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Preface

Particle physics is currently established as one of the most active and fruitful fields of
research for both theoretical and experimental physicists. Its cornerstone, the Stan-
dard Model (SM), seems to offer a deeper understanding of the fundamental laws of
nature as these appear through the observed interactions of all known elementary par-
ticles. However, such a model, despite being remarkably accurate and concrete, carries
along several inherent deficiencies which become more severe at higher energies. These
suggest that perhaps another more fundamental theory should also exist that could
serve as a completion of the SM.

The scope of this thesis is to examine several issues and questions, the SM and its
standard extensions left open, and to offer new proposals and possible solutions. Such
solutions are believed to eventually lead us into a more elaborate and perhaps more
fundamental theory. In what follows we mainly discuss the SM and two of its standard
extensions, commonly referred to as Supersymmetry (SUSY) and Grand Unified Theory
(GUT). This thesis is organized as follows:

In the first chapter after introducing the fundamental concepts of gauge symmetry
and renormalizability we proceed to revisit general aspects and properties of the SM.
We focus on the basic structure of this model as well as its physical spectrum. The
latter consists of all known elementary particles to date. At the end of this chapter
we present some of the SM inadequacies which motivate us to search for answers in
theories beyond the SM.

Thus, in the second chapter we introduce these “beyond the SM theories”. We start
with Supersymmetry (SUSY), a general framework which is regarded as a minimal but
particularly promising extension of the SM. We avoid an extensive discussion on the
vast subject of SUSY by concentrating on selected topics that further enable us to
build the Minimal Supersymmetric SM (MSSM). As in the SM we revisit only certain
aspects of this particular model, namely only those relevant to our subsequent analysis
or research. Next, we introduce the framework of GUTs which is another extension

of the SM that may be considered also independently of SUSY. However, we focus



i

on SUSY-GUTs which seem to offer phenomenologically more viable and theoretically
more elegant realizations. Thus, we review three distinct SUSY-GUT models, based
on the standard SU(5), the "flipped” SU(5) and the SO(10) gauge groups.

Then in the third chapter, we eventually arrive at one aim of our research, namely
the fermion masses and mixing puzzle. We examine this problem with two different
approaches each of which with its own virtues and attractive aspects. In our first ap-
proach we confront the problem of neutrino masses and mixing from the viewpoint of
an explicit and consistent non-minimal SU(5) model. In our second approach we exam-
ine the masses and mixing puzzle in both the quark and the lepton sector and having
developed a useful theoretical tool we apply it in a possible SUSY-GUT realization
based on the SO(10) group.

In the fourth chapter we visit another topic of our research, namely the discrete R-
symmetries. These may appear within the MSSM and its extensions offering potential
escapes to phenomenological difficulties of SUSY models. Thus they are obviously
of direct interest to us. We focus on those symmetries arising within the standard
supersymmetric extensions of the SM, having both a phenomenological interest and
a possible dynamical origin. Finally, in the general overview we present briefly our
conclusions as well as potential perspectives of our research.

Our research has produced the three following published articles:

e M. Paraskevas and K. Tamvakis, “Hierarchical neutrino masses and mixing in non
minimal-SU(5),” Phys. Rev. D 84, 013010 (2011) [arXiv:1104.1901 [hep-ph]].

e M. Paraskevas and K. Tamvakis, “Bimaximal mixing from lopsided neutrinos,”
Phys. Rev. D 85, 073014 (2012) [arXiv:1202.2812 [hep-ph]].

e M. Paraskevas and K. Tamvakis, “On Discrete R-Symmetries in MSSM and its
Extensions,” Phys. Rev. D 86, 015009 (2012) [arXiv:1205.1391 [hep-ph]].
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Chapter 1

The Standard Model

1.1 Introduction.

The Standard Model (SM) of particle physics [1H6,[8-11] has been established as a
theory describing the dynamics of all known elementary particles at low energies. De-
veloped in the second half of the 20th century, it incorporates the fundamental concepts
of gauge symmetry and renormalizability into a Quantum Field Theory (QFT) with
solid predictions. Its wide recognition stems from a remarkable consistency with exper-
imental data extracted from a large number of independent experimental tests. In fact,
recently, the discovery of a scalar field at the LHC with seemingly the same proper-
ties as the Higgs particle, one of the SM cornerstones, was regarded as another major
success for this model. Such an event, if further verified, in practice completes the
quest for the elementary particles introduced in the SM and leaves behind a highly
functional model of interactions at low energies. Although such a model lacks the
ability to embody gravity and therefore by default fails as a fundamental theory of all
forces, it possesses all necessary ingredients required for a theoretical terra firma on
which new models, beyond the SM, can be built and new physics may be discovered.
This approach, attractive on its own but also further supported by the Effective Field
Theory (EFT) point of view seems to receive an overwhelming appreciation from both
theoretical and experimental physicists.

The elementary particles of the SM can be classified in various ways. According
to their representation under the Lorentz group they can be divided into three general
classes. The first class includes the gauge bosons, twelve spin-1 particles mediating the
three fundamental forces. The photon of the electromagnetic interaction and the eight
gluons of the strong interactions are massless, while the W=*, Z of the weak interactions

are massive, with a mass around 100 GeV. The second class includes the fermions,
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twelve spin-1/2, particles regarded as the building blocks of the known matter. Out of
these twelve particles the six quarks and the three charged leptons exhibit a hierarchical
mass spectrum varying between the MeV and the GeV scale. On the other hand the
three neutrinos, treated as massive in the current formulation of the SM, have tiny
masses probably lying in the sub-eV scale.ﬂ The third class includes a single particle,
the aforementioned Higgs scalar (spin-0) with a possible mass at 126 GeV, bearing
unique properties which preserve the self-consistency of the model.

As a theoretical model the SM exhibits many appealing features. To begin with,
it shares all attractive properties of quantum gauge theories. In such a theory, gauge
bosons, the mediators of the fundamental forces, appear inevitably in order to ensure its
invariance under a set of local symmetry transformations. These symmetries govern the
interactions between particles and, in the case where the gauge theory is also anomaly-
free, they further protect it from inconsistencies to all orders in perturbation theory.
Another beautiful aspect is the renormalizability of the model. Divergences arising from
perturbation theory can be absorbed in a redefinition of well-defined quantities. With
the help of a number of techniques, developed alongside the SM, the renormalizability of
the theory has been proven, even in the case of spontaneous symmetry breaking(SSB).
The elegance of the Higgs mechanism, which is the explicit realisation of the SSB
within the SM giving mass to elementary particles, is yet another appealing feature of
the model and the list continues further.

In what follows in this section we study in more detail the above, among other,
selected topics concerning the theoretical structure of the SM. We then proceed with
the explicit construction of the model and its phenomenological implications. Finally,
we conclude with problems and inadequacies arising within its context that naturally

lead us to search for new physics in theories beyond the SM.

1.2 Quantum Gauge Theories.

It seems at least unexpected that an initially unnoticed mathematical symmetry un-
derlying Maxwell’s classical theory of electromagnetism would turn into a principle
with profound impact on modern particle physics. Nowadays, gauge symmetries and
QFT, yet another theoretical advance developed in the last century, have merged into
the very elegant and powerful framework of quantum gauge theories. This general

framework offers not only severe technical restrictions for model building but also a

1Strictly speaking the exact mass spectrum of the light neutrinos is yet undetermined and a pos-
sibility for one massless neutrino is not yet excluded.
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deeper understanding of fundamental concepts such as those of particle, charge and

force.

1.2.1 Global Symmetries.

An enlightening example of the way symmetries are realized within a field theory is
that of a single-scalar theory with a U(1) global symmetry.

The U(1) is the simplest example of a continuous group of transformations. As
an abelian group it shares the standard group properties and additionally obeys a
commutative multiplication law for its elements, namely ab = ba Va,b € U(1). Under
its action fields transform by a random complex phase U(1) : ¢(z) — ¢(z) = P ¢ (x)
where ¢ is identified as the U(1) charge of the respective field and 6 as the group
parameter. In the global symmetry case the group parameter is considered constant
in contrast with the local symmetry case where the group parameter is a function of
space-time 6(z). Even though a gauge is in fact a local symmetry a first discussion on
global symmetries seems more illustrative for our purposes.

Any symmetry, and in particular the U(1) considered in this example, is realised
in a field theory by demanding that the Lagrangian remains invariant under all trans-
formations of the given symmetry group. This is not very restrictive since the terms
respecting the condition above turn out to be infinitely many. But when augmented by
the principle of renormalizability these terms reduce to very few and the Lagrangian
becomes uniquely defined. Leaving a more detailed discussion on the issue of renor-
malization for a following section we assume for the moment that only terms up to
quartic in the fields and quadratic in their derivatives are allowed in the Lagrangian
density. Then for any non-trivial values of the U(1) charge q # 0

_)\
2

L =0"9'9,6 —m*(6'¢) — S (¢'¢)? (1.1)

is the most general expression respecting this U(1) symmetry along with the Lorentz
symmetry that any relativistic field theory should respect.

Of course, symmetry groups are a far more complicated subject and extend well
beyond this trivial example of a U(1) symmetry. In fact, the most interesting of
these turn out to be the non-abelian Lie groups. An important property Lie groups
share is that their elements depend smoothly on the group parameters. This allows
for representations in which group elements can be parameterized exponentially in a

0o Tq

compact form as U(f) = e The T,’s are the generators, a set of Hermitian defined

operators which satisfy the Lie algebra of the group through the relation [T}, T] =
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i f*°T, with the fo%¢ being the structure constants, unique for a given non-trivial
group. In this description one can use successive infinitesimal transformations U(df) =

1+14df,T* to span the whole space of group elements.

Noether’s Theorem.

In a field theory, an underlying continuous symmetry manifests itself through conserved
charges and currents. This picture is better understood when seen through a very pow-
erful theorem proved by E. Noether in 1918, associating symmetries of the action of
a physical system with conservation laws. The theorem states that for any continu-
ous symmetry of the action S = [ Ldt there always exist a corresponding conserved
quantity called current satisfying 0*.J,, = 0 and an associated invariant quantity called
charge satisfying dd_t = (. This statement is general and requires only a continuous
symmetry of the action. In the special case of internal symmetries, as the global Lie
groups considered here, where the Lagrangian density remains invariant the theorem

is easily proved as follows.

Let a general Lagrangian described by

L= [ & £@ o), ox(0) (1.2)

with a Lagrangian density £ invariant under the transformation of a global Lie-group
G. Then

G: ¢ — @+ 0, (1.3)

under an infinitesimal transformation of the group where d¢; = i0,T};¢; for small 0,.

This corresponds to a variation in the Lagrangian density

oL oL
B(S5h:) 4+ —— b
g (090 + 50

0
oL

oc .
=6,0" (6(8u¢i)zTij¢j) (1.4)

(5 =
£ 0

with the equations of motion being silently invoked in the derivation. Obviously if

G is an internal symmetry then £ = 0 which implies the existence of the conserved
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currentd?]

W 0L
Jo = —6(8M¢i)lej¢J. (1.5)

Now since 0" J; = 0, then

/d% Iy = —/d% DI = — ]{dSi J! (1.6)

Considering the surface terms, at the right hand side, vanishing at infinity a set of

invariant quantities called charges may then be defined through
Q" = /d% Jg (1.7)

satisfying d% =0.

1.2.2 Aspects of symmetries.

Having developed a useful tool that enables us to understand how symmetries are
realized in a field theory at a fundamental level we may proceed further with a more
detailed discussion on certain aspects of this realization. For our purpose we consider
a scalar-theory where all fields belong to the fundamental representation of the non-
abelian SU(N) group. Their complex conjugates transform in the anti-fundamental
representation. By using the same arguments as in the abelian case we restrict ourselves

to the expression

A
L= 0"d19,0 —m? (o) — §(<1>T<1>)2 : (1.8)
but with ® here being an N-dimensional column vector including the fields ¢;. Clearly,
all ¢; share a common mass as it can be directly seen from the quadratic term in the
above expression. In fact this is a more general property. Fields belonging to the same
irreducible representation of a given symmetry group have degenerate masses as long

as the symmetry remains exact.

The associated currents in this theory will be given by (1.5)) generalized to include

2Currents are uniquely defined up to terms with vanishing divergence, namely .J . = J+ K, with
oMK =0
o
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complex fields. The conserved currents will have the form
Ti = —i(0ul T &5 — 0L T 0u05) (1.9)

out of which we can associate a set of charges
@ = ~i [ &5 @i 750, - 61 T3 0s). (1.10)

The number of different charges or currents as determined by the running of the index a
reflects the number of the generators 7% of the given group. For the SU(N) considered
here it is N? — 1.

In a quantum field theory the charges are a representation of the symmetry genera-
tors. To see this we may impose the equal time commutation relation of the canonical
quantization formalism between a set of fields and their conjugate canonical momentum

T = 30¢1T',
[sz(il}', t),ﬂ'j(il}',,t)] = 2(5” (53(33 — J,'/). (111)

Since charges are time-independent operators their commutator will also be time-

independent

0% Q" = —i / P (901 [T, T @ — B [T, TV 9,)
_ Z'fabCQC (112)

reflecting the algebra of the SU(N) group.

The commutation relations of the charges turn out to be more general relations that
remain valid, in a time-dependent form, even in the presence of symmetry breaking
terms. If one introduces such a term in the Lagrangian the definitions in
may still apply but the current is no longer conserved and the charge is no longer
time-independent. Nevertheless, the conjugate canonical momentum is still the same

allowing us to use once again ({1.11]) in the charge commutator to obtain

[Q (), Q"(t)] = i f"*Q°(¢) (1.13)

Therefore, even though the charges are not conserved, their commutation relation,
commonly known as charge algebra, remains intact. Such relations can also be extended

to include commutators of charges and currents or only currents forming the current
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algebra of the theory.

An important issue we came along in our previous analysis and is worth mention-
ing is the representation of the fields. Field operators and therefore particles belong
to certain representations of the symmetry group which further determines how they
transform under the symmetry. To see this recall the action of an infinitesimal trans-
formation on fields that belong to a certain multiplet, as the fundamental of SU(N)
we previously encountered. There d¢; = 10,T};¢; with the T®’s considered as N x N
matrices respecting the algebra of the group. If we had considered another represen-
tation of the SU(N) group, for example an M-dimensional multiplet, the generators
following the dimensionality of the representation could have been expressed as M x M
matrices still respecting the group algebra. It suffices then to say that generators are
abstract objects that acquire specific forms once the representation content of the the-
ory is determined. As a result the symmetry transformation itself, as seen through d¢;
or U(#), also acquires a specific form acting separately on each representation.

More than that, by following certain rules we may combine different representations
to build new ones. Since, for a symmetric Lagrangian, each term should transform
trivially under the symmetry group we can use these rules to write down all possible
combinations of group representations that produce invariant terms (i.e. singlets). It
turns out that this provides severe constraints for model building which eventually

determine the possible interactions between particles.

1.2.3 Spontaneous Symmetry Breaking.

As already mentioned the symmetry transformations act separately on the different
representations of the theory. Within a given irreducible representation they transform
a particle state onto others but they cannot connect states within different represen-
tations. Moreover, it can be shown that the energy eigenstates within an irreducible
representation will be degenerate as long as the respective group of transformations
remains a symmetry of the theory.

Since we discuss energy eigenstates the Hamiltonian formalism seems more appro-
priate. In this formalism we introduce a Hamiltonian H which we consider invariant
under the symmetry. Then a symmetry transformation acting on the Hamiltonian will

satisfy
UHU' = H. (1.14)

If we now assume that the symmetry also transforms states within an irreducible
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representation as
Uli) = 1) (1.15)
the energy eigenvalues of H will be degenerate since
E = (i|H|i) = (([U'UHU'U}i) = (j|H|j) (1.16)

Our assumption, however, is admissible if the ground state respects the symmetry
transformation. That is because physical states are produced by the action of some

creation operators on the ground state as
¢il0) = |3}, &;10) = 15)
A symmetry transformation satisfying Ug;UT = ¢; would imply
Uli) = (Ue:UNU|0) = ¢;U10) = 1) (1.17)
if only U|0) = |0).
In any other case where
U[0) +# |0) (1.18)

eq.(1.16) is no longer valid and the energy degeneracy is lifted. For the Lie-groups
we consider U(#) = €%@" and hence for an infinitesimal transformation this condition

would translate into
Q"0) # 0. (1.19)
and if further the commutation relation [¢;, Q%] = T}}¢; is taken into account then
TS (016;10) # 0 (1.20)

which implies that some fields will acquire a non-vanishing Vacuum Expectation Value
(VEV). Due to the invariance of the vacuum under the Poincare transformations

the VEVs are bound to be space-time independent quantities meaning (0|¢;(2)|0) =
(01¢;(0)[0)-

This symmetry breaking scenario is commonly known as Spontaneous Symmetry
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Breaking (SSB). In this scenario the symmetry of the spectrum breaks due to the non-
invariance of the vacuum but the symmetry relations for operators remain valid as
a result of the Hamiltonian (or the Lagrangian) being invariant under the symmetry

transformations.

The Goldstone Theorem.

In theories with SSB of a continuous symmetry, massless states appear unavoidably
corresponding to the broken generators of the symmetry i.e. those generators satisfying
eq.(1.19). The scalar bosons identified with these massless states are commonly referred
to as the Nambu-Goldstone Bosons |1,2].

To understand the connection between massless bosons and broken generators it
should be first mentioned that in the SSB case the charge corresponding to a conserved
Noether current is ill-defined. To see this recall the definition in eq.. Applying the

broken charge to the vacuum state (Q%|0) # 0) the time independent vacuum element

(01Q*|0) = / 02(0] Jo()[0) = / 020 J5(0)[0) (1.21)

diverges due to the translational invariance of the ground state. On the other hand the
commutator required for an infinitesimal symmetry transformation of a field operator
through

8 = i0a[Q°, &) = —i0. T, (1.22)

is better behaved since its vacuum expectation value can be derived from the well-
defined and space-time independent VEVs of the field operators (0]¢;(0)|0). For the

broken generators the corresponding VEVs will be non-vanishing giving

(0[1Q* (1), ¢:(0)]10)
d*z (0] [J§ (z, 1), 6:(0)] |0)

0 # ¢ = —T35{0¢;(0)|0)

de 0| szJO (0) —sz’ sz(())} |O>

= (2m)?6% (k) {(0].J5 (0)| k) (k|¢:(0)[0) e~
k

\\

—(0l¢:(0)[k) (k| Jg (0)]0) "+ } (1.23)

The space-time translation acting on the complete set of states |k), as introduced
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in the final expression, produces opposite frequency terms. Therefore, for the time-
dependence to cancel at any time a zero frequency state |k) should exist satisfying not

only
E.=0,k=0 (1.24)

but also
(0[¢:(0)[k) # 0, (0]J*(0)[k) # 0, [k) # |0)

for the VEV of at least one field operator to be non-vanishing (i.e ¢; # 0). This state
due to (1.24) corresponds to a massless particle identified as the Nambu-Goldstone

Boson.

It should be remarked though that the presence of massless Goldstone Bosons
in a theory with SSB is directly associated with the presence of conserved currents
and charges. Noether’s theorem implies that these currents emerge from continuous
symmetries of the Lagrangian (or the action). In the other case where the symmetry
is discrete (i.e the group parameter is discrete valued) SSB may as well be realized but

Goldstone bosons should not be expected to appear.

Spontaneous breaking - Abelian example.

Having established the connection between Goldstone Bosons and broken generators
of a continuous symmetry we may proceed with an illustrative example of SSB in the

simple case of an Abelian symmetry. The Lagrangian density is given by

_A
2

£ =8¢0, — m*($'6) — 5(670)° (1.25)

where the complex field is assumed to be non-trivially charged under the considered

U(1) namely g, # 0. The infinitesimal symmetry transformation would then induce
0¢ = i6[Q, ¢] = it gy
The classical potential on the other hand is identified as

V(6" 0) = m?(6°6) + 5 (60 (1.26)
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and has a minimization condition Pl

oV
6

4
p=v 09"

0 (1.27)

¢=v

A non-vanishing parameter v corresponding to the ground-state fields may then rise
if only a negative squared mass parametetﬁ is considered (m? = —pu? < 0). Then the

minimization condition is solved for

2

o] = “7 £0 (1.28)

which actually implies that the solution given by v = eiQ\/g for any © is not unique.
The phase O in fact parametrizes the degenerate ground-state fields which can be de-
picted as a circle of radius v, = \/% in the complex plane. The symmetry breaking
condition is then realized by choosing a certain value for the phase © = Qg or equiv-
alently by picking a specific direction in the aforementioned complex plane. Clearly
then, the ground-state field vy is no longer invariant under the U(1) transformations
and the symmetry is broken due to the non-invariance of the vacuum.

In the QFT language classical fields are promoted into operators and ground state

fields into VEVs. The symmetry breaking condition is then

(0]¢|0) = v (1.29)
which may be expressed in terms of its real field components (¢ = ¢1\J;%¢2) as
(0[610) + i(0¢a[0) = V2 (1.30)

By picking the direction of symmetry breaking at © = 0 meaning

v0 =(0]n]0) = (2%)/ (131)

(0l¢2[0) = 0O (1.32)

the vacuum of the theory is uniquely determined. We may then define new field

operators with respect to the true non-degenerate vacuum as ¢| = ¢1 — vg, @5 = @2

3Strictly speaking the classical potential is identified as V = V 4 (V¢)? with the second term being
positive and thus not participating in the potential minimization.

4A positive coupling constant (A > 0) is also implicitly assumed for the scalar potential to be
bounded from below.
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and express the Lagrangian density in terms of these shifted fields

A
OO + ) — S +657)° (1.33)

)\?)0

L= 5 (@61 + 06 — 22(67)"] — 5

NO| —

Since the particle spectrum is derived by small oscillations on the vacuum the above
Lagrangian density of the shifted fields describes the interactions between one massive
scalar with mass My, = \/§,u and one massless ¢o which is identified as the Goldstone
boson.

According to the Goldstone theorem the presence of one massless boson should come
as no surprise in a theory with a single broken generator as the @) of the U(1) considered
here. To clarify further the connection between the massless state encountered in this

example and the Goldstone Boson theorem, the formal proof demonstrated previously

should be recalled.

For the U(1) considered, Noether’s theorem implies a time-independent charge in

terms of the real component fields

Q= qy / dg?ﬂjo(ac) = %/dgf’c [(Ood2)d1 — (Dob1)d2] (1.34)

which due to the equal-time commutators ((1.11)) it also satisfies the commutation

relations

(Q, b1] = iqs0 (1.35)
[Q, 2] = =1 gy (1.36)

Since ([1.36]) acquires a non-vanishing VEV the general relation (1.23]) takes the form

—igsv0 = (011Q"(£), #2(0)][0) = >_(2m)?5" (k) { (01Jo(0) k) {k|2(0)]0) ™

—(01¢2(0)|k) (k| Jo(0)]0) e }

In the sum over all states only |¢2(k)) will eventually survive and thus we identify this
field as the Goldstone boson possessing a zero frequency mode for vanishing momentum

and therefore massless.

To conclude, it should be further mentioned that Goldstone bosons derived from the
SSB of a continuous symmetry of the full Hamiltonian (or Lagrangian) remain massless
to any order in perturbation theory. Of course, to demonstrate that explicitly, would

require a more extensive and rather technical discussion on many other topics including
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renormalization. A rough picture, though, can be obtained if one considers the basic
structure of perturbations. In this picture, the interaction terms introduced through
perturbative corrections also respect the symmetry and thus the symmetry manifests
itself through conserved charges and currents to any order in perturbation theory. The
currents being conserved ensure that a zero frequency mode for vanishing momentum
will always exist when SSB is realised. This, on the other hand, is not the situation in
the presence of explicit symmetry breaking interactions. In such a theory, where the
symmetry of the scalar potential is not respected by the rest of the interactions, the
scalars share an identical tree-level mass spectrum with those of the symmetric theory.
This is due to the fact that symmetry breaking interactions can only appear in the
mass terms through radiative corrections. As a result, in the case of SSB the massless
states of the symmetric theory, unavoidably present due to the conserved currents of
the Lagrangian, will also appear as massless states at tree level in the explicitly broken
theory. At higher orders in perturbation theory, though, the latter will receive non-
vanishing mass corrections reflecting the fact that the currents there are not actually

conserved. These particles are commonly known as pseudo-Goldstone bosons.

1.2.4 Gauge Symmetries

Up to this section we restricted ourselves to global internal symmetries. The symmetry
group under which the Lagrangian density was invariant was characterised by constant
space-time group parameters. In this context we were able to classify particle states
according to their representation under the given symmetry group, extract information
about their mass spectrum and also determine their interactions by introducing all
possible terms with respect to this symmetry. Following the symmetry invariance
certain powerful tools such as currents and charges were developed enabling us to have

a deeper understanding of the theory even in the case where the symmetry was broken.

A remarkable thing happens when we promote these global symmetries into local.
Certain vector fields emerge as a necessary condition for the theory to remain invariant
under the group of the local transformations. These fields are commonly referred
to as gauge bosons and as will be shown, they follow the number of generators of
the symmetry group. They act in a general theory as mediators of the fundamental
interactions while in the explicit context of the SM they are identified as the carriers

of the electroweak and strong force.
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Abelian gauge theories

Perhaps the easiest way to demonstrate how local symmetries manifest themselves
in a field theory is by promoting the corresponding global symmetry and demanding
that the Lagrangian will change in a consistent manner respecting this new symmetry.
We start with the illustrative example of QED described by the Lagrangian of a free

electron field invariant under U(1) transformations.

In the global symmetry case the Lagrangian density will be given by

L = W 9,a) — mi) (1.37)

respecting, besides Lorentz symmetry and the renormalization argument, an internal

U(1) symmetry acting on fermions as an Abelian Lie-group through

Y = ey (1.38)
Y= e My (1.39)
In the case where the fermion field is the electron the charge is chosen to be ¢, = —1.

By promoting the group parameter into a function of spacetime (6§ — 6(zx)) it can
be straightforwardly seen that the Lagrangian is no longer invariant due to the non-

vanishing commutator
[0, U(B())] = [0y, 9] £ 0 (1.40)

It is obvious then that the Lorentz covariant derivative should be promoted into an
operator that changes non-trivially under local transformations but not necessarily
into a form that commutes with them since that would eventually imply a global
group parameter. These type of operators are commonly referred to as gauge covariant

derivatives defined through
D, =0, —iqyA, (1.41)

with the vector field A, identified as the gauge field satisfying a non-trivial transfor-

mation under the local symmetry given by
Al (x) = Au(x) + 0,0(x) (1.42)

As a result of these definitions the covariant derivative will transform under the gauge
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group as
D, =U(0(x))D, U'(6(x)) (1.43)

The Lagrangian respecting local symmetry transformations will then be given by the

expression

Ly = 07" Dyb — mi (1.44)

with the gauge invariance being trivially satisfied due to . Of course, for the
gauge bosons to become physical degrees of freedom and satisfy a non-trivial equation
of motion a kinetic term should as well be introduced. Using our knowledge on the
classical theory of electromagnetism a closer look on the field strength tensor seems
well motivated. The field strength tensor defined through

F,, =0,A, —0,A, (1.45)

turns out to be gauge invariant as can be straightforwardly checked with the use of

(1.42). The obvious choice for a (properly normalized) kinetic term is then

1
Ly=—7F"F, (1.46)

satisfying both Lorentz and gauge invariance. Augmented by the principle of renor-

malizability as previously explained it eventually turns out that
L=L;+ L, (1.47)

is the most general Lagrangian respecting all these principles. It describes the interac-
tions of a single fermion with respect to a U(1) local symmetry through the presence
of a single vector field, the gauge boson. We identify this set of interactions as the
electromagnetic force and this gauge boson as the photon, the mediator of electromag-

netism.

To conclude our discussion on this abelian example it should be remarked that the
photon is bound to be massless since a quadratic term of the gauge boson fields A*A,,
will be absent from the Lagrangian due to gauge symmetry ({1.42]).
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Non-Abelian gauge theories.

As a next step in our discussion we examine the possibility that certain local symme-
tries rising in a field theory correspond to non-abelian groups, namely groups whose
elements do not commute with each other. We shall demonstrate this possibility in the
framework of the Yang-Mills theories [3] based on the presence of the SU(N) symmetry
group. Although in these theories such a possibility may rise for both a simple and a
semi-simple (i.e. G1 x G2 X ...) gauge group we focus on the former case for reasons
of simplicity. The generalization to the semi-simple groups is always straightforward
as will be discussed in the explicit construction of the SM.

