoupling of this particle would cause a problem in anomaly
cancellation and therefore to gauge invariance. This question has been tackled in
many papers in the literature most notably by D’Hoker and Farhi in ref. [97, 98] :
decoupling of a fermion whose mass is generated by a Yukawa coupling induces an
action functional of the Higgs field and gauge boson fields term, analogous to Wess-
Zumino-Witten (WZW) term [99, 100] in chiral Lagrangian. Then D’Hoker and Farhi
showed that the theory without the decoupled fermion but with the WZW term is
gauge invariant. Applications of this non-decoupling effect has been utilised in many
physics projects from hadronic up to electroweak physics of the SM and beyond, see
for example refs. [101–107]. However, to our knowledge, the above conclusion has not
been drawn in the broken phase of theories with spontaneous gauge symmetry breaking
like the SM. It is after all meaningful to discuss non-decoupling effects only in theories
where the physical masses appear explicitly.

The problem when discussing decoupling effects or in general physics associated
with the fermionic triangle graph is related to the question : what is the correct result
for such a graph? The answer depends on the physical set-up in which it arises [108].
For example, as we shall show below in the case of SM, gauge invariance and Bose
symmetry are enough to set the triple neutral gauge boson vertices finite and well
defined. Only then can we reach the conclusions for the theory at the heavy fermion
mass limit.

If the SM gauge group is extended by extra U(1)’s then anomaly cancellation con-
ditions become more involved. Recently, the authors of refs. [109,110] noted that such
cancellations may occur inside a “cluster” of anomaly-free heavy fermion sector which
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is not accessible by the current colliders, leaving behind non-decoupling effects in tri-
linear gauge boson vertices of the extra massive gauge boson Z ′ and those of the SM
Z ′ZZ,Z ′WW,Z ′Zγ that may be observable at low energies. These effects are visible
in the energy region where MZ′ ∼ gv <

√
s � m ∼ λv. For these non-decoupling

effects to occur it is necessary for fermions and gauge bosons to receive mass from the
same Higgs boson and there must be a hierarchy between Yukawa and gauge coupling,
λ ∼ O(1) � g. In this paper we also elaborate on this issue categorising conditions
among couplings where such a situation occurs. We then present a few toy-model
examples with two or three different external gauge bosons.

We note in passing that, within field theory, mixed anomaly cancellations via 4d
Green-Shwartz mechanism have been discussed and analysed phenomenologically in
many papers e.g. [111–116].

Our goal here is to construct a perturbative, gauge invariant one-loop proper ef-
fective vertex for three external gauge bosons that incorporates both chiral anomaly
ambiguities together with non-decoupling effects induced by heavy fermions in an ex-
plicit manner. We would like to apply this effective vertex in order to:

• investigate the interplay between chiral anomaly effects and non-decoupling ef-
fects of individual particles in trilinear gauge boson vertices in the SM and its
extensions,

• categorise all possible models of mixed anomaly cancellations and non-decoupling
effects of very heavy fermions that are directly unreachable at LHC,

• search for phenomenological implications at colliders.

General Lorentz-invariant expressions for three gauge boson vertices have been
analysed in detail in refs. [117,118]. One-loop corrections in the SM for the VWW,V =
Z, γ using dimensional regularisation were considered in [88] with special emphasis
on the non-decoupling effects due to large doublet mass splittings. The first correct
calculation for the Zγγ vertex was performed in ref. [119] while for ZZγ in ref. [120].
Phenomenological studies including expectations for those interactions at hadron and
lepton colliders were studied in detail in refs. [121–124].

We first present the 1PI effective action for the triple gauge boson vertex and then
we discuss all possible and general non-decoupling effects from heavy fermions. A
variety of applications of the general vertex in the SM, in minimal Z ′ models and their
extensions with a fourth sequential generation, is presented.

3.2 The Trilinear Gauge Boson Vertex

In this section we briefly present the main results for the three gauge boson 1PI vertex,
Γµνρ. The details of this calculation are given in Appendix G and Appendix H. Fur-
thermore, the behaviour of Γµνρ(s) at high energies s, and issues on gauge invariance
and Goldstone boson equivalence theorem are discussed in the subsequent subsections.
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Figure 3.1: The one-loop effective trilinear gauge boson vertex, Γµνρ. The crossed
diagram is obtained with the replacement {ν, ρ} ↔ {ρ, ν} and k1 ↔ k2. Indices
{i, j, k} denote distinct external gauge bosons in general.

3.2.1 The construction of Γµνρ

The relevant diagrams are depicted in Fig. 3.1 and their evaluation is developed in
Appendix H. What we basically need in order to calculate the diagrams in Fig. 3.1 is
the interaction part of the Lagrangian

Lint ⊃ eΨ γµ (α + β γ5) ΨAµ , (3.1)

where Ψ(x) is a 4-component spinor consisting of a pair of two Dirac fermions coupled
chirally to a vector field Aµ(x). Flavour or spinor indices are silently implied. We
shall assume a model interaction for eq. (3.1) that arise from a spontaneously broken
Abelian gauge theory. A toy model as such is described in Appendix G. Then α
and β in eq. (3.1) are real numbers (in units of e) related to linear combinations of
hypercharges [see for instance eq. (G.8)].

The integral representation for this diagram is given in eq. (H.1). By naive power
counting this integral is linearly divergent. This means that when we make a shift of
integration variable, e.g., p→ p+a, the result depends upon the choice of the arbitrary
vector aµ. This change is only reflected in the form factors proportional to k1 and k2 in
Lorentz invariant expansion of Γµνρ [see eq. (3.2) below]. As a result, the naive Ward
Identities (WIs), eqs. (H.15), (H.16) and (H.18) are violated by terms that contain the
arbitrary four vector aµ. It is useful to write this four vector as a linear combination
of the two independent external momenta : aµ = z kµ1 + w kµ2 , with z, w arbitrary real
parameters.

In order to write out an explicit form for the trilinear gauge boson vertex, say for
three identical massive gauge bosons, we make use of an explicit expression for the
triangle graphs first calculated by Rosenberg [119]. The most general form of the axial
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tensor Γµνρ consistent with Lorentz and parity symmetry is,

Γµνρ(k1, k2;w, z) =

[
A1(k1, k2;w) εµνρσ k2σ+

+ A2(k1, k2; z) εµνρσ k1σ + A3(k1, k2) εµρβδ kν2 k1β k2δ+

+ A4(k1, k2) εµρβδ kν1 k1β k2δ + A5(k1, k2) εµνβδ kρ2 k1β k2δ+

+ A6(k1, k2) εµνβδ kρ1 k1β k2δ

]
. (3.2)

By naive power counting the dimensionless form factors A1,2 are infinite. They can be
rendered finite by forcing them to obey the relevant, albeit anomalous, Ward Identities.
However, A1,2 are in general undetermined since they depend on arbitrary parameters
w and z. This arbitrariness can be fixed by physical requirements like for example
conservation of charge. On the other hand the form factors (or integrals) A3,..6 are
finite having dimension of inverse mass square. The latter can be found independently
by direct diagrammatic methods. The whole procedure is described in detail in Ap-
pendix H.

Therefore, non-decoupling effects should originate solely from the A1 and A2 parts
of Γµνρ but without any further physical input they are undetermined. A direct calcu-
lation of A1,2 with dimensional regularisation [33] or with Pauli-Villars regularisation
is not a good choice when shifting integration variables within linearly (and above)
divergent Feynman integrals in four dimensions [125–127]. The outcome for a single
external gauge boson (i = j = k in Fig. 3.1) triangle graph is appended in eqs. (H.26),
(H.27) and (H.28). From these expressions and from eq. (3.2) we obtain A1(k1, k2;w)
and A2(k1, k2; z) in terms of the finite integrals A3..6. The corresponding results, in the
case of three external identical gauge bosons, are given by eqs. (H.37) and (H.38) while
the finite integrals A3..6 by eqs. (H.33), (H.34) and (H.35).

Furthermore, although Bose symmetry could constrain the arbitrary numbers w and
z, it is not enough to eliminate them altogether: a physical condition is needed, e.g.,
conservation of electric charge for fermions coupled to external photons or vanishing
triangle graph for on-shell momenta of massive gauge bosons or, even, a pure theoretical
reason, like the decoupling property.

It is straightforward, albeit tedious, to generalize Γµνρ in eq. (3.2) to the case of
three distinct external, massive or massless, gauge bosons (i 6= j 6= k in Fig. 3.1). With
the assignments depicted in Fig.3.1, the generalised Ward Identities for vertices µ, ν, ρ
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are written respectively as1

qµ Γµνρ(k1, k2, w, z) = imAi Γνρ(k1, k2)+

+
e3[(αiαj + βiβj)βk + (αiβj + αjβi)αk]

4π2
ελνρσk1λk2σ(w − z),

(3.3a)

−k1ν Γ̃νρµ(k1, k2, w, z) = imAj Γ̃ρµ(k1, k2)+

+
e3[(αjαk + βjβk)βi + (αjβk + αkβj)αi]

4π2
ελµρσk1λk2σ(w − 1),

(3.3b)

−k2ρ Γ̂ρµν(k1, k2, w, z) = imAk Γ̂µν(k1, k2)+

+
e3[(αkαi + βkβi)βj + (αkβi + αiβk)αj]

4π2
ελµνσk1λk2σ(z + 1),

(3.3c)

where the corresponding Γ, Γ̃, and Γ̂ are appended in eqs. (H.47) and (H.48). It is
remarkable here to note the i’th gauge boson mass factor mAi = −2βiev in front
of the pseudoscalar 1PI function Γνρ explicitly given in eq. (H.48). This term and
the analogous in eqs. (3.3b) and (3.3c) are the source of heavy fermion mass non-
decoupling effects since in the formal limit of m→∞ there is a remaining piece of order
e3ελνρσk1λk2σ/4π

2 in Γµνρ for example. On the other hand it shows that currents which
are associated to unbroken symmetry generators i.e., to massless gauge bosons, do not
provide any non-decoupling effect in Γµνρ. Moreover, Γνρ, Γ̃ρµ, Γ̂µν depend linearly
upon the Yukawa coupling λ, that is responsible for the fermion mass through the
Higgs mechanism and vanishes in the limit of λ→ 02.

Using the WI’s for the vertices ν and ρ, i.e., eqs. (3.3b) and (3.3c) as well as
eq. (3.2), we obtain the following expressions for the integrals A1 and A2:

A1(k1, k2;w) = (k1 · k2)A3 + k2
1A4 −

e3m2βj
π2

I1(k1, k2,m)+

+
e3[(αjαk + βjβk)βi + (αjβk + αkβj)αi]

4π2
(w − 1) , (3.4a)

A2(k1, k2; z) = (k1 · k2)A6 + k2
2A5 −

e3m2βk
π2

I2(k1, k2,m)+

+
e3[(αiαk + βiβk)βj + (αiβk + αkβi)αj]

4π2
(z + 1) , (3.4b)

1In order not to clutter the notation we suppress indices i, j, k in the following expressions for Γ’s.
2Throughout, we assume chiral fermions that receive masses via Yukawa interactions with the

Higgs field.
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where the “non-decoupled” integrals are given by

I1(k1, k2,m) =

∫ 1

0

dx

∫ 1−x

0

dy
−(αiαk + βkβi) + 2xβiβk

∆
, (3.5a)

I2(k1, k2,m) =

∫ 1

0

dx

∫ 1−x

0

dy
(αiαj + βiβj)− 2yβiβj

∆
, (3.5b)

with

∆ ≡ ∆(k1, k2) = x(x− 1)k2
2 + y(y − 1)k2

1 − 2xyk1 · k2 +m2. (3.6)

The following limits,

lim
m→∞

m2I1(k1, k2,m) = −1

6
(3αiαk + βiβk) , (3.7a)

lim
m→∞

m2I2(k1, k2,m) =
1

6
(3αiαj + βiβj) , (3.7b)

are also useful in simplifying formulae when discussing synergies of anomaly and non-
decoupling terms.

We are now ready to complete Γµνρ in eq. (3.2) by reading directly from eq. (H.47)
the finite (in four dimensions) terms A3..6. We find:

A3(k1, k2) = −e
3[(αiαj + βiβj)βk + (αiβj + βiαj)αk]

π2

∫ 1

0

dx

∫ 1−x

0

dy
xy

∆
, (3.8a)

A4(k1, k2) =
e3[(αiαj + βiβj)βk + (αiβj + βiαj)αk]

π2

∫ 1

0

dx

∫ 1−x

0

dy
y(y − 1)

∆
, (3.8b)

A5(k1, k2) = −e
3[(αiαj + βiβj)βk + (αiβj + βiαj)αk]

π2

∫ 1

0

dx

∫ 1−x

0

dy
x(x− 1)

∆
,

(3.8c)

A6(k1, k2) = −A3(k1, k2) . (3.8d)

One could guess the expressions above with i 6= j 6= k from the ones with a single iden-
tical gauge boson i = j = k by exploiting simple combinatoric algebra in eqs. (H.33),
(H.34) and (H.35) and eqs. (H.37) and (H.38). One can check that all the above form
factors obey the Bose symmetry specified in eqs. (H.39a), (H.39b) and (H.39c).

In summary, our main result is the trilinear gauge boson vertex Γµνρ of eq. (3.2), sup-
plemented by form factor components Ai=1..6 read from eqs. (3.4) and (3.8). Eq. (3.2)
satisfies the relevant Ward Identities stated in eq. (3.3) which originate from the partial
conservation of vector and axial vector symmetries in (G.9).
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3.2.2 Unitarity

We can make full use of the effective vertex Γµνρ in order to calculate, as an example,
the matrix element for the process ZZ −→ ZZ with an intermediate massive vector
boson Z ′. We perform the calculation in the center of mass frame with the following
kinematics:

p1 = (E, 0, 0, p) , p2 = (E, 0, 0,−p)
k1 = (E, p sin θ, 0, p cos θ) , k2 = (E,−p sin θ, 0,−p cos θ) ,

ε(p1) =
1

mZ

(p, 0, 0, E) , ε(p2) =
1

mZ

(p, 0, 0,−E) ,

ε(k1) =
1

mZ

(p, E sin θ, 0, E cos θ) , ε(k2) =
1

mZ

(p,−E sin θ, 0,−E cos θ) ,

where p1 and p2 are the four-momenta of incoming particles, k1 and k2 the four-
momenta of outgoing particles, ε(p1), ε(p2), ε(k1), ε(k2) are the polarisation vectors
of the incoming and outgoing particles respectively and θ is the scattering angle of
the outgoing Z boson in the center of mass frame. Non-zero contributions arise only
from t and u-channels since the s-channel amplitude vanishes in this frame. Working
in the unitary gauge, we find a contribution to ZZ → ZZ due to loop-induced ΓµνρZ′ZZ

of eq. (3.2) as,

M = Mt + Mu =

(
E2 sin2 θ

t−m2
Z′

)[
(A1 − A2) + p2 (1− cos θ) (A3 − A6)

]2

+

(
E2 sin2 θ

u−m2
Z′

)[
(A1 − A2) + p2 (1 + cos θ) (A3 − A6)

]2

,(3.9)

where t = (p1 − k1)2 = −2p2(1 − cos θ) and u = (k1 − p2)2 = −2p2(1 + cos θ). The
factors A1 and A2 in eq. (3.4) are dimensionless and, in the limit of E2 → ∞ vary at
worse as constants while from eq. (3.8) we have A3 = −A6 which asymptotically go like
E−2. Therefore at high energies E2 →∞, terms inside the square brackets in eq. (3.9)
behave like constants and so the amplitude does at high energies. This means that
unitarity is satisfied as is of course expected for a renormalised theory. It is worthwhile
noting that in the limit E2 →∞ we obtain (A1−A2) ∝ c(w−z) where c is an anomaly
pre-factor present in the second term in the r.h.s of eq. (3.3a). There is still however a
finite and non-vanishing constant contribution from the A3,6 form factors in eq. (3.9)
which for every particle contribution reads,

lim
E2→∞

M = −
( c

4π2

)2

sin2 θ

[
1 + 2(w − z) +

(w − z)2

2 sin2 θ

]
. (3.10)

We observe that the unknown parameters w and z still remain in the amplitude. Only
the relation w = z removes them from the asymptotic limit. We shall come back at
this point when discussing the Z ′∗ZZ-vertex in section 3.4.3.
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3.2.3 Goldstone boson Equivalence Theorem and Rξ - inde-
pendence

There are literally N -ways to derive the Ward Identities of eq. (3.3). A classical
method is to demand invariance of the path integral under the combined local vector
and axial-vector gauge transformations (G.9). We can then represent these WI’s dia-
grammatically to prove the Goldstone Boson equivalence theorem [128–130]. This is
most clearly explained in Lorentz gauge (ξ = 0) where the gauge fixing term (G.10)
does not involve the Goldstone boson field ϕ. Then conservation of the gauge current

Figure 3.2: Graphical representation of the WI in eq. (3.3a).

implies that qµ can be contracted directly with Γµνρ and also with the derivatively
coupled Goldstone boson to Γνρ. In principle there is a third contribution from pos-
sible mixings with other gauge bosons, say Z ′, that couple to the same fermions in
the vertex. This last mixing must necessarily be proportional to (gµλ − qµqλ/q2) and
when contracted with qµ, vanishes. Therefore, by using rules from the toy model in
Appendix G it is straightforward to see that we recover the classical WI (3.3a), with-
out the anomaly term. While a possible gauge boson mixing contributes to Γµνρ it
does not contribute to WIs in (3.3). At very high energy, the longitudinal polarization
vector is εLµ(q) ' qµ/mA where mA is the gauge boson mass. In other words for an
anomaly-free model, eq. (3.3a) or the sum of the diagrams in Fig. 4.2, can be written
as,

εLµ(q) Γµνρ = iΓνρ . (3.11)

This equation tells us that at the high energy limit, the physical amplitude with the
gauge boson in vertex µ is replaced by the vertex with a Goldstone boson that ‘has
been eaten’. However, as is evident from eq. (3.3a) the relation (3.11) is broken by
possible gauge anomalies. This is another reason why the latter should be absent.

One can easily check by studying for example the fermion-antifermion annihilation
process to two gauge bosons with the toy model of Appendix G, that Eq. (3.11) is the
required condition for the amplitude to be gauge ξ-independent. Again the anomaly-
term must be absent.
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3.3 Non-Decoupling Effects

Heavy fermion non-decoupling effects can be cast in two classes :

A) effects that arise from a large mass splitting between particles within an anomaly-
free multiplet.

B) anomaly driven effects that originate from decoupling a whole anomaly-free mul-
tiplet.

In case (A), formal decoupling of the heavy particle that participates in the anomaly
cancellation mechanism will leave at low energies an effective Lagrangian ∆Γµνρ that
accounts for the anomaly cancellation missing piece [97,98,102]. In case (B) the Higgs
coupling to fermions will be much larger than the gauge coupling with the latter being
approximately zero when the fermion mass is going to infinity [109,110].

3.3.1 Non-Decoupling due to large mass splitting

We are going to focus first on the simplest case with three external identical gauge
bosons. This means we set i = j = k in the Ward Identities of eq. (3.3) or else we look
directly at expressions, (H.26) - (H.28). In order to carry out a systematic study of
non-decoupling effects and their interplay with chiral anomalies it is essential to keep
track of the anomalous terms that depend on the arbitrary parameters w and z. By
exploiting Bose symmetries for on-shell external gauge bosons, and specifically, (H.39)
among legs j and k we find w = −z, while with (H.40) among legs i and j we find
(after some tedious algebra) 2w − z − 1 = 0. The solution of this system,

w = −z =
1

3
, (3.12)

finally fixes the arbitrary parameters w and z. Our observation is that these fixed
values for the arbitrary parameters correspond to the case of a particle decoupling
from the effective action, i.e.,

lim
m→∞

Γµνρ(k1, k2;w, z) = 0 ⇒ w = −z =
1

3
. (3.13)



3.3. NON-DECOUPLING EFFECTS 63

We elaborate this point in what follows. The WIs now take the form:

qµΓµνρ(k1, k2;w = 1/3) = −e
3βm2

π2
ελνρσ k1λ k2σ I0(k1, k2;m) +

+
e3(β3 + 3α2β)

6π2
ελνρσ k1λ k2σ . (3.14a)

−k1νΓ̃
νρµ(k1, k2;w = 1/3) = −e

3βm2

π2
ελµρσ k1λ k2σ I1(k1, k2;m)−

− e3(β3 + 3α2β)

6π2
ελµρσ k1λk2σ , (3.14b)

−k2ρΓ̂
ρµν(k1, k2;w = 1/3) = −e

3βm2

π2
ελµνσ k1λ k2σ I2(k1, k2;m) +

+
e3(β3 + 3α2β)

6π2
ελµνσ k1λk2σ , (3.14c)

where the integrals I0,1,2 are defined in eqs. (H.5), (H.22) and (H.23) respectively.
The anomalous terms in (3.14) are then allocated “democratically” in the three legs
of Γµνρ as one would have naively expected. Note also that since limm→∞m

2I0 =
− limm→∞m

2I1 = limm→∞m
2I2 = 1

6
(β2 + 3α2) the r.h.s of eqs. (3.14a), (3.14b) and

(3.14c) cancel identically, verifying our statement in eq. (3.13). Therefore, for a Dirac
fermion pair circulating the loop as shown in Fig. 3.1 and for three identical external
gauge bosons, at the formal decoupling limit, the finite contributions are equal and
opposite to the anomaly contributions in the vertex. In a Lorentz gauge, terms in Γµνρ

proportional to I0,1,2 arise from the mixing between the Goldstone boson ϕ and the
gauge boson as it is shown in Fig. 4.2. We should notice however, that our calculation
of WIs in (3.14) given in Appendix H contains no reference to a particular gauge choice.

For a Lorentz-invariant and renormalizable chiral gauge theory the anomaly terms
i.e., the last terms on the r.h.s of eqs. (3.14), have to be absent. The only way3,
consistent with renormalizability4 [95,96], to remove the anomaly terms, is to add a new
Dirac fermion pair with opposite β i.e., opposite hypercharges YL and YR. A consistent
way to describe heavy fermion decoupling effects is to perform the calculation directly
in the broken phase of the theory where physical masses appear explicitly. Assuming
that the mass of the second (heavy) pair and the c.m energy, s = (k1 + k2)2, is much
bigger than the first (light) fermion, say, m2

2 � s� m2
1 ≈ 0, there is a non-decoupled

term in the 1PI effective action which can be read off from eqs. (H.32), (H.37) and
(H.38) [or eqs. (3.2) and (3.4) for i = j = k] to be,

∆Γµνρ(k1, k2) ≈ e3 (β3 + 3α2β)

6π2
εµνρσ (k1 − k2)σ .

(3.15)

This term remains in the 1PI effective function for the light particle. In the heavy
mass limit (m2 → ∞), the form factors Ai=3,...6(k1, k2) vanish as 1/m2 leaving only

3Of course there is the trivial case of vector multiplets i.e., β = 0.
4We are not going to consider here the situation [111] of incorporating non-renormalizable coun-

terterms to cancel the anomalies at the expense of introducing a cut-off scale Λ ∼ 4πv.
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ψ1 ψ2 ψ3

U(1)X α = e, β = −e α = e, β = e α = 0, β = 0
U(1)Y α = −e, β = −e α = 0, β = 0 α = e, β = e

Table 3.1: Charges of an anomaly-free model with non-decoupling remnants in three
gauge boson vertices XXY and Y Y X.

the term (3.15) in the low energy effective action which has no ‘memory’ anymore
from the heavy mass m2. Although, the exact non-kinematic prefactor in eq. (3.15),
depends upon model details, its magnitude (in e-units) is approximately, α/π and could
be observable. Furthermore, the non-decoupling term (3.15) does not depend on the
regularization scheme, i.e., on the parameters w and z in eqs. (H.37) and (H.38), since
the model is by construction anomaly-free.

3.3.2 Anomaly Driven non-decoupling effects

This is a category of possible non-decoupling effects for models possessing an anomaly-
free cluster of heavy particles just above those known from the Standard Model. We
systematically then check anomaly cancellation conditions in Ward Identities (3.3) by
demanding the pre-factors of I1,2 integrals in eqs. (3.4a) and (3.4b) to be non-zero. We
are seeking for minimal models with up-to three different gauge bosons and up to the
least n-Dirac fermions.

A model that contains one gauge boson X, with V-A couplings as in eq. (3.1),
coupled to only one fermion is impossible to exist because it is anomalous (except the
trivial case of a vector-like particle where β = 0). Adding an extra fermion with the
same mass but with opposite axial-vector coupling (β) renders the model anomaly-free.
Such a simple particle content does not lead to non-decoupling effects because all these
effects are proportional to an odd power of the axial-vector coupling (∼ β2k+1) and
therefore the sum over the two fermions vanishes. Similar situation arises when more
fermions are circulating in the loop.

More interesting is the case where one has two, distinct, external gauge bosons, X
and Y , either massive or massless. The cancelation of trilinear anomalies requires the
existence of at least two fermions with opposite axial-vector couplings but again it is
impossible to satisfy instantaneously the mixed anomaly and non-decoupling conditions
[see below]. We first obtain the general conditions for an anomaly free model with two
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gauge bosons X and Y . In notation of eq. (3.1) these conditions read,

n∑
i=1

(β3
X + 3α2

XβX)i = 0 , (3.16a)

n∑
i=1

(β3
Y + 3α2

Y βY )i = 0 , (3.16b)

n∑
i=1

(β2
XβY + 2αXαY βX + α2

XβY )i = 0 , (3.16c)

n∑
i=1

(β2
Y βX + 2αXαY βY + α2

Y βX)i = 0 , (3.16d)

where n is the total number of fermions. Starting from trilinear anomalies (3.16a) or
(3.16b) we see that the case n = 1 requires only vectorial couplings, βX = βY = 0.
Therefore for n = 1 there is no non-trivial solution. For n = 2 the non-zero couplings
must satisfy the following conditions:

βX2 = −βX1, αX2 = ±αX1

βY 2 = −βY 1, αY 2 = ±αY 1 . (3.17)

Turning to mixed anomalies (3.16c) and (3.16d), it is amusing first to note that they
are satisfied even with one internal fermion (n = 1), iff

βX = αX , βY = −αY , (3.18)

or

βX = −αX , βY = αY . (3.19)

Non-decoupling conditions are derived by the requirement that the pre-factors of
I1 and I2 integrals in eqs. (3.4a) and (3.4b) are non-zero. Hence, in the limit of
k2

1, k
2
2 ' s� m2 at least one of the following algebraic expressions,

n∑
i=1

(β2
XβY + 3αXαY βX)i ,

n∑
i=1

(β2
XβY + 3α2

XβY )i ,

n∑
i=1

(β2
Y βX + 3αXαY βY )i ,

n∑
i=1

(β2
Y βX + 3α2

Y βX)i , (3.20)

must be non-vanishing. For n = 1 the choice (3.18) [or (eq. (3.19))] which eliminates
the mixed anomalies sets also eqs. (3.20) to a non-zero value. However, to cancel the
XXX and Y Y Y anomalies one needs at least n = 2 fermions to satisfy the conditions
(3.17). These set the non-decoupling expressions (3.20) back to zero. The first non-
trivial solution of the system eqs. (3.16) and (3.20) arises with three pairs of chiral
Dirac fermions (n = 3) with an example of quantum numbers given in Table 3.1. Here,
we use (3.18) and (3.19) to cancel mixed anomalies for ψ1. The other two particles ψ2
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ψ1 ψ2 χ1 χ2

U(1)X α = e1, β = 0 α = e2, β = 0 α = e3+e4
2
, β = e3−e4

2
α = e3+e4

2
, β = − e3−e4

2

U(1)Y α = 0, β = −q1 α = 0, β = q1 α = q2, β = 0 α = −q2, β = 0

Table 3.2: Charges of all fermions with respect to the gauge groups U(1)X × U(1)Y .

and ψ3 are singlets under U(1)Y and U(1)X , respectively. Plug these into eqs. (H.32),
(3.4) and (3.7), we obtain the non-vanishing operators at the decoupling limit:

ΓµνρXY Y = ΓµνρY XX =
e3

3π2
εµνρσ (k2 − k1)σ , (3.21a)

ΓµνρXY X = ΓµνρY XY = − e3

3π2
εµνρσ (2k2 + k1)σ , (3.21b)

ΓµνρXXX = ΓµνρY Y Y = 0 . (3.21c)

Next is a model example with n = 4 Dirac fermions charged under the product of
gauge groups U(1)X ×U(1)Y . This toy model has been examined in ref. [109]. Charge
assignments are given in Table 3.2. They are chosen in such a way that triangular
anomalies [U(1)X ]3 and [U(1)Y ]3 are canceled separately. The cancelation of mixed

anomalies requires the extra condition q2 = q1
(e21−e22)

(e23−e24)
. Charges in Table 3.2 follow the

general rules of eqs. (3.17). If we assume that all extra fermions have a common mass
m and are all very heavy, then in the low energy limit we find the following expressions
for the effective vertices with different combinations of external gauge bosons:

ΓµνρXXX = ΓµνρY Y Y = 0 , (3.22a)

ΓµνρXXY =
q1(e2

1 − e2
2)

4π2
(2k1 + k2)σε

µνρσ , (3.22b)

ΓµνρY XX =
q1(e2

1 − e2
2)

4π2
(k2 − k1)σε

µνρσ , (3.22c)

ΓµνρXY Y = ΓµνρY XY = 0 . (3.22d)

These contributions arise from terms that are proportional to I1 and I2-integrals when
taking into account that this model is anomaly-free. Such a situation should never
occur in the SM. The basic difference is that neither gauge bosons X and Y is purely
vector-like for the entire fermionic sector i.e., X and Y must be strictly massive. This
is a crucial difference that leads to the existence of remnants in the low energy limit.
On the contrary, the existence of the photon in the SM leads to a term related to I1

or I2 which always vanishes for an anomaly-free model.