Extending the previous abelian example to include non-abelian groups and using
analogous steps in our formalism we first assume that a set of fermion fields trans-
form in the fundamental representation of SU(NN) and thus belong to a N-dimensional

multiplet. Then, under a gauge transformation, U(6) fermions transform according to

U = Ty (1.48)
U =7 (1.49)

with the N? — 1 Hermitian generators T satisfying the Lie-algebra of the group

[T, T% = if®Te. The gauge covariant derivative is now defined through
D, =0, — igA"T* (1.50)

with the gauge bosons following the number of group generators and transforming

non-trivially under the gauge group through
a a Z
A, = AT, A =UAU" - E(aMU)UT (1.51)

Under these definitions it can be checked that the gauge covariant derivative transforms

in analogy with the abelian case (|1.43) as
D, =UD,U" =e "D, """ (1.52)
meaning that the fermion part of the invariant Lagrangian density will be given by
L;=iUy"D, U —mU¥¥ (1.53)

For the gauge part the situation turns out to be less trivial. The field strength tensor



1.2. QUANTUM GAUGE THEORIES. 19

Fi,, if naively considered as in the abelian case, transforms non-trivially under the
gauge transformation and Fj F**" is not invariant. This suggests that the tensor
should be promoted into a more suitable form which will further allow the construction
of an invariant term in the Lagrangian. To realize this a closer look on is
required. There, it can be seen that the field strength may also be expressed through

the commutator
[D,U«a Du] = _in,uz/ (154)

Such a relation can be straightforwardly generalized as a definition in the non-abelian

case

—igF,, = —igk,, T =[D,,D,]
F,=0,A,—-0,A,—1g[A,, A (1.55)
P, = 0,A, — 0,A; + gf“bcAZAf, (1.56)

with this new tensor following the simple transformation law of the gauge covariant

derivative(1.52)

F,, =UF,U' (1.57)
a _ 1a abe b e
By, =, + [“°0°F,, (0 —0) (1.58)
The infinitesimal transformation above reveals a certain representation for the field
strength tensor. This is the adjoint representation defined through T2 = —if, thus
being non-trivial for any non-abelian Lie-group. The invariant quadratic term in the
Lagrangian will be proportional to Tr[F),, F*"] or equivalently to Fj F** due to the
relation Tr[TT?] = k§%°. Thus, the Lagrangian density for the gauge bosons in the

non-abelian case will be given by

L, = —%FI‘LF”W = —i Tr[F,, F") (1.59)

Our previous analysis also reveals certain aspects that require a closer examination.
For example, the gauge fields as in the abelian case will be massless since a term
quadratic on the fields is also forbidden due to gauge symmetry. Furthermore, the
coupling parameter emerging from the definition of the gauge covariant derivative is
bound to be universal for any given non-abelian simple gauge group. In other words the

gauge covariant derivative D, necessarily operates on the different representations of
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the theory with the same g. This condition in fact arises from the non-trivial nature of
the group algebra since the generator commutator participates in the definition of the
field strength tensor(L.55). In case of semi-simple groups Gy x G X ... this condition
is relaxed but still one can associate a single gauge coupling for every simple group
G;. Also, in the case of abelian groups such a condition is obviously absent eventually

allowing for particles with different charges.

1.3 Basics on Renormalization

In a relativistic QFT certain measurable quantities, when directly evaluated within
the corresponding theoretical framework, turn out to produce infinities, eventually
rendering the theory itself ill-defined. For a deeper understanding of this problem one
should recall the structure of perturbations. In a perturbative QFT after determining
the Feynman rules of the corresponding theory at tree level one proceeds to evaluate
physical quantities such as masses, couplings or amplitudes to any order in perturbation
theory. In practice, this is usually impossible to be realized since it would imply a sum
over an infinite number of terms. But to a good approximation one can stop at a certain
order of perturbations which in the formalism of the Feynman diagrams corresponds to
a certain number of loops involved. The evaluation of diagrams involving loops, though,
often corresponds to the evaluation of divergent integrals reflecting that the momenta
of the virtual particles involved are allowed to vary up to infinity. If the theory satisfies
certain constraints then these divergences, corresponding to the absence of a natural
cut-off for the internal momenta, can be collected and absorbed through a series of
techniques in a redefinition of well-behaved quantities.

Such a procedure is commonly known as renormalization [4-7]. Renormalization
is a vast subject including various techniques and followed by an extensive formalism.
However, since we are only interested in general aspects, it is sufficient to restrict
ourselves to the rather standard strategy, known as renormalization with counterterms,

as applied in a scalar-fermion theory.

1.3.1 Renormalization with counterterms

The counterterm renormalization method[’] is a certain renormalization scheme char-

acterized by the introduction of terms in the Lagrangian specifically designed to cancel

Salso known as the BPH- renormalization scheme [5], as for Bogoliubov-Parasiuk-Hepp who origi-
nally proposed it, further developed by Zimmermann and Lowenstein [6].
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Figure 1.1: Divergent diagrams in ¢* theory. The superficial degree of divergence for
(a,b,c) is D=0,2,-2 respectively. Note that although (c) is superficially convergent it is
actually divergent due to a subgraph divergence identical to (a).

divergences as those arise in a relativistic, perturbative, QFT. Its concrete mathemat-
ical consistency along with its relative simplicity have established it as the standard

method for renormalization both for practical calculations as well as theoretical studies.

In order to understand how this scheme is explicitly realized in a QFT we first

express a general scalar-fermion Lagrangian in the more convenient form

L="Lo+ Y L (1.60)

where we have separated the free part Ly, from all other possible interaction terms
L;. The Lagrangians we will be interested in are the so-called renormalizable by power
counting. They consist only of terms with total mass dimension My < 4 as this arises
by addition if we assign 1,1,3/2 mass dimensions to derivatives, scalars and fermions
respectively. Such an ad hoc choice for the allowed terms in the Lagrangian as well as

the field and derivative assignments will be justified in what follows.

Besides the above general considerations, the following definitions will also be useful

in our subsequent analysis:

One particle irreducible(1PI) Feynman diagrams. These are distinct dia-
grams that share a common topological property. They are understood as the con-
nected diagrams which cannot become disconnected through a single cut in any of
the internal propagators. With the term “connected” we refer to diagrams with all
external propagators linked to each other while with “disconnected” to any other pos-
sible case. All diagrams displayed in Fig[I.1]should thus be regarded as 1PI since they
immediately comply with the criteria above.

Superficial degree of divergence D. This is a particularly useful parameter, as-

sociated with the asymptotic behaviour of amplitudes. We define the superficial degree
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of divergence of a given diagram as the difference between numerator and denominator
internal momenta as these may arise from propagators,vertices and integration vari-
ables. For example the diagram Fig{l.1{a) for a single scalar ¢* theory with transferred

momentum ¢ will give

@ [ p 1 _
r /dk((k+q>2_m2><k2_m2)—>D 0 (1.61)

Negative values for D indicate superficially convergent integrals while the values 0, 1, 2,

etc. indicate logarithmic, linear, quadratic, etc. superficial divergence respectively.
The term “superficial” is understood by considering Fig.u(c) where while D = —2
the diagram is actually divergent due to an inherent subgraph divergence. Nevertheless,
as will be discussed, it is the superficial rather than the actual divergence of a diagram

that is in practice important for renormalization.

It should be mentioned that for the evaluation of all diagrams in the renormal-
ization procedure, integrals are implicitly assumed a priori regularized with a proper
regularization scheme. That is integrals are considered to have become ﬁniteﬁ without
restricting ourselves to a specific regularization scheme and without violating funda-
mental elements of the theory such as symmetry relations. We also implicitly consider
all particles massive so as to avoid a non-analytic behaviour of the integrals around
zero momentum. This is a crucial point for our subsequent treatment where we shall
consider Taylor series of integral functions around zero external momenta. That is be-
cause an expansion of a divergent integral, as in , in terms of external momenta
will give

I'(q) =T(0) + ¢ % +... (1.62)
4" | p2—0
where it can be checked that only I'(0) is divergent while higher order terms will be
convergent (D < 0). In this way, we may in general isolate the divergence of a given
diagram to a finite number of terms in the Taylor expansion.

The 1PI diagrams of Fig[T.1] displaying the superficial degree of divergence ac-
cordingly, may help to understand a generic, useful relation that holds, associating
the topology of a connected diagram with the superficial degree of divergence. To
demonstrate it we first explain our notation. We denote the number of external

scalar(fermion) lines as B(F), of internal scalar(fermion) lines as IB(IF) and of ith

6This is either through cut-off or dimensional regularization |7] with the latter scheme being con-
siderably advantageous in the presence of symmetries.
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type vertices as n; corresponding to a certain £; term. For a given vertex ¢ we further
denote as b;(f;) the scalar(fermion) lines attached to it and d; its possible derivatives.

Then the following relations for a general theory with only bosons or only fermions

B+2(IB) = nb;
F+2(IF) =) nif; (1.63)

would immediately hold. A generalization to the case of a scalar-fermion theory, reveals

for the superficial degree of divergence

D =) nd;+2(IB)+3(IF)—4) n;+4 (1.64)
3
—_B-— §F+4—|—Zni§i (1.65)
3

where for the second row was used. The meaning of is rather simple.
Every derivative interaction contributes a momentum in the nominator through the
corresponding vertex (> n;d;). Every internal boson(fermion) line will contribute
two(three) degrees of divergence from the difference between the introduced four-
momentum volume of integration and the denominator momenta coming from the
propagator (2(/B),3(IF)). Each vertex i imposes a four-momentum delta function
which cancels an integration volume (—4 > n;) except for one delta function which
survives corresponding to the four-momentum conservation for the external propaga-
tors(+4).

The parameter §; as defined in is commonly referred to as the index of di-
vergence of the ith type vertex or equivalently of the £; term. As defined here, it
carries the information for the naive dimension of the corresponding operator previ-
ously considered as “mass dimension” of fields and derivatives. We may now explain
further this assignment by dimensional analysis arguments. The Lagrangian density
will necessarily carry a mass dimension four for the action to be dimensionless. Since
each derivative will have a mass dimension one (1/L ~ M) then from the kinetic terms
we easily figure out the previously mentioned mass dimensions for scalars and fermions.
The term “naive” is irrelevant for our discussion since it applies to the case of vector
fields we choose not to consider. We only mention that in this case the naive might

be different than the canonical dimension of an operatoﬂ which is a more appropriate

"This is extracted from the asymptotic behaviour of the free-field propagators.
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parameter for theories with gauge bosons. In any case, for the scalar-fermion theories

we consider, the index of divergence is also given by

We may now describe the counterterm renormalization scheme as the following

systematic approach:

e First, a one-loop computation of all 1PI diagrams of the theory is required. We
focus on the superficially divergent diagrams satisfying D > 0. A Taylor expan-
sion of the divergent integrals around the subtraction point, here taken at zero

external momenta will be used to isolate the divergent part.

e Next, a set of counterterms specifically designed to cancel the terms in the Taylor

expansion with D > 0 is introduced in the Lagrangian.

e The modified Lagrangian is now considered to construct the counterterms for
the two-loop diagrams and this procedure reiterates to all orders in perturbation

theory.

With this technical treatment all divergences are expected to vanish. We should
however point out a certain aspect which also explains the importance of the superficial
degree of divergence in this scheme. For that we examine the diagram in Fig(a) in
terms of the ¢* theory with

A
L= %(&mf — %m2¢2 — Zqﬁ‘* (1.68)

Since this is logarithmically divergent we introduce a counterterm as i%gﬁ‘l which
not only cancels the divergence in this diagram but also the subgraph divergence in
Fig[1.1](c) which eventually becomes finite. Thus, it is the superficial rather than the
actual divergence of a given diagram that implies a counterterm. By systematically
treating all superficial divergences in 1PI diagrams of a theory as described above, all
divergences are expected to be eliminated.

With all fundamental tools available we may now proceed to examine the principle
of renormalizability and the conditions this implies to a general QFT. After all that
was our main motivation for this section. The principle states that every physical
QFT should be renormalizable. It should be stressed that this is a characteristic of
the theory rather than an artifact of the specific renormalization scheme applied. The

primary condition for a renormalizable theory is that all operators in the Lagrangian
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should have a mass dimension M, < 4. This immediately implies through the
condition §; < 0. As an immediate consequence, the superficial degree of divergence D
for such a theory is well-behaved and cannot increase for higher order diagrams as can
be checked from . If that was not the case then one would have to introduce an
infinite number of counterterms to treat the increasing number of divergent diagrams
as these would unavoidably arise from higher order terms in perturbation theory.

We may generalise this last condition to an essential characteristic of renormalizable
theories. That is for such theories only a finite number of counterterms is required to
eliminate the divergences to all orders in perturbation theory. However, this “renor-
malizable by power counting” condition is necessary but not sufficient to render the
theory renormalizable. The counterterms in a renormalizable theory should also follow
the structure of the original Lagrangian. This property, required for the mathemat-
ical consistency of this scheme, is already satisfied for the diagrams of Fig/I.1] which

produce a counterterm Lagrangian of the form
Lo = A0,0)* + B¢* + Co* (1.69)

Only then the bare (unrenormalized) Lagrangian can be expressed as

1

1
Ly = 5(59#(?0)2 - —m§¢3 -

5 At = Lt L (1.70)

4

which implies that we can absorb and redefine all divergences of L, into the well
behaved £ + L.

Of course there are other interesting and non-trivial implications of renormalizabil-
ity especially when we consider symmetric Lagrangians. Our previous analysis however

is adequate to understand the general constraints of renormalization on the structure
of a QFT.

1.4 Building the Standard Model

Our previous analysis, focused on certain selected topics within the general framework
of quantum gauge theories, may further apply as a guideline in an attempt to explore
an explicit gauge model, the SM of the particle physics [10]. Although such a model
turns out to exhibit various attractive features, for reasons that will be explained fur-
ther at the end of this section it should probably be regarded as a highly functional

effective model of particle interactions at low energies. In this sense various funda-
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mental assumptions as the choice of the gauge group or the representation content of
the theory do not imply a deeper motivation other than the remarkably accurate and

sometimes elegant description of particle interactions at low energies.

1.4.1 Basic structure of the SM

The SM may be regarded as an explicit realization of the semi-simple symmetry group
Gsym = SU(3) x SU(2) x U(1) within the framework of a relativistic QFT. In this view-
point the elementary particles (scalars, fermions, gauge bosons), or strictly speaking
the particle states involved can be classified further according to their representation

profile below:

Gauge Bosons :  G,(8,1,0) , W,(1,3,0), B,(1,1,0)
Fermions : Q%(3,2,1/6) , uh(3,1,2/3) , d5(3,1,-1/3)
L£<1727_1/2> ) 6%(1,1,—1) ) VII%(?)
Scalars :  ®(1,2,1/2) (1.71)

The first row represent the twelve massless gauge bosons of the unbroken theory
corresponding to the twelve generators of the Ggy; with G, W, B being the gauge fields
of the respective SU(3), SU(2),U(1) subgroups. The second and third row represents
the fermion states of the theory with an implicit family replication denoted by the index
I = 1,2,3 and confirmed by experiments. The @, L, as far as the SU(2) subgroup
is concerned [f| are the doublets (ur,dr), (vz,er) respectively. All fermion states are
denoted as four-component spinors of certain chiralityf] (left or right-handed) with
spinors of opposite chirality being allowed to transform in different representations
of the gauge group. When the gauge symmetry will be broken these chiral fields
will form together Dirac fermions (four-component spinors) obviously belonging to the
same representation of the remnant gauge group. The situation for the neutrinos is
more subtle due to the inadequacy of current experimental data as will be discussed
extensively in a following chapter. Finally, the last row represents an SU(2) doublet
of scalars, charged under U(1), known as the Higgs doublet. It is required for the
operation of the Higgs mechanism which will realize in a rather elegant manner the
SSB phenomenon within the framework of the SM gauge theory.

Since the Lagrangian of the SM, even in the unbroken case, is rather extensive,

8suppressing color-SU(3) indices
9These are simply the four-component spinors ¥y = (¢1,0),¥x = (0,9r) in a two-component
block form.
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a decomposition to the different sectors of the theory is required. Thus, using our

previous philosophy on gauge theories we may write
L=Ly+ L+ Ly (1.72)

isolating the gauge, the fermion and the scalar part respectively. Before we examine
further each term of the above expression a general remark on the gauge covariant
derivative should be made. The gauge covariant derivative can be expressed anywhere

in the compact form
D# = au — ZleBM — ZQQWST(GQ) — ZggGMT&) (173)

Its explicit form will be determined by the respective representation on which it oper-
ates each time. The Y, T{), T(3) are the U(1) hypercharge, the SU(2) and the SU(3)
generators with respect. The covariant derivative acting on the Higgs doublet for ex-
ample would have Y = —1/2 and T{y) as the properly normalized generators of the
SU(2) fundamental representatiof’’} Since this representation is trivial under SU(3)
the eight generators 7T{3y will be vanishing.

With this global definition of the covariant derivative at hand we may proceed to
examine the gauge sector. There, we have
1 1

Lo=—7B"Bu —

1
; WO, - 1GRG, (1.74)

Obviously, this is the Yang-Mills structure previously discussed in the abelian and non-
abelian gauge theories. The definitions for the field strength tensors still apply in the
case of the semi-simple group of the SM but with the straightforward generalization
that for each subgroup there is a single corresponding gauge coupling involved in the
definitions. Thus for example from the definition the field strength for the SU(2)

gauge bosons W, will involve only the gauge coupling g, since the covariant derivative
(1.73) will be trivial for the g;, g3 terms.

In the fermion sector the Lagrangian is more extensive but the structure is rather

0These are no other than the well-known Pauli matrices o; multiplied by a factor 1/2
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simple. We havd]]

L;=1Q DQy, + iugPur +idgPdr +iL DLy + iegDeg
+ YO dul + VI Q 0 dh + YL B el + he
{+ivpPvgp + (YVIJZQCT)V}% +myvhv + h.c)} (1.75)

In the first row we observe the kinetic terms which in a gauge theory also include the
interactions of fermions with gauge bosons through the explicit form of the covariant
derivative. Family indices there are suppressed but are implied diagonal due to a choice
of basis (i.e. the gauge basis). In the second row all possible renormalizable interactions
of fermions with scalars respecting the symmetry are introduced. The matrices Y in
family space, also known as Yukawa couplings, are not directly measurable but they give
rise to physical quantities such as the fermion masses and mixings when the symmetry
is spontaneously broken. The last row corresponds to the rather standard (but not
unique) extension of the SM in order to include masses for the neutrinos. These terms
were absent in the original theory where the neutrinos were erroneously considered
massless and so far experiments have been inconclusive on their explicit structure.
Even from this brief review over the fermion and gauge sector of the unbroken SM
the necessity for a symmetry breaking mechanism should have become obvious. Al-
though this model describes adequately particle interactions at higher energies, namely
above the respective mass thresholds of the observed particles it falls short when one
attempts to explain the origin of masses. To explain further, in the framework previ-
ously considered all particles due to gauge symmetry are massless (i.e. there is no mass
term allowed in the theory either for fermions or gauge bosons). This nice behaviour
of the theory at higher energies, as well as its deficiencies at lower, indicates not only
that the theory should be spontaneously broken but also that the mechanism operating
should attribute masses to certain particles as these are observed in nature. Such an
elegant mechanism, commonly known as the Higgs mechanism [8,9] will be discussed

below.

1.4.2 The Higgs mechanism

The scalar part of the Lagrangian was deliberately separated from our previous dis-

cussion since not only it describes interactions of the scalar-gauge bosons but under

"For economy of notation we employ the Feynman-slash symbol v*D,, = . Also the conjugate
scalar doublet is defined as ® = ioo®* so as for the proper contraction of gauge indices to be taken
into account.
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certain circumstances it can give rise to the SSB of the full theory. Since the sponta-
neous breaking is realized in a similar fashion for both gauge and global symmetries,
the U(1) example of a spontaneously broken global symmetry, as discussed in §1.2.3|

will be used as a guideline in what follows.

Applying the formalism of the abelian case, the most general renormalizable La-

grangian for the scalar SU(2)-doublet ((1.71]) of the SM will be given by
L, = D'®'D,® + 12 0Td — %(@@)2 (1.76)

Obviously, for the SSB mechanism to operate both 12, X should be considered positive.
The scalar potential of the theory is identified as

A 1 G2 + 103
V(®, ") = 12010 + Z(0TP)?, &= — 1.77
(2,8) = —01® + 5(21D) ﬁ<¢0+z¢l> (1.77)

with a minimization condition satisfied for all ground state fields &g with

2 2
1 v
Y 1.78
os®as =1 = 5 (1.78)
As in the abelian case, the vacuum will be degenerate and therefore SSB is realized by
choosing the scalar doublet to acquire a non-vanishing VEV in a certain direction. We

choose

<0|q>|o>:< " ) (1.79)
Vi

which in terms of the real scalar fields ¢; implies that only (0]|¢|0) will be non-

vanishing.

The non-degenerate vacuum of the spontaneously broken theory will remain invari-
ant under all SU(3) transformations reflecting the fact that the Higgs weak isodou-
blet([1.71]) is a singlet under SU(3). On the other hand, from the four generators of

SU(2) x U(1) acting on the vacuum only the linear combination
Q=T3+Y (1.80)

remains unbroken satisfying Q|0) = 0. This linear combination will correspond to the

generator of a new U(1) symmetry belonging to the remnant gauge group. Thus, for
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the SM we have the pattern of SSB

SU@3)e x SU(2) x U(1)y 229

SUB)e x U(1)pum (1.81)
where the surviving abelian subgroup is identified as the symmetry of the electromag-
netic interactions (U(1)gar).

Introducing the shifted fields with respect to the non-degenerate vacuum of the
broken theory as ¢, = ¢; —v ;0 reveals a new remarkable aspect for the SSB mechanism
of gauge symmetries. If these symmetries had been considered global three massless
states corresponding to the three broken generators of the SU(2) x U(1)y subgroup
would have unavoidably appeared as a result of the Goldstone theorem. In gauge
theories though these massless states not only can be absorbed through a specific
gauge transformation but also provide the theory with the necessary extra degrees of
freedom required for the ‘broken’ gauge bosonﬂ to become massive. These massless
states of the gauge theory are commonly referred to as the would-be Goldstones. The
gauge-fixing condition corresponding to this specific gauge transformation is referred
to as the Unitary Gauge.

In order to demonstrate explicitly this elegant mechanism within the context of the
SM we first reexpress the Higgs doublet in terms of the shifted fields. We have

/ 0 1 @ + 1y
b= + = 1.82
(7) ﬁ((%ﬂ)ﬂqﬁa) )

0 , 0
P = UT(x) ( e ) — i&Ti/v) ( to ) (1.83)
V2 V2

where the T;’s are the three broken generators of the theory, conveniently normalized
as 01,09, (Y — 03/2). The consistency of the parametrization in (1.83)) can be seen by
considering the fields &;(z) as group parameters. Then due to the Lie-group property

for infinitesimal transformations

= (& Tv 0 :i SRS .
o= (1+ (&T;)+...)<ng> \/§<(n+v)—|—i§3>+ (1.84)

the fields n, &; are straightforwardly identified with the shifted fields ¢, when the latter
describe small oscillations around the vacuum.
We may use the parametrization of (1.83]) to define a new Higgs doublet and new

12We use the, rather inaccurate, terminology “ ‘broken’ gauge bosons ” as an abbreviation in order

to describe those gauge bosons corresponding to the broken generators of the theory.
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gauge bosons as

PV =U(2)® = ( n(ggﬂ ) (1.85)

V2
0
W =UW,U" - E(aﬂU)UT (1.86)
B =B, (1.87)

Clearly, this is a gauge-fixing condition since the new fields, defined through a gauge
transformation of the broken generators, are not allowed to transform further under it.
To explain in more detail, we should mention that the unbroken theory has U(x) as a
symmetry. Thus, one may define the fields in any (legitimate) gauge, namely for any
suitable U’(x) including the one of the unitary gauge, and then use the SSB mechanism
to derive the Lagrangian of the broken theory. The resulting Lagrangians will describe
equivalent theories but they will no longer be connected through the considered gauge
transformations since these are not symmetries of the broken theory. By choosing to
define the theory in the unitary gauge one is able to absorb the unphysical degrees
of freedom ¢; in the gauge fixing condition described by the above relations. The

Lagrangian for the scalar sector will then have the simple structure
pw A
L, =D"o"D, oY + 7(@ +n(z))? - g(v + n(z))* (1.88)

From the kinetic term new mass terms quadratic in the ‘broken’ gauge bosons will
emerge when the Higgs will acquire a non-vanishing VEV. But before discussing the
explicit mass spectrum as it manifests in the unitary gauge it is worth mentioning that
mass terms for the gauge fields also appear for other gauge-fixing conditions. What
makes the unitary gauge so special is that the unphysical degrees of freedom which in
general would couple to the gauge bosons in bilinear forms are absent, thus rendering

the mass spectrum more transparent.

1.4.3 Particle spectrum
The explicit spectrum for the SM particles in the unitary gauge will include:

e A single scalar identified as the Higgs boson with a mass m, = v/2u as derived
from the n? terms in ((1.88)). It should be remarked that this term will have the
correct minus sign in the Lagrangian corresponding to a physical particle with

definite mass.
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e Six quarks and three charged leptons (neglecting neutrinos) with a mass derived
from the Yukawa couplings of . There, it can be seen that opposite chirality
states will form massive Dirac fermions when the Higgs develops a VEV. Due to
the family structure of the theory the fermion mass terms can be represented as

the 3 x 3 matrices in family space

L LRV S R T

The physical masses are then obtained by diagonalizing the above matrices

1J _
M,” =

through bi-unitary transformations, namely as UlT MU,. Fermion mass diago-
nalization as well as fermion mixing will be discussed in more detail for both
charged fermions and neutrinos in a following chapter. It should be mentioned
that quarks, contrary to leptons, will carry an extra degree of freedom, the color,
due to the fact that they belong to a non-trivial representation of the unbroken
SU(3)c.

e Twelve gauge bosons out of which the three, W=, Z corresponding to the broken
generators of the SU(2) x U(1)y, will become massive through the Higgs kinetic
term in . In fact it turns out that these gauge bosons will acquire their
masses in a rather elegant manner which further preserves the renormalizability

of the spontaneously broken theory.

In order to illustrate explicitly the mass generation mechanism for the gauge bosons
we first focus on the covariant derivative of the Higgs kinetic term. Since the Higgs
doublet is trivial under SU(3) the g3 term of the compact expression (|1.73) will be

absent. We therefore have

2

D' D, & = (1.90)

V2

. . ara 0
(au — lgly(pBu - ZQQWP,T ) ( n(z)+v >

with Yo = 1/2, T* = ¢%/2. From this we obtain the expression relevant for gauge

boson masses

2

(1.91)

V2

1( {91B, + g2 W3}  go(W) —iW?) )( 0 )

where obviously the terms in the first column of the above matrix are irrelevant. We
next recall that the broken gauge group has a surviving abelian symmetry U(1)ga;.

Hence, all physical particles will transform trivially (neutral) or non-trivially (charged)
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under the remaining symmetry. The gauge bosons B, Wi’ are neutral but the fields
W/}Q do not transform properly under the electromagnetic transformation (i.e. they
are not charge eigenstates.) On the other hand, the linear combinations W/f =
(W, FiW2)/ V2 are. They will carry unit charge as can be directly checked from

the commutators

Q.17 Filh] = [Q,T4] = £T4 (1.92)

In terms of the charge eigenstates the terms relevant for masses become

giv® T v’ 3\2
1 W W+ (0B — g2 W) (1.93)

The first term is obviously a mass term with My, = gov/2 for the two charged gauge
bosons W#*. The second contains all possible bilinear mixing of B, W3. Clearly, a
rotation to the mass eigenstate basis is required in order to obtain the mass spectrum.

We thus reexpress this term in the more transparent matrix form

2 2 - W3
% (W3 Br) 92 91292 p (1.94)
—0192 g1 B,

where a zero mass eigenvalue is present due to the vanishing determinant. Diagonal-

ization is obtained through the orthogonal transformation

Ow —sinf
Ubw) = C?S W T , tanfy = g1/92 (1.95)
sinfy,  cos Oy

Zu \ _ W,
(%) -von () o

which will bring (1.94)) in the diagonal form

1 BoAL %(gijg%) 0 Zy
e T6L0 0 () o

We straightforwardly obtain a massive neutral gauge boson, the Z-boson, with mass
My = (v/2)(g? + ¢2)'/? and a massless one, A, which we identify as the photon of the
electromagnetic interactions. The SU(3)¢ x U(1)gy symmetry of the spontaneously
broken theory ensures that the photon as well as the eight gluons of the strong interac-

tions will be massless, to all orders in perturbation theory. It should also be mentioned
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that when one considers the mass expressions for the gauge bosons along with the
Weinberg (electroweak) mizing angle 6y defined through (1.95)) the following relation
is obtained

My,

Sl — 1.
M cos? Oy, (1.98)

p =
It should be mentioned that this relation can be modified only if the Higgs sector is
extended to include representations other than the standard weak isodoublets. All

experiments to date support such a value for the p-parameter.

1.5 Limitations of the Standard Model

Although the SM is an extremely accurate and rather elegant gauge model, its fun-
damental deficiency to incorporate gravity along with other inadequacies that arise
within its context, motivate theoretical search for a more concrete framework. Various
theories beyond the SM such as Supersymmetry (SUSY) or Grand Unified Theories
(GUTSs), discussed here, seem to provide a consistent generalization of the SM with
many interesting and appealing features. To better understand the necessity for a more
general theoretical framework we present the following major issues that the SM has

been insufficient to address.

e The number of free parameters. As a gauge theory the SM encompasses a num-
ber of free parameters that cannot be determined by any consideration within
its context. The value for the Weinberg angle, the hierarchical fermion masses,
the mixing angles for the quarks (CKM) and leptons (PMNS)™| are regarded
in the SM as just-so parameters with no deeper physical meaning. But also
at a more fundamental level, one is not able to provide with a convincing an-
swer for the choice of the gauge group or the smallness of the electroweak scale
as compared with the Planck scale where gravity becomes strongly interacting
(Mp; ~ 10"®GeV).

e The hierarchy problem. Disregarding the aforementioned issues and keeping only
the minimal assumption for a drastically different quantum theory at Planck
scale produces a problem of technical nature to the SM itself. Heavy particles,

originating from this high-energy theory, naturally drive the light Higgs mass to

13Masses and mixing for fermions will be discussed in detail within the more general framework of
SUSY-GUTs and as a part of a published paper.
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Mp; through renormalization. For this unwanted situation to be absent severe
fine-tuning cancellation between Mp; parameters must be realized for an Mgy ~
102GeV Higgs mass to appear. In fact, this is a more general characteristic of
effective gauge theories, namely theories with a high-energy completion. The
larger the hierarchy between the scales, the more the fine-tuning required for the

scalars to remain light.
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Chapter 2

Theories Beyond the Standard
Model

2.1 Supersymmetry

Among various proposed extensions of the SM, supersymmetry (SUSY) [12-14] sin-
gles out as a theory that generalizes the SM in a consistent manner and at the same
time evades the hierarchy problem. Built on the rather simple idea of a symmetry
connecting bosons with fermions, SUSY has developed through several decades into a
solid theoretical framework strongly believed to describe particle interactions at scales
where the SM is expected to fail. For the moment experiments show no indication for
such a symmetry to exist. However, the recent discovery of a light scalar particle at the
LHC, believed to be the Higgs particle, has revitalized the interest in supersymmetric
extensions of the SM. These seem to provide a more elegant framework for fundamental

scalars of “small mass”.

2.1.1 Motivations and general properties.

In order to understand how a fermion-boson symmetry may resolve the technical com-
plications of an effective gauge theory with light scalars we examine the radiative
corrections of the Higgs in the presence of heavy particles. Using the cut-off regu-
larization scheme, the Higgs coupling to heavy scalars will induce the one-loop mass

correction

A+ (2.1)
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corresponding to a Ag|®|?|S|? coupling in the Higgs potential. The parameter A is the
cut-off scale of the theory, here considered to lie around the scale Mp; where gravity

becomes important.

The coupling with heavy Dirac fermions will give an analogous quadratically diver-

gent contribution of the form

s
2

Am?, = A+ (2.2)
corresponding to a (diagonalized) Yukawa coupling expressed in the general form
(YQJ,CDER\I/L —|— hc)

These quadratic divergences indicate that the expected mass scale for the Higgs
particle should be A ~ Mp; instead of Mpgy,. This feature turns out to be an intrinsic
property of effective theories with scalars rather than an artifact of the regularization
scheme followed. If we had used instead the dimensional regularization scheme the
quadratic divergences would have been absent but simple poles would appear propor-
tional to the squared masses of the particles in the loops. In both cases, though, one
cannot justify the presence of a counterterm specifically tuned to cancel this divergent

behaviour of the Higgs mass correction.

Supersymmetry, on the other hand, confronts the hierarchy problem in a rather
straightforward manner. From the relations , it becomes obvious that if for
every Dirac fermion there are two complex scalars with Ag = |Y;|?, then the minus sign
between scalar and fermion loops will ensure the absence of these annoying quadratic
divergences. If furthermore, such a cancellation is protected by an underlying symme-
try then the idea becomes well established with definite implications on the particle

spectrum and interactions.

From our previous experience on symmetry transformations, SUSY is expected
to be described by some appropriate generators satisfying a corresponding algebra.
But supersymmetric transformations contrary to the internal symmetries previously
discussed are special transformations of the spacetime. This should be expected since
only then the different spin states (spin-0,1/2,1) of the Lorentz group would be able to
mix. Furthermore, SUSY generators should satisfy a very special algebra which evades

the severe theoretical restrictions following spacetime symmetries [15]. It turns out
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that the graded Lie algebra

{Q,Q"} =205, P"
{Q.Q} ={Q",Q"} =0
@, P*] =[Q", P11 =0 (2.3)

with P* being the energy-momentum vector, describes the algebra of supersymmetric
transformations which for a single pair of @, Q' corresponds to the N/ = 1 SUSY

discussed here.

Particle states can be classified according to their transformation property under
the SUSY algebra in a manner analogous to the Lie algebras we previously encountered.
The irreducible representations of SUSY that accommodate fermion and boson states
(superpartners) are commonly referred to as supermultiplets. Obviously, all super-
partners within a given supermultiplet will share an identical mass since [Q, P?] = 0.
Furthermore, since [@Q,T% = 0 for any generator of an internal Lie-group, a SUSY
transformation will not mix states within an irreducible representation of the gauge
group. Therefore the whole supermultiplet will transform as a gauge eigenstate or in
other words all component fields within a given supermultiplet will share the same
quantum numbers (charge, isospin, colour). In addition, it can be shown that in any
given supermultiplet the number of fermion (nr) and boson (np) degrees of freedom
will be equal. This can be easily seen if one defines a suitable spin operator (—1)%
anti-commuting with Q, Q' and with eigenvalues 1(—1) when acting on boson (fermion)
states. Then it turns out that the trace of this operator over the states of a certain

supermultiplet will always vanish as
S Gl-1 i) = ST -1{Q. Q1Hi) = 0
=p! Zm(—l)?sm (2.4)

due to the commutation property of the trace and the anticommutation property of the
spin operator. The vanishing of Tr[(—1)?] subsequently implies the straightforward

equality ng = np for the degrees of freedom of the given supermultiplet.

Using this knowledge over the states of a given supermultiplet we may revisit the
desired cancellation of the quadratic divergences in the Higgs mass correction. In
terms of supersymmetry the Higgs supermultiplet may couple to another supermultiplet

which will include the same degrees of freedom for fermions and bosons. The simplest
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but not unique choice as we will see in more detail is the chiral supermultiplet with a
single complex scalar field and a two component Weyl-spinor. Since a Dirac fermion
is formed by two different Weyl-spinors the Higgs will necessarily couple to two chiral
supermultiplets as AH®;®, in order to account for a Higgs-Dirac fermion coupling.
Supersymmetry, as will be explained in what follows, guarantees that this coupling not
only includes the operators Ahiitby and |A]2|R[?|d1|%, |A|*|h]?|¢2|? but also imposes the
common coupling parameter A . In addition, the complex scalars ¢; will share the same
mass with their Weyl-spinor superpartners v; and therefore with the Dirac spinor that
they form. As a result, the worrisome quadratic divergences cancel each other without

the fine-tuning required due to the hierarchy problem.

2.1.2 Supermultiplets- Introducing the MSSM

The supersymmetric transformations imply a further classification for particle states
in terms of the supermultiplets, the irreducible representations of this special graded
Lie-algebra (2.3).

The minimal non-trivial choice for a supermultiplet consistent with ng = np is the
chiral supermultiplet. It accommodates a massless Weyl two-component spinor ¢ and a
complex scalar field ¢ as well as an auxiliary field F', of mass dimension two, necessary
for the supersymmetry algebra to close off-shell. To explain further the purpose this
auxiliary field serves, one should recall that a massless Weyl-spinor is described by two
complex variables (i.e. four real degrees of freedom). When the equations of motion are
invoked, two degrees of freedom are eliminated and the remaining two correspond to the
distinct spin polarization states. Since the complex scalars have the same two degrees
of freedom both off-shell and on-shell we have to invent a field that carries two extra
bosonic degrees which further vanish on-shell. The fields that satisfy such a condition
are not true dynamical variables of the system. They appear in the Lagrangian without
a corresponding kinetic term thus satisfying a trivial equation of motion. One then may
use these equations of motion to express these unphysical degrees of freedom in terms
of the physical fields of the theory. For chiral supermultiplets the equation of motion
reveals F' as a function of the scalar bosons of the theory. Under these considerations

we may denote the chiral supermultiplet ® in the symbolic vector form

o=(o v F) (2.5)

Next, we investigate the possibility for a representation of SUSY that can accommo-

date the gauge bosons. The gauge supermultiplets, as these irreducible representations
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are commonly referred to, are obviously required to be present in any realistic exten-
sion of the SM. They accommodate besides the gauge boson A*, the gaugino, which is
a two component Weyl-spinor denoted as A and once again an auxiliary field D. The
auxiliary field is introduced as previously to account for the mismatch between boson
and fermion degrees of freedom off-shell. To explain further we should recall that a
massless gauge boson is described by three real parameters due to the existence of the
gauge symmetry. Thus to account for the four fermionic degrees of freedom of the
two component Weyl-spinor we have to introduce an extra bosonic degree of freedom.
Since on shell both gauge-bosons and Weyl-spinors satisfy ng = np = 2 this extra
degree of freedom should be introduced through the presence of an auxiliary field. As
before, this field can in general be expressed in terms of the physical scalar bosons of
the theory when the equations of motion are taken into account. We may express the

gauge supermultiplet in the symbolic vector form

V:<>\ An D) (2.6)

There is an additional interesting property for gauge supermultiplets that is worth
sharing. The gauginos, following the symmetry properties of the gauge bosons in-
side the supermultiplet will unavoidably transform in the adjoint representation of the
corresponding gauge group. Since the adjoint is a real representation it cannot ac-
commodate chiral fermions, namely fermions with different gauge properties for their
opposite chirality states. Then, in a SUSY theory with gauge symmetry breaking,
the gauginos corresponding to the unbroken gauge generators will not be able to form
Dirac spinors since both A, AT will always transform in the adjoint representation of the
broken (remnant) gauge group. These spinors, however, will correspond to physical
fermions through the more restrictive Majorana field equation. It should be further
mentioned that this equation allows for massive fermions also, through quadratic self-
couplings, a property which will prove crucial for the phenomenological consistency of
the MSSM.

Of course there are other possibilities for supermultiplets that may arise within
the context of the N/ = 1 SUSY discussed here. But chiral and gauge supermul-
tiplets are sufficient in order to explore the minimal extension of the SM that in-
corporates supersymmetry, the commonly known Minimal Supersymmetric Standard
Model(MSSM) [16]. The particle content of the MSSM will include all SM particle
states in distinct supermultiplets along with their superpartners transforming together

within irreducible representations of the Gsap = SU(3)c x SU(2) x U(1)y gauge group.
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Therefore we have the classification

Gauge Supermultiplets : G(8,1,0) W(1,3,0) B(1,1,0)
Chiral Matter Supermultiplets : Q(3,2,1/6) u$(3,1,-2/3) d5(3,1,1/3)
L;(1,2,-1/2)  €5(1,1,1) Ny(?)
Chiral Higgs Supermultiplets : H4(1,2,—1/2) H,(1,2,1/2) (2.7)

The gauge supermultiplets will include, besides the SM gauge bosons and neglecting
unphysical auxiliary fields, the corresponding gauginos bearing the same gauge prop-
erties. These are the eight gluinos, the three winos and the bino. The situation for the
chiral supermultiplets will be analogous. For every quark or lepton state there will be a
corresponding scalar called squark or slepton with the same gauge properties. It should
be mentioned though, that contrary to our previous notation employed for the SM, here
all denoted fermion states , are two-component Weyl-spinors of certain chirality, con-
sidered by convention left-handed. This is for later convenience since such a notation
will be useful for the construction of the supersymmetric Lagrangian of the MSSM. In
this sense, we denote by Q the SU(2) doublet of the left-handed Weyl-spinors (ul dl)
and in an analogous manner the lepton doublet L;. All matter supermultiplets have an
implicit repetitive form as denoted by the index I following the family replication of the
SM. The supermultiplets denoted in the f¢ form also contain left-handed Weyl-spinors
but only those corresponding to the right-handed fermion states of the SM. The Weyl-
spinors they contain are given by the general expressio fe= f;r% which corresponds
to a left-handed spinor constructed by the complex conjugate of the right-handed fg.

The Higgs and the matter supermultiplets were deliberately separated although as
far as SUSY is concerned they are both chiral supermultiplets containing as physical
fields a scalar boson and a fermion. The main reason for this extra categorization is
the existence of a discrete symmetry imposed on the MSSM known as R-parity. The
existence of this symmetry turns out of major importance for the viable phenomenology
of the model. Leaving a more detailed discussion for a following section, for the moment
we only mention that the Higgs and the matter supermultiplets transform differently
under this discrete symmetry.

The extra symmetry of the MSSM, namely SUSY, seems to have nearly doubled
the particles of the SM. For every supermultiplet there is a corresponding SM field

!For economy in notation we use the same symbol for the supermultiplets and the SM particle
state they contain.
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along with its superpartner but with one exception. The Higgs supermultiplets, are
introduced as a pair in the MSSM while the SM only required a single isodoublet.
One reason for this choice is due to the gauge anomalies?] The SM is an anomaly free
model in the sense that its fermions miraculously satisfy, among others, the conditions’
Tr[T3Y? = Tr[Y3] = 0. New fermion states due to SUSY may come either from
the gauginos or the superpartners of the Higgs particles that could in principle spoil
these important relations. Gauginos cannot affect the relevant traces since the adjoint
representation is neutral under weak hypercharge(Y = 0). On the other hand a Higgs
isodoublet can, unless it comes as a pair with its conjugate. But there is an additional
reason for the introduction of a Higgs pair of supermultiplets which is rather obvious
when one considers SUSY Lagrangians. Due to a property of N' = 1 SUSY two
Higgs doublets are required for both up and down quarks (also for charged leptons and
neutrinos) to acquire masses. This property is in fact closely related to our previous
choice to define chiral multiplets with Weyl spinors of certain chirality and will be

revisited in more detail in the following section.

2.1.3 General Structure of Supersymmetric Lagrangians

Supersymmetric Lagrangians not only introduce new particles as superpartners in a
gauge theory but also exhibit an interesting and rather elegant structure which further
determines the interactions between all particles. In what follows in this section we
start with two illustrative examples, that of a Lagrangian including first only chiral and
then only gauge supermultiplets which eventually enable us to construct the coveted

MSSM.

Lagrangians with chiral supermultiplets- The superpotential.

First, we define the variations of the component fields within a given chiral supermul-

tiplet with respect to an infinitesimal supersymmetric transformation. These will be

given by
0o = e (2.8)
0y = i(o“eT)aauqﬁ + €, F (2.9)
§F = ie'a" 0,1 (2.10)

2These are also commonly referred to as triangular or AB.J anomalies. Their absence is essential
for the consistency of the model since they ensure gauge invariance being manifest at any loop order.
3Such conditions turn out to be rather trivial through the viewpoint of Grand Unified Theories.
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with € being an anticommuting two component Weyl-spinor parametrizing the infinites-
imal supersymmetry transformation in a way that resembles the group parameters of
the Lie-algebra&ﬂ From these relations one can straightforwardly check that the canon-

ical kinetic terms of the form
Lpin = "¢ 0,0 + ip15"00p + F*F (2.11)

will be invariant under SUSY transformationd’] . To account for all renormalizable
dynamical interactions between these fields one has to introduce a useful object, known
as the superpotential.

The interaction Lagrangian for chiral supermultiplets can in principle be expressed

in the general form
1. ... ) .
Lint = —§W”¢z‘¢j +W'F + M EF; +cc+ U(g, ¢7) (2.12)

where by power counting ¢/, W%, W* are considered scalar functions of mass dimension
up to 0, 1, 2 respectively. From the relations in it becomes obvious that U should
vanish since no function of scalars can be invariant under SUSY and furthermore no
other term in may produce a variation that could in principle lead to a respective
cancellation. The same arguments stand for the ¢ term and therefore it should also
be absent from the interaction Lagrangian. Hence, the expression reduces to the

form
1 . .
Lint = —§WZJ¢i¢j + W'F; + c.c. (2.13)

We can continue in this philosophy and further restrict the scalar functions W#. By

focusing on the variation of W% in terms of its scalar fields ¢, ¢* we obtain

16W 16w
0Lyis = —= (evn) (Virh;) — =

oY (iahs
2 0o 2 dgp (V)W) +ec (2.14)

out of which the first term may only cancel by itself through the Fierz identity

(Ewk)(’%%) = _{i7j7 k} - {j,k,l}

as long as 1, 7, k are symmetric in all interchanges. Since there is no analogous relation

4Conventions and identities for Weyl-spinor algebra follow those of [17]
5Obviously |F|? is not a kinetic term but is required to make the Lagrangian invariant under
supersymmetry
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for the second term then W% must be a symmetric holomorphic function of ¢; for
(2.14) to vanish. We may now introduce the superpotential as the general function

. 1. .. 1. ..
W =K'¢, + 5M”¢i¢j + §Y23k¢i¢j¢k (2.15)

whose second derivative 6W/(d¢;0¢;) can be identified as W*%. It will be the most

general symmetric rank-2 tensor with mass dimension one, analytic in the fields ¢; ,

hence satisfying (2.14)) as requested.

For the cancellation to be exact all remaining variations of fields in (2.13]) should

also vanish, namely
1. .. A
—SWIs(ay) + S(V'Fy) = 0 (2.16)

For W = 6W/§¢; it can be shown that this relation holds since all terms cancel

with each other or vanish as surface terms in the Lagrangian i.e. with the use of

Wi0,6; = 0,(0W/66,).

The above analysis proves that a supersymmetric Lagrangian of chiral supermulti-

plets should have the general form
£chi7‘al = 8N¢;‘< ,u¢i + ijaﬂafﬂpl + E*E
1. ... )

—§W”wi¢j + WlE + c.c. (217)
depending on a holomorphic scalar function W called the superpotential as defined in
(2.15)). This expression is reduced further by invoking the equations of motion for the
auxiliary fields W; = —F}, (c.c). Thus for the physical fields it will have the form

Echiral = aﬂ(b:‘ u¢i + ijauaﬁﬂ/}l - Wz*WZ

1 .
— §W ]wﬂ/}j +c.c (218)
The dynamics of the system for this type of Lagrangians, where gauge interactions are
absent, will, in practice, depend only on the explicit form of the superpotential. Thus,
determining the coefficients in (2.15)) will unambiguously determine all interactions for

models with only chiral supermultiplets.
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Lagrangians with gauge supermultiplets.

As already mentioned the superpartners of the gauge bosons will necessarily transform
in the adjoint representation of the respective gauge group. Thus we have the following

general variations under gauge transformations for the component fields of a gauge

supermultiplet
a abcpnb pc 1 a
04A%, =f"0° A, — ;8”0 (2.19)
S A = [0 \ (2.20)
5,D" =fe0" D* (2.21)

The first row corresponds to the infinitesimal form of a general gauge boson transfor-
mation derived previously in (|1.51). The second and the third are simply the corre-

sponding variations for a fermion and a scalar field that belong to the adjoint.

We may now proceed to examine the variations of these fields under a SUSY trans-

formation. We have

1

SA% = —E(Jawa + A7) (2.22)
1

N = ——=(0"5"€)F, + —=eD" 2.23

2\/—<U Ye) \/§€ ( )

§D° = é(e D\ — D A" (2.24)

where, of course, the gauge covariant derivatives have appeared as a result of the
underlying gauge symmetry. We may construct the Lagrangian for the kinetic terms

of the gauge supermultiplets as

Lgauge = —;lF“”“FjV + AT DAY + %D"D“ (2.25)
where of course gauge interactions are also implied due to the presence of D,. The
first term is the usual Yang-Mills term of a gauge theory. The second is the kinetic
term of the gauginos properly introduced with a gauge covariant derivative so as to be
invariant under gauge transformations. The term quadratic in the auxiliary fields is
required as previously to render the Lagrangian invariant under SUSY transformations
off-shell. In the case where no chiral supermultiplet is present, those auxiliary fields
have a vanishing equation of motion (D* = 0). This situation however is not realized

in the general and more interesting case of interacting chiral and gauge supermultiplets
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as we will see in what follows.

General Lagrangians.

Having demonstrated the structure for Lagrangians with either chiral or gauge super-
multiplets we may proceed to generalize it to the case where both are present. Since
we are interested in promoting gauge theories as the SM into supersymmetric ones, all
Lorentz covariant derivatives 0, should be replaced by the gauge covariant ones D,,.

This implies that the most general Lagrangian will have the structure
L= ‘Cchiral + 'Cgauge + 'Cgint (226)

where as already mentioned the first term will correspond to the properly modified
the second will correspond to (2.25) with an implicit replication in case of a
semi-simple gauge group, while the third will correspond to all possible gauge invariant
interactions between chiral and gauge supermultiplets that respect supersymmetry.

These are
Lyt = —V20 (] TEV)A" — V29, N (W] TE05) + 9a(; Ti2;) D" (2.27)

and no other term is allowed in this general SUSY gauge invariant Lagrangian.

The preceding discussion can be used as a guideline in order to build the minimal
supersymmetric extension of the SM but before that some final general remarks should
be made. The superpotential which appears in the Lagrangian through its first and
second order functional derivatives should be gauge invariant for L. to be also
invariant. Its first derivative will satisfy W;T5¢; ~ d,W = 0 which suggests that
W, transforms as the conjugate supermultiplet ®! and also reveals the contraction
Q;VUT®; as a gauge singlet. The latter is actually required in order to demonstrate
explicitly that Ly, is also gauge invariant. The scalar potential of the theory will have
the general form

V(g ¢*) = —F"F,— (W'F, + cc.) — %D“D“ — Ga(¢F T ;) D"

kY]

* ) 1 *ra
=W W'+ 592(@ Tij¢j)2
1

= F"F,+ 5 D"D" (2.28)
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where for the derivation of the second and third row the equations of motion

D" = —g.(6:T59)) (2.29)
were invoked. The corresponding equation for the auxiliary field D will be non vanish-
ing, as promised, if there exist scalars belonging to chiral supermultiplets that share
these gauge interactions i.e. transform non-trivially under the relevant gauge group.

Under all the above considerations the construction of the MSSM becomes an ad-
mittedly difficult but rather straightforward task.

2.1.4 The general structure of the MSSM

In order to build the Lagrangian density for the MSSM we recall the classification of
. For the superpotential, which is a holomorphic function of scalars, we denote
all scalars with the symbol of their corresponding supermultiplets. The MSSM super-
potential will have the structure determined not only by the gauge properties of the
supermultiplets but also by a further discrete symmetry, the aforementioned R-Parity.

This discrete symmetry is in fact a special Z; symmetry acting differently on the
component fields of a given supermultiplet. It can be represented by the operator
Rp = (—1)3B=L)+2s acting on the particle states with B, L being the baryon and
lepton number respectively. Since for any coupling in the theory the spin is always
conserved we may reduce this symmetry to the equivalent and more useful matter-parity
represented as Mp = (—1)3F~) which has the same eigenvalues for all components
of a given supermultiplet. Thus, Higgs and gauge supermultiplets will have the same
eigenvalue (+1) since they carry vanishing baryon and lepton numbers. On the other
hand, matter supermultiplets will have a (—1) eigenvalue which differentiates between
chiral supermultiplets carrying the SM fermions and those carrying the Higgs particles.

Under the imposition of this extra discrete symmetry the most general, gauge in-

variant and renormalizable superpotential with the particle content of (2.7)) is

W =Y "uQ,H, + Y] d;Q;Hy+ Y, e{ L Hy + pH, Hy
(+Y!N¢L;H, + My NENS) (2.30)

where, as in the SM case, we have extended the particle spectrum in the standard
fashion, namely with three gauge singlets to account for the right-handed(RH) neutrino

supermultiplets so that the neutrinos eventually acquire masses. Due to matter parity
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a term linear in a gauge singlet as the RH-neutrino here is forbidden in the MSSM.

At this point, where both supersymmetry and gauge invariance are manifest, the
model describes massless particles for all supermultiplets besides the Higgs and perhaps
the RH-neutrinos (if the latter are indeed present) which are massive. All particle
interactions can be obtained by applying the above superpotential in . We can
make some useful remarks on this model with the use of the general expressions we
derived in the previous section, even without displaying explicitly the corresponding
Lagrangian in full detail . The £y4,4e part for the semi-simple Ggys group will include
(2.25) in a repetitive form to account for the SU(3)¢, SU(2),U(1)y subgroups with the
respective relevant gauge couplings. Besides the SM Yang-Mills terms it will include
gauge kinetic terms for the massless gauginos and the quadratic terms in the auxiliary
fields D,. The Yukawa couplings of the SM on the other hand will emerge from L p;rq
and in fact from the W% terms. This part of the Lagrangian will also contain, among
others, the gauge kinetic terms for SM fermions and sfermions as well as those of Higgs

and Higgsinos.

It should be further noticed that our initial choice to represent all supermultiplets in
terms of the LH-fields in addition to the holomorphic property of the superpotential has
enabled us to express W in the compact form . Then, it becomes rather obvious
that the Yukawa couplings for the up quarks (neutrinos) will necessarily include H,
while those of the down quarks (charged leptons) will include Hy. Any other case
is forbidden since H,, HI or Hy, HCE cannot be simultaneously present in the analytic
superpotential. The imposition of the matter parity not only allows the suitable SM
couplings to be present in the superpotential but also forbids other dangerous couplings
that could in principle have phenomenological inconsistencies. The gauge invariant

renormalizable terms

WAB = YBqucdc
War = Yy, e°LL +Y;,d°QL + Y, LH, (2.31)

suppressing family indices, correspond to couplings that violate matter parity. If they
were present in the superpotential they would introduce baryon and lepton number
violating interactions and eventually, among other unobservable processes, would also

induce rapid proton decay.

Of course, for this model to be a realistic extension of the SM, supersymmetry
must be somehow broken at some scale Msysy > Mgw. If this was not the case then

all superpartners would share the same masses with the corresponding SM particles
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and that would contradict all experimental evidence to date. In addition, the scalar
potential of the MSSM would not allow for the electroweak SSB to be realized.

Soft SUSY-breaking.

From our previous experience on gauge symmetry breaking, a mechanism for SUSY
breaking is expected to emerge within the general considerations of SSB. However,
for the case of global supersymmetry we consider, spontaneous SUSY breaking would
imply the presence of unwanted Goldstone fermions ( Goldstinos). On the other hand,
Goldstinos can be absorbed in the framework of local SUSY, commonly referred to as
Supergravity(SUGRA) through a supersymmetric generalization of the Higgs mecha-
nism. In fact, within this attractive scenario, SUGRA breaks down to global SUSY
with the presence of soft SUSY-breaking terms [18].

In any case the exact framework of SUSY breaking is yet undetermined since all
proposed models introduce more or less a certain amount of arbitrariness through new
fields and parameters beyond the MSSM physical content. Nevertheless, we can still
study the broken theory as an explicitly broken symmetry whose arbitrary parameters
in fact reflect our ignorance on the exact symmetry breaking mechanism.

Under these considerations any renormalizable term that is gauge invariant and non-
supersymmetric is a candidate term for this explicitly broken theory. But, fortunately,
we may further restrict these terms by simply recalling our initial motivations on
quadratic divergences. We may thus require that these symmetry breaking interactions
do not induce quadratic divergences to the scalar masses of the theory [19]. It turns

out that they will have the form

1 , 1 g 1 .
Lsope = = G MWNN" = K6, — S ()" i — 5,47 6i0i01 + c.c.

— (m%a)l0" 0, (2.32)
Lsoftr = — %A;jkd)i*%’@ (2.33)

where Lgof is usually neglected since it may induce quadratic divergences under the
presence of gauge singlets in the theory. The gaugino mass terms are always present
due to the fact that the adjoint representation has a singlet quadratic contraction. On
the other hand, the k,m?%, A terms follow the gauge properties of the superpotential
and therefore are present if the corresponding superpotential terms are also present.
The non-analytic terms m%, are not only present for quadratic self-couplings of scalar

fields with their conjugates but are also allowed between different scalars as long as



2.1. SUPERSYMMETRY 51

gauge symmetry permits it.
The choice to include only soft breaking interactions becomes more clear when we
revisit our analysis on Higgs mass corrections. The presence of a coupling that induces

quadratic divergences implies that the mass corrections to the light scalar mass become
1

If this coupling is soft then the quadratic divergence will be absent and the scalar mass

correction will be given by

Amiy ~ me,p{ log ( A ) +...} (2.35)
mgsoft

which goes to zero for mg,p — 0. This nice UV behaviour though would not have been

realized in case the couplings were not soft and quadratic divergences appeared.

The soft couplings of the MSSM following the above considerations will introduce
mass terms for gauginos, analytic (mixing) mass term for the Higgs (m?% H*H?) and
non-analytic masses for all Higgs and sfermions. Trilinear couplings will also appear
respecting the gauge properties of the fields in the superpotential and thus following

an analogous structure.

The Particle Spectrum.