We have also worked out the case with three different gauge bosons. The cor-
responding 10 independent anomaly-free, and, 18 independent non-decoupling con-
ditions, are quite involved and are presented separately in Appendix K. Again the
non-decoupling effects arise for n ≥ 3. The new features that appear in this category
is the fact that one can exploit non-decoupling effects where one of the gauge bosons
is massless. Such a minimal (n = 3) example comes into sight if we adopt the charge
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ψ1 ψ2 ψ3

U(1)X α = e, β = e α = e, β = −e α = 0, β = 0
U(1)Y α = e, β = 0 α = e, β = 0 α = e, β = 0
U(1)Z α = e, β = −e α = 0, β = 0 α = e, β = e

Table 3.3: Charges of an anomaly-free model with non-decoupling remnants in three
gauge boson vertex XY Z.

assignments shown in Table 3.3. Notice that all fermions have βY = 0 i.e., the Y
couples purely to a vector current. We can easily check that the conditions (K.1) for
an anomaly-free model are satisfied while at the same time some of the expressions in
(K.2) are non zero. The non-zero effective vertices can be written in the form,

ΓµνρXXZ = −ΓµνρZZX =
e3

3π2
(2k1 + k2)σε

µνρσ , (3.23a)

ΓµνρXZX = −ΓµνρZXZ = − e3

3π2
(2k2 + k1)σε

µνρσ , (3.23b)

ΓµνρZXX = −ΓXZZ =
e3

3π2
(k1 − k2)σε

µνρσ , (3.23c)

ΓµνρY XZ = ΓµνρY ZX =
e3

2π2
(k1 + k2)σε

µνρσ , (3.23d)

ΓµνρXY Z = −ΓµνρZY X =
e3

2π2
k1σε

µνρσ , (3.23e)

ΓµνρXZY = ΓµνρZXY = − e3

2π2
k2σε

µνρσ . (3.23f)

As an example, we observe that heavy fermion non-decoupling effects appear
in Eqs. (3.23e) and (3.23f). If a model like this with X = Z ′, Y = γ, Z = Z can be
embedded in the SM, then it would in principle allow for decays like Z ′ → Zγ that do
not depend on the heavy fermion masses.

We should finally remark that in models considered in Tables 3.1-3.3, gravitational
anomalies cancel out since it is always

∑
f β

X
f = 0 for a given axial vector coupling

between a vector boson X and a fermion f .

3.4 Applications

3.4.1 Standard Model

Focusing first in the Standard Model with neutral, Z or γ triple gauge boson vertices
we need only to consider the interaction Lagrangian with fermions. This reads as

Lint =
∑
f

αγfAµΨfγ
µΨf +

∑
f

ZµΨfγ
µ(αZf + βZf γ5)Ψf , (3.24)
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where the factors αVf , β
V
f with V = γ, Z are

αγf = eQf , βγf = 0 ,

αZf =
gZ
2

(T 3
fL
− 2 s2

wQf ) , βZf = −gZ
2
T 3
fL
, (3.25)

and T 3
fL

and Qf are the third component of weak isospin and charge of the SM Dirac
fermions f = ν, e, u, d, respectively. Explicitly in the SM, the prefactors αVf and βZf
take the form:

αγu =
2

3
e , αZu =

gZ
2

(
1

2
− 4

3
s2
w) , βZu = −gZ

4
,

αγd = −1

3
e , αZd =

gZ
2

(−1

2
+

2

3
s2
w) , βZd =

gZ
4
,

αγe = −e , αZe =
gZ
2

(−1

2
+ 2s2

w) , βZe =
gZ
4

αγν = 0 , αZν =
gZ
4
, βZν = −gZ

4
, (3.26)

where gZ = e/sw is the weak boson gauge coupling and sw, cw are the sinus and cosinus
of the weak mixing angle.

V ∗ZZ

Our first application refers to the vertex V ∗ZZ with V = γ, Z being off-shell. This
interaction has been searched for at LEP and Tevatron while is currently under scrutiny
at the LHC. At one loop level the only CP-conserving contribution arises from the
triangle graph in Fig. 3.1. Applying our general form of the 1PI vertex in eq. (3.2) and
making use of the Bose symmetry ν ↔ µ, k1 ↔ k2 as in eq. (H.39), we find

ΓµνρV ∗ZZ(k1, k2;w) =
[
εµνρσ(k1 − k2)σ

(
−A1 +

s

2
A3

)
+ A3 q

µερβνδk1βk2δ

]
, (3.27)

where the polarization vectors ε∗ν(k1)ε∗ρ(k2) outside the square brackets have been omit-
ted, and also, we set A1 ≡ A1(k1, k2)... etc for simplicity. More specifically, A1 is am-
biguous: it depends on how the momentum is routing the loop i.e., the parameter w.
This arbitrariness (or regularization scheme dependence if you wish) is further fixed
by exploiting the fact that the ZZZ on-shell boson vertex vanishes by Bose symmetry.
The latter requires w = 1/3. On the other hand for the vertex γZZ, conservation of
the vector current and Bose symmetry implies that w = z = 0.

Having specified the arbitrary parameters w and z we apply our general expressions
for A1 and A3 found in eqs. (3.4a) and (3.8a), specifically to the vertices Z∗ZZ and
γ∗ZZ and sum over all SM fermions. By ignoring (see below however), the last term
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proportional to qµ in eq. (3.27), we can easily find,

ΓµνρZ∗ZZ(k1, k2) = εµνρσ(k1 − k2)σ×

×
∑

f=u,d,e,ν

[
m2
Z(A3f − A4f ) +

m2
fβ

Z
f

π2
I1f +

1

6π2

(
βZ 3
f + 3βZf α

Z 2
f

)]
≡ εµνρσ(k1 − k2)σ ΓZ∗ZZ(s) , (3.28)

Γµνργ∗ZZ(k1, k2) = εµνρσ(k1 − k2)σ
∑

f=u,d,e,ν

[
m2
Z(A3f − A4f ) +

m2
fβ

Z
f

π2
I1f +

1

2π2
αγfα

Z
f β

Z
f

]
≡ εµνρσ(k1 − k2)σΓγ∗ZZ(s) , (3.29)

where s = (k1 + k2)2 and I1f is given by eq. (3.5a). The last term in eqs. (3.28) and
(3.29) is the anomaly contribution, while the second term is a non-decoupling one in the
limit of heavy fermion mass, mf →∞. Again we should notice here that in this limit
and for one fermion contribution, the last two terms mutually cancel while the first
term vanishes as m2

Z/m
2
f . Therefore, the decoupling of heavy fermions in V ∗ZZ vertex

is operative even if those fermions have vastly different, but always much greater than
the EW scale, masses among each other. In the SM for example, what is left behind
after the decoupling of the top quark is a theory with an anomalous (sometimes called
Chern-Simons) term that is necessary to render the effective low energy theory gauge
invariant.

Especially for γ∗ZZ one can go one step further and write the whole effective vertex
in terms of one integral only, namely

Γγ∗ZZ(s) =
s

2

∑
f=u,d,e,ν

A3f (s) . (3.30)

Now bringing back the last term on the r.h.s of eq. (3.27) we find a perfectly fine and
gauge invariant form for γ∗ZZ vertex

Γµνργ∗ZZ(s) =
∑
f

sA3f

2
×

×
[
εµνρσ(k1 − k2)σ −

ενρβσqµqβ
s

(k1 − k2)σ

]
. (3.31)

This vertex must be proportional to s in order to cancel the pole contribution arising
at s = q2 = 0 [117]. This is a generic statement for all γ∗V V vertices we address below.
One should recall that this expression has been derived only after fixing the anomaly
coefficients, w and z, by symmetry requirements. We could have done the reverse:
to fix w, z from the requirement of no pole contribution in eq. (3.31). In a way, the
anomaly and the non-decoupled terms have been absorbed in the finite integral A3.
It is now evident from eqs. (3.30) and (3.8) that Γγ∗ZZ(s → 0) = 0 for every fermion
contribution, independently. Furthermore, as expected, for asymptotic values of s we
also observe Γγ∗ZZ(s→∞) = 0 after summing over all SM fermion contributions.
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Within one generation of fermions, the SM is a chiral, gauge, and, anomaly-free
Quantum Field Theory (QFT). As a result, contributions to ΓV ∗ZZ from (approxi-
mately) massless generations, vanish identically (recall that form factors A3,4 are pro-
portional to the anomaly factors, [see eqs. (3.8a) and (3.8b)] and the second term
vanishes in the massless case). Therefore to a good approximation, for

√
s & 2MZ ,

the only non-negligible contribution to ΓV ∗ZZ arise from the third generation and is
due to the large mass difference between the top quark and all other fermions. The
top quark influences mainly the last two terms in the square bracket of ΓZ∗ZZ and
Γγ∗ZZ in eqs. (3.28) and (3.29). If we make the (numerically crude) approximation of
m2
Z � s < m2

t and exploit eq. (J.12c) from the Appendix J we find (Nc = 3 is the color
factor),

m2
tβ

Z
t

π2
I1t ≈−

Nc

6π2

(
βZ 3
t + 3βZt α

Z 2
t

)
−

− Nc

120π2
(βZ 3

t + 5βZt α
Z 2
t )

s

m2
t

. (3.32)

The first term is just the opposite of the top quark anomaly contribution in ΓZ∗ZZ
and they both cancel out in the limit of heavy top quark. One can prove easily this
statement for all SM vertices, ΓV ∗V V , V = Z, γ appearing below in this article and we
claim, following the arguments of section 3.3, that this is a general theorem: a heavy
particle cancels its own anomaly contribution in a triple gauge boson vertex and at the
(non-perturbative) limit of m→∞ leaving no trace from itself behind. Of course in the
top-less SM the last term in ΓZ∗ZZ does not vanish since the particle content (τ, ντ , b)
is now anomalous. It is also evident from eq. (3.32) that the behavior of ΓZ∗ZZ(s) at
s ≈ m2

t rises approximately linearly with s as s/m2
t . This is also verified from our

numerical result shown in Fig.3.3a. Similar conclusions one can derive for Γγ∗ZZ and
Fig.3.3b but this is rather obvious now because of eq. (3.30).

Furthermore, it is also instructive to study the behavior of the vertices ΓV ∗ZZ(s) in
the asymptotic region, s� m2

t > m2
Z . By exploiting eq. (J.13) and keeping only terms

of order m2
f/s we arrive at the following expression,

ΓZ∗ZZ(s� m2
t ) ≈ Nc

m2
t

s

{
2βZ 3

t

π2

(
2− ln

s

m2
t

− iπ
)

+

+
βZ 3
t + αZ 2

t βZt
π2

(
1

2
ln2 s

m2
t

− π2

2
+ iπ ln

s

m2
t

)}
, (3.33)

in which both real and imaginary parts vanish at asymptotic values of s as they should
following unitarity arguments. The effect of a “heavy” particle (here the top quark) is
to just delay the “falling off” of |ΓZ∗ZZ(s)| [see Fig.3.3a.] as s→∞. Finally it is also
obvious that the real and imaginary part of ΓZ∗ZZ are of the same order of magnitude,
a situation which remains true everywhere after the threshold energy, s & 4m2

t .

Translating our numerical results for the SM to the notation of ref. [117]5 that is
usually followed by the theoretical and experimental literature, we find for mt = 173

5We multiply ΓV ∗ZZ(s) in eqs. (3.28) and (3.29) with em2
Z/(s−m2

V ).
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GeV and LEP energies, that

fZ5 (
√
s = 200 GeV) = 1.8× 10−4 , (3.34)

fγ5 (
√
s = 200 GeV) = 2.1× 10−4 , (3.35)

where we have neglected small imaginary part contributions from light quark and lepton
mass thresholds. These results agree with those quoted in ref. [123]. Unfortunately,
they are too small to have been reached by LEP [131].

Just above the top quark threshold energies s ≥ 4m2
t , the vertex develops a signif-

icant absorptive part. This is apparent from our analytical expressions in Appendix J
for integrals A3..6 and I1,2 and the discussion above. For

√
s = 500 GeV we find :

fZ5 (
√
s = 500 GeV) = (0.4− 0.5i)× 10−4 , (3.36)

fγ5 (
√
s = 500 GeV) = (−0.3 + 0.3i)× 10−4 . (3.37)

Note again that the imaginary part of the amplitude is of the same order of magnitude
as the real part.

V ∗γZ

Another non-trivial class among trilinear neutral gauge boson vertices that have been
and being searched for at colliders is the amplitude V ∗γZ. In the notation of Fig. 3.1,
we assign V ∗µ (q), γν(k1) and Zρ(k2) to the 1PI effective vertex ΓµνρV ∗γZ of eq. (3.2) with
V = Z, γ. When the photon and the Z-gauge boson are both on-shell we find:

ΓµνρV ∗γZ(k1, k2) = εµνρσ k1σ

(
A2 +

s+m2
Z

2
A3

)
+ εµρβδqν qβ k2δ (A3 + A6) + ενρβδqµk1βk2δ A3 .

(3.38)

We have seen however in eq. (3.8d) that A3 = −A6 and therefore the second term in
eq. (3.38) vanishes at one-loop. Furthermore, the last term when coupled to a light
quark or lepton vector current, is proportional to the mass of the incoming fermions and
for current collider architectures this contribution is negligible6. Hence, only the first
term remains with potentially visible effects. When all external particles are on-shell,
Bose symmetry and gauge invariance require the vertex V γZ to vanish. Bose symmetry
relations among form factors and gauge invariance fix the arbitrary parameters w and
z to be:

ZγZ : w = 1 , z = 0 , (3.39)

γγZ : w = 1 , z = 1 . (3.40)

6This term however is important for gauge invariance to be preserved, as in eq. (3.31) before.



72 CHAPTER 3. HEAVY FERMION NON-DECOUPLING EFFECTS

100 200 500 1000 2000 5000 1 ´ 104
0

1

2

3

4

5

6

s @GeVD

ÈG
HZ

*
Z

Z
LÈ

x
10

4

(a)

100 200 500 1000 2000 5000 1 ´ 104
0

2

4

6

8

s @GeVD

ÈG
HΓ

*
Z

Z
LÈ

x
10

4

(b)

100 200 500 1000 2000 5000 1 ´ 104
0

2

4

6

8

10

s @GeVD

ÈG
HZ

*
Γ
Z

LÈ
x

10
4

(c)

10 50 100 500 1000 10000
0

5

10

15

20

25

30

35

s @GeVD

ÈG
HΓ

*
Γ
Z

LÈ
x

10
4

(d)

100 200 500 1000 2000 5000 1 ´ 104
0

1

2

3

4

5

6

s @GeVD

ÈG
HZ

*
Γ

Γ
LÈ

x
10

4

(e)

Figure 3.3: The dependence of |ΓV ∗V V (s)| with
√
s for different gauge bosons combi-

nations, V = γ, Z : (a) Z∗ZZ, (b) γ∗ZZ, (c) Z∗γZ, (d) γ∗γZ, (e) Z∗γγ. The solid
curve corresponds to the SM, the dashed curve corresponds to the SM + 4th generation
fermion model. Masses for light quarks and leptons are neglected while mt = 173 GeV.
Fourth generation quarks and lepton masses are taken as in (3.66).

By substituting the form in A2 from the general expression of (3.4b) we obtain:

ΓµνρZ∗γZ(k1, k2) = εµνρσk1σ

∑
f=u,d,e,ν

[
m2
Z(A3f + A5f )−

m2
fβ

Z
f

π2
I2f +

1

2π2
αZf α

γ
fβ

Z
f

]
≡ εµνρσk1σ ΓZ∗γZ(s) , (3.41)

Γµνργ∗γZ(k1, k2) = εµνρσk1σ

∑
f=u,d,e,ν

[
m2
Z(A3f + A5f )−

m2
fβ

Z
f

π2
I2f +

1

2π2
αγfα

γ
fβ

Z
f

]
≡ εµνρσk1σ Γγ∗γZ(s) . (3.42)
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One should notice that the square bracket of ΓZ∗γZ is approximately equal to Γγ∗ZZ
since in this case A5 ' −A4 and I1 ' −I2.

It is amusing to see how greatly the γ∗γZ-vertex is simplified. Placing back the
last term of eq. (3.38) in order to restore gauge invariance, we find,

Γµνργ∗γZ(s) =
∑
f

sA3f ×
[
εµνρσk1σ −

ενρβσqµk2βk1σ

s

]
. (3.43)

The s-factor outside the vertex is expected because it must cancel the pole behaviour
of the second term in the square bracket. Once again, the “physical” choice of w, z
in the anomalous terms played a crucial role in eq. (3.43) like in the case of γ∗ZZ
vertex. Regarding decoupling effects, eq. (3.43) is self explained: for every particle
contribution, a synergy between anomaly and non-decoupling terms results in a well
defined integral sA3f that vanishes asymptotically due to the anomaly-free condition.
If however, the energy

√
s is between two particle masses which combined render the

model anomaly -free then there should be non decoupling effects in this regime. One
the other hand, adding to the SM, anomaly-free and heavy chiral fermions, there should
be no-nondecoupling effect remaining in the low energy regime where

√
s . 2mt.

One can go one step further also in the case of Z∗γZ of eq. (3.41). In fact, we can
eliminate I2f and the anomaly factors from eq. (3.41) leaving only the finite integrals
A3 and A5, as

ΓZ∗γZ(s) =
1

2

∑
f

[
(s+m2

Z)A3f +m2
ZA5f

]
. (3.44)

After using few integral tricks, like for example the ones of eq. (H.44), it is easy to
show that ΓZ∗γZ(s) behaves like (s − m2

Z)A3f near the Z-pole. In general, ΓV ∗γZ ∝∑
f (s −m2

V )A3f near the pole, is clearly verified when performing the full numerical
evaluation of the integrals as in Figs. 3.3c,3.3d.

One can easily see from further working out eqs. (3.41) and (3.42) that due to the
fact that the SM is an anomaly free QFT, the whole contribution arises to a very good
approximation from particles of the third generation. Numerically, in the conventions
of ref. [117] [see also footnote 4], we find for LEP energies

hZ3 (
√
s = 200 GeV) = 2.1× 10−4 , (3.45)

hγ3(
√
s = 200 GeV) = 7.2× 10−4 , (3.46)

up to tiny small imaginary parts. These results are in agreement with those presented in
ref. [123]. As we have noticed above it is also confirmed numerically that |fγ5 | ' |h

γ
3 |.

SM predictions of eqs. (3.47) and (3.48) are in the best case [for hγ3 ] two orders of
magnitude below the published LEP bounds [131].

For comparison, at higher energies the SM predicts:

hZ3 (
√
s = 500 GeV) = (0.3− 0.6 i)× 10−4 , (3.47)

hγ3(
√
s = 500 GeV) = (0.9− 1.8 i)× 10−4 . (3.48)
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Full numerical results for |ΓV ∗γZ(s)| are represented by solid lines in Figs. 3.3c,3.3d.
We observe that in the neighborhood of the top threshold, |Γγ∗γZ(s)| is one order
of magnitude bigger than |ΓZ∗γZ(s)|. They are both however far below the current
Tevatron and LHC sensitivity [132,133]. Following the projecting sensitivity calculated
in ref. [121], observation at the LHC (14 TeV) seems extremely difficult within SM,
even for γγZ vertex.

V ∗γγ

We now turn our discussion to the last SM neutral triple gauge boson vertex, the
V ∗γγ. Of course, thanks to Furry’s theorem only the case V = Z is valid (for V = γ
all three currents are vector-like, i.e., βi = 0). However, even in Z∗γγ there are no
non-decoupling effects since there is no would be Goldstone boson associated with the
unbroken U(1)em, i.e., the final particles are massless. Nevertheless one can write a
simple Z∗γγ 1PI vertex. We obtain:

ΓµνρZ∗γγ(k1, k2) = ενρβδqµk1βk2δ [A3]

+
βZf (αγf )

2

4π2
εµνρσ [(w − 1) k2 + (z + 1) k1]σ . (3.49)

Landau [134] and Yang [135] say that the on-shell amblitute, εµ(q)ΓµνρZ∗γγ(k1, k2) must
vanish due to selection rules on space inversion and angular momentum conservation.
This fixes the arbitrary parameters w = −z = 1 for every fermion contribution f . One
obtains the same values for w and z from U(1)em gauge invariance, i.e., satisfaction of
Ward Identities. Although it is necessary to preserve gauge invariance, this remaining
contribution is negligible for light s-channel incoming particles e.g., e+e− → γγ, but
nevertheless it may be important for heavy external particles like for example dark
matter particles or heavy neutrinos annihilating into photons (see related work in
refs. [136,137]).

Defining ΓZ∗γγ(s) ≡
∑

f m
2
Z A3f (s) and summing over the SM particles, we find

numerically,

ΓZ∗γγ(
√
s = 200 GeV) = 2.9× 10−4 , (3.50)

ΓZ∗γγ(
√
s = 500 GeV) = (3.2− 5.6 i)× 10−5 .

(3.51)

For various values of s, the function |ΓZ∗γγ(s)| is plotted in Fig. 3.3e. Notably, at very
small s this quantity behaves like 1/s and in contrary to the previous Z∗V V vertices
does not vanish at s = m2

Z . For general values of s, and k2
1 = k2

2 = 0, ΓZ∗γγ(s) is easily
written as

ΓZ∗γγ(s) =
∑
f

βZf (αγf )
2

2π2

m2
Z

s
ξf J(ξf ) , (3.52)

where ξf ≡ 4m2
f/m

2
Z and the function J(ξf ) is appended in eq. (J.2). For energies (s)
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below the top quark threshold, ΓZ∗γγ(s), approximately takes the form,

ΓZ∗γγ(s) ≡
∑
f

m2
ZA3f (m

2
Z < s < m2

t ) ≈

≈ −Nc
βZt α

γ 2
t

π2

[
m2
Z

2s
+

(
m2
Z

m2
t

)(
1

24
+

1

180

s

m2
t

)]
, (3.53)

a behaviour which shows decoupling of a heavy top-quark mass. This follows our
general statement just below eq. (3.32): since the anomaly term in eq. (3.49) vanishes
due to the physical choice of w and z there is no non-decoupled remnant to cancel it.
In the asymptotic region we find

ΓZ∗γγ(s� m2
Z ,m

2
t ) ≈ Nc

βZt α
γ 2
t

2π2

(
m2
Zm

2
t

s2

) [
ln2 s

m2
t

− π2 + 2iπ ln
s

m2
t

]
. (3.54)

Therefore, ΓZ∗γγ(s) behaves asymptotically as 1/s2 while all other neutral vertices
behave like 1/s. This fast drop with s is also verified by comparing the solid lines
between Figs. 3.3a,b,c,d and Fig. 3.3e.

V ∗W−W+

Just for completeness, we study the chiral CP-invariant part of the (γ, Z)∗WW vertex.
For on-shell W ’s and in momentum space this corresponds to operators of the form,

fV5 ε
µνρσ (k1 − k2)σ . (3.55)

There are of course CP-invariant, non-chiral operators generated from our fermion
triangle graph that have the form [117,118],

fV1 (k1 − k2)µgνρ − fV2
m2
W

(k1 − k2)µqνqρ + fV3 (qνgµρ − qρgµν) . (3.56)

In the SM, note that both f1 and f3, exist at tree level. We are interested here only
on chiral, one-loop (triangle) induced operators (3.55).

The numerical calculation of the (γ∗, Z∗)W−W+ effective vertices are somehow
more complicated than the neutral ones. There are two masses and two different neu-
tral vertices involved, making the triangle diagram looking differently than its crossed
counterpart (see Fig. 3.4). We follow the same steps as we did for the neutral vertices
and present our results (and technical details) in Appendix I. The chiral CP-invariant
part of the effective vertex, Γµνρ, is the same as in eq. (3.2). The finite form factors
A3..6 need to be slightly modified by the mass difference of the two fermions involved;
analogously for A1,2. Our main conclusion for a general vertex that contains external
charged gauge bosons is given by eqs. (I.2) and (I.3).

The relevant couplings αWff ′ , and βWff ′ can be read from the charged current part of
the SM Lagrangian,

L ⊃ gZ(W+
µ J

µ+
W +W−

µ J
µ−
W ) , (3.57)
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with the J±W -currents being

Jµ+
W = (Jµ−W )† =

1

2
√

2
[νγµ(1− γ5)e+ uγµ(1− γ5)d] . (3.58)

Hence αWff ′ = −βWff ′ = gZ
2
√

2
for the pairs (ff ′) = (ν, e), (u, d), respectively. For simplic-

ity, we ignore quark and lepton mixing effects, but these can easily be included.

Figure 3.4: Standard Model fermion contributions to (Z, γ)WW one loop vertex.

We therefore set αj,k = −βj,k = gZ
2
√

2
in eqs. (I.2) and (I.3). The neutral gauge boson-

fermion couplings, αVf , β
V
f , are taken from eq. (3.26). Assuming CP-conservation, the

1PI effective action ΓµνρV ∗WW with V = γ, Z looks exactly the same as in eq. (3.27)
with the only difference being the form factors A1,3 must be replaced by those given in
eq. (I.2) [and the paragraph below (I.2)]. Therefore we write7 ,

ΓµνρV ∗W−W+(k1, k2) ≡ εµνρσ (k1 − k2)σ ΓV ∗W−W+(s) , (3.59)

where

ΓV ∗W−W+(s) =
∑

doublets

[
m2
W (A3 − A4) +

g2
Zα

V
fd

16π2
I1 +

g2
Zβ

V
fd

16π2
I2+

+
g2
Z

32π2
(αVfd − β

V
fd

) (w − 1) + (fu ↔ fd)
]
.

(3.60)

In this formula we abbreviate A3,4 ≡ A3,4(m2
fu
,m2

fd
) and I1,2 ≡ I1,2(m2

fu
,m2

fd
), with

I1 =

∫ 1

0

dx

∫ 1−x

0

dy
−(x+ y)∆m2 +m2

fu

x(x− 1)m2
W + y(y − 1)m2

W − xy(s− 2m2
W )− (x+ y)∆m2 +m2

fu

,

(3.61a)

I2 =

∫ 1

0

dx

∫ 1−x

0

dy
2xm2

fd
+ (x+ y)∆m2 −m2

fu

x(x− 1)m2
W + y(y − 1)m2

W − xy(s− 2m2
W )− (x+ y)∆m2 +m2

fu

,

(3.61b)

7Our notation for ΓV ∗W−W+(s) is related to the standard form factor of ref. [117], as
ΓV ∗W−W+(s) = −gVWW f

V
5 (s).
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where ∆m2 ≡ m2
fu
−m2

fd
. In the limit of heavy masses, m2 = m2

fu
= m2

fd
� s,m2

W , we
obtain,

lim
m2→∞

I1 =
1

2
, lim

m2→∞
I2 = −1

6
. (3.62)

Lets examine the γ∗W−W+ case first. We must set βγfu,d = 0. In this case gauge

invariance [see eq. (I.4)] implies w = z and CP-invariance w = −z, and therefore
w = z = 0. Having fixed the anomaly term the result for this vertex turns out to be
simply,

Γγ∗W−W+(s) =
1

2
s
∑

doublets

[
A3(m2

fu ,m
2
fd

) + (fu ↔ fd)

]
, (3.63)

where A3 is a form factor defined in the Appendix I. We should note here that
Γγ∗W−W+(s = 0) = 0 as it should be [117, 118], i.e., there is no pole at q2 = 0.
This is a special case where the anomaly term conspires with I1-term such that the
final result contains no non-decoupling terms. In order for gauge invariance to be non-
anomalous, the last terms in the WIs system (I.4), must vanish. This implies a relation
among fermion charges,∑

f=e,ν,d,u

αγf = Qe +Qν + 3Qd + 3Qu = 0 , (3.64)

which is exactly the charge conservation condition. Then, in the asymptotic limit,
s � m2

W ,m
2
fu,d

, the amplitude for Γγ∗W−W+(s → ∞) vanishes, thanks to eq. (3.64).
This is obvious from the numerical outcome in Fig. 3.5. It also shows an enhanced
threshold behaviour around

√
s ≈ 2mt (solid line). Quantitatively, this can be seen

Figure 3.5: The effective vertex |Γγ∗WW (s)| in the minimal SM (solid line) and in SM
with an extra fourth (SM4) generation (dashed line).
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from eq. (3.63) by expanding A3 around the threshold. Compared to Γγ∗ZZ(s), there
is an additional contribution due to the large mass difference ∆m2 = m2

t −m2
b ≈ m2

t ,
in the numerical factor that multiplies s/m2

t . Our evaluation of integrals contains
one numerical integration and follows the procedure of Appendix B in ref. [88]. Our
analytic formulae in Appendix J, at the limit of mW = 0, are in full agreement with
these results. Few representative values are,

Γγ∗WW (
√
s = 200 GeV) = (6.8− 6.4 i)× 10−4 ,

Γγ∗WW (
√
s = 500 GeV) = (−1.5 + 15 i)× 10−4 .