We may investigate the particle spectrum of the broken MSSM even though we have
chosen not to present explicitly the full Lagrangian in terms of component fields. With
the use of the general expression for the MSSM superpotential along with the
explicit symmetry breaking terms we may study the mass eigenstates of the theory
after electroweak SSB without explicitly demonstrating how these are obtained.

First we focus on the gauge supermultiplets. Before electroweak breaking gauge
bosons are massless but all gauginos acquire masses through explicit soft mass terms.
These mass terms respecting the unbroken gauge symmetry are unable to split the
masses for gauginos of the same subgroup and thus the masses for all gluinos and winos
at this point are seperately degenerate. After SSB the gauge bosons will acquire masses
in a fashion analogous to the original framework of the SM but with the difference that
now there are two VEVs contributing to the mass expressions due to the two Higgs
doublets. Electroweak symmetry breaking will unavoidably affect the masses for the
gauginos except for the gluinos which remain degenerate since they are singlets under
SU((2) x U(1).
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Next, we focus on the matter supermultiplets. Due to the non-analytic soft mass
terms sfermions decouple from the SM fermions and become massive. The latter will
have the Yukawa structure of the SM and thus will acquire masses due to the Higgs
VEVs in practically the same fashion as in the SM. The only difference with the non-
supersymmetric model is that in the MSSM there are two different Higgs doublets
coupling seperately to up and down quarks (neutrinos and charged leptons also). As
such the Yukawa couplings for these two models will be proportional since in order to
produce the observed fermion mixing and mass hierarchies they can only differ by an
overall scale. The latter is completely fixed once the ratio tan 5 = vy /v is determined.
The situation for sfermions on the other hand is rather more complicated. Since for
every weyl-spinor there is a scalar superpartner for every Dirac fermion there will be
two corresponding scalars. Thus the sfermion mass matrices will be 6 x 6 matrices
whose structure will depend on the Yukawa couplings of the fermions, the non-analytic
masses and the trilinear couplings.

The situation for the Higgs supermultiplets is a lot more complicated mainly due
to the rather extensive potential. Nevertheless the potential has a minimum for an

undetermined tan S with the VEVs necessarily satisfying
(H,)?* + (Hg)* = vy +vf = vgy (2.36)

These neutral Higgs states will also correspond to the two physical Higgs particles
by the usual procedure of shifting the fields and obtaining the mass eigenstates. The
remaining particle states within these doublets include two neutral CP-odd and four
charged states. One CP-odd and two charged states will correspond to the unphysical
would-be Goldstones which in the unitary gauge are absent. The other three orthogonal
states will obtain masses corresponding to two oppositely charged scalars with the
same mass and a massive neutral pseudoscalar. Their superpartners, namely the four
Higgsinos, combine with the SU(2) gauginos and form new fermion mass eigenstates.
The two charged winos combine with the two charged higgsinos and form two Dirac-
fermions commonly reffered to as the charginos. The remaining two neutral higgsinos
will combine with the bino and the neutral wino and form four Majorana particles
commonly referred to as the neutralinos.

To summarize, the physical particle spectrum of the MSSM will include:

e Standard model particles: All particles introduced in the SM will also be present
in the MSSM unaltered, with the exception of the Higgs doublet which is neces-
sarily replaced by the two Higgs doublets H,, H;. The SM predictions for gauge
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boson and fermion masses are also reproduced in this supersymmetric framework.

o Frtra Higgs particles: Besides the two physical neutral Higgs particles, one mas-
sive neutral pseudoscalar and two oppositely charged particles with the same

mass, will also appear.

e Gauginos: Only the eight massive gluinos will have degenerate masses since they
are not affected by the electroweak breaking. The other four gauginos mix with

the higgsinos to form mass eigenstates.

e Sfermions: There will be six up squarks, down squarks, sleptons, sneutrinos

(three if N¢ are absent) all massive.

e Charginos: These are two massive Dirac fermions with unit charge corresponding

to charged wino-bino-higgsino mixing.

e Neutralinos: These are four massive Majorana fermions corresponding to the

neutral wino-higgsino mixing.

2.1.5 Spontaneous breaking in supersymmetric gauge theories-
A prelude to SUSY-GUTs.

As previously argued, we will be interested in theories with explicit SUSY-breaking
through soft terms. Nevertheless, a short general introduction to the various spon-
taneous breaking patterns of a SUSY gauge theory will turn out particularly useful.
In this way, a deeper insight on these theories is obtained and the general strategy
employed in a wide, particularly interesting class of models, commonly referred to as
SUSY-GUTs, is revealed. Since the mechanisms leading to SUSY and gauge symme-
try breaking are not necessarily connected, we may proceed presenting separately the
general aspects of each.

In order to illustrate the general aspects of spontaneous supersymmetry breaking
the anticommutator {Q,, QL} = 20", P, is required. The Hamiltonian operator can be
straightforwardly obtained by taking a trace over the spinor states in the anticommu-

tator giving

_ 2Tr[0"P)]

H
4

= 1 (@0l + Qe + .01 + Qlay) (237)

If SUSY is an exact symmetry of the theory then necessarily the vacuum state will

also respect it giving Q|0) = 0 and Q'|0) = 0. Clearly, the energy of the vacuum state
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will be vanishing since then (0|H|0) = 0. Thus, as a general property, the vacuum
of a supersymmetric theory will always have zero energy and any departure from this
property would signal SUSY breaking. As in gauge symmetries we characterize the

symmetry breaking due to the non-invariance of the ground state, spontaneous.

Now, a second look on ([2.37)) further reveals that the vacuum energy for a sponta-

neously broken supersymmetry will be positive since

1
(0110} = 7 (I1Q1O) I + 1110} + | Q5I0)* + [1Qz/0)12) > 0 (2.39)

should hold for any Hilbert state with a positive norm. This suggests (0|V|0) >
0, which for a general potential of the form subsequently implies that F' or
D or both will be non vanishing. Such a condition indicates not only a non-zero
VEV solution for the trivial equations of motion of the auxiliary fields but also that
a zero solution is not possible. If the latter was not the case then there would exist
a minimum in the theory satisfying (0|H|0) = 0 thus being supersymmetric. Then
this minimum would essentially correspond to the true vacuum of the theory since
the local minima satisfying would have more energy. Therefore, the condition
for spontaneous supersymmetry breaking necessarily reduces to the constraint for the
absence of a zero solution for the equations of motion of the auxiliary fields. If further
the VEVs employed break the gauge group, then the pattern of simultaneous SUSY-
gauge breaking is realized. Avoiding a more detailed discussion on this issue, we
only mention that numerous models and variations exist in the literature using the F-
breaking and D-breaking patterns described previously. However, none of them seem

to offer an adequate description for a spontaneous breaking of the MSSM down to the
SM.

Our preceding analysis may now be used to explore the orthogonal case where only
gauge symmetry is spontaneously broken while the theory remains supersymmetric.
This will turn out particularly useful and valuable in a following discussion on the
explicit realization of supersymmetry within the general framework of GUTs. It should
also be mentioned that this symmetry breaking pattern is not expected to arise in the
low energy theory but is rather more appropriate for MSSM extensions with a different
gauge structure at higher energies. That is because the MSSM with the presence of
soft mass terms is a non-supersymmetric gauge theory. Thus, such a pattern by default

may only apply above energies where SUSY is effectively restored, namely above the
SUSY breaking scale.

Gauge symmetry breaking in a supersymmetric theory can be realized as usual
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for a non-vanishing VEV of a scalar field. For supersymmetry to be also preserved
those VEVs should further satisfy a zero equation of motion for all auxiliary fields
(F' = D* = 0) since only then (0|H|0) = 0 would hold. In order to illustrate the
basic aspects of this symmetry breaking realization we consider a SUSY model with
an underlying U(1) symmetry. The superpotential for two oppositely charged chiral

supermultiplets and one neutral will beﬁ

W = oy + siodh + 1046 + 90060 (2.39)

Then the equations of motion for the F-terms (F;* = —W;) exhibit a zero solution for
the VEVs (F = 0), taking the explicit form

0 =K+ povo + guviv_ (2.40)
0 = pv_ + gugv— (2.41)
0 = vy + gugvy (2.42)

implying that supersymmetry is unbroken. Now, there are two classes of solutions for

the above set of equations, each with a different physical meaning, given by

Unbroken U(1) : vy = —i, vy =0 (2.43)
Ho

1
Broken U(1) : vy = —g , Vgl = — (M — /-z) (2.44)

These solutions suggest that there are two degenerate vacua with zero energy corre-
sponding to two inequivalent SUSY theories with different gauge structure as well as
particle spectrum. Vacuum degeneracy is obviously an unattractive but not necessarily
disastrous property of SUSY-GUT models. As a matter of fact the fewer the inequiv-
alent vacua are, the more elegant the model should be regarded. In addition, in some
models, one may even consider soft breaking terms being sufficiently small so as for
the theory to remain effectively supersymmetric while the vacua degeneracy is slightly

lifted in the preferred direction.
In any case we may focus on the more interesting pattern of (2.44)) which breaks the

gauge symmetry spontaneously. A closer look reveals that there is a larger symmetry

for the VEVs than that implied by the U(1) symmetry since the minimization condition

6We have neglected, for convenience, a ¢ term that would unnecessarily complicate the corre-
sponding equations of motion.
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can be satisfied for

~ 1
vy = et [ - (M — /<L) = ¢*My, (2.45)
g g

with A being a random complex number instead of the U(1) complex phase. This can
be traced back to the structure of the superpotential which by being holomorphic, also
respects the complex non-unitary extension of the gauge symmetry group. As in the
non-supersymmetric case we may choose 6 = 6, to break the gauge group in what in
SUSY models is called, an F'-flat direction (F; = 0). Of course for the theory to remain
supersymmetric the VEVs should also respect the analogous zero equation of motion
for the D-terms (D® = 0) , or in other words, symmetry breaking should be realized in

a D-flat direction. Due to the D-relevant part of the Lagrangian they would have to

satisfy
1
Lo = SD°D* 4 g([6: — o)D" + pD (2.46)
oL
0=<5=D+g(jvil” = |v-[*) +p (2.47)
(D=0)
=0 g (Jos 2 = o)+ p (2.48)

where a linear term pD was introduced in the full Lagrangian since it is both supersym-
metric and gauge invariantm. Such a term in principle would induce SUSY breaking [20]
unless is satisfied which in our case can be done by using the freedom to define
the VEV parameter a of . Therefore for any value of p we simply require

c

(¥ — e 2)? = P (2.49)
g

which is always satisfied for a suitable a.

Eventually, gauge symmetry is completely broken but the theory due to the F-
D- flatness remains supersymmetric. Thus, for every gauge boson acquiring a mass
through the SSB of a gauge symmetry, the corresponding gaugino will also acquire the
same mass as a superpartner of the unbroken vector supermultiplet. This is essentially

the realization of the Higgs mechanism within the supersymmetric framework .

"This is the famous Fayet-Iliopoulos D-term.
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2.2 Grand Unified Theories

2.2.1 Introduction

An interesting aspect of gauge theories with semi-simple groups is the existence of
separate gauge couplings each associated with the respective subgroups. The SM, in
particular, will include three independent gauge couplings g; corresponding to SU(3)¢,
SU(2), U(1)y and the same stands for its supersymmetric extension, the MSSM. Due
to renormalization group equations one may evolve the measured low-energy values for
these parameters up to the scale where a new quantum theory is expected to appear.
Then it is found that the three gauge couplings tend to unify for the SM or completely
unify for the MSSMF| at a scale Mg ~ 10'° GeV'.

A suitable framework that may explain the gauge coupling unification in a rather
elegant manner is that of Grand Unified Theories(GUTs) [21-25]. It is based on the
assumption that there is a larger, usually Simpleﬂ group that contains the Gg)s as a
subgroup. The particle states of the SM (or MSSM) fall into irreducible representations
of the unified group and the gauge covariant derivative is expressed through a single
unified gauge coupling. When this gauge group breaks down to the SM the three gauge
couplings appear and the GUT representations decompose into the irreducible repre-
sentations of the SM. However, as a result of the unification at high energies, namely
above the GUT scale, certain relations associating parameters of the SM emerge. Thus,
the independent Yukawa couplings or the Weinberg angle which in the context of the
SM were considered just-so parameters, within GUTs are usually constrained or even
predicted.

In addition to these attractive properties it should be remarked that the pattern of
GUT symmetry breaking essentially follows the principles of the SM electroweak SSB.
Thus, it becomes rather obvious why such an idea has motivated a wide theoretical
search over the last decades. Unfortunately, along with many successful predictions
in the minimal GUT models there also exist relations that contradict experimental
data. Realistic models, on the other hand, that may as well reproduce the observed
fermion masses and mixing introduce new fields and non-renormalizable operators and
hence, clearly, a certain amount of arbitrariness. Nevertheless, the attractive aspects of

this framework seem overwhelming, strongly suggesting that GUTs are at some point

8Strictly speaking the 1-loop MSSM, with 1TeV superpartners, predicts exact unification within
experimental bounds, while thresholds and two-loop effects deviate gauge couplings by 1%.

9The unified group may as well be considered a semi-simple group which can still predict unification
in case it can be embedded in a larger simple group.



58 CHAPTER 2. THEORIES BEYOND THE STANDARD MODEL

related with the theory that completes the SM(MSSM) at high energies.

2.2.2 Minimal SUSY-SU(5) as a prototype GUT

In order to study the general GUT framework we first focus on a specific SUSY model
based on the simple gauge group SU(5), proposed by Dimopoulos and Georgi in 1981
[26]. This minimal model not only reveals certain general properties shared by other
common GUTs but also serves as a guideline to the mathematical formalism that

follows this type of theories.

The group SU(5) is a simple Lie-group of rank-4 with its Lie-algebra [T, T°] =
i f2%¢T being satisfied by a set of 24 linearly independent generators. It is minimal not
only in its representation content but also in the sense that it is the smallest simple
group that may embed Ggps which is also rank-4 (i.e. four generators of the algebra
commute with each other). Out of these generators the SM hypercharge is identified

as

Y(5) = diag(1/3,1/3,1/3,—1/2,—1/2) (2.50)

with all generators of the algebra properly normalized as Tr(T%T?) = %5‘“’. The elec-
tromagnetic charge will be given as in the SM by ) = T5 + Y where T3 is the third
component of the weak isospin. As a linear combination of traceless generators it
will necessarily obey Tr(Q)) = 0 for all representations of SU(5) out of which charge

quantization will straightforwardly emerge.

The representations employed in this model are the simplest lowest dimensional
irreducible representations of SU(5) that can accommodate the chiral as well as the
gauge supermultiplets of the MSSM. Gauge supermultiplets necessarily transform in
the 24-dimensional adjoint representation of SU(5), here denoted as V. Matter super-
multiplets transform in the 10, 5 (F, f¢) while the Higgs sector will be rather enriched
in order to account for the SSB of SU(5) down to SU(3) x SU(2) x U(1). It will in-
clude besides a 5,5 (H, H®) accommodating the Higgs doublets H,, Hy an adjoint ¥, of
chiral supermultiplets, which will eventually acquire a non-vanishing VEV in the Ggys

singlet direction. The decomposition of the SU(5) representations under Ggys follows
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the pattern

V.St 24 =(8, 1o+ (1,3) + (1,1)0 + (3,2)_s + (3,2) (2.51)
Fr: 10=(3,2)1 4+ (3,1)_2 + (1, 1)1 (2.52)

{fs, H} {HY: 5=(3,1)1 +(1,2) 1, 5= (3, 1)_% +(1,2) (2.53)

(e[}

Wl
[V

From the above decomposition we may straightforwardly identify the MSSM fields.
The matter 10, 5 will accommodate F(Q,u¢, e®), f¢(d°, L) respectively and will be in-
troduced in three distinct copies so as to account for family structure. Each Higgs
doublet (H,)H, necessarily accompanied by an (anti-)triplet will belong to the (anti-
)fundamental representation of SU(5), namely (H¢)H. Finally, the MSSM gauge su-
permultiplets will correspond to the first three terms in . Clearly, as a result of
unification, new fields beyond the context of the MSSM are introduced. These are be-
sides the aforementioned Higgs (anti)-triplets in (H¢)H, the two coloured isodoublets
in V' and all Higgs supermultiplets within ». Their existence can and will have an

important phenomenological impact on the model even at low energies.

The superpotential for this model will have to respect not only SU(5) gauge sym-
metry but also the imposition of the usual matter parity assignment on supermultiplets
i.e. matter fields Fy, ff will transform with matter-parity (—1). That is because only
then the matter parity of the MSSM can be reproduced protecting the low-energy
theory from the previously discussed phenomenological complications. Under these

considerations the most general superpotential will be

M A
wW== Tr[x?) + ?2 Te[S% 4+ p HH® + Ay HYH®

Y H(FF)s + Y HE Fyf (2.54)

where gauge contraction, implicit in the suppressed gauge indices, follows the rules
of representation theory. For example (F;Fj)s denotes the symmetric contraction
Eabede }’CF}e which transforms as 5 following the property (10 x 10)g = 5. As a result,
the coupling Y} is bound to be symmetric in family indices at the scale where SU(5) is a
good symmetry, namely above Mg. Actually, symmetry and antisymmetry constraints
are quite common features of GUT models and as will be explained shortly not the

only or the most restrictive ones.

Minimization of the potential reveals three F-, D- flat directions corresponding to

the three degenerate supersymmetric vacua of the theory, each with a distinct gauge
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structure and particle spectrum. The F- flatness condition reveals

<H>=< H >=<F; >=< f{ >=0 (2.55)
M<Y>H\s<X>? 4+ =0 (2.56)

with ¢ being a Lagrange multiplier in order to account for Tr[¥] = 0. The three

breaking directions with the respective unbroken subgroups are then

0 , SU(5)
cxs—{ & diag( 1111 —4) L SU) x U(1) (2.57)
b diag( 2 2 2 -3 -3 ) , SU(3) x SU(2) x U(1)

out of which only the third row corresponds to the desired breaking down to the Ggjy.
The first row corresponds to the trivial case of a vanishing VEV, while the second to the
unrealistic breaking to a subgroup in which the SM cannot be embedded. Focusing on
the third, phenomenologically meaningful, pattern we may proceed to demonstrate how
the Higgs mechanism is explicitly realized in this model. This also serves the purpose of
an instructive example so as for the analogous mechanism in other SUSY-GUT models
to be understood.

Since the adjoint Higgs supermultiplet 3 acquires a non-vanishing VEV in the SM
singlet direction, the MSSM gauge supermultiplets remain massless i.e. the first three
terms in (2.51). That should be expected since these fields correspond to the gauge
bosons of the unbroken generators and their superpartners. Of course this can be also
verified from the gauge kinetic term |D,X|? where terms quadratic in the MSSM gauge

bosons are essentially absent due to
[TgMa <X >] ~ [TSGM’Y] =0 (258)

as well as the gaugino mixing mass terms H The remaining vector supermulti-
plets transforming as (3, 2)_%, (3, 2)% will obtain a mass of order M¢. In the matrix
representation of they correspond to generators forming the non-diagonal (3,2)
blocks, thus having non trivial commutators with < > >~ Y. In order to obtain mass,
as in the non-supersymmetric case, they will absorb the corresponding Goldstone boson
modes from Y and eventually form twelve massive gauge bosons. Since ¥ is complex

the orthogonal combination of the would-be Goldstones will remain unabsorbed but

1080ft SUSY-breaking will become important only at the TeV scale and thus may be regarded as
irrelevant to our discussion here.
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will eventually acquire mass through the VEVs in the D-term 3(3;72%;)%. The rest
of the adjoint Higgs scalars, namely (8, 1), (1,3)o, (1,1)o will obtain a mass through
the F-terms originating from the Tr[%?], Tr[2?] self-couplings in the superpotential.
Clearly, the Higgs mechanism is realized in this minimal model in an elegant man-
ner. All non-MSSM fields from V,3 have become superheavy by coupling with the
adjoint Higgs VEV < X >~ Mg, while all gauge and matter supermultiplets, accom-

modating the MSSM fields only, remain massless as desired by the low-energy theory.

However, this minimal GUT-model as well as several variations and extensions of
it suffer from an intrinsic structural deficiency. This appears in the Higgs sector and
is commonly referred to as the infamous doublet-triplet splitting problem. It appears

through the relevant terms in the superpotential
wHH+ A \gHYXH® (2.59)

when the adjoint Higgs acquires the Gsaq preserving VEV of (2.57). Then the Higgs
fundamental and anti-fundamental H, H¢ decompose into the weak isodoublets H,, H,

and coloured triplets HS, HY giving the mass terms in the superpotential

M
b
C yC M C yC
Wie = pHy H{ + 25— H{ H{ (2.61)
x

From these relations it becomes obvious that both doublets and triplets will have a
mass of the same order, naturally of order M, unless some kind of miraculous cancel-
lation between the different scales is realized. Unfortunately this is what should hap-
pen for the model to exhibit a viable phenomenology. To explain further, the coloured
isotriplets mediate baryon number violating processes and therefore the lighter they are
the faster the proton decay they would induce. On the other hand the doublets should
be of order electroweak for the MSSM phenomenology to be reproduced. Neverthe-
less, for the unattractive fine-tuned choice of parameters satisfying p — %J ~ 100GeV
the model exhibits at low-energy the content of the MSSM while the dangerous Higgs
triplets become superheavy of order Ms. However, the SUSY version of this GUT
model has an apparent technical advantage over its non-supersymmetric analogue, as-
sociated with this fine-tuning. In SUSY-SU(5) one has to impose this relation only at
tree-level and radiative corrections will not affect it. That is due to an inherent fun-
damental property of SUSY theories in general, described by the non-renormalization

theorems. For the N’ =1 we consider, this property manifests as the invariance of the
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superpotential under renormalization.

Even in this case however, where an unjustified fine-tuned relation is considered,
the most minimal version of the model without non-renormalizable operators and extra
fields is in practice ruled out. That is because the masses of the dangerous coloured
triplets should satisfy the proton decay limits as well as the gauge coupling unification
condition at Mg ~ 10'° GeV which cannot be simultaneously realized'] Clearly then
if this model is to be realistic an extended version should be considered.

In addition to the aforementioned inadequacies, the unification relations in the
Yukawa sector also favour a non-minimal extension. To better understand the situation

for the Yukawa couplings we may focus on the relevant terms in the superpotential
Yy H(FFy)s + Y5 H fiFy

which due to gauge symmetry breaking and by neglecting terms with coloured Higgs
triplets decompose into the MSSM couplings

Wy =Y uSQ H, + Y d5Q Hy + Y eS L Hy (2.62)

These Yukawa couplings then should not only satisfy the low-energy conditions, con-
sistent with the observed fermion masses and mixing, but also the non-trivial Mg
relation

Yi=Y,=Y"

e MG

(2.63)

along with the aforementioned symmetry structure for Y,. Clearly this non-trivial
condition relating the charged lepton with the down quark matrix will have the definite
Mg prediction of equal masses for each family. Such a prediction though is partially

successful as the Georgi-Jarlskog mass relations imply. These are

1
Me R =My, My, R 3N, My My, (2.64)

3

which should instead hold at GUT scale so as for the low-energy masses of the observed
fermions to be reproduced.

Even disregarding the inconsistency with the observed proton decay rate, the mini-
mal SUSY-SU(5) model still falls short both technically and phenomenologically. Var-

HGtrictly speaking there exists a tiny parameter space for the soft breaking sector that could still
correspond to a phenomenologically viable model. However it is so severely constrained that such a
realization is very unlikely.
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ious proposals, although separately treating these major problems sufficiently, seem
to be inadequate to provide with a combined elegant solution. For example, one may
extend the model with the more suitable 50,50, 75 Higgs representations to keep the
Higgs doublets massless [27]. In fact, this is a more general approach, commonly re-
ferred to as the missing partner mechanism, with various realizations that may also
apply to other GUT groups. On the other hand, one may introduce a 45 so as for the
desired factors of 3 in to appear. Then the desired mass relations would be satis-
fied at GUT scale. However, models that try to confront both problems simultaneously
introduce a certain amount of arbitrariness as well as phenomenological inconsisten-
cies. Nevertheless, the numerous attractive features of the minimal SUSY-SU(5) have
established it as the standard paradigm of GUT theories in general. It explains the
gauge coupling unification, implied by the MSSM, as the unification of the semi-simple
Gsy into a simple group (SU(5)) with a single gauge coupling. Quantization of hy-
percharge as in also unavoidably appears. That is because the abelian U(1)y
is embedded in a larger non-abelian group, hence following a certain normalization for
its generators. Furthermore the model is free from gauge anomalies exactly as in the
SM or the MSSM for the minimal representation content of .

In this viewpoint a generalization of the GUT approach into other simple or semi-
simple groups seems at least a worth exploring idea. In what follows we will be inter-
ested in GUT models that offer possible remedies to the standard GUT problems, as
those encountered in the previous SU(5) example. These models should be regarded as
improved and more realistic proposals although none of them seems to offer a complete,

realistic extension of the MSSM to higher energies.

2.2.3 Other standard unified models.

In this section we briefly review the general structure of two distinct models based on
the gauge groups SU(5) x U(1) and SO(10) with the minimal representation content
required for an MSSM embedding. These models by respecting a symmetry group that
includes the SU(5) as a subgroup, inherit analogous attractive properties as well as,
fortunately milder, deficiencies. Their main characteristic is that both of them offer
a possible solution on the doublet-triplet splitting problem and that they may also

potentially survive the current nucleon decay constraints.
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Flipped SU(5)

The flipped SU(5) is a GUT-model based on the semi-simple group SU(5) x U(1)x
[28-30]. Its gauge group can be embedded in the larger simple SO(10) symmetry group
and as any realistic candidate unified model has the Ggy; as a subgroup. The rather
characteristic property of this model is the non-trivial embedding of the hypercharge
U(1)y generator, identified as a linear combination of the abelian generator U(1),
within SU(5), and the external U(1)x. The weak hypercharge will then be given by

1
Y ==(Z+X) (2.65)
Z=diag(} 44 -1 -1) (2.66)

where obviously the U(1)z is the properly normalized generator previously identified
as the hypercharge of the standard SU(5) model (2.50).

Following an analogous notation as in — the representations of the SUSY
SU(5) x U(1) involved will decompose under Gspq as

Vi 249 =(8,1)0 + (1.3)o + (L, 1)o+ (3,2)1 + (3,2) s (2.67)

H,Fr = 10, =(3,2)1 + (3,1)1 + (1, 1) (2.68)
H: 10, =(3,2)_1 +(3,1)_1 + (1, 1) (2.69)

fio 5a=(1)_2+(1,2) 1 (2.70)

(R AR} 50 =31 2 +(1,2)_1, 5a=(3,1)_2+(1,2)1 (2.71)
e 15 =(1,1) (2.72)

where we kept the minimal representation contentlﬂ It should be further remarked that
the standard variations of this model usually introduce additional singlets to account
for realistic neutrino masses. This in practice has small effect on the basic structure of
the theory that we are interested in so we conveniently neglect them.

The trademark of this model originating from the non-trivial embedding of the
weak hypercharge is the analogous but distinct decomposition of the matter
supermultiplets F, f¢ as compared with the standard SU(5) theory. This allows to
identify in this model u¢ instead of d° within f¢, (N¢, d°) instead of (e, u¢) within F’ and
e as an SU(H) singlet (N€) thus justifying the descriptive term ”flipped” for this special
SU(5) x U(1)x symmetry. The remaining matter supermultiplets @), L will belong to

2Furthermore the U(1)x assignment implicitly follows the proper embedding of all representations
into the irreducible representations of the SO(10) and Eg gauge groups
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F, f¢respectively in both models and therefore the MSSM matter supermultiplets will

belong in
101, 5_3, 15 : F(Q,d°, N°), f(us, L), e° (2.73)

For the viable phenomenology of the theory in this minimal version it is necessary
to impose besides the standard matter parity assignment an extra Z, symmetry under
which only H transforms non-trivially (-1). Then the most general superpotential will
be

W =Y FrFsh + Yy Frfsh® + Yy et fih
+AHHh + XNH Hh® + juhh® (2.74)

with the MSSM desired p term also allowed to be present. Due to the extra Z,
symmetry a term H H¢ is absent thus allowing for the gauge breaking down to Ggj; in
the F-, D- flat direction

< H >=< H >=< N§; >= Mg (2.75)

The most elegant feature of this model is the technically natural doublet-triplet
splitting that is realized. For the non-vanishing VEVs above the terms A\H Hh, \'H Hh¢
in the superpotential produce superheavy masses for the coloured triplets while leaving
doublets to obtain an electroweak mass from the u—term. That is because only the
coloured triplets in h, h¢ will couple with (3, 1)%, (3, 1)7% of H, H to form mass terms
while the doublets cannot couple quadratically to any available field. This is actu-
ally the explicit realization of the previously mentioned missing partner mechanism for
doublet-triplet splitting within flipped SU(5). The rest of the non-MSSM supermulti-
plets, besides a linear combination of singlets (N§ — N_ﬁI), will acquire heavy masses
through a super-Higgs mechanism in a manner analogous to the preceeding standard
SU(5) example.