Comparing with γ∗ZZ vertex we see here that the mass splitting generates a sizeable
absorptive part that dominates the vertex after

√
s & 2mW .

Figure 3.6: The effective vertex |ΓZ∗WW (s)| in the minimal SM (solid line) and in SM
with an extra fourth (SM4) generation (dashed line).

We now turn to the Z∗W−W+ vertex. This time we have only CP-symmetry at our
disposal which sets only the constraint w = −z. At the broken limit there is no other
symmetry remaining in order to fix the parameter w alone. However, in the exact SU(2)
limit where [g′, sw → 0, αf = −βf ] this vertex should be exactly the same as the Z∗ZZ.
Therefore, the arbitrary parameters are fixed by Bose symmetry to be w = −z = 1/3.
For this choice of w and at the heavy mass limit, m2 = m2

fu
= m2

fd
� s,m2

W , the
vertex is proportional to αf + βf ∝ s2

w for every fermion contribution, a combination
which is proportional to SU(2) breaking effects. Another, equally good, choice would
be w = 0, for example. The physical requirement here is the decoupling of a particle
from the ΓZ∗WW vertex.

In conclusion, the Z∗WW vertex is undetermined : there is only CP-symmetry, that
is not enough to fix two arbitrary parameters. However, for the anomaly-free SM this
arbitrariness is irrelevant since it is cancelled when the whole fermion contribution is
taken into account. We shall meet this situation again in the Z ′V V -vertex below.
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Our numerical evaluation of the SM |ΓZ∗WW (s)| is shown in Fig. 3.6. This time, the
top quark threshold destructively adds to the vertex. As in previous cases, we present
few representative values,

ΓZ∗WW (
√
s = 200 GeV) = −(8.5 + 7.6 i)× 10−4 ,

ΓZ∗WW (
√
s = 500 GeV) = −(3.8 + 3.5 i)× 10−4 ,

that show similar order of magnitude values for the real part as in the Z∗ZZ vertex but
an enhanced absorptive part. The latter is due to custodial symmetry breaking effects
i.e., the large mass difference between the top and the bottom quarks. Although
there is an intense experimental ongoing analyses at LEP [138], Tevatron [139] and
LHC [140,141] for the first three CP-invariant non-chiral operators, fVi=1..3 of eq. (3.56),
we are not aware of a similar experimental search on the chiral fV5 of eq. (3.55).

3.4.2 Models with a sequential fourth fermion generation

In our first departure from the SM we assume a fourth generation matter of quarks and
leptons. Apart from the fact that the 4th generation neutrino has to weight more than
45 GeV, a certain tuning to avoid EW constraints is needed. More specifically, one
extra doublet of degenerate leptons contributes a piece of approximately 1/6π ≈ 0.05
into the S-parameter [142] while the current fit [143] to the EW data gives,

S = 0.04± 0.10 . (3.65)

Therefore, a 4th, mass degenerate, fermion generation will contribute a 4/6π ≈ 0.2
piece to S-parameter which is incompatible with the fit. A certain mass difference
or else a certain weak isospin violation is needed which is parameterized by the T
parameter [142]. A consistent parameter space with EW precision data and published
direct searches is

mν4 = 400 GeV , me4 = 660 GeV ,

mt4 = 358 GeV , mb4 = 372 GeV . (3.66)

This mass spectrum corresponds to Tevatron experiments allowed region where the
analyses from CDF [144] have excluded t4 and b4 quarks to have masses smaller than
the values quoted above8. The leptons mass spectrum is chosen such that it does
not contribute significantly to the oblique parameters, e.g., for these values of lepton
masses one has ∆Sl ' 0 [143].

8Currently, the sequential 4th generation is under siege from LHC [145]. If there exist new heavy
SM type quarks, they will contribute a factor of up to N2

c = 9 into the Higgs production cross section
for the (triangle) process gg → H. The current cross section sensitivity at LHC is within a few of
the SM prediction and therefore it sets an indirect bound over the whole exclusion Higgs area, up
to 550-600 GeV. Other direct bounds from LHC on 4th generation top and bottom quarks involve
assumptions about their mass difference to be smaller than the W-mass. These caveats are discussed
in some detail with complete references in ref. [146].
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Due to the fact that the charges are the same as in the SM, the anomalies are
canceled in each generation. It is important to notice here that if all the extra fermions
were very heavy and had the same mass, no effect would be left back and the decoupling
would work perfectly. The reason is, first of all, that the sum over all extra fermions of
expressions that contain the finite integrals A3,A4 or A5 vanishes because the integrand
factors out a term

∑
i ci, where ci is the pre-anomaly factor of each fermion. But

this sum is equal to zero for an anomaly free generation. On the other hand, terms
proportional to I1 or I2 in eq. (3.4), in the limit of large fermion mass, are canceled
exactly with the anomaly term for special values of w and z parameters that are fixed
by the Bose symmetry in each case. But this constraint is not necessary, e.g., if an
anomaly free generation of very heavy mass degenerate chiral fermions is added to the
SM, it has no effects at low energies, no matter what the values of w and z are. This
is guaranteed by the fact that the extra generation is anomaly free.

The numerical analysis for the three gauge bosons vertices is the same as previ-
ously. Using the approximate integral expressions from Appendix J, we draw plots for
the amplitudes |ΓV ∗V V (s)| and |ΓV ∗WW (s)| versus

√
s in different combinations of the

external gauge bosons V = γ, Z. These plots are collected in Fig. 3.3, and Figs. 3.5,3.6,
respectively [dashed line].

The extra generation has a significant contribution in the region near twice the
threshold of each extra fermion where the amplitude rises until those values (shown as
peaks in every combination of external gauge bosons) and drops fast as 1/s (apart from
V ∗γγ which drops as 1/s2). We see that for small values of energy the two curves (the
curve that corresponds to the SM case and the curve that corresponds both to the SM
and the 4th generation) have the same form. In this energetic region (

√
s . 600 GeV)

the dominant feature is the first peak that corresponds to the threshold energy for
the creation of the top quark (

√
s ≈ 350 GeV ≈ 2mt). In addition, the contribution

from the extra fermionic generation is negligible, because all the extra fermions are
heavy compared to the energy, (2mf >

√
s), where f runs over the extra fermions.

These extra fermions have more or less similar masses. As before with the top-quark
mass, there is a cancellation between the anomaly contributions and the I1,2 parts of
the amplitude for each fermion separately. As a result, the total contribution from the
fourth generation is negligible as we can see from Fig. 3.3.

The situation is different when
√
s runs over the mass spectrum of the extra

fermionic generation. Firstly for (
√
s & 600 GeV) we see different peaks that cor-

respond to the threshold energy for the creation of the extra fermions (
√
s ≈ 2mi).

When (2mi <
√
s < 2mj), there is a non-zero contribution to the total amplitude.

In this case, fermions whose masses are very heavy compared to
√
s, exhibit the same

behaviour as previously i.e., the anomaly term cancels out against the finite contribu-
tion.

3.4.3 Minimal Z ′ models

Grand Unified Theories (GUTs) with rank larger than four could break to the SM gauge
group times additional U(1)′s : SU(3) × SU(2) × U(1) × U(1)′n. This symmetry is



3.4. APPLICATIONS 81

broken down to U(1)em and therefore there is a possibility of additional forces mediated
by the Z ′ gauge bosons associated with the broken U(1)′ symmetries (for a review see
ref. [147]).

We shall concentrate here on minimal models with one additional neutral gauge
boson, the Z ′. Minimal here means models that contain no-additional i.e., no exotic,
matter particles apart from the SM ones and right handed neutrinos. The latter play a
crucial role in cancelling anomalies due to the additional U(1)′ and in producing viably
small neutrino masses. These models were devised first in ref. [148] and later elaborated
in refs. [149, 150]. Following the notation of [149] we can describe these models with
three additional parameters: the mass of the new gauge boson, MZ′ , and the couplings
gY and gBL. The latter enter into the current which couples to the unmixed Z ′0 gauge
boson as

JµZ′0
=

∑
f=fL,fR

[gY Yf + gBL (B − L)f ] fγ
µf . (3.67)

From this, it is easy to construct Lint in eq. (3.24) with

αZf = cos θ′ αZ0
f − sin θ′ α

Z′0
f , (3.68a)

αZ
′

f = sin θ′ αZ0
f + cos θ′ α

Z′0
f , (3.68b)

βZf = cos θ′ βZ0
f − sin θ′ β

Z′0
f , (3.68c)

βZ
′

f = sin θ′ βZ0
f + cos θ′ β

Z′0
f , (3.68d)

where θ′ is the mixing angle between Z and Z ′ gauge bosons given by,

tan θ′ = −gY
gZ

M2
Z0

M2
Z′ −M2

Z0

, (3.69)

with M2
Z0

= g2
Zv

2/4 the ‘SM’ Z-boson mass. Also in eq. (3.68) we obtain for α
Z′0
f , β

Z′0
f ,

αZ
′
0

u =
1

2

(
5

6
gY +

2

3
gBL

)
, βZ

′
0

u =
gY
4
,

α
Z′0
d =

1

2

(
−1

6
gY +

2

3
gBL

)
, β

Z′0
d = −gY

4
,

αZ
′
0

e =
1

2

(
−3

2
gY − 2gBL

)
, βZ

′
0

e = −gY
4
,

αZ
′
0

ν =
1

2

(
−1

2
gY − 2gBL

)
, βZ

′
0

ν =
gY
4
, (3.70)

while the corresponding expressions for αZ0
f , β

Z0
f are given by eq. (3.26). This param-

eterisation through gY and gBL helps us to very easily incorporate several models
that have been studied in the literature: ZB−L when the U(1)B−L charges of the
SM fermions are proportional to (B − L) quantum numbers, Zχ a GUT inspired
SO(10) → SU(5) × U(1)χ model and finally, Z3R where the corresponding U(1)3R
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ZB−L Zχ Z3R

gY 0 − 2√
10
gZ′ −gZ′

gBL

√
3
8
gZ′

5
2
√

10
gZ′

1
2
gZ′

charges are proportional to T3R generator of the global SU(2)R symmetry. We sum-
marise the couplings of these models in the following table:

Here, we wish to calculate the effective vertices ΓZ′∗γZ and ΓZ′∗ZZ for those models.
Recalling eqs. (3.38) and (3.27) with i = Z ′, j = γ or Z and k = Z respectively, we
obtain

Γµνρ
Z′∗γZ

(s) ≈ εµνρσk1σ

∑
f=u,d,e,ν

[m2
Z(A3f + A5f )−

m2
fβ

Z
f

π2
I2f +

+
(z + 1)

4π2
(αZ

′

f β
Z
f + αZf β

Z′

f )αγf ]

≡ εµνρσk1σ ΓZ′∗γZ(s) , (3.71)

Γµνρ
Z′∗ZZ

(s) = εµνρσ(k1 − k2)σ
∑

f=u,d,e,ν

[
m2
Z(A3f − A4f ) +

m2
fβ

Z
f

π2
I1f

− (w − 1)

4π2
[(αZf )2βZ

′

f + (βZf )2βZ
′

f + 2αZ
′

f α
Z
f β

Z
f ]
]

≡ εµνρσ(k1 − k2)σ ΓZ′∗ZZ(s) , (3.72)

with αf , and βf given in eqs. (3.68) and (3.70). Again the last terms on the r.h.s
of eqs. (3.71) and (3.72) arrive from the chiral anomaly of individual fermion contri-
butions. These anomaly terms cancel out when we sum over all SM fermions (here
we also need the right handed neutrino). This also removes the arbitrariness due to
the unknown parameters w, z. Contrary to the SM vertices, we cannot use here any
physical arguments in order to remove completely both w and z parameters. We only
have U(1)em gauge invariance for Z

′∗γZ and Bose symmetry for Z
′∗ZZ while in the

SM we have two neutral gauge bosons and two symmetries.

But lets for the moment keep the anomalous terms. Obviously they are multiplied
by arbitrary parameters (z + 1) (for Z

′∗γZ) and (w − 1) (for Z
′∗ZZ). Focusing on

the Z ′B−L model where the mixing angle θ′ vanishes we observe that for any single
heavy fermion contribution the 2nd and the 3rd term on the r.h.s of eqs. (3.71) and
(3.72) mutually cancel and what remains back is the effective theory with the low mass
fermion contributions but together with their anomalous terms included. The latter do
not depend on particle masses. The choices for the arbitrary parameters are w = z = 1
for Z ′γZ and w = z = 0 for Z ′ZZ. The last condition can be interpreted as follows: for
the amplitude ZZ → ZZ to hold for asymptotic values of energies, eq. (3.10) requires
w = z but Bose symmetry requires w = −z. This conclusion does not stand firm in
the case of mixing between Z and Z ′ i.e., in models Zχ, Z3R of the table above, and the
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Figure 3.7: a,b) | ΓZ′V V (s) | versus
√
s for different gauge bosons combinations as they

are given by eqs. (3.71) and (3.72). The solid curve corresponds to the SM spectrum
with an extra U(1)B−L, while the dashed curve corresponds to the same but with a
4th sequential fermion generation added as in Fig. 3.3. We take MZ′ = 1 TeV and
gZ′ = αem. c,d) The same as (a,b) but with U(1)χ. (e,f) The same as (a,b) but with
U(1)3R.

contribution of a heavy mass particle is undetermined. Of course anomalies do cancel
when all model fermions are added.

In Fig. 3.7 we display numerical results for the absolute value of the scalar part of the
1PI effective vertices Z

′∗γZ and Z
′∗ZZ in eqs. (3.71) and (3.72) for MZ′ = 1 TeV and

gZ′ = αem. Figs. (3.7a,b) refer to ZB−L model, Figs. (3.7c,d) to Zχ models and, finally,
Figs. (3.7e,f) to Z3R models. For the values of MZ′ and gZ′ chosen, fits to electroweak
observables and direct searches are satisfied. We also present results when adding a
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sequential 4th generation of fermions with the same masses (and the reasoning) as we
did for the SM case of section 3.4.1. We observe that there is an enhancement of the
vertices by a factor of 2 for ZB−L, and a factor of 10-15 for Zχ. Numerically, we can
define analogous quantities hZ

′
3 and fZ

′
5 by simply replacing Z with Z ′ in the definition

given by footnote 5. As an example, for the B − L model we obtain,

hZ
′

3 (
√
s = 200 GeV) = −2.7× 10−5 ,

hZ
′

3 (
√
s = 500 GeV) = (−2.7 + 5.3i)× 10−4 ,

fZ
′

5 (
√
s = 200 GeV) = −7.2× 10−6 ,

fZ
′

5 (
√
s = 500 GeV) = (−7.7 + 18i)× 10−5 . (3.73)

Numerical results for the vertices presented above and in Fig. 3.7 are based on various
analytical approximations for form factors described in Appendix J.

Now that Z ′ can be heavy it is interesting to study its decay width into Zγ and
ZZ modes. Based on (3.1) and on eqs. (3.71) and (3.72) the decay widths of the Z ′

can be read from

Γ(Z ′ → γZ) =
1

48π

∣∣∣ ∑
f=u,d,e,ν

[m2
Z(A3f + A5f )−

m2
fβ

Z
f

π2
I2f +

+
(z + 1)

4π2
(αZ

′

f β
Z
f + αZf β

Z′

f )αγf ]
∣∣∣2×

× m3
Z′

m2
Z

(1− m2
Z

m2
Z′

)3 (1 +
m2
Z

m2
Z′

) , (3.74)

Γ(Z ′ → ZZ) =
1

96π

∣∣∣ ∑
f=u,d,e,ν

[
m2
Z(A3f − A4f ) +

m2
fβ

Z
f

π2
I1f −

− (w − 1)

4π2
[(αZf )2βZ

′

f + (βZf )2βZ
′

f + 2αZ
′

f α
Z
f β

Z
f ]
]∣∣∣2×

× m3
Z′

m2
Z

(1− 4m2
Z

m2
Z′

)5/2 , (3.75)

Γ(Z ′ → W+W−) =
αemmZ′ sin2 θ′

48 tan2 θw

(
1− 4

m2
W

m2
Z′

)3/2 [
1 + 20

m2
W

m2
Z′

+ 12
m4
W

m4
Z′

](
m2
W

m2
Z′

)−2

,

(3.76)

Γ(Z ′ → ff) =
NcmZ′

12π

[
(αZ

′ 2
f + βZ

′ 2
f )−

3m2
f

m2
Z′

(αZ
′ 2

f − βZ′ 2f )

] √
1−

4m2
f

m2
Z′
, (3.77)

where Nc is the color factor (3 for quarks and 1 for leptons) and the tree level decay
width for Z ′ → WW has been taken from ref. [151] and is dominant over the loop-
induced ones. For gZ′ = αem, MZ′ = 1 TeV and SM spectrum with three generations
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we obtain for the B − L (χ) [3R] models:

Br(Z ′ → νν) = 37.7 (42.3) [12.5] % ,

Br(Z ′ → ``) = 37.7 (12.5) [12.6] % ,

Br(Z ′ → qq) = 24.5 (45.1) [74.8] % ,

Br(Z ′ → WW ) = 0.03 (3.2) [8.1]× 10−5 , (3.78)

Br(Z ′ → Zγ) = 5.8 (∼ 10−3) [8.7]× 10−6 ,

Br(Z ′ → ZZ) = 3.0 (2.5) [0.9]× 10−7 .

These results are pretty much the same for bigger MZ′ values. As we see, the branching
fraction for Z ′ → γZ is in the region of 10−5 − 10−6 while for Z ′ → ZZ in the region
∼ 10−7. These are very challenging numbers even for LHC@14 TeV.

In coordinate space representation, the vertices (3.71) and (3.72) arise on-shell from
the following operators

OZ′γZ ∼ εµνρσZ ′µZν Fρσ , (3.79)

OZ′ZZ ∼ εµνρσZ ′µZν ∂νZσ , (3.80)

which are both P-odd but CP-invariant. Although not present in the SM and in the
Z ′-model under consideration there may be P-even but CP-violating operators of the
form OZ′ZZ ∼ Z

′µ(∂νZµ)Zν induced by a triple scalar loop instead. The latter would
interfere with (3.80) and there is a proposal in ref. [152] on how their effects can be
separated at LHC. However, within minimal Z ′-models considered here this looks very
difficult due to tiny Br(Z ′ → V V ) of eq. (3.78).

3.5 Conclusions

We construct an effective 1PI vertex for triple gauge bosons for every renormalized
theory making explicit mentioning to the chiral anomalies and their synergy with heavy
fermion decoupling phenomena. Our method for calculating the vertex is based on
ref. [119]. It is quite general and can be divided in four steps:

1. Write down the most general, Lorentz (and/or possibly other symmetry) invariant
effective vertex Γµνρ [like eq. (3.2)] with unknown form factors.

2. Isolate the -potentially- infinite form factors and calculate only the finite parts.

3. Derive Ward Identities arising from the underlying spontaneously broken gauge
symmetries at the quantum level. Apply them to Γµνρ and calculate the ambigu-
ous form factors, thus forcing them to be finite.

4. If the vertex is still undetermined i.e., if arbitrary parameters still remain, try
to fix them by physical requirements. If nevertheless arbitrariness persists, then
the model needs completion, perhaps with new particles or new dynamics.
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This method, explained in detail in Appendix H and in section 3.2, does not require
dimensional regularisation or other integral regularisation technics. It may require,
however, “shifting momenta” technics like eq. (L.12). The above steps can be aug-
mented with additional relations. Instead of WIs, one could use other identities like
for example those arising from perturbative unitarity sum rules or the Goldstone boson
equivalence theorem e.g., eq. (3.11).

All the above steps are realized when calculating triple gauge boson vertices in
spontaneously broken gauge theories, like for example the SM or its extensions like
minimal Z ′-models. The anomaly terms are arbitrary and can only be fixed by physics.
Only then can we discuss non-decoupling effects in the broken limit. We observe that
for V ∗V V, V = γ, Z and for γ∗WW vertices, there are two arbitrary parameters that
are completely determined by two physical symmetries: U(1)em and Bose symmetry or
CP-invariance. We find that at the limit of heavy fermion masses, non-decoupled terms
cancel exactly those that arise from anomalies. For example, in the SM, decoupling of
the top quark will leave behind anomalous-terms of light quarks and leptons plus finite
parts. On the other hand vertices like Z∗WW,Z

′∗V V are in general undetermined
because there are no enough symmetries to fix the arbitrary parameters. Of course
for anomaly free models this arbitrariness is removed when adding up all fermion
contributions.

We made a numerical analysis for SM and minimal Z ′ model vertices. To this end we
made an effort to calculate finite integrals in terms of standard functions that are easy
to handle. For example in Appendix J, we solved analytically the integrals for V ∗γV -
vertices. We then proceeded to SM predictions for the triple gauge boson vertices.
Unfortunately, it turns out that within the SM these are rather small to be discovered
even at the LHC with

√
s = 14 TeV. Similar results are obtained in the SM extended

by a sequential fourth generation. The difference w.r.t the SM, is that |ΓV ∗V V (s)|
is “delayed” to vanish for large

√
s due to the heavy, 4th generation thresholds (see

Figs. 3.3). In the best case, the SM + 4th generation predicts a maximum of a few×10−3

for |Γγ∗γZ | [see dashed lines in Figs. 3.3].

We have performed a numerical analysis, shown in Fig. 3.7, for minimal Z ′-models
with U(1)B−L symmetry, SO(10)-like and U(1)3R also extended with a 4th fermion
generation. For a conservative choice of MZ′ = 1 TeV and gZ = αem, we find |ΓZ′ZZ |
and |ΓZ′γZ | in the regime below a few×10−5. We also briefly discussed Z ′-decays to
Zγ and ZZ. Adopting the parameters space above, their branching ratio come out to
be in the neighborhood of ∼ 10−5 and ∼ 10−7, respectively.

In section 3.3.2 and Appendix K, we calculated non-decoupling effects that arise
instantaneously with vanishing anomalies. We constructed several toy models with two
or three external gauge bosons and a number of fermions where this situation could
take place. In principle, these models can be used as a basis towards realistic extensions
of the SM.

Our main result, the effective triple gauge boson vertex obtained in section 3.2 can
be used in various ways: i) in models with anomalous spectrum, ii) in realistic anomaly
driven models of section 3.3.2, iii) in MSSM and its extensions, iv) in dark matter or
neutrino - nucleon scattering processes with a photon in the final state.



Chapter 4

Anatomy of the H → γ γ in the
unitary gauge

In this Chapter, we review and clarify computational issues about the W -gauge boson
one-loop contribution to the H → γγ decay amplitude, in the unitary gauge and
in the Standard Model. As in the previous Chapter, we introduce arbitrary four-
vectors in order to shift the integral momentum variable. We find that highly divergent
integrals depend upon the choice of these arbitrary vectors. One particular combination
of these arbitrary vectors reduces the superficial divergency down to a logarithmic
one. The remaining ambiguity is then fixed by exploiting gauge invariance and the
Goldstone Boson Equivalence Theorem. Again as we operated in the previous Chapter,
the method is strictly realised in four-dimensions. The result for the amplitude agrees
with the “famous” one obtained using dimensional regularization (DR) in the limit
d → 4, where d is the number of spatial dimensions in Euclidean space. At the
exact equality d = 4, a three-sphere surface term appears that renders the Ward
Identities and the equivalence theorem inconsistent. We also examined an alternative
four-dimensional regularization scheme and found agreement with the DR outcome.

After presenting the problem about the ambiguities that appear in the calculation
of H → γ γ amplitude in the unitary gauge and introducing the basic steps of our
method, we present the calculation of the W -loop contribution1 to H → γγ amplitude,
its ambiguities and the resolution within physics arising from GBET. We also examine
details of the amplitude calculation within an alternative regularization method (four
dimensional regularization scheme FDR) [170], the one that resembles most closely the
symmetry approach taken here. This Chapter is based on [171]

1Note that the calculation of the fermion triangle contribution is well defined i.e., it is independent
of arbitrary vectors and finite.
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Figure 4.1: W -gauge boson contribution to the H → γγ amplitude. Momentum flow
together with relevant shift vectors are indicated.

4.1 Introduction

Today one of the main focal points at the Large Hadron Collider (LHC) is to search for
the Higgs boson (H) [6–8] through its decay into two photons, H → γγ (for reviews
see [156, 157]). Indeed, the recent [4, 5] observation by ATLAS and CMS experiments
of a resonance, that could be the Standard Model (SM) Higgs boson, is based on data
mainly driven byH → γγ. In the (SM) [1–3], this particular decay process goes through
loop induced diagrams involving either charged fermions or W -gauge bosons. Their
calculation was first performed in ref. [158] in the limit of light Higgs mass mH � mW ,
using dimensional regularisation in the ’t Hooft-Feynman gauge. Since then, there are
numerous works spent on improving this calculation including finite Higgs mass effects
in linear and non-linear gauges [159–161], different regularisation schemes [162–165]
and/or different gauge choices [166].

The H → γγ amplitude is originated, in broken (unbroken) phase, by a dimension-5
(dimension-6) SM gauge invariant operator(s) and, therefore, its expression, within a
renormalizable theory, must be finite, gauge invariant and independent of any gauge
choice. The amplitude should also be consistent with the Goldstone Boson Equivalence
Theorem (GBET) [128–130] since the SM is a renormalizable, spontaneously broken,
gauge field theory.

A problem arises when the W -gauge boson contribution (see Fig. 4.1) to H → γγ
produces “infinite” results at intermediate steps. These problems are usually treated
by using a gauge invariant regulator method, e.g., dimensional regularization. In the
unitary gauge [167], this indeterminacy is more pronounced and more difficult to handle
with2 due to the particular form of the W -gauge boson propagator. On the other hand
it is much simpler to work with only few diagrams, that involve physical particle masses,
rather than many.

2However, using DR and unitary gauge with modern computer algorithms this may not be a hard
problem today [166].
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More specifically, in the unitary gauge, one encounters divergencies up to the sixth
power. It is well known that, in four-dimensions, shifting momenta in integrals that
are more than logarithmically divergent is a “tricky business” - recall the calculation of
linearly divergent fermion triangles in chiral anomalies [30, 90] - that requires keeping
track of several “surface” terms for these integrals. There is also the situation we
face here where apparent logarithmically divergent integrals turn out to be finite but
discontinuous at d = 4.

We would like to bypass those ambiguities and at the same time to present a
“regularisation” method, by performing the calculation for the H → γγ amplitude
strictly in 4-dimensions and in the physical unitary gauge. Our method is similar
to the one used elsewhere for calculating triple gauge boson amplitudes [119, 168], or
Lorentz non-invariant amplitudes [108], and consists of three steps:

1. We write down the most general Lorentz invariant H → γγ amplitude.

2. We introduce arbitrary vectors that account for the “shifting momentum” inde-
terminacy. We show that a particular choice of those “shifting vectors” cancel
higher powers of infinities leaving still behind at most logarithmically divergent
integrals that are treated as undetermined variables.

3. We exploit physics, i.e., gauge invariance (Ward Identities) and the GBET in
order to fix the last undetermined variables.

This method is quite general and can be applied to other observables within a renor-
malizable theory. Following these steps we arrive at the same result for the H → γγ
amplitude obtained by J. Ellis et.al [158] and by M. Shifman et.al [160] almost 35 years
ago. Our analysis, among other issues, highlights that the recent observation [4, 5] of
the H → γγ at the LHC signifies the validity of the Goldstone Boson Equivalence
Theorem. As a further clarification we also make a remark on the direct calculation
in the following three cases: we first perform the integrals in exactly d = 4 (with no
regularisation method beyond the one discussed in point 2 above), second, by exploit-
ing Dimensional Regularisation (DR) as defined in [33, 169] and then taking the limit
d→ 4, and finally third by using a four-dimensional regularization scheme introduced
in [170].

Our calculation is complementary to, but somewhat different than, the two existing
ones [166, 172, 173] performed in the unitary gauge. It is not our intend to redo the
calculation in unitary gauge with DR as in ref. [166]. On the contrary, we want to
clarify subtle issues related to the amplitude in unitary gauge and d = 4 raised in part
by refs. [172,173]. We find, using arbitrary vectors, that divergencies (up to 6th power)
are reduced down to logarithmic ones. This is a new result that is not obvious when
working in unitary gauge and cannot be seen when using dimensional regularization.
This fact was stated incorrectly in refs. [172,173].
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4.2 The W -loop contribution to H → γγ in SM

The most general, Lorentz and CP- invariant, form of the of-shell H → γγ amplitude
is,

M1 g
µν +M2 k

ν
1 k

µ
2 +M3 k

µ
1 k

ν
2 +M4 k

µ
1 k

ν
1 +M5 k

µ
2 k

ν
2 , (4.1)

where k1 and k2 are the outgoing photon momenta shown in Fig. 4.1, and the coefficients
Mi=1..5 ≡Mi=1..5(k1, k2) are scalar functions of k2

1, k
2
2, and k1 ·k2. By considering that

all particles are on-mass-shell, that is k2
1 = k2

2 = 0 , k1 · k2 = m2
H/2 , k1 · ε∗(k1) =

0 , k2 · ε∗(k2) = 0, we obtain an amplitude M = Mµνε∗µ(k1)ε∗ν(k2) with only two,
undetermined (for the time being), coefficients,

Mµν =M1 g
µν + M2 k

ν
1 k

µ
2 . (4.2)

In unitary gauge, the Feynman diagrams that contribute toM1 andM2 are displayed
in Fig. 4.1. In order to calculate them, we introduce three arbitrary four-vectors a, b
and c, one for each diagram. These vectors shift the integration momentum, i.e.,
p→ p+a for the first diagram, p→ p+ b for the second diagram and p→ p+ c for the
third diagram. As we shall see, these arbitrary vectors operate as regulators capable
to handle highly divergent integrals related to unitary gauge choice. Furthermore, the
vectors a, b and c, linearly depend upon the external momenta k1 and k2. Hence a, b
and c are not linearly independent [c.f. eq. (4.4)]. This is an important fact leading to
the cancellation of infinities.

We first calculate the less divergent part of Mµν in eq. (4.2) which is the M2 co-
efficient3. By naive power counting, we see that M2 diverges by at most four powers.
Then we perform the Feynman integral calculations strictly in 4-dimensions. For rea-
sons that will become clear later, we shall keep the number of dimensions general in
all intermediate steps of the calculation i.e., gµνgµν = d. As we will see, d contributes
only in finite pieces of M2 [c.f. eq. (4.9)]4.

With all the above definitions, we can write down the total amplitude in the form

Mµν ∼
∫

d4p

(2π)4

[
A11 g

µν

+ A21 (p+ a)µ (p+ a)ν +A22 (p+ b)µ (p+ b)ν +A23 (p+ c)µ (p+ c)ν

+ A31 (p+ a)µ kν1 +A32 (p+ b)µ kν1 +A33 (p+ c)µ kν1
+ A41 (p+ a)ν kµ2 +A42 (p+ b)ν kµ2 +A43 (p+ c)ν kµ2
+ A51 k

µ
2 k

ν
1

]
, (4.3)

where the coefficients Aij = Aij(pn; k1, k2; a; b; c) with −6 ≤ n ≤ 0, are given in

Appendix L, and the ∼ sign is the proportionality factor: −2ie2

v
. Note that Mµν is

a (superficially) 6th power divergent amplitude in the unitary gauge. A11 in eq. (4.3)
solely contributes toM1 while all other A-elements contribute to bothM1 and/orM2

in eq. (4.2).

3The coefficient M1 will be fixed later on by the requirement of gauge invariance.
4On the contrary, we shall see that there are non-trivial d-contributions into M1-coefficient.



4.2. THE W -LOOP CONTRIBUTION TO H → γγ IN SM 91

First we focus on the calculation of the “less divergent” coefficientM2 of eq. (4.2).
Based on naive power counting, we observe that the A21,A22,A23-terms in eq. (4.3),
lead to at the most quartic divergent integrals. However, when adding all these pieces
together, we find that quartic divergent integrals vanish for every arbitrary vectors
a, b and c leaving behind an expression with integrals of third power (in momenta)
plus integrals with smaller divergencies. Then the cubically divergent integrals are
proportional to all possible Lorentz invariant combinations like: [(a+ b− 2c) · p] pµpν ,
[(a+ b− 2c)νpµ] p2 and [(a+ b− 2c)µpν ] p2. Therefore, choosing

a+ b− 2 c = 0 , (4.4)

we ensure that third order divergent integrals related to A21,A22,A23-terms, vanish
identically. In the same way, by naive power counting, A31 and A33-terms - these
terms in eq. (4.3) together with A32 contribute solely to M2 - lead again to at most
third order divergent integrals. However, in the sum of A31 and A33-terms in eq. (4.3),
third order divergent integrals vanish for arbitrary a, b and c, leading to an expression,
that when added to A32-term, consists of at most quadratically divergent integrals,
proportional to [(c− a) · p] pµkν1 and [(c− a)µkν1 ] p2. We choose,

c− a = 0 , (4.5)

for the quadratically divergent integrals to vanish. Likewise, when we add A42 and A43-
terms - these terms, together with A41, solely contribute toM2 in eq. (4.2) - the third
order divergent integrals vanish for every choice of a, b, c leading to an expression, that
when added to A41, consists of at most quadratically divergent integrals proportional
to [(c− b) · p] pνkµ2 and [(c− b)νkµ2 ] p2. Therefore, we choose

c− b = 0 , (4.6)

for infinities to vanish identically. From eqs. (4.4), (4.5) and (4.6) we arrive at the final
relation among the three introduced vectors:

a = b = c . (4.7)

Eq. (4.7) suggests that the rest of the divergent integrals depend by, at most, one arbi-
trary vector, say the a-vector. Note that A51 contributes only to the finite part ofM2.
Now, if we impose conditions (4.7) onto the remaining expressions for A21,A22, ...,A51-
terms of eq. (4.3), we find that all quadratically and linearly divergent integrals van-
ish, independently of the direction of the a-vector. We stress here the fact that the
cancellation of divergencies down to logarithmic ones is a highly non-trivial, almost
“miraculous”, result. These cancellations only take place for a particular choice of the
momentum-variable shift vectors, [eq. (4.7)]5. Of course this is an expected outcome
for an observable within a renormalizable theory.

5As a corollary, if for instance, we had split the WWγ-vertex into three pieces, each one associated
with three different arbitrary vectors, then the generalised condition (4.7) would again downgrade the
divergency of the amplitude to a logarithmic one.
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The final result contains at most logarithmically divergent integrals. Despite of the
fact that the resulting expressions so far contain the shift p + a instead of p with an
arbitrary vector a, its presence is irrelevant since logarithmically divergent integrals
are momentum-variable shift independent [125]. This result is different with the one
obtained in [172, 173], where there is a quadratically divergent term remaining and is
tuned to zero by appropriate choice of loop momentum. Summing up all the above
contributions to M2, we find a particularly nice and symmetric form for Mµν ,

Mµν ∼
∫

d4p

(2π)4
pµpν

{
4(d− 1)m2

W + 2m2
H

[p2 −m2
W ][(p− k1)2 −m2

W ][(p− k1 − k2)2 −m2
W ]

+
4(d− 1) m2

W + 2m2
H

[p2 −m2
W ][(p− k2)2 −m2

W ][(p− k1 − k2)2 −m2
W ]

}

+

∫
d4p

(2π)4
pµkν1

{
−4(d− 1)m2

W − 4 (p · k2)

[p2 −m2
W ][(p− k1)2 −m2

W ][(p− k1 − k2)2 −m2
W ]

+
−4 (p · k2)

[p2 −m2
W ][(p− k2)2 −m2

W ][(p− k1 − k2)2 −m2
W ]

}

+

∫
d4p

(2π)4
pνkµ2

{
−4 (p · k1)

[p2 −m2
W ][(p− k1)2 −m2

W ][(p− k1 − k2)2 −m2
W ]

+
−4(d− 1)m2

W − 4 (p · k1)

[p2 −m2
W ][(p− k2)2 −m2

W ][(p− k1 − k2)2 −m2
W ]

}

+

∫
d4p

(2π)4
kν1k

µ
2

{
6m2

W + 2 p2

[p2 −m2
W ][(p− k1)2 −m2

W ][(p− k1 − k2)2 −m2
W ]

+
6m2

W + 2 p2

[p2 −m2
W ][(p− k2)2 −m2

W ][(p− k1 − k2)2 −m2
W ]

}
. (4.8)

Introducing Feynman parameters, shifting momentum variable from p to ` and ignoring
all terms that contribute toM1

6 we find that the contribution toM2 in eq. (4.2) arises
solely from the term,

M2 k
ν
1 k

µ
2 ∼ 8

∫ 1

0

dx

∫ 1−x

0

dy

∫
d4`

(2π)4

`2 kν1 k
µ
2 − 2 (` · k2) `µ kν1 − 2 (` · k1) `ν kµ2

(`2 −∆)3

+ 8m2
W

∫ 1

0

dx

∫ 1−x

0

dy

∫
d4`

(2π)4

3− 2 (d− 1)x (1− x− y)

(`2 −∆)3
kν1 k

µ
2 , (4.9)

with ∆ = x(x+y−1)m2
H+m2

W . Obviously, the first integral in eq. (4.9) is (superficially)
logarithmically divergent while the second one is finite. The number of dimensions (d)
appears only at the finite integral and therefore we can fearlessly set d = 4 everywhere.

6These terms will be used later in arriving at eq. (4.24).
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This means that we do not use dimensional regularisation in what follows (see however
the discussion below). We state here few additional remarks to be exploited later on:
a) we observe that the top line in the integrand of eq. (4.9) does not vanish in the limit
m2
W → 0 and, b) despite of appearances in eq. (4.8), there is no m2

H in the numerators
of the subsequent expression eq. (4.9). The whole m2

H contribution arises from the
denominator’s ∆-term.

Our next step is to parametrize the logarithmically divergent integral in eq. (4.9) by
an unknown, dimensionless, parameter λ to be determined later by a physical argument.
So we define,∫ 1

0

dx

∫ 1−x

0

dy

∫
d4`

(2π)4

`2 kν1 k
µ
2 − 2 (` · k2) `µ kν1 − 2 (` · k1) `ν kµ2

(`2 −∆)3
≡ iλ

4(4π)2
kν1 k

µ
2 .

(4.10)

An important parenthesis here. We could of course promote d4` → dd` and use di-
mensional regularisation [33] by exploiting symmetric integration `µ`ν → 1

d
`2gµν in

d-dimensions. In this case, and after taking the limit d → 4, one finds λ = −1 which
is finite and non-zero, and, agrees with the one we find below in eq. (4.20) after im-
posing the GBET condition. This is also the result found in the original [158–160].
However, according to [172, 173], the integral in eq. (4.10) is discontinuous at d = 4;
in fact, when symmetric integration, `µ`ν → 1

4
`2gµν in d = 4 is used, one finds in-

stead λ = 0. This is also understood in a slightly different context. It has long been
known [125–127] that shifts of integration variables in linearly (and above) divergent
integrals are accompanied by “surface” terms that appear only in four dimensions – a
famous example being the integrals in chiral anomaly triangle graphs. For our purpose
here lets start with the following shift of variables in a linearly divergent integral that
has been generalised [127] to work in 2ω-dimensions following the expression,∫

d2ω`
`µ

[(`− k)2 −∆]2
−
∫
d2ω`

(`+ k)µ
(`2 −∆)2

= −iπ
2

2
kµ δω,2 , (4.11)

that is valid for ω < 5/2 and ∆ constant, possibly dependent on Feynman parameters,
like the one given below eq. (4.9), and kµ is an arbitrary constant four vector. By taking
the derivative, ∂

∂kν
, of both sides in eq. (4.11) and shifting the integration variable for

the logarithmically divergent integral encountered, and evaluating the finite one, we
easily arrive at∫

d2ω`
`2 gµν − 4 `µ `ν

(`2 −∆)3
= −iπ

2

2
gµν

(
πω−2 Γ(3− ω)

∆2−ω − δω,2
)
. (4.12)

For an alternative and detailed proof of eq. (4.12), see Appendix M.7 Applying
eq. (4.12) to `σ`ρ terms of eq. (4.10) with d4`

(2π)4 → d2ω`
(2π)2ω , we find,

λ =

{ 0 , ω = 2

−1 , ω = 2− ε (DR)
. (4.13)

7The same result is obtained by standard algebraic tricks. We would like to thank R. Jackiw for
communicating his calculation to us.
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This is consistent with the symmetric integration in 4-dimensions (ω = 2), but, is also
consistent with the usual tabulated textbook result [34] from dimensional regularisation
in 4−2ε-dimensions (ω = 2−ε). Eq. (4.13) shows that λ is discontinuous at d = 2ω = 4.
Then the Question arises: which λ to believe in? Answer: the one that is indicated by
well defined, calculable, boundary conditions and symmetries of the underlying theory.

The above parenthesis to our calculation motivates us to avoid the direct calculation
of integral (4.10) but set d = 4 everywhere and treat λ as an unknown parameter to
be defined later within a physical context or experiment. Substituting eq. (4.10) into
eq. (4.9) we arrive at

M2 ∼
i

8π2

{
λ− 6m2

W

∫ 1

0

dx

∫ 1−x

0

dy
1− 2x(1− x− y)

∆

}
. (4.14)

Evaluating the double finite integral in eq. (4.14), and restoring the proportionality
factor given below eq. (4.3), we obtain,

M2 = − e2g

(4π)2mW

{
−2λ+

[
3 β + 3 β (2− β) f(β)

]}
, (4.15)

where

β =
4m2

W

m2
H

, and, f(β) =

{
arctan2

(
1√
β−1

)
, β ≥ 1

−1
4

[
ln
(

1+
√

1−β
1−
√

1−β

)
− i π

]2

, β < 1
. (4.16)

Our final step is to determine the unknown parameter λ in eq. (4.15). For this we
need physics that reproduces M2 in a different and unambiguous way. One choice,
probably not the only one, is to adopt the Goldstone Boson Equivalence Theorem
(GBET) [128–130] which states that the amplitude for emission or absorption of a
longitudinally polarised W at high energy becomes equivalent to the emission or ab-
sorption of the Goldstone boson that was eaten. Mathematically, this is written by an
equation [174],

S[W±
L , physical ] = in S[ s±, physical ] , (4.17)

which says that the S-matrix elements for the scattering of the physical longitudinal
vector bosons WL with other physical particles are the same as the S-matrix elements
of the theory where the WL’s have been replaced by physical Goldstone bosons (s±).
We are not going to get into details here; apart from the original literature the reader is
also referred to the articles [166,174–176]. Following [174], within perturbation theory
and in the limit of high energies, m2

W/s→ 0, GBET can be expressed with physics in
two different limits of the theory: (a) g2/λH → 0, or (b) m2

H/s→ 0.

The limit (b) is irrelevant8 for defining λ in eq. (4.15) so we completely focus on the
limit (a). It is very easy to see that, in the unitary gauge, the WL’s do not decouple9

8The limit (b) simply says that matrix elements for the theory which contains the physical WL’s
and zero v.e.v is equal to those produced by scattering of massless physical Goldstone bosons (instead
of WL’s) at high energies. We have checked that eq. (4.17) is satisfied in this limit.

9This is another advantage of calculating in the unitary gauge.
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Figure 4.2: Charged Goldstone boson contributions to H → γγ in the limit of g → 0.

for vanishing gauge coupling g. Consider for example the diagrams in Fig. 4.1: there
is always a m2

W from the HWW -vertex that cancels another m2
W sitting in the denom-

inator of the longitudinal part for the internal W-boson propagator expression written
in the unitary gauge. So, as it was already noted in the paragraph below eq. (4.9),
in the limit g → 0 there are remaining non-decoupled terms. Unfortunately, these
effects may be obscured or misjudged by the regularisation method needed to handle
divergent, intermediate, loop integrals. This is exactly what happens here when trying
to calculate λ directly from its ambiguous form (4.10). On the other hand however, at
the exact g = 0, with fixed v.e.v v and Higgs quartic coupling λH , eq. (4.17) suggests
that the Goldstone bosons (s±) should reappear at the physical spectrum of the theory
while the longitudinal components of W ’s become unphysical. At this limit, the SM is
a spontaneously broken global SU(2)L × U(1)Y -symmetry that couples, minimally, to
electromagnetism. The interactions between the Higgs and photon with the Goldstone
bosons are simply those of a spontaneously broken scalar QED with U(1)em,

H s+ s− : −im
2
H

v
, γ s+(p1) s−(p2) : −ie(p1 + p2)µ , γ γ s+ s− : 2ie2gµν .

(4.18)

Armed with these Feynman rules we calculate the diagrams in Fig. 4.2. By do-
ing so, we introduce again three momentum variable shift vectors, one for each dia-
gram, exactly in the same way we did for the calculation of the diagrams in Fig. 4.1.
The Lorentz structure of the amplitude is completely analogous to eq. (4.2) with
M1,2 → M1,2(GBET), but now due to the scalar propagators, the superficial degree
of divergence, for diagrams contributing to M2(GBET), is D = −2. Hence, all integrals
involved in M2(GBET) are finite and in addition, they are independent of any momen-
tum integration shift vector variable. As a consequence, M2(GBET) is well defined,
calculable, independent of any regularisation method, and at the limit of g → 0 (or
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β = 4m2
W/m

2
H → 0) is

M2(GBET) = − 2e2g

(4π)2mW

, β → 0 . (4.19)

By equating eq. (4.15) (in the limit β → 0) and eq. (4.19) which represent the l.h.s
and r.h.s of the GBET condition (4.17), respectively, we find

λ = −1 . (4.20)

This value agrees with dimensional regularization [33, 169] in the limit d → 4 [see
eq. (4.13)]. The final form of the M2 in eq. (4.2) is

M2 = − e2g

(4π)2 mW

{
2 +

[
3 β + 3 β (2− β) f(β)

]}
, (4.21)

with β, and f(β) defined in eq. (4.16).

To complete the picture there is still the coefficientM1 in eq. (4.2) to be calculated.
Naive power counting says that this is by two powers more divergent than M2 and,
in general, undetermined. It can be fixed however by using quantum gauge invariance
i.e., conservation of charge, for the U(1)em,

k1µMµν = 0 , k2νMµν = 0 , k2
1 = k2

2 = 0 , (4.22)

and thus from eq. (4.2),
M1 = −(k1 · k2)M2 . (4.23)

Eq. (4.23) is substituted to eq. (4.2) with M2 read by eq. (4.21). This is exactly
the same result for the W -boson contribution to H → γγ amplitude, that has been
obtained in [158–161,166] using dimensional regularisation in Rξ-gauges.

It is interesting here to note the result from the explicit algebraic manipulation of
M1 in the unitary gauge and check the validity of gauge invariance [eq. (4.23)]. Exactly
as forM2, the condition a = b = c for the arbitrary vectors given in eq. (4.7) is crucial
in reducing the divergence ofM1 down to a logarithmic one [see expression eq. (L.12)].
In d-dimensions the expression for M1 is finally independent of any arbitrary vector
and, up to a proportionality factor, reads:

M1 ∼ 4

∫ 1

0
dx

∫ 1−x

0
dy

∫
dd`

(2π)d

{
4(` · k1)(` · k2) + 2(2

d − 1)`2(k1 · k2) + (d−1
d )(4− d) `2m2

W

(`2 −∆)3
+

+
(d− 1)m4

W − 3m2
W m2

H + (1− d)x(x+ y − 1)m2
W m2

H

(`2 −∆)3

}
.

(4.24)

Clearly the first integral in eq. (4.24) is ill-defined in four dimensions. If however,
we insist in doing the calculation of eq. (4.24) in d = 4 with symmetric integration,
like in [172, 173], we find that gauge invariance [eq. (4.23)] is not satisfied. This is of
course unacceptable. By going a little bit deeper, gauge invariance is lost because of
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the term proportional to 4 − d in eq. (4.24) which vanishes when d = 4. Quite the
contrary in DR, this term results in a non-zero contribution when mW 6= 0, since the
(log divergent) integral in front of (4−d) contains a simple pole at d = 4. This changes
the final result and renders eqs. (4.21), (4.24) and (4.23) consistent, only if λ = −1.
This outcome is in agreement with [166].

Few remarks are worth mentioning here. Had we started first by calculating M1,
there would be no possibility of defining unambiguously λ without using a gauge in-
variant regulator: the gµν part of the amplitude at g → 0 involving Goldstone bosons
[see diagrams fig. 4.2] is not well defined - an integral as the one in eq. (4.12) appears
again. Another remark is that the same expressions for the coefficients Aij displayed
in Appendix L in the unitary gauge, appear also when one exploits the Rξ-gauge. In
the latter there are in addition ξ-dependent terms [166] that vanish in the end from
unphysical scalar contributions. Therefore, the logarithmic ambiguity in eq. (4.12),
found here in the unitary gauge, is similar in every other gauge.

4.3 Four Dimensional Regularization (FDR)

So far we have proposed a regularization scheme which is four-dimensional and uses
the basic symmetries and underlying physics of the SM. However, in more complicated
models or observables with more parameters to adjust, such a scheme can become
cumbersome. For example, it is not always obvious which physics argument will fix
undefined integrals.

Very recently, R. Pittau [170] proposed a scheme that is fairly easy to handle
and, to the best of our knoweledge, is the closest to four dimensional calculations,
thereby coined four-dimensional regularisation/renormalization scheme or just FDR.
According to this scheme, infinite bubble graph contributions, i.e., large loop momenta
contributions that do not depend upon external momenta, are absorbed into the shift
of the vacuum while the remaining finite corrections are calculable in four-dimensions
in addition to being Lorentz and gauge invariant.

We have applied FDR into the calculation of the H → γγ amplitude and found
agreement with our physics approach and with DR results. In FDR one introduces
an arbitrary scale µ which is considered to be much smaller than internal momenta
and particle masses in loops. Self contracted loop momenta quantities like `2 become

`
2

= `2−µ2, while for gauge invariance to hold, vector momenta, pµ, remain untouched.
For example the integral of eq. (4.12) becomes,

∫
[d4`]

`
2
gµν − 4 `µ `ν

D
3 =

∫
[d4`]

−µ2

D
3 gµν , (4.25)

where D = (`
2 − ∆) and [d4`] stands for integration over d4`, dropping all divergent

terms from the integrand (see below) and taking the limit µ → 0. In going from l.h.s
to r.h.s of eq. (4.25) the symmetry property `µ`ν = gµν `

2/4 has been used in four
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dimensions. Then, using the partial fractions identity,

1

D
3 =

[
1

`
6

]
+ ∆

(
1

D
3
`

2 +
1

D
2
`

4 +
1

D`
6

)
, (4.26)

the term in square bracket is recognised as divergent and therefore removed, and inte-
grating the r.h.s of eq. (4.25) over [d4`] one obtains∫

[d4`]
−µ2

D
3 ≡ −∆ lim

µ→0
µ2

∫
d4`

(
1

D
3
`

2 +
1

D
2
`

4 +
1

D`
6

)
= −iπ

2

2
, (4.27)

i.e., exactly the same result as in DR which eventually leads to λ = −1 consistent with
gauge invariance and GBET. What in fact FDR scheme does, is to restate the correct
DR answer through the regulator µ2 keeping eq. (4.12) correct in d = 4. We therefore
understand that the constant (β-independent) term of eq. (4.21) in FDR arises from
the fact that the arbitrary scale, µ2, must disappear from physical observables.

4.4 Discussion

It is evident that our calculation for the amplitude incorporates two physical inputs:
one is the conservation of charge and the other is the equivalence theorem. They are
both direct consequences of the gauge invariance of the underlying physical theory. The
first one is experimentally indisputable while the second one is theoretical10 and has
been proven in [177] that is valid in any spontaneously broken renormalizable theory,
like for example the SM. One may think however that there is a loophole in our use of
this second argument: so far, and, to our knowledge, the replacement of the W -bosons
with Goldstone bosons at high energies has been proven to be valid only for external
W -bosons [174, 178, 179] and not for internal ones which is the case exploited here.
Although it has been tested in several phenomenological examples [180], a formal, to
all orders, proof is still missing. Although this may be true, it is difficult to argue
against the validity of decoupling limit g → 0 (with fixed v.e.v and Higgs quartic
coupling) discussed in the paragraph above eq. (G.7).

Is there another physics context from which one can define λ? One possibility is
to exploit the low energy Higgs theorem [158, 181–183] instead. Although this may
serve as a consistency check, and indeed is compatible with λ = −1, we cannot use
it to define λ. The reason here is threefold: first, when treating the Higgs field as an
external background field with zero momentum one needs to take partial derivative
w.r.t mW of the 2-point photon vacuum polarization amplitude, Πγγ(q

2). The later,
is notoriously difficult, if meaningful, to be calculated in the unitary gauge. Second,
according to [158], we know that to the lowest order in weak coupling, the amplitude
for the process 〈γγ|H〉 is proportional to 〈γγ|Θµ

µ |0〉 where Θµ
µ = 2m2

WW
+W− + ... is

the improved energy momentum tensor [184]. However, the calculation of 〈γγ|Θµ
µ |0〉

10This is not entirely correct. There is of course the high energy behaviour of e+e− → W+W−

found at LEP [138] consistent with the GBET.
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goes through the same steps as for the calculation for the H → γγ amplitude and
therefore involves the same ambiguity for calculating λ. Third, one could examine
the W -contribution to H → γγ within the dispersion relation approach. It can be
shown [185] that the non-vanishing limit at gW → 0 is due to a finite subtraction
induced by the corresponding trace anomaly [186]. However, in order to calculate
unambigiously this finite piece, one has to make full use of a (physical) boundary
condition of the theory.

As a final remark, suppose that we did not know DR and wanted to calculate a
certain observable in 4-dimensions. In this observable we encounter singularities i.e.,
undefined and undetermined integrals. Then we use physics arguments to fix these
ambiguities. However, we can always question whether we are using the right physics
set up or not. In that sense the final judgement should come from the experiment.
Therefore it may be not only academic to ask whether LHC could see the difference
between λ = −1 and λ = 0? Setting the SM Higgs mass mH = 125 GeV, and including
the top-loop contribution, we find

Br(H → γγ, λ = 0)

Br(H → γγ, λ = −1)
≈ 0.46 . (4.28)

This is certainly within LHC’s sensitivity for 14 TeV c.m energy and luminosity of
30 fb−1. (see for example Fig. 3 in [187]). In fact, the recent observation by LHC

experiments [4, 5] indicates a value Br(H→γγ, (exp))
Br(H→γγ, λ=−1)

= 1.6 ± 0.3 [188] which highly
disfavours the case λ = 0 by almost four standard deviations. We can turn this around
and state that this is an indirect hint towards the validity of the equivalence theorem.

4.5 Conclusions

In this work we review the W -gauge boson loop contribution to the H → γγ amplitude
in the unitary gauge. Our objective is to fix intermediate step indeterminacies arising
from divergent diagrams by making full use of physics at d = 4 much in the same way
as in the calculation of the chiral anomaly triangle.

We anticipate a finite result for the loop induced H → γγ-amplitude in the renor-
malizable SM. Therefore the amplitude has to be independent of any shifting momen-
tum variables we have originally introduced. But finite or even log divergent integrals
are independent of these vectors, so the vectors have to be accompanied only by infi-
nite contributions, if at all. Therefore, infinities and arbitrary vectors are eliminated
altogether by a certain combination among them [see eq. (4.7)].

The whole calculation in the unitary gauge boils down to a logarithmically divergent
integral (4.10). We find that, this integral results in two different values depending on
whether d→ 4 or d = 4. This is due to a surface term remaining at the exact d = 4 case
after the part-by-part integration in d-dimensions [see Appendix M]. To proceed, we
identify this integral with an undefined parameter λ [see eq. (4.12)]. This parameter is
then fixed unambiguously by assuming the validity of the Goldstone Boson Equivalence
Theorem (GBET). Its value is consistent with DR in the limit d→ 4.
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In our calculation we are very careful not to perform shifting of integration variables
for highly divergent integrals by introducing three arbitrary momentum variable shift
vectors straight from the beginning. Divergencies and arbitrariness from these unknown
vectors are altogether removed, leaving behind a log-like divergent integral in M2 of
eq. (4.2). This is defined by a physical input taken from the GBET and is connected
to M1 by electromagnetic charge conservation.

As noted many times in the text, the key point towards deriving an unambiguous
amplitude for H → γγ in the unitary gauge is the limit of vanishing gauge couplings;
this is an aspect of GBET [eq. (4.17)]. In this limit, the Goldstone boson loop contri-
butions to the coefficient M2 is finite, i.e., independent of any regularisation scheme.

We also saw that DR (FDR), a regularisation scheme introduced to maintain Ward
Identities at intermediate steps of a calculation, supports the GBET in the limit d→ 4
(d = 4). On the contrary, we find that, performing the integrals in d = 4 with
symmetric integration is not a good choice because it leads to the violation of gauge
invariance [see eq. (4.23) and the discussion below]. The main reason is due to surface
terms that are developed in exactly d = 4 dimensions [see discussion below eq. (4.10)
and Appendix M]. The latter are axiomatically discarded in DR [33, 169]. Another
reason is the appearance of the (d− 4)-term in the numerator of eq. (4.24).

In conclusion, the four-dimensional calculation of H → γγ amplitude in the unitary
gauge is ambiguous without introduction of a physics input beyond gauge invariance.
As we have demonstrated, this physics, which uniquely defines the amplitude, may
arise from the Goldstone Boson Equivalence Theorem (GBET). This effectively proves
that GBET comprises an additional important pillar of the Standard Model dynamics.