It should be remarked that alongside the above technical advantages there are var-
ious interesting aspects that also emerge within the context of this model. First, it
should be noted that the successful gauge coupling unification predicted in the stan-
dard SU(5) may also be directly derived if SU(5) x U(1)x is embedded into a larger
group like SO(10) or Es. Furthermore, contrary to other standard GUT-models, the
flipped SU(5) realizes gauge symmetry breaking without the presence of adjoint Higgs,

a characteristic most appreciated by superstring constructions. However, the natural
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suppression of dangerous dimension-5 operators relaxing significantly the proton decay
constraints, should be regarded as the most attractive feature of this model. Finally,
the both successful and problematic Yukawa unification relations met in most unified
models are absent or strictly speaking replaced with analogous conditions for up quarks
and neutrinos. Since neutrino masses, yet undetermined, most likely appear through
a different mass generation mechanism than that of the other charged fermions the
flipped Yukawa unification condition cannot in practice impose a restrictive fermion
mass condition. We delay a more detailed discussion on this subject for the next

chapter.

SO(10) models.

We next focus on a larger symmetry-group that seems particularly interesting not only
for model building but predominantly as a general framework in which properties of
various GUT models can be understood. This stems from the fact that SO(10) is a
larger simple symmetry group that encompasses as maximal subgroups SU(5) x U(1)
and SU(4) x SU(2) x SU(2) both independently giving rise to interesting (SUSY)-GUT
realizations [31,33//59,/60]. The former pathway has already been discussed to some
extend through the standard and flipped SU(5) minimal models. The latter includes
variations of the so-called left-right symmetric models among which the more famous
and rather instructive Pati-Salam model [22]. For our purposes, some interesting fea-
tures arising from this alternative class of models will be investigated only through the
SO(10) viewpoint.

The simple-group SO(10) [3435] offers the possibility of several realizations each
of which with different advantages as well as flaws. In this sense one cannot uniquely
designate as previously a specific model as the minimal version and additionally re-
alistic models exhibit a rather extensive structure. However, in the most standard
proposed models, besides an adjoint gauge supermultiplet, matter, with the usual fam-
ily replication, transforms in the minimal spinorial representation of the symmetry
group and at least a part of the electroweak Higgs doublets in the vectorial. We have
the decomposition under SU(5) x U(1)

45y = 240 + 10_4 + 1_04 + 19
16p = 10; +5_3 + 15

Clearly, this is the U(1)x assignment followed in the previous flipped-SU(5) example
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which suggests that many of the interesting properties there, as well as in standard

SU(5), appear due to the possible embedding within an SO(10) symmetry.

Various symmetry breaking patterns may arise by choosing different representations
for the heavy Higgs. These will subsequently develop a non-vanishing VEV in the F-
and D- flat directions available eventually breaking SO(10) either directly to the Gsa,
subgroup or in a stepwise fashion through its respective subgroups. We will avoid an
investigation on all these distinct models followed by their explicit superpotentials and

instead discuss more general aspects of SO(10) realizations.

In this sense, we may focus on the MSSM matter supermultiplets which will couple
to the electroweak Higgs doublets through a term in the superpotential Y;;10516%167..
As an immediate consequence the Yukawa coupling unification conditions imply the

Mg relation
Y,=Y, =Y. =Y, |Mc (2.77)

with Y, corresponding to the h,LN¢ coupling responsible for neutrino Dirac-mass
terms. Even neglecting the neutrino matrix, the Yukawa matrices for charged fermions,
here necessarilly symmetric at Mg, suggest vanishing quark mixing and common mass
ratios between families i.e. m,/m. = mq/ms; = m./m,. Since both consequences are
experimentally excluded, one necessarily has to extend the Higgs content of the theory
or take into account higher dimensional operators. Fortunately, the latter are expected
to be in any case important, at least to some extend, due to the proximity of the GUT

to the Planck scale where new physics is expected to arise.

The usual strategy in SO(10) models, which also exhibits a large variety of distinct
realizations, is followed by introducing additional Higgs fields in the representations
16,165, 455. In these models, if the spinorial Higgs acquires a non-vanishing VEV,
it will necessarily lie in the only Gs)s singlet direction < 165 >=< 165 >=< N§ >.
On the other hand, the adjoint representation may acquire a non-vanishing VEV in
different directions leaving each time a different subgroup invariant. Out of these

directions the most interesting in a technical sense seem to be

SU(4) x SU(2 SU(2)r : diag(0,0,1,1,1
15, o SUW X SUR)rx SU), = diag(0,0,1,1,1) }0_

SU(4) X SU(Q)L X U(l)R : dlag(l, 1,0,0,0)

where the respective unbroken subgroup is denoted. The VEV in the first row corre-
sponds to the Dimopoulos- Wilczek mechanism for doublet-triplet splitting without tun-

ing in SO(10) models. When acting on the light Higgs through a term 105 < 455 > 10%
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it will obviously attribute a GUT scale mass to the coloured triplets while leaving weak
doublets massless. As an alternative one may obtain doublet-triplet splitting with a
VEV as in the second row [33]. A VEV in this direction can keep doublets in spinorial
representations of SO(10) massless through a term 165 (455)165. This can be easily
understood from the SU(4) x SU(2)g x SU(2), decomposition

165 = (4,1,2)+ (4,2,1) (2.78)
(45m) = ((1,3,1)) (2.79)

which shows that the quadratic term (4, 1,2)(4, 1, 2) will remain massless. These mass-
less fields will transform as the hy, hg and Q, Q of the Ggys. Since the two pairs belong
to 5,5,10, 10 of SU(5) respectively, another VEV in the SU(5) singlet direction could
split their masses. This can be realized by introducing a new set of 16'y, 16,45,

fields in the superpotential as
(161)457,16 + 165457, (16%;) + 457,45, (2.80)

This is essentially the missing partner mechanism since 514, 515 cannot form a quadratic
mass term, in contrast to 104, EE as can be seen from . One may even use other,
rather more complicated, superpotentials with 165105 mixing to realize the doublet-
triplet splitting and produce Higgs massless eigenstates coupling to matter through the
standard renormalizable 1051616 term. In practice, both mechanisms for doublet-

triplet splitting without fine tuning are rather unstable and difficult to realize.

Admittedly, even the so-called minimal models of SO(10) are quite cumbersome
mainly due to their extensive superpotential. This, among other issues should simul-
taneously allow gauge breaking in the preferred direction, produce the doublet-triplet
splitting, predict grand unification and break the unwanted Yukawa unification con-
ditions. Nevertheless, models that allow a fit with current experimental data exist,
however introducing a significant amount of arbitrariness through new fields, ad hoc
symmetries and non-renormalizable operators. In any case a study on SO(10) reveals
aspects for GUTs that are not transparent in other “less unified” models. In particular,
each family of known matter fits exactly the spinorial representation of SO(10), in a
family respecting manner, along with the yet unverified right-handed neutrino. Since
the SO(2N), (N # 6) groups are free from gauge anomalies, SO(10) models will auto-
matically share this property as well as certain models for the SO(10) subgroups. The

latter will be those models whose non-trivial representations fit exactly the SO(10) ir-
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reducible representations. Hence, among others, this explains why minimal-SU(5) and
flipped-SU(5), with that charge assignments, are both anomaly free. In addition, the
Yukawa coupling unification conditions for these models are in practice milder versions
of the rather restrictive condition (2.77)). Although in SO(10) this necessarily implies
the presence of non-renormalizable operators such a fact eventually turns out to be
less unattractive. The reason behind this is the strong symmetry which constrains
significantly the structure of the non-renormalizable terms. As will be discussed in
the following chapter this even allows for predictions whose validity is not necessarily
attributed to a specific model but may also indicate the direction to a more elaborate
GUT.
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Chapter 3

Fermion Masses and Mixing

3.1 Charged fermions within the SM

An unanswered question that unavoidably arises within the context of the SM is the
origin of the observed pattern for fermion masses and mixing. That is to be contrasted
with the gauge boson sector where the Yang-Mills theory augmented by the Higgs
mechanism provides a rather elegant answer for the relevant mass scales. There, mass-
less gauge bosons are a result of the unbroken symmetry subgroup SU(3)¢ x U(1)epm
while the three massive gauge bosons (W=, Z) of the broken symmetry will have masses
determined in practice by a single free parameter i.e. the Weinberg angle 6y .

Clearly, the situation in the fermion sector is far more arbitrary. Although fermion
masses also arise when the Higgs acquires a non-vanishing VEV, the terms involved
now originate from the Yukawa sector of (1.75). We recall that this contributes the

charged fermion terms
Ly =YQ,dul, + VI'Q 0 d} + YL @ el + hc (3.1)
out of which when (®) = v the following fermion mass terms are produced

v v —I v
1Jj—1,.J 13l 7

V2 V2 V2

The coefficients of these bilinear terms are the fermion mass matrices, previously de-
noted in ([1.89). They will be responsible not only for the physical masses of fermions

but also, as will be discussed shortly, for an experimentally verified fundamental prop-

Y!el el + h.c (3.2)

erty called fermion mizing. The Yukawa couplings, which in practice determine these

coefficients, are regarded as three dimensional matrices in family space. These are not

71
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Charged Fermion Masses
Gen. ‘ 1 ‘ 2 ‘ 3

w; | 2.3%5F MeV | 1.275£0.025GeV | 173.5 £ 1.4 GeV
d;i | 4.8T)i MeV 95+ 5 MeV 418 £0.03GeV
ei | 0511 MeV 105.66 MeV L.777GeV

CKM parameters (Standard Par.)
sin 912 ‘ sin 823 ‘ sin 013 ‘ )

0.225 |  0.0412 | 0.00350 | 1.20

Table 3.1: Current values for charged fermion masses and CKM mixing parameters [36]

constrained by any theoretical consideration within the context of the SM. In fact, the
only consideration that actually restrains their form, while being unable to completely

determine them, comes from fitting to the experimental data.

Experimental evidence is rather definite on the mass spectrum for charged fermions
as well as on the four parameters which characterize quark mixing. Current values are
listed in Tab[3.1] for reference.

3.1.1 Biunitary transformations.

As already mentioned, the mass terms for fermions will appear through the bilinear
forms of . The physical masses, as usual, will appear through a rotation to the
mass eigenstate basis. For Dirac fermions this is realized by two, in general unrelated,
unitary matrices acting on each side of the mass matrix bringing it to a diagonal form.
The diagonal elements obtained through this biunitary transformation, will correspond
to the mass eigenvalues up to complex phases. The latter can always be absorbed by
a redefinition of the fields.

To describe this diagonalization procedure in more detail we employ a mass term
as those of (3.2)) in the form

EY” (3.3)

By assumption we take M to be a 3 x 3 general complex matrix so as to account for the

LMYl 4 he. | MUY = -

unconstrained family structure of the SM. It can be shown that a suitable biunitary
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transformation may always diagonalize M through
Ul MU, = Mp (3.4)

with Mp being a diagonal non-negative matrix.
To illustrate this, we first mention that since M M1 is Hermitian it will have non-

negative eigenvalues obtained through a unitary transformation. Then
UlMMtU, = M2, (3.5)

with Uy, being unique up to a diagonal phase matrix P since Uy, P may also satisfy the
above relation. This property actually ensures that if Mp is diagonal in (3.4]) then it
can always be brought to the desired real non-negative form so as to account for the

physical fermion masses. Now, we may define the following useful Hermitian matrix
— T
H=UMpU; (3.6)
which implies that the matrix V = H~'M will be unitary. That is because

VVIi=H 'MM'H™
— U, MUl MMTU, MG UL
=1 (3.7)

due to (3.5)) and (3.6). Then we may express Mp in terms of the Hermitian H and the

unitary V' as
Mp =UlHU, = U MV'U, (3.8)

where we have used the unitarity condition VT = V~! = M~1H. We may then define
Ur = ViU, in the above equation which finally reproduces (3.4)) as desired.

3.1.2 The CKM matrix.

The previously described biunitary transformation not only diagonalizes the fermion

mass matrices but also gives rise to fermion mixing phenomena with certain, exper-

Tn the above derivation we have implicitly assumed that M is invertible as is the case for all SM
charged fermions. However a zero eigenvalue can always be treated by projecting it out and proceed
as above in the non-trivial subspace.
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imentally verified, implications. For the moment, we shall restrict ourselves only to

terms relevant for quark masses and mixing.

By applying the biunitary transformation to the up quark mass term we obtain

urMyup = (ﬂLUuL)<UJLMuUuR>(UTRuR>

U

= uy M,pul (3.9)
where we have defined the primed fields, corresponding to the mass eigenstates, as

u, = Ul g (3.10)

u

wy = Ul ug (3.11)

u

An analogous situation will be realized in the down quark sector for the corresponding
mass matrix My. Keeping the same conventions, the rotation from the initial (gauge
eigenstate) basis to the mass eigenstate basis, will be realized there by another pair of

suitable unitary matrices, denoted as Uyy,, Ugg.

For the SM, the unitary matrices corresponding to rotations of the right-handed
fields will leave no physical trace since they can be fully absorbed by the respective
field redefinitions. This, on the other hand, will not be the case for U,r, Uy, which
will eventually give rise to the CKM matriz of quark mixing [37}38].

This is understood if we recall the quark kinetic terms of the SM which are given
by

iQ,PQ + iurlDug + idrPdr (3.12)

Since the right-handed fermions of the SM are singlets under SU(2) the field redefini-
tions of (3.11)) will give the trivial relations

dplPdp = dpIpdl, (3.14)

However, for the left-handed fields the SU(2) coupling in the covariant derivative will

be non-trivial giving rise to the terms

92 v+ 92 = _
—upy'Wirdy + —=d "W, u 3.15
NG Ly W, ar 2 LYW, urL ( )

Since the above operators are related by hermitian conjugation we may focus only on



3.1. CHARGED FERMIONS WITHIN THE SM 75

the first term. Then, the rotation to the mass eigenstate basis as in (3.10) will give

rise to the previously mentioned non-trivial CKM matrix through

%umﬂch& ~ @AM (UL Ugr)d), (3.16)

out of which we may define the unitary matrix describing quark mixing phenomena as
Veku = UJLUdL (3.17)

In principle the CKM matrix is a U(3) transformation which can be described
by three real angles and six complex phases. But in the charged currents J" =

W " Voxard; we may redefine

n / " U

Py,q ~ diag(e'®", e'?? ') (3.18)

to absorb five complex phases. It is also trivial to check that such an operation cannot
affect the non-negative eigenvalues of the quark diagonal matrices M, p, Myp given by
. Therefore we are left with the physical parameters of the CKM matrix, namely
with three real angles and one CP-violating phase.

The standard parametrization [36,[39] is

Verw = Uss(0)U3(0)Ur2(0)
i

C12C13 S$12C13 S13€
_ B 6
= —512C23 — C12523513€" C12C23 — S12523513€" 523C13 (3'19)
i5 i&
512823 — C12C23513€" —C12523 — S12C23513€" C23C13

where U;;(6) imply rotations in the respective family subspaces in analogy to
C13 0 5136_i5

Ui3(8) = 0 1 0 (3.20)

—8136“5 0 C13

There are various noteworthy aspects emerging from our previous treatment. To
begin with, we may recall the observed CKM parameters of Tab[3.1 Then, a closer
look on (|3.17)) reveals that there should exist two distinct rotation matrices U, # Uyp,
operating on the left-handed fields. This necessarily implies a mismatch between gauge

and mass eigenstates at least for some of the left-handed quarks. For the right-handed
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rotations, on the other hand, we cannot extract any information. This obviously stems
from the fact that all right-handed fermion states of the SM are singlets under SU(2),,
thus implying the absence of analogous charged currents. Another aspect that is worth
mentioning, is the origin of the physical CKM parameters along with the quark mass
spectrum. Within the context of the SM these will necessarily arise from the Yukawa
couplings. As a result the 18 complex parameters, introduced through Y,,, Y; will have
to account for only six quark masses and four mixing physical parameters. Clearly, a
substantial amount of arbitrariness will be present which will further increase due to
a similar situation in the lepton sector as discussed in what follows.

Finally we should mention that although this general treatment of fermion masses
and mixing was realized within the context of the SM, a generalization to the extensions
we consider, such as the MSSM and SUSY-GUTs, is always straightforward. That is
mainly due to the fact that the soft SUSY-breaking, considered as the standard method
to decouple the SM spectrum from its superpartners, does not introduce mass terms
for the SM fermions. As a result fermion masses may receive only loop-suppressed
corrections from the unknown soft-breaking sector. Typically, such insertions, also
bounded by other considerations, cannot affect drastically the Yukawa structure. In
any case, in our following considerations, we will implicitly restrict ourselves to the

case where SUSY-breaking is irrelevant for fermion masses [40,41].

3.2 Neutrino masses and mixing

The situation for the neutrinos seems to be significantly different from that of the
charged fermions [42]. Current experimental evidence [43], although yet inconclusive,
favours a three generation scenario of very light neutrinos. Furthermore, even though
light neutrino masses are not uniquely determined, any realistic neutrino mass pattern
should always be consistent with the experimental values of Tab[3.2] In addition to
this, a combined analysis from cosmological data [36] indicates an upper bound on the
overall neutrino mass scale through the relation > m; < leV.

In more detail, the squared mass differences dm;; = |m? — m?| extracted from the
neutrino oscillation phenomena indicate three different patterns depending on the mass

of the lightest neutrino. These are

e Normal Hierarchy(NH). m; < ms < mg

The squared mass differences then imply a strongly hierarchical spectrum with

Mo & \/0mi, K my = \/0m3,
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e Inverse Hierarchy(IH). ms < my = my
The squared mass differences then imply a partially degenerate spectrum with

my & my &2 \/0m3,

e Quasi-Degeneracy(QD). ms =~ mg ~my ~ M
This case arises for an overall neutrino mass scale satisfying M > \/dm3,. If the
cosmological constraints are taken into account then this would correspond to a

rather small portion of the allowed parameter space with M < 0.3eV

Clearly, if the neutrino masses lie in the proximity of ((5m?j)% the answer for the pattern
is less definite. However, for any allowed mass spectrum, in the three neutrino case

we consider, there will always be a lower bound for the mass of the heavier neutrino.
That is

max(m;) > 1/0m3; = 0.0485 eV (3.21)

which simply reflects the fact that a squared difference can never be greater than
the maximum of the respective squared parameters. On the other hand, the mass of
the lightest neutrino is not practically restricted by any consideration (other than the
possible upper bound on the overall mass scale) and the possibility for one massless
neutrino cannot be excluded.

Although, as mentioned, experimental data cannot uniquely determine the neu-
trino mass spectrum, the NH case, which will be followed in our investigated models,
distinguishes as the most probable scenario. That is due to the fact that only within
this context a hierarchical spectrum is obtained. Since a mass hierarchy is realized
for all other fermions, it is naturally expected to arise also for neutrinos. Particularly
for neutrinos arising within the framework of the see-saw mechanism, discussed below,
this is even more likely to occur. That is because a hierarchy originating from any of
the related mass terms will typically propagate to the spectrum for the light neutrino

masses. But even beyond that, the NH case is also supported by the experimental data

Neutrino Masses and Mixing
Squared Mass Differences (eV?) Known PMNS parameters
dm3, | dm3, | sin®6i, | sin®6y3 | sin®fyy

7587038 x 107° | 2.35708% x 1072 || 030670015 | 0.427085 | 0.02155:008

Table 3.2: Current values for neutrino squared mass differences as well as lepton mixing
angles. One or three CP-violating phases, in case of Dirac or Majorana fermions, are
still undetermined.
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themselves. If one considers a hierarchical mass spectrum then the hierarchy for the
squared mass differences immediately arises. In contrast, the other cases of partial or
complete degeneracy appear as fine-tuned. There, one would have to adequately justify

not only the presence of two small mass splittings but also the hierarchy between them.

3.2.1 The see-saw mechanism.

The tiny masses of the neutrinos suggest that a different mass generation mechanism
should operate in the neutrino sector which distinguishes them from the other fermions
of the theory. The standard proposal which seems to offer an elegant answer on this
issue without departing from the general considerations of the SM is the see-saw mech-
anism [44]. Due to its various possible realizations, developed over the years, the
see-saw is now established as the general framework within which, explicit models for
neutrino masses and mixing are realized.

The fundamental idea behind all see-saw models is the introduction of heavy fields
in the theory that couple directly or indirectly to the lepton doublets. When heavy

degrees of freedom are integrated out the symmetric effective operator

1
§M§JWJ (3.22)

is produced. Eventually, this Majorana mass term will account for the light neutrino
fields vy.

Since the presence of heavy fields is required for all explicit realizations of the see-
saw idea, the SUSY framework regarded as the high energy completion of the SM
seems more appropriatd? Then, the supersymmetric versions of the three standard

realizations, commonly referred to as see-saw types, are:

Type-1 (Standard) seesaw. (Singlet matter supermultiplets)

This type of seesaw is realized by introducing matter supermultiplets transforming as
singlets under Ggys to account for the right-handed neutrinos Ny. Although two singlets
are sufficient for this realization to be consistent with experimental data, in the usual
treatment, one introduces three Ny as the family replication of the SM implies for all
other fermion states. Due to its obvious simplicity, this scenario has been established

as the standard see-saw type.

2In any case the transition to the non-supersymmetric case is always straightforward.



3.2. NEUTRINO MASSES AND MIXING 79

In particular, in this approach, one introduces three singlets N7 which will allow

for the terms in the superpotential
1
Y H,LiN§ + EM{{N;Ng (3.23)

When the Higgs acquires a non-zero VEV, and suppressing family indices, the mass

terms for the neutrinos appear aeﬂ

1 1 0 wY,
0 Y, N+ SMpNeN° = = (v N°) ’ g (3.24)
2 2 oY Mp )\ Ne

where hermitian conjugation is always implied. Now if we parametrize ML’ = mpYE/
and assume for the scales mgr > v, ~ Mgy one obtains a split spectrum for the

neutrino masses. This is now given by the terms

1 1, :
§V/TMVV, + 5]\70 TMyN¢ (3.25)

where the corresponding symmetrical mass matrices will be given approximately by

the following expressions

2

M, ~ -2 Y,y (3.26)
mpg

Clearly in the above treatment, the mass spectrum will be described by two distinct
three-dimensional mass matrices with different overall mass scales. The physical masses
for the light (or heavy) neutrinos will be obtained by a diagonalization procedure
analogous, but not identical to the one previously used for quarks as will be discussed
when lepton mixing is investigated. In any case, the mass eigenstates will be obtained
from a rotation in the respective primed field subspace with the phenomenologically

more interesting light neutrino eigenstates formed by linear combination of the ¢/ fields.

As (3.26)) suggests, a typical value of v2 /mp ~ 0.1 eV would imply a heavy neutrino
(seesaw) mass scale at mp ~ 10 GeV. For such a large hierarchy between these two
scales the primed fields which are linear combinations of v, N¢ will be equal to the un-

primed ones to a good approximation. Thus the light neutrinos will be predominantly

3A 3 x 3 block form is of course implicit in the matrix of the right hand side so as to account for
family structure. Also, irrelevant numerical factors are conveniently absorbed in a redefinition of the
parameters (e.g. v, = (Hy)).
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left-handed v/ &~ v which is consistent with all current experimental data.

Type-I1 seesaw. (Charged Higgs isotriplets)

In this type of see-saw, one introduces a Higgs supermultiplet 7" transforming as (1,3,1)
under the Ggys along with its conjugate T¢. These fields will allow for the terms in the

superpotential

1
5 LI TLy 4+ NH T Hy + N\ H,T°H, +msTT¢ (3.28)

where we may represent the isotriplet in the matrix form

T+ T+
T = 0t (3.29)

and a proper contraction of gauge indices is understood. When the Higgs doublets
acquire a non-vanishing VEV, the F- and D- flatness conditions imply (7°) ~ —%.

This corresponds to a symmetric neutrino mass term with a suppressed overall mass
scale given by
1 \,v2

1
=Y, L(T)L = LY, 3.30
SYLT)L = =52, v (3:30)

where we have again suppressed family indices for simplicity in notation.

The overall mass scale is essentially of the see-saw type suppressed by a heavy mass
my as desired. The Higgs supermultiplets T, T will thus be superheavy, effectively de-
coupling from the low energy spectrum. This type of seesaw is fundamentally different
from the previous one since the small neutrino masses arise from a suppressed VEV in
the minimization of the potential. As a result no right-handed neutrinos are required

here and additionally the light mass eigenstates are purely left-handed.

Type-111 seesaw. (Neutral matter isotriplets)

There is always the option to use the neutral component of a weak isotriplet as the
right-handed neutrino. Therefore, in this type of see-saw, one introduces, usually
three, matter supermultiplets T transforming as (1,3,0). The corresponding terms in

the superpotential will be

1
YL, T,H, + 5 MaTi T, (3.31)
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where the neutral isotriplet can be represented in the matrix form

B TO/\/§ T+
T= ( . —TO/\/§> (3.32)

Since the structure of the superpotential is analogous to the Type-I case(3.23)) at least
for the neutral components, the see-saw formula for the light (and heavy) neutrino
mass matrix will be essentially the same. Thus, when the Higgs acquires a VEV, the

corresponding mass terms will beﬁ
o, 1 0770
v, Y, vT° + éMRT T (3.33)
producing the split spectrum for neutrinos described by

M, ~——"Y, Y'YV (3.34)

with an identical structure to and . The charged components within the
isotriplet, namely T, will obtain a superheavy mass of order mpg, thus decoupling from
the low-energy theory.

At first sight, the phenomenological implications for this type of see-saw seem re-
dundant when compared with the Type-I, at least as far as the low-energy theory is
concerned. Nevertheless such a framework will prove particularly useful when we dis-
cuss explicit realizations of see-saw within SUSY-GUTS. That is due to the fact that
the Gsys singlets and neutral isotriplets tend to appear together in many irreducible
representations of the GUT groups we consider. As we shall see this will eventually
restrain severely the family structure of the respective Yukawa couplings even allowing

in some cases for certain predictions.

3.2.2 Lepton mixing.

As already mentioned, in the original formulation of the SM the neutrinos were erro-
neously considered massless. This misconception, however, changed drastically with
the discovery of the neutrino oscillation phenomena. Such an effect, verified by a num-

ber of experiments, not only suggests that neutrinos are massive (at least two of them)

4A proper gauge contraction with suitable normalization factors is always implied. Thus, here, for
a consistent derivation from (3.31) the 77Ty term would correspond to Tr(77T)
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but also that they mix non-trivially. The latter fact in particular, indicates a mismatch
between gauge and mass eigenstates in the lepton sector in an obvious analogy to the
previously discussed situation for the quarks.

Lepton mixing, also referred to as neutrino mizing, is described by the PMNS
matrix [56] which is essentially the analogue of the CKM matrix for the leptons. To
derive its general form we follow the same procedure as for quark mixing. First, we
focus on the terms relevant for leptons using the effective seesaw operator of [3.22 We

thus obtain the mass terms from the superpotential
1J ¢ L1
M; efes + EMV ViV (3.36)

where we have identified M, = —\%Ye following 1) Diagonalization proceeds as

usual for the charged leptons with the biunitary transformation

e =eUp, ¢ =Ule (3.37)
Mp = Ul M,U, (3.38)

The diagonalization of the light neutrinos however proceeds with a single unitary trans-

formation as

v =Uly (3.39)
M,p = U] M,U, (3.40)

It can be shown that a single unitary transformation is sufficient not only to diagonalize
the symmetric complex matrix M, but also to ensure its real non positive eigenvalues
[63].

The PMNS matrix will originate from the charged currents and in particular from

J;r =EpywL =€ o = eT/Uu<UeTLUV)V/ (3.41)
Veans = UlLU, (3.42)

We should mention that the physical parameters of the PMNS matrix are in general
three real angles and one or three CP-violating phases depending on whether the
neutrinos have Dirac or Majorana masses respectively. The former case is understood
as an exact analogue of the CKM matrix in the lepton sector. The latter case however,
which is more interesting due to the see-saw mechanism, exhibits two extra physical

CP-violating phases. This is due to the fact that a Majorana mass term as that of
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(3.36) is not invariant under phase redefinitions. As a result one can absorb only the
three out of the six complex phases of Vpyrns by a phase redefinition of the charged

leptons.

3.3 Neutrinos within SUSY-GUTs

As previously discussed, one of the deficiencies of the SM also shared by the MSSM is
the unconstrained family structure for the Yukawa couplings. As a result, the hierarchy
of the fermion mass spectrum as well as the mixing patterns observed in nature cannot
be justified by any consideration within those frameworks. It seems then a rather
natural choice to search for a SM(MSSM) extension that can explain or even better
predict current experimental data for fermions.