Chapter 5

Conclusions and future directions

Theories beyond the SM are worthy of study since they provide possible answers to
questions that in the SM framework remain open. In this thesis we deal with topics
related to some of these questions such as the searches about the nature of dark matter,
the mechanism of mass generation, the identification of the discovered boson with the
Higgs boson.

We used Quantum Field Theory tools throughout our work and developed a new
method to handle different kind of divergences that appear during the calculations. In
the basis of this method we showed a preference in performing the calculations in the
physical choice of four dimensions and in the framework of the physical gauge (unitary
gauge). We deliberately choose this gauge, although such a choice leads to difficulties
coming from the high degree of divergences associated with it. We successfully applied
this method in two difference cases: the evaluation of chiral anomalies and their role
to heavy fermion non-decoupling effects and the clarification of some issues in the
decay of Higgs boson to two photons in the SM. In the last case, to the best of our
knowledge, the use of this method constitutes a novel element. The encouraging fact
is that we were able to verify well known results in the literature and received support
from another recently proposed method (FDR) that also operates in the same four-
dimensional basis. An other fact is that our method is applicable in any other gauge.
The only negative fact so far, is the absence of calculational flexibility, since one has
to handle a considerable amount of calculations. However this can be bypassed by
developing an appropriate computational program.

Our work constitutes a triptych with common element the use of QFT tools and
the treatment of interesting topics of modern physics.

First, we presented a scenario where dark matter particles can decay into SM leptons
through a light mediator. In this case we studied conventional dark matter searches, but
a more detailed analysis has been performed for the case of unconventional dark matter
searches, where low energy electrons are detected in the final state. We developed the
theoretical framework where different models about this process, are presented. We
show that the dark sector “communicates” with the SM one through interactions with
an X-boson which couples to the SM gauge sector. This X boson could be massless
or massive, depending on the model. We have also presented a detailed study of time

101
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modulation effects and have considered that the dark matter particle can be a Dirac
or Majorana fermion. In the second case the cross section for annihilation to fermions
is suppressed by a factor of β2 ≈ 10−6 compared with the corresponding cross section
for the Dirac case. Studying the low energy electron recoil, we have considered only
hydrogen-like atoms. However, we have found the cross section as a function of binding
energy. This fact manifests indirectly how the cross section depends on the choice
of the target material. For accurate results one should consider the real electronic
wave-functions in the target’s atoms. There was a proposal for the development of
an experimental device with promising abilities in the dark matter non-conventional
searches. Subsequently, astrophysical results which showed an excess in γ-ray emission
in our galaxy, motivated us to study dark matter scattering processes where one or two
photons were included in the final case.

Especially we were concerned about fermionic loop induced triple interactions of this
type. This, naturally led us to generalize this special case and study the most general
one loop triple gauge boson vertex. A complete one particle irreducible vertex for
three off-shell gauge bosons is a useful tool in analyzing low energy inelastic scattering
processes. We constructed the most general Lorentz invariant triple gauge boson vertex
containing one fermionic loop. During this construction we encountered the case of
linearly divergent integrals. In order to handle this problem we introduced arbitrary,
constant four-vectors and performed the entire calculation in four dimensions. We chose
this method instead of dimensional regularization in order to avoid any difficulty with
the γ5 anti-commutativity in the case of more than four dimensions. To determine
the complete form of triple gauge boson vertex, we used Ward Identities and Bose
symmetry and showed that the final result is not divergent, but ambiguous. This fact
is directly connected with the chiral anomalies. The anomalous term is responsible for
the anomaly that characterizes the vertex. In an anomalous free model this term does
not exist and no ambiguity appears. In this basis we examined what happens in the
case that the virtual fermions circulated in the loop become very heavy. In this case
the anomalous term plays a crucial role in rendering the whole theory self-consistent.
The reason is that, by integrating out the heavy fermions from an anomalous free
theory, there is a surviving term. This term exactly cancels the anomalous term that
appears in the low energy theory after integrating out the heavy particles. These
heavy fermions non-decoupling effect renders the low energy theory anomalous free.
A next step was the presentation of different applications of the triple gauge boson
vertex in the SM and some of its extensions. We constructed several anomalous free
toy models with two or three different external gauge bosons and a number of fermions
and also considered models with a fourth fermion generation and extra bosons (Z’-boson
models).In principle, these models can be used as a basis towards realistic extensions
of the SM.

Subsequently we used the method of arbitrary four-vectors to clarify some issues
about H → 2γ decay in the SM. We performed the calculation of the matrix element
for this processes, in exactly four-dimensions and in the unitary gauge. The choice of
the unitary gauge renders the amplitude highly divergent, due to the form of W boson
propagator. The arbitrary vectors play a crucial role in reducing these divergencies to
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logarithmic one. However the final result is ambiguous. In order to unambiguously
determine the result we used physics arguments, gauge invariance and the Goldstone
Boson Equivalence Theorem. As an alternative choice we checked our calculation using
the FDR method, a four-dimensional regularization scheme introduced to maintain the
Ward Identities in the intermediate steps of calculations. In both cases we verified the
well-known result in the literature for this process.

Certainly there are different extensions of this work. In the case of dark matter
searches through electron recoil one can make use of the realistic wave functions instead
of plane waves, to calculate the relevant cross section and event rates. An other direc-
tion is the study of the process χ+H → (χ+H) (bound state), where in the final state
the WIMP particle χ forms a bound state with the hydrogen atom. Furthermore the
dark matter scattering process involving a photon in the final state, is an interesting
example of using the results from our analysis on triple gauge boson vertices.

Our study of triple gauge boson vertices opens a wide field of interesting applications
with perspectives in extensions of SM. We can mention the (p, p) annihilation in W -
bosons, the examination of decoupling or non-decoupling effects of heavy fermions
in anomalous models by construction. In our work we studied several anomalous
free models and revealed the synergy between chiral anomalies and non decoupling
phenomena. The next step is to further extent this analysis in order to include chiral
anomalous models and investigate if an analogous synergy takes place.

From the technical point of view, we are interested in applying the method of four-
dimensional calculations using arbitrary vectors to other observables except from triple
vertices that contain internal or external gauge bosons. Possible candidates are FCNC
(Flavour Changing Neutral Currents) phenomena (in this kind of phenomena we are
working currently), such as top quark decays of the form t→ c h, t→ c Z, t→ c γ,
the anomalous muon magnetic moment etc. A big challenge constitutes the proof
of renormalizability of a theory in the unitary gauge by using our four-dimensional
approach. As we know, there is not so far a rigorous proof of renormalizability of a
theory working in the unitary gauge from the beginning. The usual approach is to
prove the renormalizability in the general Rξ gauge and then to take the appropriate
limits in order to obtain the desired property in the unitary gauge. It is evident that the
calculational effort will be incomparable with that we strained in the case of one loop
calculations. This manifests the necessity of developing and properly incorporating our
method in the framework of a suitable computing program.
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Appendix A

Since we have repetitively used some basic mathematical concepts in our calculations,
we present in this first Appendix a short, representative collection of them. First of
all some issues of basic Dirac algebra are presented, focusing on some properties of
γ-matrices, especially on anticommutation relations and relations that traces of a set
of γ-matrices obey. These have been used extensively in Chapters 2 and 3 during
calculations of cross sections and triangular anomalies respectively. The notation used
here, follows [34]. In momentum space the Dirac equation has the following form:

/pus(p) = mus(p), (A.1)

where us(p) represents a spinor with spin s, momentum p and mass m, and /p ≡ γµpµ.
The γµ is a four-dimensional matrix which satisfies the following anticommutation
relation {γµ, γν} = 2 gµν , where gµν = gµν ≡ diag[1,−1,−1,−1] is the metric tensor
and µ, ν = (0, 1, 2, 3). In a chiral basis these matrices have the form:

γµ =

(
0 σµ

σµ 0

)
, (A.2)

where σµ = (I, ~σ) and σµ = (I,−~σ). Here I represents the 2 × 2 unit matrix and
~σ = (σ1, σ2, σ3), where σ1, σ2 and σ3 are the Pauli matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.3)

We introduce the chirality matrix γ5 as follows:

γ5 = iγ0γ1γ2γ3 = − 1

4!
εµνρσγµγνγργσ =

(
−I 0
0 I

)
. (A.4)

Some useful properties that γ-matrices obey only in four dimensions are:

γµγµ = 4I4, γ
µγνγµ = −2γν , γµγνγργµ = 4gνρ,

γµγνγργσγµ = −2γσγργν , γ0(γµ)†γ0 = γµ, (γ0)2 = I4, (γ
0)† = γ0,

{γ5, γν} = 0, (γ5)2 = I4, (γ5)† = γ5. (A.5)

Traces of γ matrices satisfy the following relations:

Tr[I4] = 4, T r[γµγν ] = 4gµν , T r[γµγνγργσ] = 4(gµνgρσ − gµρgνσ + gµσgνρ),

T r[γ5] = 0, T r[γµγνγ5] = 0, T r[γµγνγργσγ5] = −4iεµνρσ,

T r[γµ1γµ2γµ3 ....] = Tr[.....γµ3γµ2γµ1 ],

T r[γµ1γµ2γµ3 .....γµn ] = 0 = Tr[γµ1γµ2γµ3 .....γµnγ5] (A.6)

when n is an odd number.
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Using the definition and properties of γ5 matrix we can define two projection op-
erators useful in chiral representation of fermionic fields:

ΨL ≡ PLΨ, ΨR ≡ PRΨ, (A.7)

where Ψ represents a four-component Dirac spinor and

PL ≡
I4 − γ5

2
=

(
I 0
0 0

)
, PR ≡

I4 + γ5

2
=

(
0 0
0 I

)
. (A.8)

Since (γ5)2 = I4 the following relations are obvious:

PLPL = PL, PRPR = PR, PLPR = PRPL = 0. (A.9)

Secondly we append here some useful expressions about dimensional regulariza-
tion. In order to deal with calculations of Feynman diagrams that contain loops, one
introduces the Feynman parameters technique. The following decomposition of a com-
bination of propagator denominators usually appears :

1

A1A2...An
=

∫ 1

0

dx1...dxn δ(
n∑
i=1

xi − 1)
(n− 1)!

[x1A1 + x2A2 + ...+ xnAn]n
, (A.10)

where A1, A2, ...An are functions of the integration variable (loop momentum) and
x1, x2, ...xn are real numbers 0 < xi < 1 and x1 + x2 + .... + xn = 1, called Feynman
parameters. In order to proceed, we complete the square in the denominator, shifting
at the same time the integration variable p to absorb linear terms resulting to a shifted
integration variable `. Subsequently the denominator is simplified taking the form
(`2 − ∆)n, where ∆ is a scalar function of internal loop masses and inner products
of external momenta. The numerator is transformed in a function of even powers of
`, since all terms that contain odd powers of the integration variable ` vanish after
symmetric integration. According to dimensional regularization we proceed from four
to d dimensions and then we calculate d-dimensional loop integrals. Since we have
completed the d-dimensional calculation, taking the limit d→ 4 we obtain the physical
result. A representative collection of some d-dimensional integrals in Minkowski space
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is the following:∫
dd`

(2π)4

1

(`2 −∆)n
=

(−1)n i

(4π)d/2
Γ(n− d

2
)

Γ(n)

( 1

∆

)n− d
2

(A.11)

∫
dd`

(2π)4

`2

(`2 −∆)n
=

(−1)n−1 i

(4π)d/2
d

2

Γ(n− d
2
− 1)

Γ(n)

( 1

∆

)n− d
2
−1

(A.12)

∫
dd`

(2π)4

`µ`ν

(`2 −∆)n
=

(−1)n−1 i

(4π)d/2
gµν

2

Γ(n− d
2
− 1)

Γ(n)

( 1

∆

)n− d
2
−1

(A.13)

∫
dd`

(2π)4

(`2)2

(`2 −∆)n
=

(−1)n i

(4π)d/2
d(d+ 2)

4

Γ(n− d
2
− 2)

Γ(n)

( 1

∆

)n− d
2
−2

(A.14)

∫
dd`

(2π)4

`µ`ν`ρ`σ

(`2 −∆)n
=

(−1)n i

(4π)d/2
Γ(n− d

2
− 2)

Γ(n)

( 1

∆

)n− d
2
−2

×

× 1

4
(gµνgρσ + gµρgνσ + gµσgνρ), (A.15)

where Γ(x) =
∫∞

0
tx−1e−tdt is the Euler Gamma function. This integral function is

everywhere analytic except at non-positive integers where it has simple poles. For
positive integers n it is Γ(n) = (n− 1)! and near its poles x = −n it has the following
expansion:

Γ(x) =
(−1)n

n!

( 1

x+ n
− γ + 1 + ...+

1

n
+O(x+ n)

)
, (A.16)

where γ ≈ 0.5772 is the Euler-Mascheroni constant. Often, as one takes the limit
d→ 4, the following expression appears:

Γ(2− d
2
)

(4π)d/2

( 1

∆

)2− d
2

=
1

(4π)2

(2

ε
− log ∆− γ + log(4π) +O(ε)

)
, (A.17)

where ε = 4 − d. To obtain eq. (A.17) we have used eq. (A.16) and the following
expansion: ( 1

∆

)2− d
2

= 1− (2− d

2
) log ∆ + ..., (A.18)

when d → 4. In the expression eq. (A.17) the pole is clearly isolated. This isolation
is useful in order to guaranty infinity cancellations when different Feynman diagrams
are combined together.



108 CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS

Appendix B

In this Appendix we will clarify some computational issues related to expressions ap-
pearing in Chapter[2]. In order to find the Feynman propagator in eq. (2.3) we recall
the definition of the action S =

∫
d4xL , where L the Lagrangian eq. (2.2) . First of

all in eq. (2.2) we assume that the field Φµ(x) has the following expansion as a Fourier

integral, Φµ(x) =
∫

d4p
(2π)4 Φ̃µ(p) ei p·x, where Φ̃µ(p) is the Fourier transform of Φµ(x).

Then ∂αΦµ(x) =
∫

d4p
(2π)4 Φ̃µ(p) (i pα) ei p·x. Considering that the field strength tensor is

Φµν ≡ ∂µΦν − ∂νΦµ, and using the first three terms of eq. (2.2), the action takes the
following form:

S ∼
∫
d4x

[
− 1

4
(∂µΦ

T
ν − ∂νΦT

µ )K (∂µΦν − ∂νΦµ) +
1

2
ΦT
µM2 Φµ − 1

2
∂µΦT

µ Ξ ∂νΦν

]
=

=

∫
d4x

[
− 1

4

(
∂µΦν

T K ∂µΦν − ∂µΦν
T K ∂νΦµ − ∂νΦµ

T K ∂µΦν + ∂νΦµ
T K ∂νΦµ

)
+

+
1

2
ΦT
µM2 Φµ − 1

2
∂µΦT

µ Ξ ∂νΦν

]
. (B.1)

Using integration by parts one obtains:

S ∼ −1

4

(∮
S
d3xµΦ

T
ν K ∂µΦν −

∫
d4xΦT

ν K ∂µ ∂µΦν −
∮
S
d3xµΦ

T
ν K ∂νΦµ +

+

∫
d4xΦT

ν K ∂µ ∂νΦµ −
∮
S
d3xνΦ

T
µ K ∂µΦν +

∫
d4xΦT

µ K ∂ν ∂µΦν +

+

∮
S
d3xνΦ

T
µ K ∂νΦµ −

∫
d4xΦT

µ K ∂ν ∂νΦµ

)
+

1

2

∫
d4xΦT

µM2 Φµ −

−1

2

(∮
S
d3xµ ΦT

µ Ξ ∂νΦν −
∫
d4xΦT

µ Ξ ∂µ ∂νΦν

)
,

(B.2)

where
∮
S is the surface integral over a 3-dimensional sphere S with infinite radius.

Considering that the fields Φµ(x) vanish at infinity, all the surface integrals vanish and
the action reads:

S ∼ 1

2

∫
d4x

[
ΦT
µ K ∂ν ∂νΦµ −ΦT

µ K ∂ν ∂µΦν + ΦT
µM2 Φµ + ΦT

µ Ξ ∂µ ∂νΦν

]
=

1

2

∫
d4xΦT

µ

[
gαβgµν K ∂α ∂β − gναgµβK ∂α ∂β + gµνM2 + gµα gνβ Ξ ∂α ∂β

]
Φν

=
1

2

∫
d4x

∫
d4p

(2π)4

∫
d4p′

(2π)4
Φ̃T
µ (p) ei p·x

[
gαβgµν K ∂α ∂β − gναgµβK ∂α ∂β +

+ gµνM2 + gµα gνβ Ξ ∂α ∂β

]
Φ̃ν(p′) ei p

′·x

=
1

2

∫
d4x

∫
d4p

(2π)4

∫
d4p′

(2π)4
Φ̃T
µ (p) ei p·x

[
gαβgµν K (−p′α p′β)− gναgµβK (−p′α p′β) +

+ gµνM2 + gµα gνβ Ξ (−p′α p′β)

]
Φ̃ν(p′) ei p

′·x. (B.3)



APPENDIX B. 109

Performing the integration over x and using the well-known integral representation of
the Dirac δ(4)-functional

∫
d4x

(2π)4 e
i x·(p+p′) = δ(4)(p+ p′), one finds:

S ∼ 1

2

∫
d4p

(2π)4

∫
d4p′ Φ̃T

µ (p)

[
gαβgµν K (−p′α p′β)− gναgµβK (−p′α p′β) +

+ gµνM2 + gµα gνβ Ξ (−p′α p′β)

]
Φ̃ν(p

′) δ4(p+ p′) =

= −1

2

∫
d4p

(2π)4
Φ̃T
µ (p)

[
gµν K p2 − K pµ pν − gµνM2 + Ξ pµ pν

]
Φ̃ν(−p)

= −1

2

∫
d4p

(2π)4
Φ̃T
µ (p)

[
(K p2 −M2)(gµν − pµ pν

p2
) + (Ξ p2 −M2)

pµ pν

p2

]
Φ̃ν(−p),

(B.4)

where in the third line the integration of δ(4)-function over p′ has set p′ → −p. If we
define

∆µν (p) ≡ −(K p2 −M2)(gµν − pµ pν

p2
)− (Ξ p2 −M2)

pµ pν

p2
, (B.5)

then the Feynman propagator D̃µν(p) is required to satisfy the following equation in
momentum space:

∆µν(p) D̃µα(p) = i gνα (B.6)

Decomposing the propagator into transverse and longitudinal part as follows, i D̃µν(p) =

(gµν − pµ pν
p2 )D̃T + pµpν

p2 D̃L, we can easily conclude that D̃T = (K p2 − M2)−1 and

D̃L = (Ξ p2−M2)−1, verifying eq. (2.3). Applying eq. (2.3) in different models we can
find in each case the corresponding form of the propagator.
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Appendix C

In Model I (Non-standard kinetic mixing), using the matrices eq. (2.5) and expanding

the i D̃µν(p) in powers of ε up to ε2 terms we easily find the expressions eq. (2.6)-
eq. (2.11).
In Model II (Non-standard mass mixing), by working in Feynman gauge (Ξ = 13×3),
assuming a trivial form for K and using eq. (2.13) for M2 we find for the propagator:

i D̃µν(p) = gµν

 p2 − 1
4
g2
Y v

2 −m2
Y −mY mX

1
4
gY g v

2

−mY mX p2 −m2
X 0

1
4
gY g v

2 0 p2 − 1
4
g2v2

−1

. (C.1)

Using eq. (2.4) for the effective action, by taking into account that
Jµ(p) ≡ (gY JY (p), gXJX(p), gJA3(p))µ, and considering the expression above for the

propagator i D̃µν(p), we find up to order O(m2
Y ):

S[J ] =
1

2

∫
d4p

(2π)4

{
g2
XJX(p) · JX(−p)

p2 −m2
X

+
g2
Y JY (p) · JY (−p)

p2 −m2
Z

+
g2 JA3(p) · JA3(−p)

p2 −m2
Z

−

−
g2 g2

Y v
2

4 p2 (p2 −m2
Z)

(
JY (p) + JA3(p)

)
·
(
JY (−p) + JA3(−p)

)
+

+
gX gY mX mY

p2 (p2 −m2
X)(p2 −m2

Z)

[
p2

(
JX(p) · JY (−p) + JX(−p) · JY (p)

)
−

− 1

4
g2v2

(
(JA3(p) + JY (p)) · JX(−p) + (JA3(−p) + JY (−p)) · JX(p)

)]}
,

(C.3)

where m2
Z = 1

4
v2(g2

Y + g2) + O(m2
Y ). Changing the integration variable p → −p, the

terms in the second line and terms in the squared bracket in the expression above are
being doubled and the expression for S[J ] is simplifying further:

S[J ] =
1

2

∫
d4p

(2π)4

{
g2
XJX(p) · JX(−p)

p2 −m2
X

+
g2
Y JY (p) · JY (−p)

p2 −m2
Z

+
g2 JA3(p) · JA3(−p)

p2 −m2
Z

−

− g2 g2
Y v

2

4 p2 (p2 −m2
Z)

(
JY (p) + JA3(p)

)
·
(
JY (−p) + JA3(−p)

)
+

+
2 gX gY mX mY

p2 (p2 −m2
X)(p2 −m2

Z)

[
− 1

4
g2v2

(
(JA3(p) + JY (p)

)
· JX(−p) +

+ p2 JX(p) · JY (−p)
]}

.

(C.5)
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As a next step we can analyze the expressions 1
p2 (p2−m2

X)(p2−m2
Z)

and 1
p2(p2−m2

Z)
in partial

fractions as follows:

1

p2 (p2 −m2
X)(p2 −m2

Z)
=

1

m2
X m

2
Z

1

p2
+

1

m2
X (m2

X −m2
Z)

(
1

p2 −m2
X

)
−

− 1

m2
Z (m2

X −m2
Z)

(
1

p2 −m2
Z

)
, (C.6a)

1

p2(p2 −m2
Z)

=
1

m2
Z

(
1

p2 −m2
Z

− 1

p2

)
.

(C.6c)

Using the fact that JY (p)+JA3(p) = Jem(p) for the electromagnetic current, and making
use of eqs. (C.6a) and (C.6b),

S[J ] =
1

2

∫
d4p

(2π)4

{
1

p2

[
− gX gY mY g

2v2

2mX m2
Z

Jem(p) · JX(−p) +
g2
Y g

2v2

4m2
Z

Jem(p) · Jem(−p)
]

+

+
1

p2 −m2
X

[
g2
XJX(p) · JX(−p) +

2 gX gY mY

mX (m2
X −m2

Z)
p2 JX(p) · JY (−p)

− gX gY mY g
2v2

2mX (m2
X −m2

Z)
Jem(p) · JX(−p)

]
+

+
1

p2 −m2
Z

[
−2 gX gY mX mY

m2
Z (m2

X −m2
Z)

p2 JX(p) · JY (−p) +
gX gY mX mY g

2 v2

2m2
Z (m2

X −m2
Z)

Jem(p) · JX(−p) +

+g2
Y JY (p) · JY (−p) + g2 JA3(p) · JA3(−p)−

g2 g2
Y v

2

4m2
Z

Jem(p) · Jem(−p)
]

+
2 gX gYmY

mX m2
Z

JX(p) · JY (−p)
}
.

(C.7)

In what follows we can write the expression above as a function of the electric charge,
considering that e = g gY√

g2+g2
Y

and absorb the vacuum expectation value using the

relation m2
Z = 1

4
v2(g2

Y + g2) + O(m2
Y ).

As a result we obtain:

S[J ] =
1

2

∫
d4p

(2π)4

{
1

p2

[
− 2 e2 gX mY

gY mX
Jem(p) · JX(−p) + e2 Jem(p) · Jem(−p)

]
+

+
1

p2 −m2
X

(
m2
Z

m2
Z −m2

X

)[
g2
XJX(p) · JX(−p)

(
1−

m2
X

m2
Z

)
− 2 gX gY mX mY

m2
Z

JX(p) · JY (−p) +

+
2 e2 gX mY

gY mX
Jem(p) · JX(−p)

]
+

+
1

p2 −m2
Z

(
m2
Z

m2
Z −m2

X

)[
g2 JZ(p) · JZ(−p)

(
1−

m2
X

m2
Z

)
+

2 gX gY mX mY

m2
Z

JX(p) · JY (−p)−

−2 e2 gX mX mY

gY m2
Z

Jem(p) · JX(−p)
]}
,

(C.8)
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where JµZ = 1
cos θW

(
JµA3
−sin2 θW Jµem

)
and the following relation among different currents

g2
Y JY (p) · JY (−p) + g2 JA3(p) · JA3(−p)− g2 g2

Y v
2

4m2
Z

Jem(p) · Jem(−p) = g2 JZ(p) · JZ(−p),

(C.9)

has been used.
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Appendix D

In this appendix we will show analytically how to obtain eq. (2.62) in the subsection
“Event rates” in Chapter 2. Using eq. (2.53) for the WIMP’s velocity distribution,

f`(β) =

(
3

2 < β2 >

)3/2
1

π3/2
e
− 3β2

2<β2> , (D.1)

we can calculate the velocity’s mean value in the unmodulated case:(
βf`(β)d3β√
< β2 >

)
0

→
∫
dΩ

β3f`(β)dβ√
< β2 >

=

(
2

3 < β2 >

)3/2
2π

π3/2

β3dβ√
< β2 >

e
−(1+ 3β2

2
√
<β2>

) ×

×
∫ π

0

sin θ dθ exp
(
− (2β

√
3

2 < β2 >
cos θ

)
, (D.2)

where dΩ is the infinitesimal solid angle in spherical coordinates and a factor of 2π has
been included in the expression above due to integration over the azimuthal angle φ.
Changing of integration variable cos θ → ξ we find:(
βf`(β)d3β√
< β2 >

)
0

→
(

3

2 < β2 >

)3/2
2√
π

β3dβ√
< β2 >

e
−(1+ 3β2

2
√
<β2>

)
∫ 1

−1

dξ e
−(2β

√
3

2<β2>
ξ)

=

=

(
3

2 < β2 >

)3/2
2√
π

β3√
< β2 >

e
−
(

1+ 3β2

2
√
<β2>

) sinh

(
2β
√

3
2<β2>

)
β
√

3
2<β2>

dβ,

(D.3)

verifying eq. (2.56).

In the case of time modulation effects, we consider the annual dependence of decay
rate and assume the following expression for the WIMP velocity:

v′ = v + v0 ẑ + v1 (sinα x̂ + cosα cos γ ŷ + cosα sin γ ẑ) , (D.4)

where v is the WIMP’s velocity in the local system, v0 → β0 =
√

2<β2>
3

is the sun’s

velocity, v1 is the Earth’s velocity relative to the solar system, γ ' π/6 is the slope of
the ecliptic and α is the time dependent angle that is the complementary angle of the
angle between v1 and x̂ (see Fig. 2.6). Analyzing the vector v = v n̂, where n̂ the unit
vector in the direction of v, in spherical coordinates we find:

v′ = (v sin θ cosφ+ v1 sinα)x̂ + (v sin θ sinφ+ v1 cosα cos γ)ŷ +

+(v cos θ + v0 + v1 cosα sin γ)ẑ. (D.5)

Squaring the expression above one obtains:

v′
2

= v2 + v0
2 + v1

2 + 2 v v1 sin θ cosφ sinα + 2 v v1 sin θ sinφ cosα cos γ +

+2 v v0 cos θ + 2 v v1 cos θ cosα sin γ + 2 v0 v1 cosα sin γ. (D.6)
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Dividing by v2
0 the expression above and using the abbreviations v

v0
= β

β0
≡ y and

v1

v0
= v1

β0
≡ δ we obtain the following expression relevant to convoluted decay rate:

β f`(β)d3β√
< β2 >

→ 1√
< β2 >

(
3

2 < β2 >

)3/2
β3dβ

π3/2

∫
dΩ e

−β
′2

β2
0 =

=

(
3

2(< β2 >)4/3

)3/2
β3dβ

π3/2

∫ 2π

0

dφ exp
(
− 2 y δ sin θ cosφ sinα−

−2 y δ sin θ sinφ cosα cos γ
)
×

×
∫ π

0

sin θ dθ exp
(
− (1 + y2 + δ2 + 2y cos θ + 2yδ cos θ cosα sin γ + 2δ cosα sin γ)

)
.

(D.7)

We can expand the integrand in the first line around δ, which we take too small, and
considering only terms of first power in this expansion we get:∫ 2π

0

dφ exp
(
− (2yδ sin θ cosφ sinα + 2yδ sin θ sinφ cosα cos γ

)
≈

≈
∫ 2π

0

dφ
(
1− 2 y δ sin θ cosφ sinα− 2 y δ sin θ sinφ cosα cos γ

)
= 2π, (D.8)

since terms that contain cosφ and sinφ vanish after the φ-integration.

For the θ-integration we use cos θ = ξ and neglecting δ2-terms we obtain:∫ π

0

sin θ dθ exp
(
− (1 + y2 + 2 y cos θ + 2 δ cos θ cosα sin γ + 2 δ cosα sin γ)

)
=

= e−(1+y2)

∫ 1

−1

dξ exp
(
− (2 y ξ + 2δ cosα sin γ(1 + y ξ)

)
≈

≈ e−(1+y2)

∫ 1

−1

dξ exp
(
− (2 y ξ)

)
[1− 2δ cosα sin γ(1 + y ξ)] =

= e−(1+y2)

[
sinh(2y)

y
− 2 δ cosα sin γ

(
1− y

2

d

dy

) ∫ 1

−1

dξ exp(−2yξ)

]
=

= e−(1+y2)

[
sinh(2y)

y
− 2 δ cosα sin γ

(
1− y

2

d

dy

)sinh(2y)

y

]
=

= e−(1+y2)

[
sinh(2y)

y
− 2 δ cosα sin γ

(3 sinh(2y)

2y
− cosh (2y)

)]
= e−(1+y2) sinh(2y)

y

[
1 + k δ cosα

]
, (D.9)

where

k =

[
2y

cosh(2 y)

sinh (2y)
− 3

]
sin γ =

[
2β

√
3

2 < β2 >

cosh(2β
√

3
2<β2>

)

sinh (2 β
√

3
2<β2>

)
− 3

]
sin γ.
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(D.10)

Finally, taking into account the values of φ and θ-integrals, the expression eq. (D.7)
for the mean value of WIMP’s velocity relevant to time modulated effects, takes the
following form:

β f`(β)d3β√
< β2 >

→ 1√
< β2 >

(
3

2 < β2 >

)3/2
β3dβ

π3/2
2π e−(1+y2) sinh(2y)

y

[
1 + k δ cosα

]
=

=

(
3

2 < β2 >

)3/2
β2dβ√
< β2 >

2√
π
e
−(1+ 3β2

2<β2>
)

sinh

(
2 β
√

3
2<β2>

)
√

3
2<β2>

[
1 + k δ cosα

]
=

=

(
β f`(β)d3β√
< β2 >

)
0

[
1 + k δ cosα

]
, (D.11)

where

(
β f`(β)d3β√

<β2>

)
0

has been calculated in eq. (D.3) and is related to unmodulated

effects.
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Appendix E

This Appendix is based on [83]. The problem is to find the WIMP - electron bounded in
an atom, cross section. In order to proceed we shall make two simplified assumptions:

1. A hydrogen-like atom (H) is assumed i.e., a nucleus with charge +Ze and a single
bounded electron with charge −e.

2. The WIMP couples only to leptons and not to quarks. This is a sufficient condi-
tion to explain PAMELA/ATIC electron - positron excess events and it renders
the following analysis fairly simple.

Furthermore, since the WIMP velocity, β ≈ 10−3 is small, we will frame the whole
problem using non-relativistic quantum theory terms.

Although there are the following four processes that could take place in WIMP +
H-like atom collisions:

χ + H −→ χ + H (elastic) , (E.1)

χ + H −→ χ + H∗ (inelastic) , (E.2)

χ + H −→ χ + e− + H+ (production) , (E.3)

χ + H −→ (χ + H) (bound state) . (E.4)

we shall consider only the situation (E.3) where the electron emerges with high mo-
menta such that in the final state, |p′e〉, its interaction with the Coulomb potential in
H-like atom is negligible, i.e, we can use plane wave states for incoming and outgoing
particles. The Hamiltonian of the system under consideration is :

Ĥ(rχ, re) =
P̂2(rχ)

2mχ

+
P̂2(re)

2me

+ VCoul.(|re|) + V (|rχ − re|)

= K̂(rχ) + Ĥ0(re) + V (|rχ − re|) , (E.5)

where we set the nucleus sitting at the origin of axes which is taken to be the lab
frame with rχ and re pointing towards the positions of the WIMP χ, and electron e,

respectively. K̂(rχ) is the kinetic energy operator for χ particle with plane wave states

〈rχ|pχ〉 =
1√
Ω
eipχ·rχ , (E.6)

with Ω being a finite cubic volume and our wave function in eq. (E.6) obeys periodic

boundary conditions on Ω. In addition, Ĥ0(re), is the unperturbed Hamiltonian of the
hydrogen like atoms. Obviously, we shall treat the potential V (|rχ − re|) as perturba-
tion in finding transitions between the initial state |α〉 into final state |β〉. What are
these states ?
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The initial state |α〉 consists of a plane wave for χ and a bound electron state
spectrum |n`m`〉 with total energy Eα being :

Initial State : |α〉 = |pχ〉 |n`m`〉 , Eα =
~2p2

χ

2mχ

+ En(Z) , (E.7)

where |En(Z)| is the binding energy of the hydrogen like atom i.e., |E1(Z = 1)| = 13.6
eV. Moreover, the final state consists of two continuum states, a χ-plane wave and an
electron plane wave and together with its energy reads :

Final State : |β〉 = |p′χ〉 |p′e〉 , Eβ =
~2p

′2
χ

2mχ

+
~2p

′2
e

2me

, (E.8)

where we assume implicitly that the nucleus has zero kinetic energy before and after
the collision [recall assumption 2 above]. Obviously in eqs. (E.5), (E.7) and (E.8), we
have neglected all angular momentum interactions in order to keep the discussion as
simple as possible.

In order to calculate the transition probability for |α〉 → |β〉 we need first to
calculate the matrix element 〈β|V (|rχ − re|)|α〉 and then essentially to square it. We
find:

〈β|V (|rχ − re|)|α〉 =

(
2π

Ω

)3/2

Ṽ (q) φn`m`(q− p′e) , (E.9)

where

Ṽ (q) =

∫
Ω

d3r eiq·r V (|r|) , (E.10)

with r ≡ rχ − re and

φn`m`(q− p′e) =

(
1

2π

)3/2 ∫
d3re e

i(q−p′e)·re ψn`m`(re) , (E.11)

is the momentum space wave function Fourier transform of the coordinate wave func-
tion ψn`m`(re) of the H-like atoms. In deriving eq. (E.9) we used the locality of the
potential energy V (r).

To finally write down Fermi’s Golden rule we also need the density of final states
which is given by

ρf (Eβ) =
1

dEβ

N∏
i=1

Ω

(2π~)3
d3pβi , Eβ =

N∑
i=1

Eβi . (E.12)

Then eq. (E.12) results in

ρf (Eβ) =
Ω2

dEβ

d3p′χ d
3p′e

(2π)6
, (E.13)
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where in our case Eβ is given by eq. (E.8). Which variables to use here depends on the
experimental arrangement. Let’s say an experimenter can measure the energy deposit
of the ejected electron, E ′e. Then for fixed E ′e and eq. (E.8) we obtain dEβ = dE ′χ and
thus

ρf (Eβ) =
Ω2

(2π)6

(
mχ|p′χ|

~2
dΩ′χ

) (
me|p′e|
~2

dΩ′e dE
′
e

)
. (E.14)

The differential cross section is then obtained by dividing the transition probability
amplitude (first order in perturbation theory),

w
(1)
βα =

2π

~
ρf (Eβ) |〈β|V |α〉|2 , (E.15)

by the flux of the incoming particle, vχ/Ω. Putting this together with eqs.(E.14,E.15),
and (E.9) we arrive at

dσ

dE ′e
=

(
mχ

2π~2

)2 |p′χ|
|pχ|

(
me|p′e|
~2

)
|Ṽ (q)|2 |φn`m`(q− p′e)|2 dΩ′χ dΩ′e . (E.16)

This can be written in a more transparent form as

dσ = σ(q)
|p′χ|
|pχ|

dΩ′χ |φn`m`(pχ − p′χ − p′e)|2 d3p′e , (E.17)

where σ(q) is the Born approximation for the cross section arising from just the scat-
tering between WIMP and electron particles. Apart from this, eq. (E.17) contains
the probability density of finding a bounded electron in H-like atom with momentum
pe = pχ − p′χ − p′e, i.e., an electron that obeys the momentum conservation. These

two terms come as not a surprise. What is a bit surprising is the ratio
|p′χ|
|pχ| =

|v′χ|
|vχ|

which is like a Sommerfeld enhancement term. This term comes around because we
have treated WIMP scattering off a brick wall (the H-atom). Note also that |p′χ| must
be taken from energy conservation Eα = Eβ in Eqs. (E.7) and (E.8).

Now we should compare eq. (E.17) with eqs. (2.45), (2.46) and (2.48). In eq. (2.48)
we must follow three steps :

1. Use the δ-function of momenta to make a trivial integration on pe.

2. Do not add an extra initial kinetic energy Te in δ-function for energies.

3. Write out eq. (2.46) in terms of the matrix element square to obtain eq. (2.48)
and see if it agrees with eq. (E.17).

This should resolve the problem of finding the differential cross section and making the
various phase space integrations.

Lets suppose we consider a Yukawa potential of the form1

V (r) = − g
2

4π

e−mXr

r
, (E.18)

1From now on we are working on in the units system where ~ = c = 1.
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where mX is the mass of the U(1)-mediator we consider. By Fourier transforming this
we obtain:

Ṽ (q) = − g2

q2 +m2
X

. (E.19)

Replacing this in eq. (E.16) and let g4 → 16π2α′αDM and taking the limit q2 � m2
X ,

we get

dσ

dE ′e
=

16π2α′αDM

m4
X

m2
χ

|p′χ|
|pχ|

me|p′e| |φn`m`(pχ − p′χ − p′e)|2 dξ dη , (E.20)

where the scattering angles are given by the following expressions:

p̂χ · p̂′χ = ξ , p̂χ · p̂′e = η , ξ, η ∈ [−1, 1] . (E.21)

In this case we find that:

|pχ − p′χ − p′e)|2 = p2
χ + p

′2
χ + p

′2
e − 2pχp

′
χξ − 2pχp

′
eη +

+ 2p′χp
′
e [ξη −

√
1− ξ2

√
1− η2 cos(φχ′ − φe′)], (E.22)

where φχ′ and φe′ are the azimuthal angles of vectors p̂′χ and p̂′e respectively. The
azimuthal angles are equal i.e., φχ′ = φe′ , however, because of the three vector momen-
tum conservation the vectors pe,pχ,p

′
χ are linearly dependent and therefore belong to

the same plane.

Momenta and energy conservation of eqs. (E.7) and (E.8) result in

|p′χ| =

√
p2
χ − 2mχ b(Z) − mχ

me

p′2e , with p′e =
√

2meE ′e , (E.23)

where b(Z) is the binding energy for hydrogenic atoms

b(Z) =
Z2

2a

e2

4π
=

Z2

2
me α

2
em , a ' 1

me αem

, (E.24)

with αem = e2

4π
≈ 1/137 and me ' 0.5 MeV. Furthermore, the momentum distribution

in the ground state of hydrogenic atoms reads:

φ100(q) =
23/2

πa

(Za)5/2

(Z2 + q2a2)2
. (E.25)

As we have seen in the case that the calculation of the cross section has been performed
using a field theoretical approach, this cross section exhibits a maximum for final
electron energy of around few eV. This happens because of a fast increase of the term
|p′χ|
|pχ| |p

′
e| ∼

√
E ′e and the almost constant value of |φ100|2 until 5 eV [see eq. (E.20)].

For higher electron energies, e.g., E ′e & 10 eV, the probability |φ100|2 drops fastly as

1/E
′2
e esulting in overall decreasing of the cross section as E

′−3/2
e .

For β = 0.001 and Z = 1we find,

σ ' 8× 10−40 cm2 . (E.26)

The cross section decreases with Z approximately as Z−4 for Z . 40.
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Appendix F

First we assume that the WIMP interaction to X-gauge boson has the general form
igXγ

ν(α̃ + β̃ γ5). Therefore if α̃ = 1, β̃ = 0 the WIMP is considered a Dirac fermion,
and if α̃ = 0, β̃ = 1 it is considered a Majorana fermion respectively. The last choice
of parameters α̃ and β̃ reflects the fact that Majorana particles do not possess electro-
magnetic properties, thus only the axial component of the coupling contributes to the
final result. The matrix element for the process e+χ→ e+χ in the case of a massive
gauge boson interchanged reads:

iM = u(p′χ) i gX γ
ν(α̃ + β̃ γ5)u(pχ)

(
ε cos θW

(pe − p′e)2 −m2
X

)
[

gµν −
(pe − p′e)ν(pe − p′e)µ

(pe − p′e)2

]
u(p′e) i e γ

µ u(pe),

(F.1)

where we have used eq. (2.8) for the form of the propagator and pχ, pe(p
′
χ, p

′
e) are the

incoming (outgoing) four-momenta of WIMPs and electron respectively. In order to
compute the differential cross section, we need an expression for |M|2, so we have to
find the complex conjugate of the amplitude. Averaging over fermion spins we obtain
the averaged amplitude squared:

|M|2 =
1

4

(
ε gX e cos θW

(pe − p′e)2 −m2
X

)2

∑
spins

{
u(p′χ)γν(α̃ + β̃ γ5)u(pχ)

[
gµν −

(pe − p′e)ν(pe − p′e)µ
(pe − p′e)2

]
u(p′e) γ

µ u(pe)

}
{
u(p′χ)γλ(α̃ + β̃ γ5)u(pχ)

[
gλξ −

(pe − p′e)λ(pe − p′e)ξ
(pe − p′e)2

]
u(p′e) γ

ξ u(pe)

}∗
=

=
1

4

(
ε gX e cos θW

(pe − p′e)2 −m2
X

)2

∑
spins

{
u(p′χ)γν(α̃ + β̃ γ5)u(pχ)

[
gµν −

(pe − p′e)ν(pe − p′e)µ
(pe − p′e)2

]
u(p′e) γ

µ u(pe)

}
{
u(pχ)γλ(α̃ + β̃ γ5)u(p′χ)

[
gλξ −

(pe − p′e)λ(pe − p′e)ξ
(pe − p′e)2

]
u(pe) γ

ξ u(p′e)

}
,

(F.2)

where has been made use of the fact that a bi-spinor product can be complex-conjugated
as follows: (

u(p′)γλ(α̃ + β̃ γ5)u(p)

)∗
=

(
u†(p′) γ0 γλ (α̃ + β̃ γ5)u(p)

)†
=

= u†(p)(α̃ + β̃ (γ5)†) (γλ)† (γ0)†u(p′) = u(p) γ0(γλ)† γ0 (α̃ + β̃ γ5)u(p′)

= u(p) γλ (α̃ + β̃ γ5)u(p′) (F.3)
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since (γ0)† = γ0, (γ5)† = γ5, {γλ, γ5} = 0 and γ0 (γλ)† γ0 = γλ. If we take α̃ = 1 and

β̃ = 0 in the expression above we find

(
u(q′)γξu(q)

)∗
= u(q)γξu(q′).

We can write the averaged amplitude squared in the form:

|M|2 =
1

4

(
ε gX e cos θW

(pe − p′e)2 −m2
X

)2(
I + II + III + IV

)
, (F.4)

where

I =
∑
s,r,t,`

usα(p′χ) γναβ (α̃ + β̃ γ5)βγ u
r
γ(pχ)utδ(p

′
e) γνδε u

`
ε(pe)

urζ(pχ) γλζη (α̃ + β̃ γ5)ηθ u
s
θ(p
′
χ)u`ι(pe) γλικ u

t
κ(p
′
e),

II = −
∑
s,r,t,`

usα(p′χ) γναβ (α̃ + β̃ γ5)βγ u
r
γ(pχ)utδ(p

′
e) γνδε u

`
ε(pe)

urζ(pχ) γλζη (α̃ + β̃ γ5)ηθ u
s
θ(p
′
χ)u`ι(pe) γ

ξ
ικ u

t
κ(p
′
e)

(pe − p′e)λ(pe − p′e)ξ
(pe − p′e)2

,

III = −
∑
s,r,t,`

usα(p′χ) γναβ (α̃ + β̃ γ5)βγ u
r
γ(pχ)utδ(p

′
e) γ

µ
δε u

`
ε(pe)

urζ(pχ) γλζη (α̃ + β̃ γ5)ηθ u
s
θ(p
′
χ)u`ι(pe) γλικ u

t
κ(p
′
e)

(pe − p′e)µ(pe − p′e)ν
(pe − p′e)2

,

IV =
∑
s,r,t,`

usα(p′χ) γναβ (α̃ + β̃ γ5)βγ u
r
γ(pχ)utδ(p

′
e) γ

µ
δε u

`
ε(pe)

urζ(pχ) γλζη (α̃ + β̃ γ5)ηθ u
s
θ(p
′
χ)u`ι(pe) γ

ξ
ικ u

t
κ(p
′
e)

(pe − p′e)µ(pe − p′e)ν
(pe − p′e)2

(pe − p′e)λ(pe − p′e)ξ
(pe − p′e)2

. (F.5)

Here indices s, r, t, ` correspond to particles spin and α, β, γ, δ, ε, ζ, η, θ, ι, κ correspond
to matrix elements position. Making use of the completeness relation∑

s u
s(p)us(p) = /p + m, we can compute each one of the coefficients I, II, III, IV

separately.

I =
∑
s,r,t,`

usα(p′χ) γναβ (α̃ + β̃ γ5)βγ u
r
γ(pχ)utδ(p

′
e) γνδε u

`
ε(pe)

urζ(pχ) γλζη (α̃ + β̃ γ5)ηθ u
s
θ(p
′
χ)u`ι(pe) γλικ u

t
κ(p
′
e) =

= Tr[(/p′e +me)γν(/pe +me)γλ] Tr[(/pχ +mχ)γλ (α̃ + β̃ γ5)(/p′χ +mχ)γν (α̃ + β̃ γ5)].

(F.6)



122 CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS

After a little standard trace algebra (especially using Tr[γµγνγργσ] = 4(gµνgρσ −
− gµρgνσ + gµσgνρ) and Tr[γµγνγργσγ5] = −4 i εµνρσ), we obtain :

I = 32

[
(α̃2 + β̃2)

(
(pχ · pe)(p′χ · p′e) + (pχ · p′e)(p′χ · pe)−m2

e(pχ · p′χ)

)
+

+m2
χ(α̃2 − β̃2)

(
2m2

e − (pe · p′e)
)]
. (F.7)

Analogously for the coefficient II one finds:

II = Tr[(/p′e +me)γν(/pe +me)γ
ξ] Tr[(/pχ +mχ)γλ (α̃ + β̃ γ5)(/p′χ +mχ)γν (α̃ + β̃ γ5)]

(pe − p′e)λ(pe − p′e)ξ
(pe − p′e)2

= 0. (F.8)

The above result has been obtained after performing the trace algebra and imposing
the on-shell conditions p2

e = m2
e = p′e

2. Similarly for the next coefficient:

III = Tr[(/p′e +me)γ
µ(/pe +me)γλ] Tr[(/pχ +mχ)γλ (α̃ + β̃ γ5)(/p′χ +mχ)γν (α̃ + β̃ γ5)]

(pe − p′e)µ(pe − p′e)ν
(pe − p′e)2

= 0. (F.9)

Finally for the coefficient IV , and after imposing the same on-shell conditions as above,
we obtain:

IV = Tr[(/p′e +me)γ
µ(/pe +me)γ

ξ] Tr[(/pχ +mχ)γλ (α̃ + β̃ γ5)(/p′χ +mχ)γν (α̃ + β̃ γ5)](
(pe − p′e)µ(pe − p′e)ξ

(pe − p′e)2

)(
(pe − p′e)λ(pe − p′e)ν

(pe − p′e)2

)
= 0. (F.10)

The averaged matrix element squared in eq. (F.4) now reads:

|M|2 = 8

(
ε gX e cos θW

(pe − p′e)2 −m2
X

)2 [
(α̃2 + β̃2)

(
(pχ · pe)(p′χ · p′e) + (pχ · p′e)(p′χ · pe)−

− m2
e(pχ · p′χ)

)
+m2

χ (α̃2 − β̃2)

(
2m2

e − (pe · p′e)
)]
.

(F.11)

We can simplify eq. (F.11) by considering the following kinematics that holds for the
non-relativistic case where the initial electron is at rest:

pχ = (mχ +
~pχ

2

2mχ

, ~pχ), p′χ = (mχ +
~p′χ

2

2mχ

, ~p′χ), pe = (me,~0), p′e = (me +
~p′e

2

2me

, ~p′e).

(F.12)
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In the case that the WIMP is a Dirac fermion (e.g α̃ = 1, β̃ = 0 ) from eq. (F.11) we
find:

|M|2 = 8

(
ε gX e cos θW

(pe − p′e)2 −m2
X

)2 [
2m2

χm
2
e +

~pχ
2 ~p′e

2

2
+
~p′χ

2 ~p′e
2

2
+
m2
χ
~p′e

2

2
−

− mχme

(
( ~p′χ · ~p′e) + ( ~pχ · ~p′e)

)
+

+
m2
e

2

(
~pχ

2 + ~p′χ
2

+ 2 ( ~pχ · ~p′χ)

)
−

− me

2mχ

(
~pχ

2( ~p′χ · ~p′e) + ~p′χ
2
( ~pχ · ~p′e)

)
+

+
~pχ

2 ~p′χ
2
(~p′e

2
+m2

e)

4m2
χ

]
. (F.13)

In the non-relativistic limit | ~pχ| ∼ | ~p′χ| = mχ β � mχ (since β ∼ 10−3) and also
we assume me � mχ. Therefore we can neglect terms proportional to me/mχ and
(me/mχ)2 in the expression above. An other fact is that the outgoing electron is
moving with a very small velocity compared to WIMP’s velocity, so terms that contain
~p′e

2
(or ~p′e in any inner product), almost vanish. Taking into account all the assumptions

above, the only surviving term in the square bracket of the expression eq. (F.13) is the
first one. As a result we obtain for the averaged matrix element squared the following
simple expression:

|M|2 ' 16

(
ε gX e cos θW

(pe − p′e)2 −m2
X

)2

m2
χm

2
e. (F.14)

If the WIMP is a Majorana fermion (e.g α̃ = 0, β̃ = 1 since in this case the WIMP
does not possess electromagnetic properties) from eq. (F.11) we find:

|M|2 = 8

(
ε gX e cos θW

(pe − p′e)2 −m2
X

)2 [
m2
e

2

(
~pχ

2 + ~p′χ
2

+ 2 ( ~pχ · ~p′χ)
)

+
~pχ

2 ~p′e
2

2
+
~p′χ

2 ~p′e
2

2
−

− mχme

(
( ~p′χ · ~p′e) + ( ~pχ · ~p′e)

)
−

− me

2mχ

(
~pχ

2( ~p′χ · ~p′e) + ~p′χ
2
( ~pχ · ~p′e)

)
+

+
3m2

χ
~p′e

2

2
+
~pχ

2 ~p′χ
2
(~p′e

2
+m2

e)

4m2
χ

]
.

(F.15)

With the same assumptions as previously, the dominant contribution comes from the
first term in the square bracket and is ' 2mχ β

2. In this case the averaged matrix
element squared reads:

|M|2 ' 16

(
ε gX e cos θW

(pe − p′e)2 −m2
X

)2

m2
χm

2
e β

2. (F.16)
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From this result we conclude that the cross section is suppressed by a factor β2 ' 10−6

in the case of a Majorana WIMP compared to the case of a Dirac WIMP.
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Appendix G

Consider a gauge theory of a complex scalar field Φ charged under a local U(1) with
charge YΦ (in units of e), a vector spin-1 abelian gauge boson Aµ and a pair of Dirac
fermions EL and eR with U(1)-charges YL and YR respectively. This gauge theory is
described by the Lagrangian 2,

L = Lg(Φ, Aµ) + Lf (EL, eR, Aµ) + LY (EL, eR,Φ) , (G.1)

where the gauge boson-scalar interactions are

Lg(Φ, Aµ) = −1

4
FµνF

µν − 1

2
(G)2 + |DµΦ|2 − V (Φ) , (G.2)

while the chiral fermion and the Yukawa interaction parts of the Lagrangian in eq. (G.1)
are stored in

Lf (EL, eR, Aµ) = EL (i /D) EL + eR (i /D) eR , (G.3)

LY (EL, eR,Φ) = −λe (EL Φ eR + eR Φ∗EL) , (G.4)

and DµΦ = ∂µΦ+ieYΦAµΦ, DµEL = ∂µEL+ieYLAµEL, and DµeR = ∂µeR+ieYRAµeR.
Lg is invariant under the local, U(1) gauge-transformation

Φ(x)→ eieYΦΛ(x)Φ(x) , Aµ(x)→ Aµ(x)− ∂µΛ(x) , (G.5)

EL(x)→ eieYLΛ(x)EL(x) , eR(x)→ eieYRΛ(x)eR(x) , (G.6)

iff YΦ = YL − YR. It is convenient to combine the left and right-handed fermions into
a single Dirac four-component spinor Ψ = (EL, eR)T . Then the interaction Lagrangian
relevant to our study for triangle graphs reads:

Lint = −λeΨΦPRΨ− λeΨΦ∗PLΨ− eAµΨγµ (α + βγ5)Ψ , (G.7)

where

α =
YL + YR

2
, β =

YR − YL
2

. (G.8)

Under gauge transformations the 4-component field Ψ transforms as

Ψ(x)→ eie(α+βγ5)Λ(x)Ψ(x) , (G.9a)

Ψ(x)→ Ψ(x)e−ie(α−βγ5)Λ(x) , (G.9b)

which together with eq. (G.6) leave L invariant if YΦ = −2β.

We choose a renormalizable and gauge invariant potential V (Φ) such that the field
Φ acquires a non-vanishing vacuum expectation value, 〈Φ〉 = v/

√
2, which breaks

2Throughout we follow the notation and conventions of ref. [34].



126 CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS

the local U(1) symmetry spontaneously. We expand eq. (G.1) around the minimum,
Φ = 1√

2
(v + h + iϕ) and choose a gauge-fixing function in eq. (G.2),

G =
1√
ξ

(∂µA
µ − ξevϕ) , (G.10)

which eliminates the Goldstone boson - gauge boson mixing term. The mass of the
vector boson Aµ and of the unphysical Goldstone boson ϕ in this Rξ-gauge become

mA = evYΦ , m2
ϕ = ξm2

A . (G.11)

The ghost part of L is not relevant to our discussion for the one-loop triangle graphs
and is not presented. In terms of Ψ and Ψ, Lf + LY becomes

Lf (Ψ, Aµ) + LY (Ψ, h, ϕ) = Ψi/∂Ψ− eAµΨγµ(α + βγ5)Ψ

− mΨΨ− β̃ΨhΨ− iβ̃Ψγ5ϕΨ (G.12)

where m = v β̃ and β̃ = λe√
2
.

This model, albeit very simple, captures the most important non-decoupling heavy
fermion effects in the trilinear gauge boson vertices in the Standard Model and its
extensions. In the context of chiral anomalies it has been exploited in ref. [96]. With a
light language deform it imitates the Standard Model with the difference that its WI’s
for the currents corresponding to the gauge symmetry in eq. (G.6) are anomalous as
we shall see below.
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Appendix H

In this Appendix we explicitly evaluate the three external gauge boson, fermionic one
loop amplitude of Fig. 3.1. The loop function is calculated directly in four dimensions
using standard methods studied in refs. [30, 119,153–155]. Here, we review this calcu-
lation in detail for the toy model of Appendix G. At the end we generalise our results
to the case of three different external (massive or massless) gauge bosons.

By naive power counting we observe that the two diagrams in Fig. 3.1 are linearly
divergent. This means that their quantum amplitudes depend on the routing of the
internal momenta circulating in the loop. In each of the two diagrams we shift the
internal momenta with arbitrary four vectors aµ and bµ, respectively. By reading
Feynman rules from eq. (G.7), the graphs in Fig. 3.1 become

Γµνρ(k1, k2; a, b) = (−1) e3 × Tr
{∫ d4p

(2π)4
×

×
[γµ(α+ βγ5)(/p− /k2 + /a+m)γρ(α+ βγ5)(/p+ /a+m)γν(α+ βγ5)(/p+ /k1 + /a+m)

[(p− k2 + a)2 −m2][(p+ a)2 −m2][(p+ k1 + a)2 −m2]

+
γµ(α+ βγ5)(/p− /k1 + b/+m)γν(α+ βγ5)(/p+ b/+m)γρ(α+ βγ5)(/p+ /k2 + b/+m)

[(p− k1 + b)2 −m2][(p+ b)2 −m2][(p+ k2 + b)2 −m2]

]}
,

(H.1)

where m is the fermion mass and (-1) is a fermionic loop factor. The integral in the
second line is the same as the first with only the difference that the upper two external
legs in Fig.3.1 are interchanged, i.e., {ν, ρ} ↔ {ρ, ν} and k1 ↔ k2. Dimensional
regularization is a scheme not well suited in calculating (H.1) due to the problems in
defining γ5 and εµνρσ in d > 4 spacetime dimensions. We here follow a method for
calculating (H.1) first presented by Rosenberg in ref. [119] and later used by Adler in
his classic paper on chiral anomaly [30]. Basically, this method relies on the fact that
the abiguous part of the integral is stored in two form factors in Γµνρ expansion, A2

and A1, that multiply the external momenta k1 and k2, respectively. We then exploit
physical arguments like for example conservation of charge, in order to determine the
form factors A1, A2 - all others, A3...A6 are finite and can be calculated directly in
4-dimensions.