A minimal and rather obvious extension would be to consider a new symmetry
group for families. Such an approach, at first sight seems well motivated by the existing
gauge symmetries which describe sufficiently the dynamics of the fundamental particles.
However a gauged family symmetry would immediately imply the presence of new
gauge bosons none of which has yet been observed. On the other hand, a global
continuous symmetry would come together with the undesired presence of Goldstone
bosons. Perhaps the most interesting approach in this field of research seems to be
family symmetries based on the discrete symmetry groups and in particular the non-
abelian ones [45,46]. Such a realization, would immediately avoid both preceding
problems and in addition could combine well with another possible minimal extension
of the MSSM, namely SUSY-GUTs [47].

In fact, this scenario appears as a very attractive possibility since SUSY-GUTs
seem to offer a suitable and more general framework for model building with various
interesting properties, as discussed previously. Among these properties is the prediction
for Yukawa unification which restrains severely the structure of Yukawa couplings.
Therefore in our search for a more complete and elaborate theory it seems at least
illuminating to investigate SUSY-GUT models that may fit current experimental data

on fermion masses and mixing, and examine their implications.

A non-minimal SU(5) model for neutrinos.

Following the above considerations we have investigated the possibility of extending
the minimal SUSY-SU(5) with new field representations in a unified model with hier-

archical neutrino masses [4§].
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Although, admittedly, the particle content introduced in this model is rather ex-
tensive, there are many virtues that follow this realization. To begin with, it avoids
the proton decay constraints that follow the minimal SUSY-SU(5) model. Such con-
straints are now considered rather disastrous for the phenomenology of the minimal
model, eventually rendering it a non-realistic GUT. In any case, this is done by achiev-
ing unification at a larger scale than the problematic Mg ~ 10 GeV of the original
model. Despite the fact that a certain amount of fine-tuning is required to achieve
successful unification, we obtain a prediction for the seesaw scale in the phenomenolog-
ically preferred region. Within this context we examine the possibility of a hierarchical
light neutrino mass spectrum as this is implied from the NH case for the neutrinos
and the lepton mixing pattern this may potentially suggest. We find that one of the
light neutrinos is necessarily massless at tree level due to a particular Yukawa unifi-
cation condition shared by a more general class of GUT models. Finally, we should
remark that the model is renormalizable and any discussion on non-renormalizable
operators is for completeness and for establishing that these would give subdominant
effects. In fact, we should emphasize this point since we have chosen to remain at the

renormalizable level at the expense of a more complicated structure.

It should be mentioned that for potentially interesting constraints on the scale and
structure of neutrino masses, the sector of heavy fields has to partake in the GUT.
This can be realized in other GUTs [49], such as SO(10) and flipped-SU(5) [30], or by
extending the gauge non-singlet field content of SU(5). We recall that the realization
of the so called type-I see-saw mechanism in the SM introduces right-handed neutrinos
as gauge singlet fields. In contrast, in the type-III right-handed neutrinos are non
trivially introduced as the neutral components of isotriplet fields [50]. This can be
promoted to extended versions of SU(5) that feature additional chiral superfields in
the 24 representation, each containing two suitable right-handed neutrino candidatesﬂ
A mixed “type-I+III” see-saw mechanism can then be realized with an extra 24 [52],
while the most appealing three generation scenario with three right-handed neutrinos
requires additional 24’s or 1’s.

In this model we consider a version of supersymmetric SU(5) extended through the
introduction of extra chiral superfields S(1), 7(24), 7'(24), which provide us with
three right-handed neutrino candidates. Our basic assumption is that these right-

handed neutrino fields obtain a Majorana mass at a high but still intermediate scale a

SFermions in a single 24 representation have been introduced in the framework of non-
supersymmetric SU(5) in [51], where the see-saw mechanism was realized with two right-handed
neutrinos at a predicted low energy scale.
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few orders of magnitude below the unification scale. This assumption is supported by
a renormalization group analysis, incorporating proton lifetime constraints [53], and
allows for an intermediate scale in the vicinity of (10*-10') GeV. Not all of the scales
involved in the right-handed neutrino Majorana mass matrix are constrained by the
renormalization group. Depending on assumptions, several possibilities emerge lead-
ing to a different dependence of the resulting light neutrino masses on these scales.
Furthermore, the fact that two of the right-handed neutrinos are members of the same
SU(5) representation leads to a particular rank 2 structure of the resulting light neu-
trino mass matrix that is accompanied by a massless eigenvalue. Although this fact is
modified by non-renormalizable terms, there is a definite prediction for one superlight
neutrino, not in conflict with observations. Next, we examine the possibility of a hi-
erarchical light neutrino mass spectrum m$ > m{? > m®M. This can be achieved in
a variety of ways depending on assumptions either for the mass scales involved or for
the hierarchy of the Yukawa-type couplings. We also consider whether the observed
large neutrino mixing can be accommodated in the framework of the model [54]. We
conclude that hierarchical mixing patterns with 6,3 < 615 ~ 3 can be obtained with

generic choices of Yukawa couplings exhibiting certain structure.

The Model

The renormalizable part of the minimal SU(5) superpotential, in terms of the chiral

superfields Q%(10), Q;(5), H(5), H(5), X(24), is

M A
Wo = V5 QiQiH* + V5QQ5H + —-Tr(X?) + ST (%) + NHOSH + MHH
where we have suppressed SU(5)-indices and display only the family indices 7, j. Let
us now introduce extra matter supermultiplets S(1),7(24), 7'(24) with the standard
matter parity assignmenﬂ An extra Z, discrete symmetry, under which only 77(24)
changes sign differentiates between them so that 7" does not couple to standard matter

fields. The renormalizable contributions of the new fields to the superpotential are

"

Wi = Q™S + VT QHT + 587+ Lrn(T?) + L1r(T?)

+ fTr(T?) + [ Tr(ST)S + f'Tr(T?Y) . (3.43)

We have Q, Q°, S, T — —1, while &, H, H® — 1.
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The decomposition of the new matter multiplet 7(24) is
T(24) = B(1,1,0) +T(1,3,0) + O(8,1,0) + X(3,2,—5/6) + X°(3,2,5/6),

where the SU(3) x SU(2) x U(1) identification of each component is self-explanatory.
Analogous is the decomposition of the primed field 77(24). Denoting by T° the neutral
component of the isotriplet 7'(1,3,0), we can identify the three right-handed neutrino
candidates as Nf = (S, B,T°).

Symmetry breaking of SU(5) down to SU(3) x SU(2) x U(1) is realized in the stan-

dard fashion through a non-zero VEV of ¥ in the direction < ¥ >= \/%T)diag(Z, 2,2,-3,-3).

Note that the absence of cubic terms for the new fields, due to their parity assignment,
does not allow them to acquire a non-zero VEV and, thus, symmetry breaking proceeds
exactly as in the minimal case. All components of ¥ are either higgsed away or obtain
masses of the order of the GUT scale. The splitting between the masses of the Higgs
isodoublets Hy, H, and the Higgs coloured triplets D, D¢ contained in H = ( Hy, D)
and H¢ = ( H,, D) is produced by the usual fine-tuning M’ = ?’\ﬁ/, resulting in mass-
less doublets and superheavy triplets. Then, the effective superpotential relevant for
masses below the unification scale Mg reads

Wers = YiusQ H, + YIdQ;Hy + YieSLiHy + Y LiSH, + Y;"L,BH,

ij i z]z

Mp
+Y 'L TH, + Y dXH, + 752’ +—LB*+ MspSB

2
M M, My M,
+ TTTT’(T2) + MaXXC+ TOTT(OQ) + TTTT(T/2) + TOT r(0"?)
Mg
+ M X' X'+ TBB/2 . (3.44)

Matching the effective and the SU(5)-symmetric theory at Mg leads to the following

relations for the Yukawa couplings

YU — 2yu’ (Ye) — Yd yd YS yS

V30, p

Y¥=v" =
3

=7, (3.45)
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while for the mass parameters we get

2fV 6fV
Ms =, MB:/L,—%7 MT:,LL/—%, (3.46)
4fV \%4
MO:,U,‘F%, szﬂl—jﬁ, MSB:—f,V (347)
and

6f//V 2f//V

M/ — " - M p— "o ,

T 2 \/% B \/%

PV 1Y
Vel ¥l

The see-saw scale is the scale of the right-handed neutrino mass matrix expressed in

MO/ = ILL” —|— (348)

terms of the parameters Mg, Mg, My and Mgg, related through the four parameters
w, i1, fV and f'/f. The allowed range for these parameters will be strongly constrained
by the requirements of unification at a sufficiently high scale. This will follow shortly

from a renormalization group analysis.

In addition to the renormalizable contributions above, non-renormalizable contri-

butions to the superpotential

>\IJKL

Wyr = P00, + O(1/ME) + ...

P

can, in principle, affect masses, especially whenever we have mass-degeneracies. We
have denoted the scale of non-renormalizable interactions generically by Mp, expecting

their scale to be the Planck scale. The lowest order terms in Wyg are

QT YSH + QXH S+ TOQHH + Q°QVNH + XNQHQ + HQOH + T Q°QQ

+ Q°Q0S 4+ Q°Q°Q°Q + T?X? + X2T S + HT*H  + X2S* + HTHS

+HH S+ T+ TS+ T°S* + S* + S+ U H + HHHH + T7%*

+ HTPHE + T+ T2 + TT7°S + T°8?, (3.49)

suppressing the factor 1/Mp and the dimensionless couplings in front of each term,
all assumed to be of the same order. Among these terms, those relevant for neutrino
masses are the terms H°QOHC, leading to (tiny) Majorana masses for left-handed
neutrinos, the terms Q7 XH¢, OXHS, contributing to Dirac masses, and the terms
T2x2 3X2TS, X282, contributing to Majorana masses for the right-handed neutrinos.
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Figure 3.1: Isotriplet mass My vs the unification scale Mg. The octet mass satisfying
Mo < Mg sets a lower bound for unification at Mg ~ 1.5 x 106 GeV .

Energy Scales

The sector of additional superfields T, 7', S carries with it a set of extra parameters,
namely the mass parameters u, 1/, ¢’ and the couplings f, f’, f”. A basic assumption
of the model is that the Majorana mass of right handed neutrinos is at a high but still
intermediate scale, a few orders of magnitude below M. Thus, we shall assume that
the isotriplet component of 7 remains lighter than M. In addition, proton lifetime
constraints translated to a high enough Mg require the presence of an additional light
color octet. These requirements correspond to new fine tunings of parameters, pre-

sumably, not worse than the standard GUT fine tunings. As a working set of choices,
we take (M3 = %Vz)

=38 —-eMg/2, ' = (2+3)Mg/5,

_5_9 ¢ //:_L —¢
f—4\/§(1 ), f 2\/5(1 ) (3.50)

where € ~ ¢ < 1. These choices result in
MT = EMg, MO/ = 6/ MG (351)

while the rest of the masses are Mo, My, My, My ~ O(Mg).
Thus, we assume that, apart from the MSSM fields and the color octet and isotriplet

superfields that have intermediate masses Mo, and My, all extra superfields decouple
at Mq. In addition, we assume that supersymmetry is broken at an approximately

common energy scale of mg ~ 1TeV at which all superpartners decouple. From the
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MG MO/ MT (67¢]
3x10% 3.1 x 10" 1.3x 10" 0.04023
5x 10 1.0 x10% 5.2 x 10" 0.04112
8 x 101 3.6 x 10 2.3 x 10 0.04197
1 x 1017 2.2 x 10" 1.5 x 10" 0.04239
3x 10" 2.0 x 10" 2.1 x 10" 0.04457
5x 107 6.4 x 10?2 8.3 x 10" 0.04566
8 x 101 2.3 x 10" 3.6 x 102 0.04671
1 x10%® 1.4 x102 24 x102 0.04723
3x 10 1.2x 101 3.3 x 10" 0.04996

Table 3.3: Values (GeV) for the unification scale Mg, the colored octet mass Mo and
the weak isotriplet mass Mp. The corresponding unified coupling ag remains within the
perturbative limit.

one-loop renormalization group equations for the three SU(3) x SU(2) x U(1) gauge
Couplingsﬂ with the intermediate octet and isotriplet mass scales inserted, we obtain

the following expressions for these couplings at My

2n :E—Sln(%) —4ln(ﬁ) +31n<%>
Oég(MZ) 87! MZ MZ Mo/
2 2 MG 25 mg) (Mg)
=—+h|(—)|——n|(—/—)+2In| —
Oég(Mz) (0 7¢! (Mz) 6 (MZ MT
2 21 33 MG 5 mg
— 2 =) S == 3.52
O[l(Mz) O./G+ 5 n(Mz) 2 D(Mz) ( )

where ag is the common value of the three couplings at the unification scale Mg.
Inserting the existing recent data [36] for az(My), as(Myz), ai(Mz), we obtain Mg and
ag, as well as the octet mass My for various choices of the isotriplet mass treated as
input. An octet mass below Mg sets a lower bound of 1.5 x 106 GeV for the unification
scale. In Figl3.1| we show the values of Mg obtained in terms of Mp. These values are
tabulated in Tab[3.3] together with the corresponding values of My and «g. Note that
the values of My follow M within a close range, indicating an approximately common
intermediate scale. The values for M7 in the proximity of 104 GeV, corresponding to
a safe Mg ~ 10'7 GeV, have the correct order of magnitude required for the seesaw
scale, since (102)%/10 ~ 0.1¢eV.

"The triplet-octet splitting has been previously studied for SU(5) models at one and two loops
in [55]
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Neutrino Masses

The terms relevant for neutrino masses can be easily singled out from the renormaliz-
able part of the superpotential (3.44)) ﬁ These terms are

M M M
YSL:SH, + Y, L;BH, + Y L,TH, + 7‘952 + TBBQ + MspSB + TTT2
or
' Ms Mpg My
UH(Y;SS—FY;BB—\/ﬁTO) Vi+782+TBQ+M$BSB+TTg~
The corresponding terms for charged fermion masses are My 7.7 — v,Y;" ¢;7, . The
full neutrino mass matrix, in an (v;, S, B, 79)-basis, is
0 Mp
My = , (3.53)
M35 Mg
where
vy -5y Ms Msgp 0
Mp =w, | Y5 VP _\/LngT , Mp=| Msg Mp 0
VS Vg - Lvy 00 M

Note that VP = \/%XQT. The constraints on y' and f imply that Mp ~ Mg, while

Mg and Msp remain undetermined.

The light neutrino mass matrix will be

M, ~ —Mp Mz M3 (3.54)

8For simplicity, in our treatment of masses and mixings we neglect CP-violation
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The inverse right-handed neutrino Majorana mass is

—Mp Msg 0
1
M;;:Z Msg —-Ms 0 |, (3.55)
0 0

with A = Mg'B —MSMB.

The determinant of Mp vanishes due to the SU(5) relation Y;!' = @Y;B . This
propagates to M, resulting in one massless left-handed neutrino. Such a feature is
shared by a wider class of models in which two right-handed neutrinos or more belong

to the same GUT representation.

The resulting light neutrino mass matrix can be put in the form

2
(M), = Z(AYY] + B (VY] + Y/Y;) + CY)Y)) . (3.56)
where 5 5 A
A= Mp B=-———Msg, C=-Ms (3.57)

10°°  2Myp -

V30

We have simplified the notation by denoting Y;° = Y; and Y, =Y/,

By going to the orthogonal basis in flavor space

PRy CIR S (S CRe (3.59)
Y/ x Y] VY?

where X is the massless eigenvector, we can set the neutrino matrix in the form

MV - 0 MQQ M23 ; (359)
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with

2

) 6 3
My =2 MgY? — —Msz(Y - Y’ ~Me—u- L
22 A( B /30 sB( )+1O 5Ty

My =YY — (V- Y7)?

u

C2Mp Y2

(Y- Y")? ) v (V. Y')?

v2 3 3 (Y-Y) v2 (Y -Y')
U3 (ot o) ¢ j

oMy Y2
1 9 v? 3v2 Ms
M. :—(Y’ y? _ Y-Y’2) T T 3.60
BTy ( ) M T A (3.60)

Before we extract the light neutrino eigenvalues from this matrix, we must consider
the scales involved in these expressions. For the mass scale Mp we have already made
the choice Mg = Mg. The other two scales Mg, Msp, associated with the singlet S,

are not constrained.

1st Approach: We shall assume that these two scales are also of the order of M.
Thus, the dominant entry in the neutrino matrix elements M,, will be the term —J\Z—’Q‘T
contained in C' of (3.57)), while the rest of the contributions will all be of the order of

i which is three orders of magnitude smaller. We may Writeﬂ

Mg’

,02 R U2 (YY/)2

M22:—“M22 __u A"
J,A\ 2My  Y?
/U12L v U'lQL (Y'Y,) 2v//2 12

Moo= A Sy VY ()

M Vi gy — tu L (Y’2Y2 (v Y’)2> (3.61)

33 = —  ——M33 T 37375 19 - ' .

JIA| oMy Y2

9We have set

- 1
MQQZ(MY

VIA|

6Msp 3Ms (Y - Y72
2 _ Yy.Y') + =5
B /30 ( )+ 10 Y2

Msp  3Ms (Y~Y’))

1 3
My = ——=1/Y2Y"? — Y-Y’2<
~/|A|\/ ( ) V30 10 v?

Y2

V2
M3z = 3Ms (Y,z_(Y Y)>

10\/A]



3.3. NEUTRINOS WITHIN SUSY-GUTS 93
The resulting light neutrino mass eigenvalues are

(3) Uﬁ y’2
my -
v 2Mr

2 N2 AV
o R o [ YR\ (VY
R~ {MQQ (1 vy e + Ms3 vy

RNV

~ (Y . Y’)
+ 2M23W\/ Y2V (YY) (3.62)

As it stands, for |Y| ~ |Y”|, the mass hierarchy is

2 2
@ /1m® ~ L 0(v2) /L O0(Y2) ~ Mo/ Mo ~

ml? fmf? ~ SO/ F-O(?) ~ Mr/Mg ~ e.

which is too strong a hierarchy to satisfy the data, without any other adjustment

of parameters. On the other hand, if the overall scale of the determinant \/|A| =

VIM2p — MsMp] is set to be /|A] ~ XMg, with A ~ O(107!), the relation

v /My > v®M,,/+/|A] still holds and, thus, we obtain

2

2
@ % oy? () e o(y? 3.63
mu )\QMG ( )7 ml/ MT ( ) ( ° )

This can give the correct overall scale of the neutrino masses and a suitable hierarchy

~ £ (3.64)

2nd Approach: An alternative assumption is to assume that the scales associated

with the singlet & are of the same intermediate order as My, namely
Ms ~ Mgsp ~ Mrp (3.65)

and, thus, A ~ —MsMp. Despite naturalness objections, this assumption is technically

feasible. In this case, we have to leading order

2

(2,3) ~ Uy "2 N2
m —4MT{(Y) FNY i\/7_2}, (3.66)

where

_ 12 /22 / N2
R = (AY —Y) AN (YY) (3.67)
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and N = 2Mr/Ms, a number of O(1) by assumption. Note that a hierarchy can also

arise in this approach in the case Y2 >> Y2, namely

m® (YQY’2 — (Y- Y")?) _ YZsina
m£3) ~ VY4 - VY2

(3.68)

We have denoted by a the angle cos_l(ff Y ). Similar results can also be obtained for
Y2 > Y? but with
m? _ NYZsin’a

5~ v (3.69)

In this approach there is also another possibility for the existence of a mass-
hierarchy, namely, the possibility of almost parallel couplings in generation space
(= 0)

V= VPV s VIV (1)

In this case, keeping Y ~ Y’ we obtain

mz(/2) )\ly2yl2 o
m® T (Y 4 NY2)2

(3.70)

Finally, in this approach, there is a third possibility for a hierarchy if we assume that
there is a small hierarchy in the scales Mg : My corresponding to A’ ~ 0.1. In this
case we get the same expression for the mass ratio as in (3.69) but with the desired

hierarchy now originating from )\’ instead of Y2/Y"2.

The above conclusions rely only on the renormalizable part of the superpotential.
There are however some contributions to neutrino masses from various lowest order
non-renormalizable terms in (3.49)). These are:

Left-handed neutrino Majorana masses from the term

2

HQOH® ~ z]M

ViVj. (3.71)
These masses are tiny (107° eV or less, depending on the couplings involved) but they
remove the massless state arising from the previous analysis giving a lower bound for
light neutrino masses.

Right-handed neutrino Majorana masses from the terms

VZ

TS + $°TS + &% ~ N VNCNC (3.72)
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These terms could very well be of the same order of magnitude as the intermediate scale
M or even larger but become subdominant for relatively small couplings, meaning A" <
1072, In addition to these terms, negligible right-handed Majorana mass contributions
O(v?/Mp) arise from the terms H (72, TS, S?) He.

Dirac neutrino masses from the terms

WV
QTSH® + QEH'S ~ N = v,
P

N . (3.73)
These contributions, suppressed by the factor V/Mp in comparison with renormalizable
contributions, can remove massless states that arise due to the symmetries encountered
in the renormalizable part of the Dirac neutrino mass matrix Mp. To be specific,
the operator QT XH¢ representing the invariants Q;HTr(TX), Q;T XHE, QX T H

contributes to the superpotential as

vuV UUV 3 / 3

The presence of these terms modifies the structure of Mp and removes the massless
state. The resulting from the seesaw mechanism light neutrino mass will be suppressed

at least by a factor of (\"V/Mp)? < 1072 compared to the lightest massive neutrino.

Neutrino Mixing

The charged lepton and neutrino mass terms M £ (¢ —|—%M vy Vv can be diagonalized in
terms of three unitary matrices U, V() and U(,). These matrices rotate the above
gauge eigenstates into mass eigenstates. If we express the neutrino charge current
J, o lfo,v in terms of mass eigenstates, a combination of two of these matrices will
appear o o,Upuns V', known as the Pontecorvo-Maki-Nakagawa-Sakata [56] matrix

Upnns = U, Uy . (3.75)

In what follows we shall concentrate on U(,) and put aside the charged lepton mixing
matrix, for which, in any case very little is known.

The overall neutrino mixing matrix
Uy = U0, (U, = X7) (3.76)

is composed of the unitary matrix U; that rotates the neutrino mass matrix ({3.56|)
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into (3.59) and a unitary matrix

1 0 0
Uy =| 0 cosf —sinf (3.77)
0 sinfg  cosp

that diagonalizes (3.59)). The rotation angle (3 is related to the matrix entries through
My — M.
cot! (—) | (3.78)

Note that the mass eigenvalues are just

1
m®% = 3 (M22 + Ms3 £ \/(M22 — M33)* + 4]\4223) :

The overall diagonalizing matrix is

X! cosfX)+sinfX) —sinfX) + cospXl)
U, =U U, = | X2 cosfX2+sinfX2 —sinfX2 + cosf X2
X3 cosfXP+sinfX3 —sinBXZ + cosf X3

In order to obtain the corresponding relations between the X @ and the original Yukawa
couplings Y; and Y], we note that, as a result of the definitions (3.58)), we may write

Y' =Y (COSO&XQ - sinozX;»,) ,
where o = cos™! (ff Y ’). Substituting, we obtain

Y3Y) — YoV)  sin(a+8)Y; —sin Y] cos(a+3)Y; — cos BY7
U, = (sina) ™' | vJv; —Y/Y; sin(a+fB)Y; —sin Y]  cos(a+3)Ys — cos Y]
YoY! — V1Y) sin(a+8)Ys —sin BY]  cos(a+f)Y; — cos Y
(3.79)
Equating this matrix with the standard parametrization we obtain the relations be-
tween the standard mixing angles 0y3, 612, 013 and the above parameters. It is clear
that, as long as we have not imposed any additional constraints on the Yukawa coupling

directions in family space, we have no predictive restrictions on the mixing angles. In
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the particular case that we are close to bimazimal mizing

s 7
O3 ~ — + €93, bo = — + €12, b1z = €13,
4 4
from the standard parametrization we obtain
% v % + % €13
Unm | 4-%+%-% $-%-%-% H+3
1 1 1
PP - St -F -9 5%
Equating this expression to (3.79)), we obtain
C?/sﬁﬁ 612% — €13sin 8
o cos 3 sin 8 cos 3 sin 8
Y = = T A + —(612+€23+€13)T—623ﬁ
_Cosﬁ - S%B — (—€12 + €23 + €13) # + 6235%
and
cos(a+p) cos(a+3) ;
T 6127 — €13 Sln(Oé + 5)
YA cos(a+p3) sin(a+/) cos(a+f) sin(a+0)
Y'= 5 - A + — (€12 + €23 + €13) =5 =
_COS(;YJDB) _ sm(a\/;ﬁ) — (—612 + €93 + 613) Cos(f;“rﬂ) + 623s1n(\t;%r5)

Closing this section we note that the range of values for variables «, 3, |Y|, |Y’|, which
determine the Yukawa couplings, depends on the mass hierarchy approach followed.
Among the different options, the small angle scenario of the 2nd approach exhibits

the most restrictive structure with 8 ~ «, while by assumption Y|~ |Y|.

An overview of the model

In summary, we have studied a realization of the see-saw mechanism in the framework
of an extended renormalizable version of the supersymmetric SU(5) model. The right-
handed neutrino fields were introduced as members of chiral 24 + 1 superfields. In
particular, two 24 superfields were introduced, out of which, due to different discrete
symmetry charges, only one couples to matter and its neutral singlet and isotriplet
components are identified as two of the right-handed neutrinos. Our basic assumption
is that right-handed neutrinos survive below the grand unification scale having an in-
termediate mass in the neighborhood of 10'* — 10 GeV/, a scale suitable to generate,

through the see-saw mechanism, a light neutrino mass of the observed mass value of
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0(0.1 GeV'). The assumption of an isotriplet of an intermediate mass scale is supported
by renormalization group analysis incorporating proton stability constraints. In addi-
tion, the model requires a color octet of neighboring mass, which, however, does not
couple to ordinary matter. The right-handed neutrino mass matrix, then, depends on
the constrained isotriplet scale My as well as the free, from renormalization group,
scales Mg, Ms, Msp associated with the SM singlets of 1,24. If these scales are of
O(Mg), an extra fine tuning is required in order to obtain a light neutrino mass hier-
archy in agreement with data (st approach). The alternative assumption according to
which the scales Mg, Mgp are of O(Mr) is also possible (2nd approach). In this ap-
proach a phenomenologically acceptable neutrino mass hierarchy is possible as a result
of the Yukawa hierarchy Y’ < Y or Y’ > Y, where Y and Y’ are the overall scales
of the neutrino couplings (H,)v (Y1 + Y’24). A second possibility of a hierarchy
within this approach arises also when the angle between the Yukawa coupling vectors
in family space Y; and Y/ is small. Nevertheless, the limiting case of aligned Yukawas
is excluded, since it corresponds to two massless neutrinos. Alternatively, the required
neutrino mass hierarchy can also arise as a result of a slight hierarchy of the scales
Mg : Mr. However, in all these approaches, one very light neutrino is always present
as a result of the structure of the neutrino mass matrix. Finally, we also find that a
hierarchical mixing angle structure o3 ~ 615 > 613 can be easily accommodated within

the free parameter structure of the model.

3.4 Lopsided Models

3.4.1 A puzzling situation for leptons.

Besides the inefficiency of the SM or of the MSSM to impose any restriction on the
fermion masses and mixing, a closer look on the observed experimental data in Tab3.1]
and Tab[3.2] further reveals a puzzling situation. In the quark sector there is a strong
hierarchy for both the mass spectrum and the CKM mixing parameters. In the lepton
sector, however, while charged leptons and possibly neutrinoﬂ display hierarchical
masses, the PMNS matrix exhibits a bilarge mizing with 013 < 615 < 63 =~ 7/4.
In addition to the rather unattractive distinction between the two fermion sectors, a
difficulty of technical nature emerges for leptons when one attempts to reconcile large
mass hierarchies with large mixings.

In order to identify the source of this problem we introduce two distinct mass

10Recall our previous discussion in favour of the NH scenario in
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matrices for the light neutrinos. For illustrative purposes and without any loss of

generality we may restrict ourselves to the two-family case. The mass matrices are

1 A a b
M, = M, = 3.80
' (AW) i (bc> (380

where the symmetric structure is always understood due to . The matrix M, for
A < 1 corresponds to a hierarchical structure with approximate eigenvalues 1, (a—1)\2.
The unitary rotation required for the diagonalization, realized as in , will be de-
scribed by a small mixing angle satisfying tanf =~ A. On the other hand, the M,
matrix for O(1) elements will typically produce two masses of the same order with
a large mixing angle satisfying tanf = 2b/(a — ¢) ~ O(1). These two limiting cases
already reveal the problem. Hierarchical matrices produce small mixing angles while
the desired large mixing can be straightforwardly obtained from non-hierarchical struc-
tures. The latter case however, although typically producing same order eigenvalues,
for a fine-tuned structure it could also accommodate a hierarchical mass spectrum. For
the M, considered here that would correspond to a condition for vanishing determinant
at dominant level, namely ac — b* ~ 0. Also, by multiplying the elements of M, M,
with random O(1) factors we may generalize these considerations beyond the case of

symmetric matrices.

From the above analysis, both the hierarchy of quark masses and the small CKM
mixing could be understood as rising through hierarchical Yukawa matrices. However,
a model with large PMNS mixing angles along with hierarchical lepton masses seems
to require either an M structure with a considerable amount of fine tuning or another

more elegant pattern.