Our next step is to write down the WIs. This can be done in many ways, probably
the most insightful is the use of functional methods (see for instance Chapter 9.6 in
the textbook of ref. [34]). One finds the classical WIs of eq. (3.3), but not the last term
on the r.h.s. We show below how to calculate this last term. We need first to calculate
the divergence of the 1PI vertex: qµΓµνρ = (k1 + k2)µΓµνρ. It is useful to employ the
following algebraic identity:

q/(α + βγ5) = −(α− βγ5)(/p− /k2 + /a−m) + 2βγ5m+ (/p+ /k1 + /a−m)(α + βγ5) ,

(H.2)

in the first integral of (H.1) and a similar identity with a → b and k1 → k2 in the
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second one. These identities split qµΓµνρ into two parts,

qµΓµνρ(k1, k2; a, b) = −2mβei

β̃
Γνρ(k1, k2; a, b) + Πνρ(k1, k2; a, b) , (H.3)

a part that is proportional to the fermion mass m and a part which contains divergent
two-point functions that would had been zero if shifting of the momenta variable was
allowed. The latter integrals will be responsible for the failure of the axial vector WI’s.
Explicitly Γρν and Πρν in eq. (H.3) read,

Γνρ(k1, k2; a, b) = −i e2 β̃ ×

Tr
{∫ d4p

(2π)4

γ5(/p− /k2 + /a+m)γρ(α+ βγ5)(/p+ /a+m)γν(α+ βγ5)(/p+ /k1 + /a+m)

[(p− k2 + a)2 −m2][(p+ a)2 −m2][(p+ k1 + a)2 −m2]
+

+

∫
d4p

(2π)4

γ5(/p− /k1 + b/+m)γν(α+ βγ5)(/p+ b/+m)γρ(α+ βγ5)(/p+ /k2 + b/+m)

[(p− k1 + b)2 −m2][(p+ b)2 −m2][(p+ k2 + b)2 −m2]

}
=
−i e2mβ̃

2π2
ελνρσ k1λ k2σ I0(k1, k2,m) , (H.4)

where

I0(k1, k2,m) =

∫ 1

0

∫ 1−x

0

(α2 − β2) + 2(x+ y)β2

x(x− 1)k2
2 + y(y − 1)k2

1 − 2xyk1 · k2 +m2
. (H.5)

Obviously, the integral in Γνρ in eq. (H.4) is obtained from Γµνρ in eq. (H.1) with the
replacement γµ(α+ βγ5)→ γ5, that is a replacement of a vector-axial vector coupling
with a pseudoscalar. This validates the PCAC relation in eq. (H.3). Note that Γνρ is
finite and independent on the arbitrary vectors aµ and bµ : Γνρ(k1, k2; a, b) = Γνρ(k1, k2).

The divergent part Πνρ in the WI of eq. (H.3)
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contains, among others, the anomalous term. It is written explicitly as,

Πνρ(k1, k2; a, b) = (−e3) Tr

∫
d4p

(2π)4
×

×
{
−(α− βγ5)(α− βγ5)γρ(/p+ /a+m)γν(α + βγ5)(/p+ /k1 + /a+m)

[(p+ a)2 −m2][(p+ k1 + a)2 −m2]

+
(/p− /k2 + /a+m)γρ(α + βγ5)(/p+ /a+m)γν(α + βγ5)(α + βγ5)

[(p+ a)2 −m2][(p− k2 + a)2 −m2]

− (α− βγ5)(α− βγ5)γν(/p+ b/+m)γρ(α + βγ5)(/p+ /k2 + b/+m)

[(p+ b)2 −m2][(p+ k2 + b)2 −m2]

+
(/p− /k1 + b/+m)γν(α + βγ5)(/p+ b/+m)γρ(α + βγ5)(α + βγ5)

[(p+ b)2 −m2][(p− k1 + b)2 −m2]

}
.

(H.6)

This is an integral that is devided into two parts : a chiral expression i.e., the one that
contains γ5 and a non-chiral expression that does not contain γ5. Since the anomaly
term is originated from the chiral part we start from there. Hence,

Πνρ
chiral(k1, k2; a, b) = (β3 + 3α2β)e3 ×

×Tr

∫
d4p

(2π)4

{ (/p+ /k1 + /a)γρ(/p+ /a)γνγ5

[(p+ k1 + a)2 −m2][(p+ a)2 −m2]
− (/p+ /a)γν(/p− /k2 + /a)γργ5

[(p+ a)2 −m2][(p− k2 + a)2 −m2]

+
(/p+ /k2 + b/)γν(/p+ b/)γργ5

[(p+ k2 + b)2 −m2][(p+ b)2 −m2]
− (/p+ b/)γρ(/p− /k1 + b/)γνγ5

[(p+ b)2 −m2][(p− k1 + b)2 −m2]

}
.

(H.7)

Grouping together the first and the fourth as well as the third and the second terms
in the integrand of eq. (H.7), we arrive at,

Πνρ
chiral(k1, k2; a, b) = (β3 + 3α2β)e3 ×

×
∫

d4p

(2π)4

{
Tr(γκγργλγνγ5)

( (p+ k1 + a)κ(p+ a)λ
[(p+ k1 + a)2 −m2][(p+ a)2 −m2]

−

− (p+ b)κ(p− k1 + b)λ
[(p+ b)2 −m2][(p− k1 + b)2 −m2]

)
+

+Tr(γκγνγλγργ5)
( (p+ k2 + b)κ(p+ b)λ

[(p+ k2 + b)2 −m2][(p+ b)2 −m2]
−

− (p+ a)κ(p− k2 + a)λ
[(p+ a)2 −m2][(p− k2 + a)2 −m2]

)}
. (H.8)

Following the steps described in ref. [154], we first define a function and an integral,

fκλ(p; c, d) =
(p+ c)κ(p+ d)λ

[(p+ c)2 −m2][(p+ d)2 −m2]
, (H.9)
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and

Iκλ(k; c, d) =

∫
d4p

(2π)4

[
fκλ(p+ k; c, d)− fκλ(p; c, d)

]
, (H.10)

where c, d are arbitrary four vectors. By exploiting the following “momentum shift”
integral relation (see the lecture by R. Jackiw in ref. [153] and refs. [125,126,155])∫

d4p

(2π)4
[f(p+ a)− f(p)] =

i

(2π)4

[
2π2aµ lim

p→∞
pµp2fo(p) + π2aµaν lim

p→∞
pµp2∂fe(p)

∂pν

]
,

(H.11)

where only the first term on the r.h.s is relevant to linearly divergent diagrams, and,

fo(p) =
1

2
[f(p)− f(−p)] , fe(p) =

1

2
[f(p) + f(−p)] , (H.12)

are the odd and even parts of f(p) respectively, we obtain,3

Iκλ(k; c, d) =
i

96π2

[
2kλcκ + 2kκdλ − kλdκ − kκcλ − gκλk · (k + c+ d) + kλkκ

]
. (H.13)

Now we have all the necessary machinery to calculate Πνρ in eq. (H.8) by applying to
it eqs. (L.12) and (H.13). For the non-chiral part of Πνρ the choice b = −a results in
Πνρ

non−chiral = 0 as we expect, since there should be no non-chiral anomalies. With this
assignment for vector b we finally obtain for the chiral part:

Πνρ
chiral(k1, k2; a,−a) =

e3(β3 + 3α2β)

4π2
εκνλρaκ(k1 + k2)λ. (H.14)

Plugging in eqs. (H.4) and (H.14) into eq. (H.3), the WI associated to the leg −µ− becomes:

qµΓµνρ(k1, k2; a,−a) = −2meβi

β̃
Γνρ(k1, k2) +

e3(β3 + 3α2β)

4π2
εκνλρ aκ (k1 + k2)λ. (H.15)

Along the same lines we can build in the WIs for the other vertices. For example, the WI
referring to the conservation of current in vertex −ν− (see Fig.3.1) reads:

−k1νΓ̃νρµ(k1, k2; a,−a) = −2mβei

β̃
Γ̃ρµ(k1, k2)− e3(β3 + 3α2β)

4π2
εκρλµ (a− k2)κ k1λ. (H.16)

Vertices Γ̃νρµ(k1, k2; a, b) and Γ̃ρµ(k1, k2) are obtained from Γµνρ(k1, k2; a, b) and Γνρ(k1, k2)
in eqs. (H.1) and (H.4), respectively, after the following replacements

µ→ ν, ν → ρ, ρ→ µ, a→ a− k2, b→ b+ k2, k1 → k2,

k2 → −k1 − k2, q = k1 + k2 → k2 − k1 − k2 = −k1 ⇒ q → −k1 . (H.17)

3There is a typographical error in the corresponding expression of a classic textbook written by S.
Weinberg in ref. [154]. We thank Steve Martin and Howie Haber for communication related to this
point.
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It is straightforward to see from eq. (H.17) that the non-chiral part of −k1νΓ̃νρµ(k1, k2; a, b)
vanishes again for the choice b = −a. Similarly the WI for the current conservation in the
−ρ− vertex,

−k2ρΓ̂
ρµν(k1, k2; a,−a) = −2mβei

β̃
Γ̂µν(k1, k2)− e3(β3 + 3α2β)

4π2
εκµλν (a+ k1)κ k2λ.

(H.18)

As previously, Γ̂ρµν(k1, k2; a, b) and Γ̂µν(k1, k2) can be obtained from eqs. (H.1) and (H.4) by
making the following replacements:

µ→ ρ, ν → µ, ρ→ ν, a→ a+ k1, b→ b− k1, k1 → −k2 − k1,

k2 → k1, q = k1 + k2 → −k2 − k1 + k1 ⇒ q → −k2 . (H.19)

These replacements leave invariant the choice b = −a so that finally, the non-chiral part of
−k2ρΓ̂

ρµν(k1, k2; a,−a) vanishes identically everywhere. Furthermore, by direct calculation

the vertices Γ̃ρµ and Γ̂µν are found to be,

Γ̃ρµ(k1, k2) =
ie2mβ̃

2π2
ελµξρ k1λ k2ξ I1(k1, k2,m) , (H.20)

and

Γ̂µν(k1, k2) =
ie2mβ̃

2π2
ελµξν k1λ k2ξ I2(k1, k2,m) , (H.21)

respectively, where the corresponding integrals I1,2 are written explicitly as,

I1(k1, k2,m) =

∫ 1

0
dx

∫ 1−x

0
dy

−(α2 + β2) + 2xβ2

x(x− 1)k2
2 + y(y − 1)k2

1 − 2xyk1 · k2 +m2
, (H.22)

and

I2(k1, k2,m) =

∫ 1

0
dx

∫ 1−x

0
dy

(α2 + β2)− 2yβ2

x(x− 1)k2
2 + y(y − 1)k2

1 − 2xyk1 · k2 +m2
. (H.23)

The three-point vertex obeys the following equality,

Γµνρ = Γ̃νρµ = Γ̂ρµν , (H.24)

as the property of trace to remain invariant under cyclic permutations. It is instructive to
write the arbitrary vector aµ,
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appearing in the WIs, as a linear combination of the two independent momenta k1 and
k2,

aµ = z kµ1 + w kµ2 , (H.25)

with z, w arbitrary real numbers. Then the WIs in eqs. (H.15), (H.16) and (H.18) can be
written explicitly in terms of the three integrals I0, I1, and I2 and the real numbers w and z
as,

qµΓµνρ(k1, k2;w, z) = −e
3βm2

π2
ελνρσ k1λ k2σ I0(k1, k2;m) +

+
e3(β3 + 3α2β)

4π2
ελνρσ k1λ k2σ(w − z) . (H.26)

−k1νΓ̃νρµ(k1, k2;w) = −e
3βm2

π2
ελµρσ k1λ k2σ I1(k1, k2;m) +

+
e3(β3 + 3α2β)

4π2
ελµρσ (w − 1) k1λk2σ , (H.27)

−k2ρΓ̂
ρµν(k1, k2; z) = −e

3βm2

π2
ελµνσ k1λ k2σ I2(k1, k2;m) +

+
e3(β3 + 3α2β)

4π2
ελµνσ (z + 1)k1λk2σ . (H.28)

Obviously, even if we choose w = 1 and z = −1 so that the second and third anomalies
vanish it cannot be done so for the first one. The anomalous term, i.e., the second term
on the r.h.s of eq. (H.26), remains. It is quite interesting to note that in the limit where
k2

1, k
2
2, k1 · k2 � m→∞, there is a choice for w = −z = 1/3 such that the right hand side of

eqs. (H.26), (H.27) and (H.28) vanish identically. For this choice the fermions get decoupled
completely.

Our goal is still to calculate the three gauge boson vertex Γµνρ(k1, k2; a,−a). The idea is
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to first write down the most general, Lorentz invariant vertex, as4

Γµνρ(k1, k2; a,−a) =

[
A1(k1, k2; a,−a) εµνρσ k2σ + A2(k1, k2; a,−a) εµνρσ k1σ

+ A3(k1, k2) εµρβδ kν2 k1β k2δ +A4(k1, k2) εµρβδ kν1 k1β k2δ

+ A5(k1, k2) εµνβδ kρ2 k1β k2δ +A6(k1, k2) εµνβδ kρ1 k1β k2δ

]
.

(H.32)

The form factors A1 and A2 are dimensionless and, by naive power counting, at most linearly
divergent while all the rest, A3...A6 possess dimension of m−2 and are finite. The latter can
be calculated directly in four dimensions from eq. (H.1). We find explicitly:

A3(k1, k2) = −A6(k1, k2) = −e
3(β3 + 3α2β)

π2

∫ 1

0
dx

∫ 1−x

0
dy
xy

∆
, (H.33)

A4(k1, k2) =
e3(β3 + 3α2β)

π2

∫ 1

0
dx

∫ 1−x

0
dy
y(y − 1)

∆
, (H.34)

A5(k1, k2) = −e
3(β3 + 3α2β)

π2

∫ 1

0
dx

∫ 1−x

0
dy
x(x− 1)

∆
, (H.35)

where the integrand denominator is common for all A3...A6 and reads:

∆ ≡ x(x− 1)k2
2 + y(y − 1)k2

1 − 2xyk1 · k2 +m2 . (H.36)

To estimate the two divergent integrals, A1 and A2, we apply the Ward Identities for the
vertices ν and ρ, i.e., eqs. (H.27) and (H.28) in the expansion (H.32) and obtain,

A1(k1, k2;w) = (k1 · k2)A3(k1, k2) + k2
1 A4(k1, k2)− m2e3β

π2
I1(k1, k2,m) +

+
e3(β3 + 3α2β)

4π2
(w − 1) , (H.37)

and,

A2(k1, k2; z) = (k1 · k2)A6(k1, k2) + k2
2 A5(k1, k2)− m2e3β

π2
I2(k1, k2,m) +

+
e3(β3 + 3α2β)

4π2
(z + 1) . (H.38)

4There are two more terms allowed in the expansion,

A7(k1, k2)ερνβδ kµ2 k1β k2δ +A8(k1, k2)ερνβδ kµ1 k1β k2δ . (H.29)

However, by exploiting the following, very useful, identities

kµ1 ε
ρνβδk1βk2δ = −εµρβδkν1k1βk2δ + εµνβδkρ1k1βk2δ

+ εµνρα[(k1 · k2) k1α − k21 k2α] , (H.30)

kµ2 ε
ρνβδk1βk2δ = −εµρβδkν2k1βk2δ + εµνβδkρ2k1βk2δ

− εµνρα[(k1 · k2) k2α − k22 k1α] , (H.31)

we arrive at the six form factors given in eq. (H.32).
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Equations (H.22-H.23,H.33-H.38) complete the evaluation of the vertex Γµνρ(k1, k2, w, z) in
eq. (H.32). In Appendix J we present analytical expressions of the integrals A3..6 and I0,1,2

in various limits.

Even if the form factors Ai=1...6 had not been calculated explicitly there is much to say
about their structure by exploiting possible Bose symmetries. Hence, referring to the notation
of Fig. 3.1, Bose symmetry among j and k legs implies,

A1(k1, k2) = −A2(k2, k1) , (H.39a)

A3(k1, k2) = −A6(k2, k1) , (H.39b)

A4(k1, k2) = −A5(k2, k1) , (H.39c)

while in i and j legs,

A1(k1, k2) = −A1(−q, k2) +A2(−q, k2)− (k1 · k2) [(A3(−q, k2)−A4(−q, k2)] +

+ k2
1A4(−q, k2) , (H.40a)

A2(k1, k2) = A2(−q, k2) + k2
2 [A3(−q, k2)−A4(−q, k2)]−

− (k1 · k2)A4(−q, k2) , (H.40b)

A3(k1, k2) = A4(−q, k2)−A3(−q, k2) , (H.40c)

A4(k1, k2) = A4(−q, k2) , (H.40d)

A5(k1, k2) = A5(−q, k2)−A6(−q, k2) +A3(−q, k2)−A4(−q, k2) , (H.40e)

A6(k1, k2) = −A4(−q, k2)−A6(−q, k2) , (H.40f)

and, finally, in i and k legs we find,

A1(k1, k2) = A1(k1, − q)− k2
1 [(A5(k1,−q)−A6(k1,−q)]−

− (k1 · k2)A5(k1,−q) , (H.41a)

A2(k1, k2) = A1(k1,−q)−A2(k1,−q) + (k1 · k2) [A5(k1,−q)−A6(k1,−q)] +

+ k2
2A5(k1,−q) , (H.41b)

A3(k1, k2) = −A3(k1,−q)−A5(k1,−q) , (H.41c)

A4(k1, k2) = A4(k1,−q)−A3(k1,−q)−A5(k1,−q) +A6(k1,−q) , (H.41d)

A5(k1, k2) = A5(k1,−q) , (H.41e)

A6(k1, k2) = A5(k1,−q)−A6(k1,−q) . (H.41f)

The above relations have been repeatedly used in section 3.4 when determining the anomaly
parameters w and z. The reader should notice that in addition to relations due to Bose
symmetry, there are few more relations originated solely from fermionic triangle:

A3(k1, k2) = A3(k2, k1) , A6(k1, k2) = A6(k2, k1) . (H.42)
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We can now exploit Bose symmetry to set constraints on the arbitrary parameters w and z.
For example, if the gauge bosons associated with legs j and k in Fig. 3.1 are identical then
eq. (H.39) impose the following relation,

w + z = 0 , (H.43)

among the undefined (momentum route dependent) parameters. One last remark is that we
can rediscover Bose symmetries by using one of the following equivalent representations (i.e.,
they leave the double integral measure invariant) of the integrals A3...A6 by noting that

∆(k1, k2)
x↔y−−−→ ∆(k2, k1) , (H.44)

∆(k1, k2)
y→1−x−y−−−−−−→
x→x

∆(k1,−q) , (H.45)

∆(k1, k2)
y→y−−−−−−→

x→1−x−y
∆(−q, k2) , (H.46)

where ∆(k1, k2) is a function defined in eq. (H.36).

As a generalisation of eqs. (H.15), (H.16) and (H.18) we can proceed to the situation
where there are three, in general different, external gauge bosons with different couplings to
fermions. As in (H.1), we write the general three point vertex in Fig. 3.1 as:

Γµνρ(k1, k2; a, b) = Γ̃νρµ(k1, k2; a, b) = Γ̂ρµν(k1, k2; a, b) = −e3

∫
d4p

(2π)4
×

{
1

[(p− k2 + a)2 −m2][(p+ a)2 −m2][(p+ k1 + a)2 −m2]
×

Tr
[
γµ(αi + βiγ

5)(/p− /k2 + /a+m)γρ(αj + βjγ
5)(/p+ /a+m)γν

(αk + βkγ
5)(/p+ /k1 + /a+m)

]
+

+
1

(p− k1 + b)2 −m2][(p+ b)2 −m2][(p+ k2 + b)2 −m2]
×

Tr
[
γµ(αi + βiγ

5)(/p− /k1 + b/+m)γν(αk + βkγ
5)(/p+ b/+m)γρ

(αj + βjγ
5)(/p+ /k2 + b/+m)

]}
, (H.47)

and the corresponding two point vertex functions as:

Γνρ(k1, k2) =
−ie2mβ̃

2π2
ελνρσk1λk2σ

∫ 1

0
dx

∫ 1−x

0
dy

(αjαk − βjβk) + 2βjβk(x+ y)

∆
,

Γ̃ρµ(k1, k2) =
ie2mβ̃

2π2
ελµξρk1λk2ξ

∫ 1

0
dx

∫ 1−x

0
dy
−(αiαk + βiβk) + 2xβiβk

∆
, (H.48)

Γ̂µν(k1, k2) =
ie2mβ̃

2π2
ελµξνk1λk2ξ

∫ 1

0
dx

∫ 1−x

0
dy

(αiαj + βiβj)− 2yβiβj
∆

,
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where as before ∆ ≡ ∆(k1, k2) is given by eq. (H.36). The complete Γµνρ(k1, k2, w, z) in this
general case is presented in section 3.2.
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Figure 1: The one-loop effective triple gauge boson vertex, ΓµνρVW−W+ , V = γ, Z. As in
Fig. 3.1, indices {i, j, k} denote distinct external gauge bosons in general.

Appendix I

The calculation for V ∗W−W+, V = γ, Z is slightly more complicated than the one for neutral
triple gauge boson vertices for two reasons: first, the appearance in the loop of two, in general,
different fermion masses and second, the appearance of different V ff vertex for each particle
contribution (see Fig. 1). Although the first complication leads to only technical difficulties
the latter one is more serious: it does not allow for an obvious exploitation of the master 4D
“momentum shift” equation (L.12).

Our method for calculating this vertex follows exactly the same steps as described in
detail in Appendix H and in section 3.2. The chiral part of the V ∗WW vertex is still given
by eq. (3.2). The finite form factors A3...A6 for the first diagram in Fig. 1 are exactly the
half of the corresponding ones in (3.8) but with the replacement of ∆(k1, k2) into

∆(k1, k2;m2
fu ,m

2
fd

) ≡ x(x− 1)k2
2 + y(y − 1)k2

1 − 2xyk1 · k2 − (x+ y) ∆m2 +m2
fu , (I.1)

with the mass squared difference being ∆m2 ≡ m2
fu
−m2

fd
. fu and fd here denote each of the

fermion pair (u, ν) and (d, e) for leptons and quarks, respectively. Obviously, the contribution
of the crossed diagram i.e., the second diagram in Fig. 1, requires the replacement, fu ↔ fd.
Our calculation here is quite general and is not confined only in to V ∗WW vertex. For
example, it could be used for the vertex VWLWR in an SU(2)L × SU(2)R × U(1) gauge
model.

As before, the “infinite” form factors, A1,2 are fixed by the Ward Identities. The calcu-
lation of the first diagram of Fig. 1 results in,

A1(k1, k2) = (k1 · k2)A3 + k2
1A4 −

αj(mfu −mfd)

4π2
I11(m2

fu ,m
2
fd

)−

−
βj(mfu +mfd)

4π2
I12(m2

fu ,m
2
fd

) +
c

8π2
(w − 1) , (I.2a)

A2(k1, k2) = (k1 · k2)A6 + k2
2A5 +

αk(mfu −mfd)

4π2
I21(m2

fu ,m
2
fd

)−

−
βk(mfu +mfd)

4π2
I22(m2

fu ,m
2
fd

) +
c

8π2
(z + 1) , (I.2b)

where c ≡ (αiαj + βiβj)βk + (αiβj + αjβi)αk is the usual anomaly factor. Again, the re-
sult depends upon two arbitrary four vectors, aµ and bµ, that parameterize the momentum
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routing in the loop. For chiral gauge anomalies to cancel after summing over all fermions,
the arbitrary vectors a and b need to be set at a = −b. As before, we write aµ as a linear
combination of independent four vectors as aµ = z kµ1 +wkµ2 , with z, w arbitrary real param-
eters. This includes γ, Z,W -self energy corrections. The latter depend on their own routing
momenta arbitrary vectors that can be taken as such in order to eliminate their anomalous
contributions. One then expects that this relation renders the non-chiral part independent
of a as it does for the neutral vertices V V V , for V = γ, Z [seeAppendix H]. However, for
VWW -vertices there are additional contributions to the non-chiral part of Γµνρ from Z, γ,W -
self energy corrections that depend on routing momentum arbitrary vectors. When all these
corrections are added one expects the result to be independent on these arbitrary vectors.

Then the “non-decoupling” integrals, Iij ≡ Iij(m
2
fu
,m2

fd
) with i, j = 1, 2, appearing in

eq. (I.2) are given by

I11 =

∫ 1

0
dx

∫ 1−x

0
dy

1

∆(k1, k2;m2
fu
,m2

fd
)

[
(αiβk + αkβi)mfd y

+ (αiβk + αkβi)mfu (x+ y − 1) + (αiβk − αkβi)mfd x
]
, (I.3a)

I12 =

∫ 1

0
dx

∫ 1−x

0
dy

1

∆(k1, k2;m2
fu
,m2

fd
)

[
− (αiαk + βiβk)mfd y

+ (αiαk + βiβk)mfu (x+ y − 1)− (αiαk − βiβk)mfd x
]
, (I.3b)

I21 =

∫ 1

0
dx

∫ 1−x

0
dy

1

∆(k1, k2;m2
fu
,m2

fd
)

[
(αiβj − αjβi)mfd y

+ (αiβj + αjβi)mfu (x+ y − 1) + (αiβj + αjβi)mfd x
]
, (I.3c)

I22 =

∫ 1

0
dx

∫ 1−x

0
dy

1

∆(k1, k2;m2
fu
,m2

fd
)

[
(αiαj − βiβj)mfd y

− (αiαj + βiβj)mfu (x+ y − 1) + (αiαj + βiβj)mfd x
]
, (I.3d)

where αi ≡ αfd , βi ≡ βfd ,..etc, follow the first diagram of Fig. 1. The corresponding expres-
sions for the crossed diagram are easily obtained from those in eqs. (I.2) and (I.3) with the
replacement fu ↔ fd. Note that CP-invariance is maintained since A1(k1, k2) = −A2(k2, k1).

For reasons we explained at the beginning of this Appendix, finding the anomalous terms
i.e., the last terms in eq. (I.2), is not a straightforward task. The trick here is to add a Lorentz
invariant but vanishing integral that generates exactly the anomaly integrals by momentum
shift. It is then straightforward to use the 4-D expression (L.12).