An interesting proposal that has been put forward and evades the problem of large
masses-large mixing is that of the lopsided (asymmetric) structure for the Yukawa
couplings. Such an approach well motivated by GUT considerations is also general
enough to apply even beyond them. The idea, as demonstrated below, will have two
distinct manifestations out of which the latter will have a natural embedding within

the see-saw mechanism.
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3.4.2 The Standard Lopsided approach.

In order to illustrate the main features of the standard lopsided models [59,60] we may

consider a general matrix Y;; = Cjj¢;

Ciier Chae Cl3
Y = 02161 02262 023 (381)

03161 03262 033

with a hierarchy of the form
a<LeaKe =1 (3.82)

and random O(1) coeflicients C;;, taken real for simplicity. Diagonalization proceeds

as usual with the biorthogonal transformation]]
Yp = U YU, = Uy YU, (3.83)

but with U; including large O(1) rotation angles, while those of U, are small. Depend-
ing on the explicit hierarchical form of the matrix the largest rotation angle inside U,
may be O(ez) or O(e;/€3).

It is easy to understand that such a pattern can be easily embedded within SU(5)
models that predict the minimal Yukawa unification relation. There, if we identify

the Yukawa couplings as arising from the operator H¢(f¢Y F’), unification implies Y =
Y@ = (Y(©)L Thus, we immediately identify

U =Us =Usr (3.84)
Uy = Uy, = Uy (3.85)

Therefore, in this lopsided realization, U; will participate in the PMNS matrix
while U, will participate in the CKM. This will eventually attribute large angles to the
former and small to the latter as suggested by fermion mixing data. We should also
mention that this realization is not strictly restricted to SU(5) models with minimal

representation content. It may also be considered within other GUTSs, such as SO(10),

1A generalization to the case of complex coefficients inducing biunitary instead of biorthogonal
transformations is always straightforward.
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as long as the above Yukawa unification relation is respected.

3.4.3 Bimaximal mixing from lopsided neutrinos- A hidden

lopsided structure.

This interesting idea has another distinct manifestation that may be regarded as or-
thogonal to the aforementioned standard approach. Although such a possibility had
been previously considered by other authors in explicit models [61], in our more gen-
eral approach [62] we have established the underlying connection between large lepton

mixing and a hidden lopsided structure in the symmetric neutrino matrix.

By default a symmetric (or antisymmetric) matrix as the neutrino mass matrix
cannot accommodate the lopsided form of . However, as we shall demonstrate,
the see-saw mechanism offers the possibility for an underlying lopsided structure. As
a result, the symmetric matrix for light neutrinos will be non-hierarchical but it will
immediately satisfy that special relation required for hierarchical eigenvalues without
any fine-tuning. Furthermore, in this scheme, a transposition relation analogous to
the previous SU(5) unification condition will be obtained through the see-saw formula
itself. We should mention that such a property is necessarily required to reproduce
the observed large-small mixing of the PMNS-CKM matrices. Thus, this alternative

approach should be regarded as well-motivated even beyond GUT considerations.

In what follows we examine analytically a number of lopsided ansatze for the lepton
sector that can potentially fit current low energy data. Large lepton mixing is raised
from both the charged leptons and the neutrinos or through the neutrino sector exclu-
sively, as in the case of a particularly simple ansatz, which is investigated thoroughly.
We also explore the possibility of embedding this pattern within a class of SO(10) mod-
els with realistic fermion masses and mixings. Our discussion is organised as follows.
First, we illustrate the general features of these alternative lopsided models and their
relation to large mixing. Then, we discuss briefly the standard Type-I seesaw frame-
work within the lopsided approach and present our conventions. Next, we consider and
study a number of lopsided patterns that lead to the observed lepton mixing. Next,
we concentrate on a particularly simple ansatz that leads to lepton mixing exclusively
through the neutrino sector, and finally we consider the embedding of the above in a
class of SO(10) models.
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Symmetric matrices with lopsided substructure.

An attractive aspect of lopsided matrices is that they can produce symmetric matrices
that can both accommodate a hierarchical spectrum and large mixing angles in a

natural way. Since

Y3 =UfYY U, = Us Y'Y Uy (3.86)

both symmetric matrices YY"+ and Y1Y share the same eigenvalues [63]. In fact, it is
much easier to extract the mass eigenvalues from Y 1Y which diagonalizes with small

angles due to its hierarchical form. On the other hand Y'Y+ can be reexpressed as
YY+ = A+ B+ e, (3.87)

where A, B, C are symmetric rank-1 matrices. First we diagonalize A with Uy =

U12U23 WhGI"GIE

2 —|—C2 1/2
tans = C13/Cas, tangg = M

C(33
and, thus,
00 0
UsYY Uy =Ap+ B +6C, Ap=100 0 : (3.88)
00 3,Chs

We should note that there is no reason for the rotated B’ or C’ to be diagonal. In
fact, such a tuned case would correspond to proportional coefficients inside Y and thus
imply a rank-2 or even a rank-1 form. Next, we rotate with Ug = Uj,, where now
tan}, = C,/Chy, and obtain[J

UgUrYY+ UrUs = Ap + eB" + &C”, (3.89)
0 0 0
B" = 0 0122 + 0522 52(0122 + 0522)1/2 . (3.90)
0 Chy(Ch,” + G2 Chy”

12\We use the notation tan;; = tan 0;; for trigonometric functions where subscripts indicate rotations
in the respective planes of family space.

13Primed coefficients correspond to the elements of the rotated matrices. The explicit expressions
are

! . / . .
012 = 012 COS12 —022 Sinjo, 022 = (012 SN2 +022 COSlg) COS23 —032 Sinagg .
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The full rotation matrix can be approximated by U; ~ U Up = U;5Us3U], at dominant

level which results to a form

¢ dq
UYY' Ui ~ | & & € (3.91)
e ek 1

Diagonalization is then completed with subdominant rotations of O(e3) or O(€2/€3).
In the above analysis we considered real coefficients C;; for the elements of the
Yukawa matrices allowing for an analytic treatment of the rotation matrices and eigen-
values. In the general case of complex parameters equation ((3.86) is no longer valid
but the main properties of lopsided matrices still hold. For example, Y Y+ and Y'Y,
which now have different eigenvalues, are diagonalized by U] and U}, respectively. These
are different from the U, Us that diagonalize Y directly through Yp = UlT Y U,. Both
symmetric matrices though, in general, share a similar hierarchical spectrum and equa-

tions ((3.8743.91)) still hold for analogous complex rotations.

Mass scales and Seesaw.

Choosing as a general framework the two-doublets SM, electroweak symmetry breaking
is realized through a non-vanishing VEV for H,,H4 in the direction of their neutral

component. Thus, we obtain the mass terms for the charged fermions

vaYiP dedy + 0, Y ufuy + vy efe; (3.92)
and for the neutrinos )
N c R c c
v YV v NE §MRxg§. NN (3.93)

For a right handed neutrino mass scale in the neighborhood of Mp ~ 101 GeV, a

standard seesaw mechanism can be realized leading to the effective light neutrino mass

2
M, ~ —2r yMy®~ymt (3.94)

R
Then, the resulting overall mass scale (v2/Mg) comes out roughly as ~ 1071 eV, in
agreement with present data. Of course, for the above formula to be valid, vqugN) <
M RYgR) should in general hold for the eigenvalues. If this is not the case, then, heavy
O(Myy ) Dirac-like masses would be produced reducing the number of light neutrinos.

Under these considerations and neglecting the overall mass scale, eqn.(3.94]) can be
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reexpressed in the more convenient form as

YW = yYy*t, (3.95)
where 2
Yy = y®™ (Yﬁ) . (3.96)

This allows us to manipulate neutrino masses and mixings as in eqn.—. All
Yukawa matrices for fermions are expressed in a basis where the right handed neutrino
mass matrix is diagonal with real and positive entries. The definition in eqn. is
then straightforward.

A lopsided structure, along with the desired hierarchy, may arise in various ways.
For example, if Y,ER) is a diagonal matrix (possibly with a suitable hierarchy), Y¥) can
be responsible for the lopsided form of Y and an associated hierarchy, a possibility well
motivated by GUT considerations. Alternatively, if one assumes a generic Y ") with

), an analogous lopsided Y can be obtained

O(1) matrix elements and a hierarchical YD(R
but in this case a lower bound for the mass of the lightest neutrino is also inherited™]
In what follows, we will be interested in the explicit form of Y with the remark that the

examined patterns can be obtained from the more fundamental matrices Y(® YV,

Lopsided Lepton Patterns.

Next we proceed with the examination of possible lopsided patterns for the matrix Y
defined in eqn.(3.96)) that can contribute large mixing angles to Upp/ys through the

neutrino sector. Three working examples are the following Y7, Y5, Y3

Ciid2 Cio\Y2 Oy Ciid2 CpA\/2 . Ci1i)2 Cia\/?
Con X2 CooA\/2 Cas |, | CouX2 CooXV2 0 |, | Caid? Cap)/?
Csi A2 C3A\/2 Oy C51A2 CsoA/2 Oy ... Cs3

where the dots signify entries smaller than the ones explicitly shown which we can
safely neglect, i.e. -+ < O(\?). One should not be alarmed by the half-integer powers
of the bookkeeping small parameter A, since these matrices correspond, through the
see-saw formula, to couplings with integer powers of A, as could be expected to arise in

various flavour-symmetry breaking schemes. All Y;’s correspond to a typical spectrum

1A typical hierarchy A* : X : 1 for the light neutrinos, parametrized by A = (dm?,/dm3;)'/? ~ 0.18,
would in general require an inverse hierarchy A= : A= : 1 for the right handed neutrinos, implying a
mass eigenvalue MpA~* close to the physical cutoff of the theory whether this is the GUT, String or
Planck scale.
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A* X : 1 in the NH case of the neutrinos, although they can be easily modified to
accommodate a smaller value for the mass of the lightest neutrino.
The associated charged lepton matrices Y\, Y, Vi are
C’HFLS 6'121'433 . én/iS . c.. C~’11/€3
Clgli 023/1 c. s c. CNYQQKV égg/ﬂ? y K C~(22/‘i égg/i y

633 c. 632 033 e 032 033

all corresponding to the mass hierarchy x® : k : 1 parametrized by the small parameter
Kk =m,/m, in a manner consistent with current low energy data.

Y] has been previously used in Section 2 as an example where an arbitrary hierarchy
€2 : €2 : 1 was assigned to YY1, By substituting €2, €2 with A\*, X respectively we obtain
the desired neutrino hierarchy and the unitary transformation U, ~ U;oUasUiyUss.
Among these unitary matrices only Uj, is the subdominant rotation of O(\) needed
to complete diagonalization (up to negligible corrections) and all other are O(1). The

large mixing angles are explicitly given by the same expressions as before, namely

C 2 2 1/2
tang, = 0_13 tang = %
23 33

(012 COS12 —022 Sin12)
(012 Sin12 +022 COSlz) COSo3 —032 sin23

tan), = (3.97)
If we neglect the contribution from the charged lepton sector, a direct comparison
with the standard parametrization Upyrns = UaslhisUyo Tesults in three O(1) angles
and therefore a trimaximal scheme in disagreement with present observations. Then, in
order to fit the mixing angles, perhaps the easiest way is to assume a large contribution
from the charged leptons along with a certain amount of fine tuning through the relation
Ue = Ujs with tanjy; =~ C13/C. In this sense Yl(e) has what is required to obtain
Upnns =~ UxUj,Us, that fits better the observed mixing pattern.

Using again the formalism developed in eqn.(3.87H3.91)) for Y5 we obtain the unitary
transformation U, ~ UjpUs,, where now the neutrino mixing angles are given by the
expressions

C12 C’32
tan12 = C—, tan’23 = )\0—2(0122 + 0222)1/2 .
22 33

Since only one large angle is obtained in this way, the contribution of the charged
leptons is again required but with the apparent advantage that no fine-tuning has
to be imposed. Then, Yz(e) is diagonalized by a rotation of the left-handed fields
U, = Us3 with an O(1) mixing angle given by tanys ~ Cj5/Css. The resulting unitary
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transformation describing lepton mixing will then be Upyvs =~ UQTSU12U§3, which can
easily fit lepton mixing data.

There is a third pattern that can be seen as a variation of the previous one with
the difference that now the observed small angle of the lepton mixing originates from
the charged lepton sector. Assuming Y3 for the neutrinos, we obtain U, = Uy with
tanjy ~ C12/Cy. On the other hand from Y}fe), with the additional choice for the
new scale & ~ Ak we obtain U, = Uy;Uj, up to O(k?) corrections with tany; =
C2/Css, tan), = &/[(Chs cosas —Chg singg)k] ~ A. Consequently, lepton mixing is now

described by Upyns =~ U12U2T3U12 an expression also consistent with present data.

A Lopsided Neutrino Pattern.

There is an interesting and attractive possibility that the lepton mixing pattern ob-
served in nature originates solely from the neutrino sector. In this section we shall
explore this possibility in the general case of complex O(1) coefficients C;; = |C;|e%is.
The related unitary transformations can be parametrized in terms of a real angle and

a complex phase. For example, a unitary complex rotation in the {12} plane can be

described by 7]

COS12 Sin12 €_i612 0
Upp = | —singge2 COS12 0 | . (3.98)
0 0 1

Let us consider
C N2 Cip)\/?

Y = | Opu)2 Cyp)\/? Chs (3.99)
031)\2 C’32)\1/2 C(33

for the matrix of the neutrinos defined in , which, as before, corresponds to a
typical hierarchy A* : X\ : 1 of the NH case. Furthermore, we assume a negligible
contribution to lepton mixing from the charged lepton sector, an assumption motivated
by the large mass hierarchy of the charged leptons. This covers a large variety of distinct
realistic patterns for the Y(®)’s. In this sense we can have to a good approximation
U. =~ I and, as a result, the useful property that diagonal phase matrices commute
with U,.

Diagonalization of the neutrino matrix proceeds as usual through the formalism
developed in —. Note that by a field redefinition we can absorb the complex

15Lepton mixing can be described by various equivalent parametrizations [58]. Nevertheless, the
symmetrical parametrization Usg(023; doz)Uis(013;013)U12(012;012) in the presence of CP-violating
phases seems more attractive for model building purposes [57].
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phases of (9, (o3, Cs3. Diagonalization then begins with the unitary transformation
Uy3Uio describing two successive rotations. The corresponding large rotation angles

and the complex phases are given by
tal’lgg = 023/033, 523 =0 y tan12 = 012/|Cé2| ,512 = —(b/22 (3100)
with the complex primed coefficients
!/

Cé2 = CQQ COS23 —032 Sinzg, 032 = CQQ SiIl23 +C32 COSo3 . (3101)

Thus, the neutrino mass matrix Y'Y+ is brought into the hierarchical form

C N (... (... )
(At €29 (2 + |Chyl?) A (9t 9%2) | Ol | (CF, + |Ch[2) 2 A
(- )Nt €lhtoh) | Cho| (CF + [ Cho[2) /% A C3; + O3+ AChy”

The coefficients denoted by dots and multiplying the A\* elements are irrelevant since
only C1; is in practice associated with the lightest neutrino mass and a contribution

to the CP-violating phaseﬂ. A subsequent small complex rotation Uj,, with

(CF + |Cho| )12
(C35 + C33)

t311/23 - /\|C§2| + O(/\2>7 5&3 - ¢,22 + ¢§2 + O()‘) )

along with negligible O(\?) rotations, will finally bring the neutrino matrix to the

diagonal form

C1 2N 0 0
YY) ~ 0 %9 (CF + |Chol?) A 0
0 0 C2y + C2, + \CL2

Summarizing, lepton mixing in this model is described by the unitary transformation

Usz (B3, 0) Ura(012, —dhy) Uss(033, ¢y + dy) - P, (3.102)

with
P ~ diag <e—i¢’u, e~ith 1) . (3.103)

‘P guarantees the real positive mass eigenvalues. We already notice the predictive power

. . . . . . —q !
161, is given explicitly by O, = C1; cosia —(Cay cosas —C31 sings) sings e =192z,
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of this pattern. Starting from a general complex matrix Y for the neutrinos, with 8 com-
plex parameters, and assuming a lopsided structure, consistent with a typical hierarchi-
cal spectrum, we obtained an one to one fit between Cos, Cs3, Cla, |Casl, |Caa|, a2, P32
and the two heavier neutrino masses, the three rotation angles and the two (out of
three) CP-violating phases. Furthermore, the two rotation angles are predicted O(1),

while the third is O()\) as a consequence of the neutrino mass hierarchy \ : 1.

In order to exhibit the explicit relations of observables, we first note that the ex-
pression (3.102)) is unique up to a left-multiplication by an arbitrary diagonal phase
matrix. By a field redefinition of the left-handed charged leptons, having assumed that

U, =~ I, we obtain
Upnns = P71 Usz(0a3;0) Upa(012; — By ) Uss (i Py + 0ho) P

A direct comparison with the symmetrical parametrization of the physical quantities

results in the following relations

tan@sol = tanfg ~ tanjps (3104)

tan O, = tansy & | tangg +e (9221952) cos)y tan), | (3.105)
|Ues| = sinq3 = singy sin, (3.106)

12 & — @y, O3 = By — By, Oy A —hy. (3.107)

where the relations for the phases hold up to O(\) corrections. The Dirac CP-phase
of the standard parametrization responsible for CP-violation in neutrino oscillations is
identified as

07 = 13 — O1a — o3 A By + Pl

Our initial choice of same order parametrization coefficients, so that C;; ~ O(1), is
well justified by fitting the current experimental data from neutrino oscillation phe-
nomena. Nevertheless, the Dirac CP-phase is required for a more accurate fit between
the three observed mixing angles, the two heavier neutrino masses, and the subset
of the parameters {Ca3, Cs3, Cha, |Clsl, |Chs|}. A more conclusive test for this model,
including the complex phases ¢99, @32, would further require the measurement of any
existing physical Majorana phases. Even at this stage however, taking at face value

sinh; A~ A, we arrive at the interesting estimate

|Uez| = Asinfy =~ sinb5.9°. (3.108)
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Concluding our discussion, we note some of the general characteristics and perspectives
of this pattern. If any or all of the Cj;’s in are substituted by texture zeros
(or smaller entries) the same relations are obtained up to a different complex phase
contribution ¢}; and a different corresponding light neutrino spectrum of the form
(< M) : X\ : 1, something still consistent with observations. If on the other hand, either
C9 or Csy (but not both) are replaced with texture zeros, two additional predictive
relations are obtained. By taking ('35 zero we obtain a straightforward relation for the

complex phases in (3.107)) since ¢4y = ¢4, = ¢ao and the relation for the mixing angles

U, My, — M, COS 0P
tan Oy ~ eal | (s = 1 cO807) 5P| (3.109)
tan 0, My, OS2 B0

Using current best-fit values for tan 04, tan 05, m,, /m,,, the small angle élg is pre-

dicted in the (4°-6°) region. For a vanishing Cy, an analogous relation can be obtained.

3.5 Embedding in GUTs.

In the previous section we showed how a lopsided structure in the neutrino sector may
lead to the observed lepton mixing angles. An interesting feature of this approach
is that a similar lopsided structure may account for the small mixing in the quark
sector [61]. Such a possibility, apart from its obvious simplicity, is also well motivated
by GUT considerations. In what follows we consider as a framework a class of SO(10)

models [59,60] with the realistic mass matrices

0K 0 0K 0
YO =10 &k b |m, Y™=]|0 k b |m, (3.110)
0 0 a 0 0 a
08—k 6 08—k &
YO =& —k ¢=b|mis, YO=|0& —k e—b |mg. (3111
) € a o € a

Only the (common) (33) entry of these matrices, denoted by a, is assumed to arise from
the standard renormalizable term 16316510f. All other mass entries arise from effec-
tive non-renormalizable operators involving additional Higgs fields 16, 16%;, 455.

These contributions are subdominant and are denoted by a number of small parame-
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ters (k, k', 9, &', €, €), with the exception of the contribution to the (23) entry, which
is assumed to be of the same order as the renormalizable contribution and denoted
by the parameter b. The small elements ¢, ¢ arise from a non-renormalizable opera-
tor {16,16} {16,;16;}. The vev (16%) ~ (N§') ~ Mg breaks SO(10) to SU(5),
while the vev (16g) ~ (HY) ~ My breaks it down to SU(3). X U(1)en. Only
down quarks and charged leptons get contributions from this term. The relevant
Yukawa couplings of this operator respect the SU(5) relation Y = (Y(d))L, which
has been associated with a lopsided structure in the charged lepton sector [59]. The
symmetric elements ¢, ¢ arise from a different contraction of the same representa-
tions, namely {16,16,} {16516/}, appearing again only in Y@ and Y(©). A common
lopsided structure in the quark and lepton mass matrices arises from the operator
{16,104}, {16,455}z through the elements k, k', b. The vev (455) ~ Mg lies in
the right-handed isospin direction I3g, responsible for the breaking of the SU(2)g sub-
group of SO(10), while (105) ~ My is the standard vev in the electroweak breaking
direction. The contraction employed allows for general Yukawa textures that respect
the relation Y = Y™ = _y (@ = _Y(®) the minus sign arising from the different
I3 charge of the respective fields.

We proceed by assuming that [59] 0, &', k, k' < €, ¢ < a,b. Note that out of
these parameters one can be absorbed in an overall scale redefinition. Equivalently,
here we shall impose the simplifying b* + a®> = 1. Next, by a field redefinition of the
down quarks and charged leptons we restrict the complex phases to the (21),(22) and
(13) elements, leaving the rest real and positive. Then, without loss of generality, we
express (21) and (12) entries in both the down quarks and charged lepton matrices as
Yo1 = 6z, Yio = |0’ — K'|. Furthermore, assuming € ~ € < b, we approximate the (23)
entry as Ys3 ~ b. Thus all parameters besides z, &, k, k" are now real in both Y(©) Y@,

Neglecting the overall mass scales, we obtain in this redefined notation (at M)

my ~ m, ~ (B> +d*)? =1, (3.112)
ms/my, ~ €b, m,/m; ~ €b, (3.113)
|det Y| = |detY@| =~ 0" — k| |za —b|J . (3.114)

The model by construction is consistent with the b — 7 unification as a result of the
common b, a entries. This is a favourable prediction common in SO(10) and SU(5)
models and consistent with the low energy data. To fit the masses m,,m, of the
down quarks and charged leptons we notice that these are controlled by the elements
be, be'. Then the relation |detY@| ~ |det Y| along with m; ~ m.,, results in
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mq/m. ~ m,/ms (at Mg), which is in general agreement with the expected relevant
mass ratios at the unification scale. By taking €'/e ~ 3, the Georgi-Jarlskog factors
can be obtained [64].

For the up quark masses we have
112 2)1/2
me/my = ([K'[*+ |ak]?) "™, m, = 0. (3.115)

The prediction for a massless up quark is, of course, wrong but, since m, /m; ~ 107> a
tiny mass for the up quark can always arise from a non-renormalizable operator. Such
a small entry in the mass matrices cannot in practice affect the rest of the relations.
Furthermore, the parameter k'(~ k) which appears in both the mass ratio m./m, and
the expression for |detY(®)| will allow for a relation between the respective scales.
Next, we notice that since the Mg-relation m./m; < mg/my, is expected to hold,
the diagonalization of the up quark matrix will contribute only small corrections to
CKM and therefore we can safely consider, in this scheme, quark mixing originating

from the down quark matrix. Then, we have the relations

Vip = ea, Vi ~ 0(2"b+a), (3.116)
Vus ~ de — Vcqul,7 _VudVJb ~ bQ(Zb + (I) ’ (3117>
(ms/my)? VeV — a—a?(zb+a)

where we can easily fit all mixing angles and the CP-violating phase of the quark sector.
Using current best-fit values and the expected scale |det Y{€)| ~ 2-107° we obtain

the rough estimate
me/mil g, = (K2 + |ak]?)? ~ |5 = K] ~ 4-1073, (3.118)

within the expected allowed range. An additional important relation is also derived

from the quark sector, namely
ms /My,

Ve

We are going to see shortly that this ratio will appear as the dominant contribution to

bla ~ (3.119)

tan 0y, of the neutrino mixing.
Let us now proceed assumingjﬂ a diagonal Majorana mass matrix for the right-

handed neutrinos YlgR) = diag(1, A, 1) Mg. The new scale A is introduced to counter-

17Considering Majorana masses that arise from 16;126y 16; or the effective operator
16;16; 165 161, all Yukawa couplings, without loss of generality, can be expressed in the basis

where Yig.R) is diagonal.
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act the large mass hierarchy inherited from the up quark sector to the Dirac neutrino
matrix through the relation Y = Y () If this were not the case, the neutrino
spectrum would be inconsistent with the observed squared mass differences. The (11)
element, taken unity for convenience, is in practice arbitrary as long as the mass ratio
my, /m,, for the light neutrinos, obtained through the seesaw mechanism, is compa-
rable or smaller than A*. We can then manipulate neutrino masses and mixing as

previously. Neglecting the overall mass scales, the neutrino matrix defined in (3.96)) is

now
0 d 0

Y = 0 de¥ b ) (3.120)
0 0 a

Since the charged lepton matrix is diagonalized with small rotations, in contrast to
the large ones observed in neutrino oscillations, we may consider U, =~ [ to a good
approximation. A diagonal phase matrix can then be used to absorb all complex
phases (besides the (22) element) and bring the matrix Y into this form. This form is
a special case of the "Lopsided Neutrino Pattern” we previously examined and, thus,

using the same treatment we obtain the following relations

Upnns = Uss(023,0) Ura(612, —0a) Uss (633, 204) - P,
P = diag (e_i‘sl, 6_i6d, 1)

dsi
tangs &~ b/a, tanjs & d'/(dcosys), tanh, ~ (bQS—ll——ni;) (d/2 + (d (30523)2>1/2
My, = |b* + a® + (dsing)?e*| = 1
My, /My, = d? + (dcosy)® = A (3.121)

For the diagonal YéR) we obtain through the seesaw formula d’'/d = k’/k. This ratio

will allow for a direct fit of the solar angle. We have for the physical parameters

tan 0, ~ tani, (3.122)

tan Oy, & |tangs +e >4 cosyy tani,| (3.123)

|Ues| & sing sin, (3.124)

1o & =01, 13~ Oy — 01, 0oz = —0g, O4F =25, (3.125)

From these relations we directly obtain the prediction for the complex phases of the
symmetrical parametrization 323 + 513 — 512 ~ 0. By fitting the best-fit value for the

ratio tangg =~ b/a ~ 0.6 we notice a significant deviation from the observed atmospheric
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angle tan 0,4, ~ 1, which cannot be accounted for by the subleading term in (3.123)).
An exact fit would require mg/my, — |Vg| at Mg and, perhaps, a smaller value 0, ~
40° still within current experimental boundﬂ. Subleading corrections can also have
significant effect on this ratio (especially of our initial working assumption |¢' —b| = b).
In any case, d4 will be close to zero in this model, giving small CP-violation in neutrino
oscillation phenomena but also 513 = 312. The small mixing angle will obey the relation
for the corresponding M values of the relevant parameters .

Overview.

Summarizing our previous analysis, we have shown how a lopsided structure hidden
within the symmetric light neutrino matrix may account partially or completely for the
large lepton mixing angles observed in neutrino oscillation phenomena. Although this
idea has been previously considered in other models, here, the assumption of a very
light neutrino mass (m,, /m,, < A*) allows for an analytic treatment of neutrino masses
and mixing. An attractive feature of the formalism developed is that approximations
enter only at the stage where the matrix has already been brought to a hierarchical
form, thus allowing for exact expressions of the large mixing angles. Among the four
instructive lepton patterns considered, which can potentially fit current lepton mixing
data, the “Lopsided neutrino pattern”, has a number of appealing features. Specifically,
in this model the magnitudes of the lepton mixing angles are predicted within current
experimental bounds and the smallness of the #,5 angle is associated with the neutrino
mass ratio of the NH case m,,/m,, = A. Furthermore, since an analogous lopsided
form for the quarks may account for the observed small mixing in the CKM, we also
explored the possibility of a common lopsided structure within an SO(10) model with

realistic masses and mixing.

18 Alternatively, by assuming a large but subleading contribution from {16310}, {16345 }75 in
the (33) entries, the prediction for b — 7 unification is preserved but with the corresponding lepton
rotation angle tangg = b/a’ with a’ ~ a, thus allowing for a direct fit of 04y, .
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Chapter 4
Discrete R-Symmetries

Among the various attractive features of SUSY theories is the possibility for a new
type of an underlying symmetry, commonly referred to as an R-symmetry. It can po-
tentially explain the origin of the matter-parity in the MSSM and in addition offers
phenomenologically interesting restrictions for model building. In particular, the dis-
crete R-symmetries, which we shall consider here, have the apparent advantage over the
global, continuous ones that they are free of massless Goldstones. Furthermore, they
provide us with more options for realizations that avoid many of the phenomenological
difficulties of the MSSM or its extensions while not being totally unconstrained.