To complete our analysis for the chiral fermionic triangle with general external charged
and neutral gauge bosons, we append here the relevant WI’s analogous to those presented in
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eq. (3.3) for neutral external gauge bosons:

qµ Γµνρ(k1, k2) = − βi
2π2

mfdε
νρλσ k1λk2σ I01(m2

fu ,m
2
fd

) +
c

8π2
ενρλσ k1λk2σ (w − z) ,

(I.4a)

−k1ν Γµνρ(k1, k2) = − αj
4π2

(mfu −mfd) ε
µρλσ k1λk2σ I11(m2

fu ,m
2
fd

)−

− βj
4π2

(mfu +mfd) ε
µρλσ k1λk2σ I12(m2

fu ,m
2
fd

)+

+
c

8π2
εµρλσ k1λk2σ (w − 1) , (I.4b)

−k2ρ Γµνρ(k1, k2) =
αk
4π2

(mfu −mfd) ε
µνλσ k1λk2σ I21(m2

fu ,m
2
fd

)−

− βk
4π2

(mfu +mfd) ε
µνλσ k1λk2σ I22(m2

fu ,m
2
fd

)+

+
c

8π2
εµνλσ k1λk2σ (z + 1) . (I.4c)

Again, the corresponding expressions for the crossed diagram in Fig. 1 are obtained from
eq. (I.4) after the replacement fu ↔ fd. The integral I01 ≡ I01(m2

fu
,m2

fd
) is given by

I01 =

∫ 1

0
dx

∫ 1−x

0
dy

1

∆(k1, k2;m2
fu
,m2

fd
)

[
(αjαk + βjβk)mfd y −

− (αjαk − βjβk)mfu (x+ y − 1) + (αjαk + βjβk)mfd x
]
. (I.5)

As a check, note that in the limit of equal masses m2
fu

= m2
fd

all the above integral expressions
reduce to the corresponding ones in eqs. (3.4), (3.5) and (3.8) for the neural gauge boson
vertex.
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Appendix J

In this Appendix we present analytical expressions for integrals related to A3..6, and, I1,2 in
the limit where k2

1, k
2
2 → 0 as well as their approximate expressions in various limits. We

make an effort to write the latter in terms of standard functions i.e., not dilogarithms, which
are easy to handle both symbolically and numerically. We start out with integrals related to
eq. (3.8),

Ã3(ξ) =

∫ 1

0
dx

∫ 1−x

0
dy

xy

xy − ξ/4
=

1

2
[1 + ξJ(ξ)] , (J.1)

where ξ ≡ 4m2

s , m is the loop fermion mass, and s = (k1 + k2)2, while,

J(ξ) = − arctan2

(
1√
ξ − 1

)
, ξ ≥ 1 , (J.2a)

=
1

4

[
ln

(
1−
√

1− ξ
1 +
√

1− ξ

)
− iπ

]2

, ξ ≤ 1 . (J.2b)

This integral has also been calculated in ref. [137] and we find agreement. In the same limit
the integral related to A4 and A5 is:

Ã4(ξ) = Ã5(ξ) =

∫ 1

0
dx

∫ 1−x

0
dy
x(x− 1)

xy − ξ/4
=

∫ 1

0
dx

∫ 1−x

0
dy
y(y − 1)

xy − ξ/4
, (J.3)

with its exact answer written like

Ã4(ξ) = 1−
√
ξ − 1 arctan

(
1√
ξ − 1

)
, ξ ≥ 1 , (J.4)

= 1 +

√
1− ξ
2

[
ln

(
1−
√

1− ξ
1 +
√

1− ξ

)
− iπ

]
, ξ ≤ 1. (J.5)

Integrals that are related to I1 and I2 of eq. (3.5) are:

Ĩ1(ξ) =

∫ 1

0
dx

∫ 1−x

0
dy

1

xy − ξ/4
(J.6)

= −2 arctan2

(
1√
ξ − 1

)
, ξ ≥ 1 (J.7)

=
1

2

[
ln

(
1−
√

1− ξ
1 +
√

1− ξ

)
− iπ

]2

, ξ ≤ 1 , (J.8)

and

Ĩ ′1(ξ) =

∫ 1

0
dx

∫ 1−x

0
dy

x

xy − ξ/4
=

∫ 1

0
dx

∫ 1−x

0
dy

y

xy − ξ/4
(J.9)

= 2

[√
ξ − 1 arctan

(
1√
ξ − 1

)
− 1

]
, ξ ≥ 1 (J.10)

= −2−
√

1− ξ
[

ln

(
1−
√

1− ξ
1 +
√

1− ξ

)
− iπ

]
, ξ ≤ 1 . (J.11)
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These integrals are related to standard ones, A3..A6, I1,2, and in the limit where m2
Z � s <

m2, become

A3(s;m2) = −A6(s;m2) =
c

s
Ã3(

4m2

s
) = − c

m2

[
1

24
+

1

180

s

m2
+O(s2/m4)

]
, (J.12a)

A4(s;m2) = −A5(s;m2) = −c
s
Ã4(

4m2

s
) = − c

m2

[
1

12
+

1

120

s

m2
+O(s2/m4)

]
, (J.12b)

I1(s;m2) =
αiαk + βiβk

s
Ĩ1(

4m2

s
)− 2βiβk

s
Ĩ ′1(

4m2

s
)

= − 1

m2

[
βiβk + 3αiαk

6
+
βiβk + 5αiαk

120

s

m2
+O(s2/m4)

]
, (J.12c)

I2(s;m2) = −αiαj + βiβj
s

Ĩ1(
4m2

s
) +

2βiβj
s

Ĩ ′1(
4m2

s
)

=
1

m2

[
βiβj + 3αiαj

6
+
βiβj + 5αiαj

120

s

m2
+O(s2/m4)

]
, (J.12d)

where c =
e3[(αiαj+βiβj)βk+(αiβj+βiαj)αk]

π2 is the anomaly factor. These expressions are in
agreement with the corresponding ones presented in ref. [88]. In the high energy limit m2 � s,
we obtain,

A3(s;m2) = −A6(s;m2) ' c
{

1

2s
+
m2

2s2

[
ln2 s

m2
− π2

]
+ iπ

m2

s2
ln

s

m2
+O(m4/s3)

}
,

(J.13a)

A4(s;m2) = −A5(s;m2)

' c
{

1

s

[
−1 +

1

2
ln

s

m2

]
− m2

s2

[
ln

s

m2
+ 1
]

+ iπ

[
1

2s
− m2

s2

]
+O(m4/s3)

}
,

(J.13b)

I1(s;m2) ' (αiαk + βiβk)

s

[
1

2

(
ln2 s

m2
− π2

)
− 2

m2

s
ln

s

m2

]
−

− 2βiβk
s

[
ln

s

m2
− 2− 2m2

s

(
ln

s

m2
+ 1
)]

+ iπ

{
(αiαk + βiβk)

s

[
ln

s

m2
− 2m2

s

]
− 2βiβk

s

[
1− 2m2

s

]}
+O(m4/s3) ,

(J.13c)

I2(s;m2) '− (αiαj + βiβj)

s

[
1

2

(
ln2 s

m2
− π2

)
− 2

m2

s
ln

s

m2

]
+

+
2βiβj
s

[
ln

s

m2
− 2− 2m2

s

(
ln

s

m2
+ 1
)]
−

− iπ
{

(αiαj + βiβj)

s

[
ln

s

m2
− 2m2

s

]
− 2βiβj

s

[
1− 2m2

s

]}
+O(m4/s3).

(J.13d)
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Only the real parts of these expressions have been presented in ref. [88] and we find agree-
ment5. Other useful identities among A’s that have been used in our numerical code for
calculating the V ∗ZZ-vertex are,

(A3 −A4)(k1 = mZ , k2 = mZ , s;m = 0) =
s

2m2
Z

A3(k1 = mZ , k2 = mZ , s;m = 0)−

− 1

4m2
Z

(J.14)

and for the V ∗γZ-vertex,

A3(k1 = 0, k2 = mZ , s;m = 0) =
1

2(s−m2
Z)
−

m2
Z

2(s−m2
Z)2

ln

(
s

m2
Z

)
, (J.15)

A5(k1 = 0, k2 = mZ , s;m = 0) = − 1

2(s−m2
Z)

ln

(
s

m2
Z

)
. (J.16)

Finally, we derive full analytical expressions in the case k2
1 = 0, where one of the external

gauge bosons is massless e.g., the V ∗γZ-vertex. To this end it is useful to define an auxiliary
function,

F (mZ , s,m) ≡
∫ 1

0
dx

∫ 1−x

0
dy ln[x(x− 1)m2

Z − xy(s−m2
Z) +m2] , (J.17)

out of which we read A3..A6, I1,2 by simply taking appropriate derivatives w.r.t s, k2
2 = m2

Z

or m2. Depending on the region of parameters s,m2,m2
Z we have found the function F to

be,

F (mZ , s,m) = −3

2
+

ln(m2)

2
−
(

1

m2
Z − s

){
s

√
4m2

s
− 1 arctan

(
1√

4m2

s − 1

)

+ 2m2

[
arctan2

(
1√

4m2

s − 1

)
− arctan2

(
1√

4m2

m2
Z
− 1

)]
−

− m2
Z

√
4m2

m2
Z

− 1 arctan

(
1√

4m2

m2
Z
− 1

)}
,

4m2

s
> 1,

4m2

m2
Z

> 1,

(J.18)

F (mZ , s,m) = −3

2
+

ln(m2)

2
−
(

1

m2
Z − s

){
s

√
4m2

s
− 1 arctan

(
1√

4m2

s − 1

)
+

+ m2

[
2 arctan2

(
1√

4m2

s − 1

)
+

1

2

(
ln(

1−
√

1− 4m2

m2
Z

1 +
√

1− 4m2

m2
Z

) + iπ

)2]
+

+ m2
Z

[
1

2

√
1− 4m2

m2
Z

(
ln(

1−
√

1− 4m2

m2
Z

1 +
√

1− 4m2

m2
Z

)− iπ
)]}

,
4m2

s
> 1,

4m2

m2
Z

< 1 ,

(J.19)

5For notational matter, our integrals are related to those in ref. [88] like A3 = −c6, A4 =
1
2 (c4 − c3 − 2c6), where for example A3 ≡ A3(k21 = k22 = m2

W , s,m
2
fu
,m2

fd
),...etc.
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F (mZ , s,m) = −3

2
+

ln(m2)

2
+

+

(
1

m2
Z − s

){
s

[
1

2

√
1− 4m2

s

(
ln(

1−
√

1− 4m2

s

1 +
√

1− 4m2

s

)− iπ
)]

+ m2

[
2 arctan2

(
1√

4m2

m2
Z
− 1

)
+

1

2

(
ln(

1−
√

1− 4m2

s

1 +
√

1− 4m2

s

)− iπ
)2]

+

+ m2
Z

[√
4m2

m2
Z

− 1 arctan

(
1√

4m2

m2
Z
− 1

)]}
,

4m2

s
< 1,

4m2

m2
Z

> 1 ,

(J.20)

F (mZ , s,m) = −3

2
+

ln(m2)

2
+

+

(
1

m2
Z − s

){
s

[
1

2

√
1− 4m2

s

(
ln(

1−
√

1− 4m2

s

1 +
√

1− 4m2

s

)− iπ
)]

+ m2

[
1

2

(
ln(

1−
√

1− 4m2

s

1 +
√

1− 4m2

s

)± iπ
)2

− 1

2

(
ln(

1−
√

1− 4m2

m2
Z

1 +
√

1− 4m2

m2
Z

)± iπ
)2]

− m2
Z

[
1

2

√
1− 4m2

m2
Z

(
ln(

1−
√

1− 4m2

m2
Z

1 +
√

1− 4m2

m2
Z

)− iπ
)]}

,
4m2

s
< 1,

4m2

m2
Z

< 1

(J.21)

In eq. (J.21), the plus sign corresponds to s < m2
Z while the minus sign to s > m2

Z . As an
example the full analytical expressions for A3 and A5 can be obtained by taking appropriate
derivatives of function F like, A3 = c ∂F

∂s and A5 = −c (∂F
∂s + ∂F

∂m2
Z

), where, as above, c is

a factor related to the couplings in the corresponding vertex. As a cross check, taking the
limit m→ 0 in eq. (J.21) we arrive at,

F (mZ , s, 0) = −3

2
− 1

2(m2
Z − s)

[
s ln(s)−m2

Z ln(m2
Z)

]
+
iπ

2
, (J.22)

and differentiating w.r.t s and m2
Z we reproduce the expressions eqs. (J.15) and (J.16).
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Appendix K

In this appendix we present necessary conditions for anomaly cancellation and non-decoupling
heavy fermion effects in a model with three different U(1)’s corresponding to three distinct
massive or massless gauge bosons X,Y , and Z. For this model to be anomaly free, the
following conditions among couplings [see eq. (3.1)]:

n∑
i=1

(β3
X + 3α2

XβX)i =
n∑
i=1

(β3
Y + 3α2

Y βY )i =
n∑
i=1

(β3
Z + 3α2

ZβZ)i = 0 ,

n∑
i=1

(β2
XβY + 2αXαY βX + α2

XβY )i =
n∑
i=1

(β2
XβZ + 2αXαZβX + α2

XβZ)i = 0 ,

n∑
i=1

(β2
Y βX + 2αXαY βY + α2

Y βX)i =
n∑
i=1

(β2
Y βZ + 2αZαY βY + α2

Y βZ)i = 0 ,

n∑
i=1

(β2
ZβX + 2αXαZβZ + α2

ZβX)i =
n∑
i=1

(β2
ZβY + 2αZαY βZ + α2

ZβY )i = 0 ,

n∑
i=1

(βXβY βZ + αXαZβY + αXαY βZ + αZαY βX)i = 0 ,

(K.1)

must hold. Non-decoupling effects in XY Z-vertex are activated if, in addition to the require-
ments in eq. (K.1), at least one of the following expressions is non-zero:

n∑
i=1

(β2
XβY + 3 α2

XβY )i ,
n∑
i=1

(β2
XβY + 3 αXαY βX)i ,

n∑
i=1

(β2
XβZ + 3 αXαZβX)i ,

n∑
i=1

(β2
XβZ + 3 α2

XβZ)i ,
n∑
i=1

(β2
Y βX + 3 αXαY βY )i ,

n∑
i=1

(β2
Y βX + 3 α2

Y βX)i ,

n∑
i=1

(β2
Y βZ + 3 α2

Y βZ)i ,
n∑
i=1

(β2
Y βZ + 3 αY αZβY )i ,

n∑
i=1

(β2
ZβX + 3 αXαZβZ)i ,

n∑
i=1

(β2
ZβX + 3 α2

ZβX)i ,
n∑
i=1

(β2
ZβY + 3 αY αZβZ)i ,

n∑
i=1

(β2
ZβY + 3 α2

ZβY )i ,

n∑
i=1

(βXβY βZ + 3 αXαZβY )i ,
n∑
i=1

(βXβY βZ + 3 αXαY βZ)i ,

n∑
i=1

(βXβY βZ + 3 αY αZβX)i . (K.2)
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Appendix L

We append here the integrand expressions for the coefficients Aij in eq. (4.3). Note that the
number of dimensions d has been kept arbitrary throughout and on-shell conditions for the
external particles have been imposed.

A11 =
1

[(p+ a)2 −m2
W ][(p+ a− k1)2 −m2

W ][(p+ a− k1 − k2)2 −m2
W ]
×{

m2
W

[
2 (p+ a) · (p+ a)− 3 (p+ a) · k1 − (p+ a) · k2 − 2m2

H

]
−

−
[
3 [(p+ a) · (p+ a)]2 − 10 [(p+ a) · k1][(p+ a) · (p+ a)]−

− 2 [(p+ a) · k2][(p+ a) · (p+ a)] + 8 [(p+ a) · k1]2 + 2m2
H [(p+ a) · (p+ a)]−

− 2m2
H [(p+ a) · k1]

]
+

+
1

m2
W

[
[(p+ a) · (p+ a)]3 − 5 [(p+ a) · k1][(p+ a) · (p+ a)]2+

+ 8[(p+ a) · k1]2[(p+ a) · (p+ a)]− 4[(p+ a) · k1]3−
− [(p+ a) · k2][(p+ a) · (p+ a)]2 + 4 [(p+ a) · k1][(p+ a) · k2][(p+ a) · (p+ a)]2−

− 4 [(p+ a) · k1]2[(p+ a) · k2]

]}
+

+
1

[(p+ b)2 −m2
W ][(p+ b− k2)2 −m2

W ][(p+ b− k1 − k2)2 −m2
W ]
×{

m2
W

[
2 [(p+ b) · (p+ b)]− 3(p+ b) · k2 − (p+ b) · k1 − 2m2

H

]
−

−
[
3[(p+ b) · (p+ b)]2 − 10[(p+ b) · k2][(p+ b) · (p+ b)]−

− 2[(p+ b) · k1][(p+ b) · (p+ b)] + 8[(p+ b) · k2]2 + 2m2
H [(p+ b) · (p+ b)]−

− 2m2
H [(p+ b) · k2]

]
+

+
1

m2
W

[
[(p+ b) · (p+ b)]3 − 5[(p+ b) · k2][(p+ b) · (p+ b)]2+

+ 8[(p+ b) · k2]2[(p+ b) · (p+ b)]− 4[(p+ b) · k2]3−
− [(p+ b) · k1][(p+ b) · (p+ b)]2+

+ 4[(p+ b) · k2] [(p+ b) · k1] [(p+ b) · (p+ b)]2 − 4[(p+ b) · k2]2[(p+ b) · k1]

]}
−
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− 2

[(p+ c)2 −m2
W ][(p+ c− k1 − k2)2 −m2

W ]
×{

m2
W (d− 1)−

[
2 [(p+ c) · (p+ c)]− 2[(p+ c) · k1]− 2 [(p+ c) · k2] +m2

H

]
+

+
1

m2
W

[
[(p+ c) · (p+ c)]2 − 2 [(p+ c) · (p+ c)] [(p+ c) · k1]−

− 2[(p+ c) · (p+ c)] [(p+ c) · k2] + 2[(p+ c) · k1][(p+ c) · k2]+

+ [(p+ c) · k1]2 + [(p+ c) · k2]2
]}

(L.1)

A21 =
1

[(p+ a)2 −m2
W ][(p+ a− k1)2 −m2

W ][(p+ a− k1 − k2)2 −m2
W ]
×{

(4 d− 6)m2
W +

[
3 (p+ a) · (p+ a)− 5 (p+ a) · k1 − (p+ a) · k2 + 2 m2

H

]
+

+
1

m2
W

[
− [(p+ a) · (p+ a)]2 + 3 [(p+ a) · k1][(p+ a) · (p+ a)]− 2 [(p+ a) · k1]2 −

−2 [(p+ a) · k1][(p+ a) · k2] + [(p+ a) · (p+ a)][(p+ a) · k2]

]}
,

(L.2)

A22 =
1

[(p+ b)2 −m2
W ][(p+ b− k2)2 −m2

W ][(p+ b− k1 − k2)2 −m2
W ]
×{

(4 d− 6)m2
W +

[
3 (p+ b) · (p+ b)− 5 (p+ b) · k2 − (p+ b) · k1 + 2 m2

H

]
+

+
1

m2
W

[
− [(p+ b) · (p+ b)]2 + 3 [(p+ b) · k2][(p+ b) · (p+ b)]− 2 [(p+ b) · k2]2 −

−2 [(p+ b) · k1][(p+ a) · k2] + [(p+ b) · (p+ b)][(p+ b) · k1]

]}
,

(L.3)

A23 =
−1

[(p+ c)2 −m2
W ][(p+ c− k1 − k2)2 −m2

W ]
×{

4 +
2

m2
W

[
− [(p+ c) · (p+ c)] + (p+ c) · k1 + (p+ c) · k2

]}
,

(L.4)
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A31 =
1

[(p+ a)2 −m2
W ][(p+ a− k1)2 −m2

W ][(p+ a− k1 − k2)2 −m2
W ]
×{

(7− 4 d)m2
W −

[
4 (p+ a) · (p+ a)− 7 (p+ a) · k1 + 3 (p+ a) · k2

]
+

+
1

m2
W

[
[(p+ a) · (p+ a)]2 − 3 [(p+ a) · k1][(p+ a) · (p+ a)] + 2 [(p+ a) · k1]2 +

+2 [(p+ a) · k1][(p+ a) · k2]− [(p+ a) · (p+ a)][(p+ a) · k2]

]}
,

(L.5)

A32 =
−1

[(p+ b)2 −m2
W ][(p+ b− k2)2 −m2

W ][(p+ b− k1 − k2)2 −m2
W ]
×{

m2
W +

[
− (p+ b) · (p+ b) + 6 (p+ b) · k2

]}
,

(L.6)

A33 =
1

[(p+ c)2 −m2
W ][(p+ c− k1 − k2)2 −m2

W ]
×{

2− 1

m2
W

[
(p+ c) · (p+ c)− (p+ c) · k1 − (p+ c) · k2

]}
,

(L.7)

A41 =
−1

[(p+ a)2 −m2
W ][(p+ a− k1)2 −m2

W ][(p+ a− k1 − k2)2 −m2
W ]
×{

m2
W +

[
− (p+ a) · (p+ a) + 6 (p+ a) · k1

]}
,

(L.8)

A42 =
1

[(p+ b)2 −m2
W ][(p+ b− k2)2 −m2

W ][(p+ b− k1 − k2)2 −m2
W ]
×{

(7− 4 d)m2
W −

[
4 (p+ b) · (p+ b)− 7 (p+ b) · k2 + 3 (p+ b) · k1

]
+

+
1

m2
W

[
[(p+ b) · (p+ b)]2 − 3 [(p+ b) · k2][(p+ b) · (p+ b)] + 2 [(p+ b) · k2]2 +

+2 [(p+ b) · k1][(p+ b) · k2]− [(p+ b) · (p+ b)][(p+ b) · k1]

]}
,

(L.9)

A43 = A33 , (L.10)
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A51 =
1

[(p+ a)2 −m2
W ][(p+ a− k1)2 −m2

W ][(p+ a− k1 − k2)2 −m2
W ]
×{

5m2
W +

[
3 (p+ a) · (p+ a)− 2 (p+ a) · k1

]}
+

+
1

[(p+ b)2 −m2
W ][(p+ b− k2)2 −m2

W ][(p+ b− k1 − k2)2 −m2
W ]
×{

5m2
W +

[
3 (p+ b) · (p+ b)− 2 (p+ b) · k2

]}
−

− 2

[(p+ c)2 −m2
W ][(p+ c− k1 − k2)2 −m2

W ]
. (L.11)

It is straightforward, but long and tedious, to show that after implementing the condi-
tion (4.7) to coefficients in eqs.(A.1)-(A.10) we arrive at eq. (4.8) which is at the most
logarithmically divergent.

For complementarity reasons, it is useful in deriving eq. (4.24) to present the ex-
pression for the coefficient A11 after the imposition of the arbitrary vector relation
eq. (4.7).

A11 =
1

[(p+ a)2 −m2
W ][(p+ a− k1)2 −m2

W ][(p+ a− k1 − k2)2 −m2
W ]{(

(p+ a− k1)2 −m2
W

)
(1− d)m2

W +

+ 4[(p+ a) · k1][(p+ a) · k2]− [3m2
W + (p+ a)2]m2

H

}
+

+
1

[(p+ a)2 −m2
W ][(p+ a− k2)2 −m2

W ][(p+ a− k1 − k2)2 −m2
W ]{(

(p+ a− k2)2 −m2
W

)
(1− d)m2

W +

+ 4[(p+ a) · k1][(p+ a) · k2]− [3m2
W + (p+ a)2]m2

H

}
. (L.12)

This integrand expression, under
∫
d4p, is obviously at the most logarithmically diver-

gent.
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Appendix M

We would like to examine the surface terms arising in d = 4 when calculating the
integral on the l.h.s of eq. (4.12). This integral after Wick rotation into Euclidean
space, reads

i

∫
d2ω`

`2 gµν − 4 `µ `ν
(`2 + ∆)3

, (M.1)

where ` ≡ `E and drop for clarity the subscript E from now on. We follow very closely
’t Hooft and Veltman’s seminal paper in [33]. In our calculation for a physical process
we should notice first that `µ, `ν are strictly 4-vectors since they are contracted with
physical external momenta kµ1,2 or kν1,2. On the other hand, the loop momentum ` in `2

has components in all, d = 2ω, dimensions. We write ` as a sum of a vector `‖ which
has non-zero components in dimensions 0, 1, 2, 3 and a vector `⊥ which has nonzero
components in (2ω − 4)-dimensions,

` = `‖ + `⊥ . (M.2)

With this definition, the integral (M.1) reduces to

i

∫
d2ω`

`2
⊥ gµν

(`2 + ∆)3
, (M.3)

where the `‖ components in the numerator of (M.1) vanish thanks to symmetric inte-
gration formula, `µ‖`

ν
‖ →

1
4
`2
‖g
µν . In order not to carry the gµν in all formulae below we

just concentrate on the integral

I ≡ i

∫
d2ω`

`2
⊥

(`2 + ∆)3
= i

∫
d4`‖

∫
d2ω−4`⊥

`2
⊥

(`2
‖ + `2

⊥ + ∆)3
. (M.4)

Integrating over the extra dimensional solid angle dΩ2ω−4 we arrive at

I =
2 i πω−2

Γ(ω − 2)

∫
d4`‖

∫ ∞
0

dL
L2ω−3

(`2
‖ + L2 + ∆)3

, (M.5)

where Γ(x) is the Euler Γ-function and L is the length of the `⊥ vector. This integral
is UV divergent for ω ≥ 2 and IR divergent for ω ≤ 1. Therefore, the region of
convergence, 1 < ω < 2, is finite but it does not yet include the point ω = 2. In order
to enlarge the region of convergence to include ω = 2 one has to analytically continue
I by inserting the identity,

1 =
1

5

(
∂`‖µ
∂`‖µ

+
∂L

∂L

)
, (M.6)

in (M.5). After integrating by parts in the region of convergence, rewriting the r.h.s in
terms of I from eq. (M.5) and keeping only, potentially, non-vanishing surface terms,
we arrive at

I =
i πω−2 Γ(4− ω)

4

∮
d3Sµ

`‖µ
(`2
‖ + ∆)4−ω −

6 i πω−2∆

Γ(ω − 1)

∫
d4`‖

∫ ∞
0

dL
L2ω−3

(`2
‖ + L2 + ∆)4

,

(M.7)
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where the first integral is over the Euclidean spatial components of a 4-vector on a
three-sphere. The surface integral converges in 1 < ω < 2 while the other in 1 < ω < 3.
By taking the surface integral on a three-sphere with radius R and eventually taking
the limit R→∞ we find∮

d3Sµ
`‖µ

(`2
‖ + ∆)4−ω = 2π2 lim

R→∞
R2ω−4 , (M.8)

which now converges in the region ω ≤ 2, that is, it includes the point ω = 2. For
ω < 2 this surface term vanishes while for ω = 2 there is a finite piece, 2π2, remaining.
This is exactly the term that spoils gauge invariance and the equivalence theorem. In
DR this term is axiomatically absent - the shifting of integral momenta is among DR’s
main properties.

Turning into the second integral of eq. (M.7) we note first that the region of con-
vergence includes now ω = 2. It gives,∫

d4`‖

∫ ∞
0

dL
L2ω−3

(`2
‖ + L2 + ∆)4

=
π2

12

Γ(ω − 1)Γ(3− ω)

∆3−ω . (M.9)

By placing eqs. (M.8) and (M.9) into eq. (M.7) we finally arrive at eq. (4.12).
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Appendix N

For the fermions with four-momenta p′ and p and masses m1 and m2 respectively, the
equation of motion is:

u(p′)/p′ = m1u(p′), u(p)/p = m2u(p), /p′u(p′) = m1u(p′), /p u(p) = m2u(p). (N.1)

Let write the expression u(p′)γµu(p) in the following form:

u(p′)γµu(p) = u(p′)

[
Ap′µ +B pµ + i Cσµνp′ν + iD σµνpν

]
u(p), (N.2)

where A,B,C,D are coefficients to be determined later and σµν = i
2

(
γµγν − γνγµ

)
.

For the term u(p′)σµν p′νu(p) we find:

u(p′)σµν p′νu(p) =
i

2
u(p′)

(
γµγν − γνγµ

)
p′νu(p) =

i

2
u(p′)

(
2gµν − 2γνγµ

)
p′νu(p) =

=
i

2
u(p′)

(
2p′µ − 2/p′γµ

)
u(p) = iu(p′)p′µu(p)− im1u(p′)γµu(p),

(N.3)

where we used the fact that {γµ, γν} = 2gµν and the equations of motion eq. (N.1). In
a similar way we find:

u(p′)σµν pνu(p) = −iu(p′)pµu(p) + im2u(p′)γµu(p). (N.4)

Making use of eqs. (N.2), (N.3) and (N.4) we obtain:

u(p′)γµu(p) = u(p′)

[
(A− C) p′µ + (B +D) pµ + (C m1 −Dm2)γµ

]
u(p) (N.5)

In order the equation above be satisfied, it must be A − C = 0, B + D = 0 and
C m1−Dm2 = 1. There are four unknowns and three equations, therefore there is an
infinity of solutions of the system above. If we choose C = −D, then A = B = C =
−D = −1

m1+m2
. However if we choose C = D, then A = −B = C = D = 1

m1−m2
. In the

last case it must be m1 6= m2. With the choices above we obtain the following vectorial
Gordon identities:

u(p′)γµu(p) = u(p′)

[
p′µ + pµ

m1 +m2

+
i σµν(p′ − p)ν
m1 +m2

]
u(p),

or

u(p′)γµu(p) = u(p′)

[
p′µ − pµ

m1 −m2

+
i σµν(p′ + p)ν
m1 −m2

]
u(p), (N.6)

respectively with m1 6= m2 in the last expression. We can use the same procedure to
obtain the axial Gordon identities. Let write now the expression u(p′)γµγ5u(p) in the
following form:

u(p′)γµγ5u(p) = u(p′)

[
Ap′µγ5 +B pµγ5 + i Cσµν γ5 p′ν + iD σµν γ5 pν

]
u(p). (N.7)
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Analyzing the third and fourth term of the expression above we find:

u(p′)σµν γ5 p′νu(p) = i u(p′)p′µ γ5 u(p)− im1 u(p′)γµγ5u(p),

and

u(p′)σµν γ5 pνu(p) = −i u(p′)pµ γ5 u(p)− im2 u(p′)γµγ5u(p),
(N.8)

where as previously we used the equations of motion and the fact that {γµ, γν} = 2gµν

and {γµ, γ5} = 0. After substituting these expressions in eq. (N.7) , this takes the
form:

u(p′)γµγ5u(p) = u(p′)

[
(A− C) p′µγ5 + (B +D) pµγ5 + (C m1 +Dm2)γµγ5

]
u(p).

(N.9)

As in the previous case we obtain the following system A − C = 0, B + D = 0 and
C m1 + Dm2 = 1. There is an infinity of solutions for this system. If we choose
C = D, then A = −B = C = D = 1

m1+m2
, however if we choose C = −D, then

A = B = C = −D = 1
m1−m2

. As previously in the last case m1 6= m2. Finally, for
these two cases the axial Gordon identities are written as:

u(p′)γµ γ5u(p) = u(p′)

[
p′µ − pµ

m1 +m2

+
i σµν(p′ + p)ν
m1 +m2

]
γ5u(p),

or

u(p′)γµ γ5u(p) = u(p′)

[
p′µ + pµ

m1 −m2

+
i σµν(p′ − p)ν
m1 −m2

]
γ5u(p). (N.10)
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