Any symmetry, discrete or continuous, with a possible phenomenological interest
should be embeddable in a gauge symmetry. It has been argued that any symmetry,
discrete or continuous, can survive to low energies without being violated by quantum
gravitational effects [65] if it can be embedded into a gauge symmetry. Then, since
any gauge theory should be free from the standard gauge-anomalies, restrictions that
emerge from this condition can impose non-trivial constraints to the low energy discrete
symmetry charges. In fact this is the case, as we shall discuss, for a U(1) breaking to
a discrete Zy group. The Zy charges will eventually have to obey certain anomaly

cancellation conditions.

4.1 Discrete abelian symmetries

4.1.1 The U(1l) — Zx breaking.

As an illustrative example for the breaking of a continuous symmetry into a discrete,
we may consider the breaking of an abelian U(1) into a Zy. In any case, this will be

the only pattern concerning our following analysis.

115
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Now let a theory with two complex scalars transforming non-trivially under a U(1)

gauge symmetry as

¢y = eiqle(x)%
¢y = W g,

We may also assume that the respective U(1) charges are quantized (i.e. q1,q2 € Z) as
observed in the SM or as expected in its supersymmetric and unified extensions. Then,
if the ¢, for example, acquires a non-vanishing VEV then a Z,, subgroup will be left
invariant. That is because the vacuum will be left invariant for discrete values of the

group parameter, namely

27k

€iq10<¢1> = <(b1> — 0= q—, kel (41)
1
Under this new symmetry ¢, will satisfy
pg = €20y = 6m%¢2 (4.2)

which suggests that this field is charged with ¢» under this Z,, symmetry. For ¢o > 0
these charges are redundant and can always be modulo shifted to the fundamental set of
charges {0,...q; —1}. For example a ¢ = 4 charge of a Z3 symmetry will be redundant

and equivalent to the ¢’ = 1 since ¢ = ¢’ mod 3.

It should be further remarked that other, non-trivial redundancies may also appear
through this breaking of a continuous to a discrete abelian symmetry, depending on
the field content of the theory. These redundancies, absent in the case of continuous
groups, originate from the fractional form of the Zy transformations as in (4.2). There,
the fraction (¢2/q1) can display the same value for distinct pairs of charge assignments,

thus potentially allowing for the realization of equivalent symmetry breaking patterns.

To explain this in more detail, we may consider a model, as previously, with
g1 = 4, ¢ = 2. A non-vanishing VEV for ¢; would straightforwardly induce the
breaking U(1) — Z4. In the absence of any other fields however, the corresponding

field transformations are not unique, since

o1 = 62’4%(?1 = 6i22L2]€¢1 (4.3)
po =T g, =eF g, 1.4

As a result, an equivalent breaking pattern U(1) — Z5 with ¢; = 2 and ¢ = 1 is always
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possible which suggests that the previous symmetry is actually redundant.

4.1.2 R-symmetries

In N = 1 supersymmetric theories, a new type of an abelian symmetry is always
possible acting seperately on the different components of a given supermultiplet. This
symmetry which does not commute with the generators of supersymmetry has a rather
simple interpretation when one introduces the concepts of superspace and superfield.
Even though a detailed discussion on these theoretical tools is beyond the scope of our
discussion, we may introduce a few elements relevant to our following analysis.
According to this approach one introduces a chiral supermultiplet in the chiral

superfield description as

® = ¢(y) + 0u(y) + 0°F(y) (4.5)
= 6(2) + i00"8 0,6() + 29252 0,0"é(z)

l

+ V200 () %

020, (x)o"0 + 0 F () (4.6)
where y* = z* + ifo*0. The #%s are Grassmann variables, namely anticommuting
parameters with a = 1, 2, properly contracted to a self quadratic form or to the Weyl-
spinors as 00, and 0%, respectively.

In this description the superpotential, responsible for the non-gauge interactions in
a supersymmetric theory, has an identical form when expressed in terms of superfields.
In other words, we may promote all scalar couplings to superfield couplings without

changing its structure. Therefore, a general superpotential expressed as
i Lo Ls ik

can have the conventional description of the scalar components for the ®; or alterna-
tively these fields may be regarded as superfields. In this latter description, the most
general supersymmetric Lagrangian including only chiral superfields has the simple,

compact form
£ = 0 @)D(@) |yt + [ W) + . (45)

Omne can generalize this description to include vector (gauge) supermultiplets by in-

troducing the vector superfields and finally construct the most general renormalizable



118 CHAPTER 4. DISCRETE R-SYMMETRIES

Lagrangian in terms of superfields only. A general vector superfield is given by
_ — _ 1-
V = —00"0A, +i0*0 X —i0 %0\ + 50 202D (4.9)

In this context, R-symmetries have a rather simple interpretation. They are ordi-
nary, abelian symmetries, continuous or discrete, imposed on the superfields, instead of
the supermultiplets. Under these symmetries, both component fields and Grassmann
variables transform accordingly so as for the respective superfields to carry definite
charges of this abelian symmetry.

For a Z% symmetry we may take the Grassmann variables carrying unit charge,

namely transforming as 6 — ¢i*%" 0. Then for a chiral superfield transforming as
® — N P (4.10)

the corresponding component fields will transform accordingly. They will carry the Z%
charges ¢, = qa, ¢y = ¢» — 1, ¢r = go — 2 which can be understood from (4.5)). For the
Lagrangian to be invariant under this symmetry the superpotential should transform

as
W =2 "W = qp =2 (4.11)

as implied from (4.8)). It should be remarked that this charge assignment for the super-
potential is convention dependent and would be different for another charge assignment
of the 6 variable. However independent of the convention is the fact that all allowed

terms in the superpotential will share the same overall charge gy .

4.1.3 Anomalies

A major issue of quantum gauge theories is the possible presence of gauge anomalies
for fermions. These, unavoidably arise within a general Lagrangian when the fermion
representations are not suitably chosen to satisfy a set of restrictive, anomaly can-
cellation conditions. If this is the case, certain symmetry relations, known as Ward
identities, and vital for the renormalizability of the theory within the context of per-
turbation theory, fail to reproduce themselves. Or equivalently, the symmetries that
may appear at tree (classical) level in the theory will be necessarily violated by the
radiative corrections.

A rather compact description on this issue is given by Fujikawa’s approach |66]. This
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relies on the observation that the path integral measure for fermions is not invariant

under a general gauge transformation G, but instead transforms as
[dW][dT] — ' @2A@0 [y [dT] (4.12)

where W stands for the fermions of the theory, and 6 is the group parameter. Then,
one identifies the A(x;#) as the anomaly function. In case this is trivial the anomaly
will be certainly absent. This function is given by the sum of the gauge and the gravity

parts which can be expressed in the general form

Aguge = 3573 Tr(F F) (4.13)
1 ~
Agrav = =525 RRTr(6) (4.14)

where we have adopted a bold notation for implicit contraction with the gauge gener-
ators e.g. @ = 0°T*. The field strength tensor and its dual (antisymmetric) form are

represented as F, F respectively while R, R stand for the Riemann curvature tensors.

The condition for the absence of the anomaly functions imposes severe constraints
on the irreducible representations for the fermions of the theory. To see how these arise
from and we may restrict ourselves to the case G = Gg x U(1), where
G will account for a simple non-abelian group factor. A generalization to the case

Ggs, X ...U(1) x ... is always straightforward.

For the considered case, the gauge part of the anomaly cancellation conditions will
arise from (4.13)) satisfying Agauge < Tr(7,73T¢). Then, the trace evaluated over all

fermion states will produce the cancellation conditions

Ags—cs—s = »_ Tr (TH{T},T5}) =0 (4.15)
!
Agg-cs-v) = »_Qrl(Ry) =10 (4.16)
!
Avmy-va)-va) — Z Q=0 (4.17)

where (i) runs over all fermion states, the sum in (f) runs over all irreducible fermion
representations and ¢(Ry) is the Dynkin index of the irreducible representation Rj.
Since the generators of all simple Lie-groups are necessarily traceless the U(1)—U(1) —

G5 cancellation condition is always satisfied. This also implies that only the constraint
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for (grav)* — U(1) is non-trivial, giving

A gravr—v(y = »_ Qi =0 (4.18)

Anomalies for Zy and 7% symmetries

If one considers that a Zy symmetry should be embeddable in an abelian gauge
symmetry, as previously argued, then analogous constraints applying on these new
charges will unavoidably arise. In analogy with our previous analysis we now consider
G =Gg x U(1) x Zn. We also recall the action of a Zy transformation on a fermion

state with a ¢y charge, given by

W — €N (4.19)

The fact that this transformation is invariant under modulo shifts of the Z y-charges
will produce the anomaly cancellation conditions in analogy with (4.16) as

AGs—Gs—ZN — Z ar E(Rf> =0 modn (420)

!
AU(l)fU(l)fZN — Z qul2 =0 mod n (4.21)
Agrar-zy = Y _¢i =0 modn (4.22)

In the above, we have introduced a parameter n = N, N/2 for odd or even values of N
respectively and all abelian charges were considered quantized as in the SM (MSSM)

and its unified extensions.

In the case where this abelian discrete symmetry is an R-symmetry the above
equations change accordingly. Our previous analysis in has shown that fermions
within chiral superfields charged with ¢ will carry a charge ¢, = gs — 1. The other
fermions of the SUSY theories we consider are the gauginos. They belong to the
vector supermultiplets and they will transform with charge ¢y, = ¢9 = 1 due to our
conventional normalization. This can be seen from for a vector superfield neutral

under this Z§¥ symmetry.

Under these considerations for the R-charge assignments the respective anomaly
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cancellation equations in this case will have the form

Agg_gs-z8 = Zﬁ(Rf)(fJf —1) + {(adj) =0 (4.23)
Avay-vay- R — Z —1)Q7 =0 mod 7 (4.24)
A grawr—z, = =21+ Y l(adj) + #(U (1)) + Z (4.25)

In the first equation the two terms represent the contribution of the chiral fermions
and gauginos respectively. The first term is the straightforward generalization of
while the second reflects the property that gauginos contributing R-charge ¢, = 1
transform in the adjoint representation of the gauge group. It should be remarked
that the latter was absent in the previous Zy case since, there, gauginos necessarily
follow the trivial charge of the vector supermultiplets. In the third equation the (-
21) originates from the contribution of the gravitino, necessarily present in SUGRA
theoried!] The second and third term represent the contribution of gauginos, equal
to the number of gauginos and, thus, always equal to the dimension of the full gauge
group dimG. Finally, the last term represents the contribution of the chiral fermions
to the gravitational anomaly in analogy to (4.22)).

We should also mention that the expressions for the abelian gauge factors in both
Zy, 7% cases can be absorbed to the non-abelian expressions , respec-
tively when the U(1) generators belong to simple gauge groups. This will turn out
particularly useful in our following analysis on the phenomenology of the MSSM and
its extensions within the framework of anomaly free discrete R-symmetries [67]. As
we will also discuss there, anomaly cancellation does not necessarily imply the absence
of the anomaly functions. Other mechanisms can also operate which may eventually

render the theory free from anomalies.

4.2 Discrete R-Symmetries within extensions of the
MSSM

Supersymmetric unified models, such as MSSM or extensions of it, have been proposed
mainly as a framework that eliminates, at least, the technical aspects of the hierarchy

problem. Apart from that and various other attractive ingredients, such as the unifica-

'In Z 5 symmetries such a term is absent since the graviton superfield, where the gravitino belongs,
is neutral.
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tion of gauge couplings and the, by default, existence of dark matter candidates, they
have a number of problems of their own. These are the so-called p-problem and the
need to eliminate dangerous D < 5 Baryon/Lepton violating operators. Discrete sym-
metries have been introduced as a means to control these potential problems [68-72].
In addition to that, discrete symmetries, and in particular discrete R-symmetries might
play a role with respect to the scale of supersymmetry breaking, parametrized by the
gravitino mass, since this can be controlled by existing discrete R-symmetries of the
superpotential. Therefore, if supersymmetry is going to be interesting for low energy
physics, it should be important to investigate the role of such discrete R-symmetries.
Such a discrete symmetry has been shown to avoid the p-problem and protect the elec-
troweak scale in singlet extensions of MSSM [73]. Nevertheless, there exist convincing
arguments that a discrete symmetry should be embeddable in an anomaly-free gauge
symmetry, otherwise quantum gravitational effects would violate it [74,75]. Thus, an
anomaly-free discrete R-symmetry should be employed. Cancellation of anomalies may
be direct |76] or proceed through the Green-Schwarz mechanism (GS). Such a discrete
R-symmetry, commuting with SO(10), was shown to avoid the p-problem in MSSM
and proton decay through D = 5 operators [77] [7§].

In our following analysis we extend the investigation of possible anomaly-free dis-
crete R-symmetries that avoid the p-problem and the dangerous D < 5 operators by
considering charge assignments that do not commute with the traditional grand unify-
ing simple groups, such as SU(5) or SO(10), but commute instead with the so-called
flipped-SU(5), with or without the operation of the GS mechanism. We stay within the
framework of MSSM, discussing briefly possible singlet or multidoublet extensions.
We find that, in the anomaly free case, the symmetries ZéR), ZéR) with flipped assign-
ments are possible and present sets of phenomenologically acceptable charges. In the
case of GS-anomaly cancellation, we recover ZJ(VR) symmetries with flipped assignments
for N = 3,4, 6,8, 12, 24 and present sets of phenomenologically acceptable charges.
In addition, we discuss a singlet extension of M SSM with Z5(R) symmetry as an ex-
ample of non-unified charge assignments. Finally, we confront the issue of constructing
a 4D grand unified theory endowed with such symmetry and arrive at an extended
flipped SU(5) x U(1)x model endowed with an anomaly free (through GS) symmetry
Z](VR) for N =7and N > 9. Sets of phenomenologically allowed charge assignments

are listed.

Next, we proceed to review briefly the general framework. Consider an R-symmetry
Zn, under which chiral superfields transform as ® — i R ®, where the integer ¢ is the

charge of ® under it. We are free to choose the superpotential charge to have a specific
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value and we take gy = 2. The anomaly coefficients corresponding to (gauge)?Zy

and (grav)?Zy anomalies, denoted respectively by A and Ay, are
A= Z@(w —1) + ((adj)

Ao = =21+ l(adj) + #(U Z (4.26)

where, in A, ¢; is the Dynkin index of the fermion representation f with Zy charge
qr, {(ady) is the contribution of the gauginos and, in A, —21 is the contribution of the
gravitino, > ¢(adj) + #(U(1)) is the contribution of the gauginos and ¢, sums over
all remaining fermion charges. The Z3;, anomaly coefficient is not considered, since the

corresponding condition can be interpreted as an embedding condition. In the case of
the MSSM, we have

N
Az =3+ 7]0(2qc2+qdc+quc—4)

N 1
Ay =2+ Tf(BqQ“"QE_ZL)‘i‘i(CIhu‘Fth_Q)
N 3
A = T0 (qQ + 2qge + 8que + 3qs + 6gec — 20) + 10(%“ +qn, —2)
Ao = =9+ (—1) + Nf (690 + 3que + 3qae + 2q¢ + gee + qne — 16)
+2(qn, Fan, —2) + D (g — 1) (4.27)

In the gravitational coefficient we have included the contribution of the right-handed
neutrino Ny(gye — 1) and the contribution of the dilatino/axino (—1). We have also

left room for the contribution of an unspecified number of singlets with charges ¢s.

For Zy-charges commuting with SU(5), the coefficients are

N
A3:3+7f(3q10+q3—4)

N 1
A2:2+7f(3q10+ G —4) + =(qn, + qn, — 2)

O |

N 3
A = 7f (Bqio+ g5 —4) + 1_0(Qhu +qn, —2)

Ao = =9+ (—1) + Ny (10¢10 + 5¢5 + ¢1 — 16)
+ Z(Qhu + Ghg — 2) + Z(QS - 1) (428)
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4.2.1 Non-anomalous Discrete R-Symmetries
One possibility to obtain an anomaly-free theory in the MSSM is to impose

As; = Ay = Ay =0 mod(n), (4.29)

where the condition on A, is required to be met by at least on shifted set of charges.
The parameter n is n = N/2 for N = 2k and n = N for N = 2k + 1. These are
considered independently of the gravitational coefficient which, in general, depends to

an unknown set of gauge singlets.

The standard case. The conditions, in the case of SU(5)-invariant charges (4.28)),

are equivalent to

Az =0 mod(n)
1
Ay — Az = §(C]hu + qn, —4) = 0 mod(n)
3 12
A — Az = 1—0(qhu +qn, —4) — 5= 0 mod(n) (4.30)

Imposing as a constraint the existence of the Yukawa couplings necessary for the

fermion masses?,
2¢10 + Gn, = Q0 + ¢G5 + Ghy = G5 + @ + qn, = 2 mod(N), (4.31)
the conditions (4.30)) are equivalent to

3 — 2Ny =0 mod(n)
(qh, + qny, —4) = 0 mod(N)
12 = 0 mod(n) (4.32)

For Ny = 3, this restricts the possible Zy R-symmetries to

N =3,6. (4.33)

2These can be “solved” mod(N/2) as

qo=1-qn./2, s =1+ qn,/2 —an,, &1 =1 —3qn,/2 + an, -

Any allowed sets of charges should obey these relations.
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Qha | Gha | @10 | G5 | @1 | o | Gy | (N©)?
0 4 1 31512 |10 —
0 4 4 0] 2] 121 10 —
4 0 5 | 31|11 10 | 12 +
2 2 3 313 | 14 8 —

Table 4.1: Allowed SU(5)-Invariant charges for ZG(R)

Note that the u-term is absentE], since ¢, +qqa = 4 # 2 mod(N) . Dangerous D = 5
Baryon/Lepton violating operators are also absent, since QQQ/, u“ue‘d® — 3qio +
¢ =4 —qn, — qn, = 0 mod(N) and u°d°d°N® — 2¢s + qio + ¢1 = 4 —qn, — G, =
0 mod(N). Nevertheless, the potentially dangerous D = 3, 4 operators transform as
Chy, = ¢+ qn,, QUA° d°du® — q0 + 2¢5 and a choice of charge assignments is
required.

In the N = 3 case, since gp, + gn, = 1 mod(3), for gn, = 0 and ¢, = 1, we can
have 190 = 1, ¢s = 0 and ¢; = 2. Then, the D = 3,4 matter-parity violating operators
cannot be present. Note however that the right-handed neutrino Majorana mass is
not possible. The vanishing of the coefficient A; can be met for the shifted charges
qn, =12, qn, =10, G1o = 4.

In the N = 6 case, we have ¢, + qn, = 4 mod(6), which can be met only with
even charges due to the mass relations (£.31]). The choice g5, = ¢, = 2 is SO(10)
invariant. The phenomenologically acceptable charges, for which the above D = 3, 4
operators are absent, are listed in the relevant table (Note that in Tab. d. stands for
shifted charges and the last entry refers to the right-handed neutrino Majorana mass

operator.)

The flipped case. In the above search for a non-anomalous Zy R-symmetry it has
been assumed that it commutes with SU(5) [76]. This need not be necessarily the case.

Let’s consider the following “flipped” assignments

40 = Qac = qne = Q10s U = Que = G5, Gec = (1, (4.34)

which commute with the so-called “flipped” SU(5) x U(1). The corresponding gauge
anomaly coefficients are identical to those of (4.28)) with the exception of

N 3

3Here, as in all subsequent cases, it is assumed that a p-term of the correct order of magnitude is
generated through non-perturbative effects [79] or through another indirect mechanism [80].
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Note however that, when we impose the mass relations
2q10 + Gny = Qo+ G5+ qn, = G5+ @1+ qn, = 2 mod(N), (4.36)

we can proveﬂ
3q10 + 11gs + 61 = 5(3qu0 + ¢5) ,

leading to

N 3
A = 7f (3qi0+qs —4) + TO(Qhu + qn, —2), (4.37)

which is identical to the corresponding expression in (4.28]). Thus, in both cases, of
straight and flipped charge assignments, all gauge anomaly coefficients are identical,
provided we invoke the conditions for the existence of mass Yukawa couplings. Nev-
ertheless, it should be reminded that the anomaly cancellation condition on A; rests
on the existence of at least one set of shifted charges that satisfy the corresponding
condition. Note also, even in the case of non-unified assignments that will follow, we

assume that the U(1)y hypercharge factor is normalized in the standard Eg fashion.

The allowed cases for a non-anomalous discrete R-symmetry are still N = 3, 6.
Nevertheless, the resulting models need not be the same. The p-term is still absent,
since qp, + qn, = 4 # 2 mod(N). Similarly, for the D = 5 Baryon/Lepton violating
operators, we have QQQY, d°d°N°u® — 3qio+¢s = 4 — (qh, +qn,) = 0 # 2 mod(N)
and uu’de® = 2¢s+qo+ ¢ = 4 — (g, + qn,) = 0 # 2 mod(N). Thus, these
operators are absent. In order to conclude whether the D = 3, 4 dangerous operators

are allowed, we must proceed further with the charge assignments for each value of V.

In the N = 3 case, we can take g, = 1, ¢4, = 0. Then, we can have ¢190 =2, ¢z =
0, ¢1 = 1. The D = 3 operator ¢h, = ¢ + qn, = 0 cannot be present. The D = 4
operators Q¢d¢, d°d‘u® = 2qio + g5 = 1 cannot be present either. Thus, the Z3 R-
symmetry in this case of flipped assignments is also phenomenologically feasible. The
N = 6 case proceeds in an analogous fashion. Taking ¢, = 4, qn, = 0, we are led to
G0 =D, ¢ = 3, ¢1 = 1, which disallows ¢h,, and Q¢d°, d°d°u®. Similarly, for the rest of
the flipped charge assignments shown in Tab[4.2] Shifted charges are denoted as ¢.

MSSM singlet extensions. If the model is extended beyond the MSSM by the
introduction of a singlet S coupled to the Higgses through a term Sh,hg, the required

4These are now “solved” by q10 = 1 —qn,/2,¢s = 1+ qn,/2 — qn, and ¢ = 1 — 3qn,/2 + qn,, -
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ZN 1 49Q | Gae | Gne | Qe | Que | Gee | Gn, | Ghg | Gec | Gha | Gng
N=3[2 2|2 [0]0 ] 1[0/ 1] 4]12]10
N=6|5|5]5[3][3|1[0]4]7]12]10
N=6|2]2]2 0[]0 ][40 4] 4]12]10
N=6|1]1] 1 [3][3]5]|4]0]-1]10]12
N=6|3]3] 3 |33 |3[2]2]3]|14]38

Table 4.2: Allowed Flipped Charges for ZéR) and ZéR)

charge of the new field has to satisfy
s = 2 — qn, — qny, = —2 mod(N)

and thus gg = 1 for Z3 or q¢ = 4 for Z5. Nevertheless, in both cases the term S?
is allowed, corresponding to a large mass for the singlet and making this extension

phenomenologically uninteresting.

N > 1 pairs of isodoublets. Another possible extension of the MSSM to be con-
sidered is the case of extra Higgs isodoublets with identical charges. The anomaly

coefficients for N > 1 pairs of isodoublets take the form

N
Ay =3+ =L (3qu0 + g5 — 4)

2
N N
2:2—1-7]0(3%0‘1‘%—4)4‘5((]%4’%_2>
N 3N
A = =L (3qi0 + a5 —4) + ——(an, + qn, — 2) (4.38)

2 10

The corresponding conditions A; = 0 mod(n) in the case Ny = 3, after we enforce
the, common in flipped or SU(5) assignments, mass relation 3¢1o + ¢z — 4 = —(qn, +
qn,) mod(N), amount to

As = 3(qn, + qn, —2) = 0 mod(N)

Ay — A3 = N(qn, + qn, —2) =2 mod(N)

3N
Al —A3—> ?(Qhu+th—2):6m0d(N>
— 24 =0 mod(N) (4.39)

From the first two equations we obtain in the familiar case N = 1 the standard non-

trivial solutions N = 3, 6 with g5, + ¢, = 4 mod(N) discussed previously. In an
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analogous manner, for N = 2 we again obtain N = 3, 6 for the allowed symmetries

but with a different relation for the Higgs charges, namely g5, + gn, = 0 mod(N). In

contrast, the N = 3 case has no solution for non-trivial symmetries (N > 3).

4.2.2 Discrete R-Symmetries with Anomaly Cancellation through
the GS Mechanism

Another possibility for the realization of discrete R-symmetries is when gauge and grav-
itational anomalies are cancelled through the operation of the Green-Schwarz mecha-

nism. The corresponding conditions on the anomaly coefficients (4.28]) read

As = Ay = Ay = p mod(n)
Ay = 24p mod(n) (4.40)

From the explicit expressions of the coefficients (4.28)) for the M SSM content, enforcing
the mass conditions, we obtainE] for Zy charges commuting with SU(5) or flipped.

A3 = p —  p=-3mod(n)
Ay — A3 =0 —  qn, + qu, = 4 mod(N)
Al — A3 =0 — 12 = 0 mod(n)
Ag—24A3 =0 — 18+ > (g.—1) = 0 mod(n) (4.41)

Note that the first three of these conditions, for p = 0 (i.e. N = 3, 6), coincide with
the conditions (4.30).

The last two conditions can be reconciled without the use of extra singlets in the
case of N = 3, 4, 6, 12. Nevertheless, they can be compatible for all possible N if we
extend MSSM introducing extra singlets. A most straightforward possibility is that
of a singlet S coupled to the Higgses as S h, hg. Then, its required charge would be
gs = —2 mod(N). Two such singlets reconcile the last two conditiong’} Thus, the
allowed discrete R-symmetries would be those corresponding to N = 3, 4, 6, 8, 12, 24.
Note that in the case N = 3, 6 only the quadratic term S? is allowed. In the N = 4

We have included in Ag the contribution of the right-handed neutrino and that of the di-
latino/axino. Enforcing the mass conditions on it we obtain Ay = —14 —10(gn, +qn,) + 2 .(¢s —1).
The difference with Az = 3 — 3 (qn, + qn,) is Ao — 2443 = 18 + 26(qn, + qn, —4) + > (gs — 1).

60f course, such a “solution” is not unique. Six singlets of zero charge could do the job as well.
Note also that, in the case of N = 3, 6, these conditions are met with an arbitrary number of such
singlets, since > (¢gs —1) = Ny(—3 mod(N) ), which is a subset of 0 mod(3).
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N | qo | qae | qne | Qe | Que | Qee | Ghy | Ghy | Qhe | Qhy
4 1 1 1 1 1 1 0 0 4 8
4 3 3 3 3 3 3 0 0 4 8

Table 4.3: Allowed Flipped Charges for ZiR)

case, only a linear and a cubic term are allowed. Finally, in the N = 8 case, only a
cubic term is allowed. Thus, in the N = 8 case the singlet extension coincided with
NMSSM, in the N = 4 case it is a modified NMSSM with an additional linear term.
Finally, the cases N = 12, 24, where no singlet self-term is present, correspond to what

has been termed nMSSM [73].
Allowed Zy R-symmetries commuting with SU(5) or SO(10) have been stud-

ied [78]. We shall go further in our analysis considering charge assignments that do
not commute with these symmetries. More specifically, we shall consider “flipped”

assignments

4Q = qdc = gNne = q10, G¢ = Que = (5, {ec = (1, (4-42)

which commute with the so-called “flipped” SU(5) x U(1). The anomaly coefficient
conditions considered above are identical for all these cases, provided the mass rela-
tions are invoked. Nevertheless, the final charge assignments for matter correspond to
distinct models. Turning now to the phenomenological features of the allowed models,
we see that the condition on the Higgs charges is sufficient to forbid the p-term.

In addition, dangerous D = 5 Baryon/Lepton Number violating operators are absent

as well, due to (4.36) and (4.41)). Indeed, we have
QQQL, ddu*N® — 3q0 + ¢ =4 —qn, —qn, = 0 # 2 mod(N)

uud’e® = 2¢s + quo + @1 =4 —qn, —qn, = 0 # 2 mod(N).

In order to conclude whether dangerous D = 3, 4 operators are present we need to
proceed further with the matter and Higgs charge assignments for each particular

value of V.

N = 3, 6. In these cases the first of the conditions (4.41]) implies that p = 0.
Thus, for these cases the analysis will coincide with the one carried on previously in

anomaly-free case without the operation of the GS mechanism.

N = 4. The condition g5, +¢gn, = 0 mod(4) can only be satisfied with even charges.
These are the choices g, = qn, = 0 and gy, = qn, = 2. The first choice leads to two

SO(10)-invariant solutions with identical phenomenology. Note that these solutions
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N 4o | dac | qne | Ge | Gue | Gec | Ghy | Gny
81224 | -1 -1 | -1 3] 3 |-5]24] 28
8,12,24 | 1 1 1 31 -3 5 28 | 24

Table 4.4: Allowed (Shifted) Flipped charges for ZéR), Zl(f), ng)

N=5|q0 | | 9 | Gue | Gec | qne | 95 | Gy | Qhy
4141111113272

Table 4.5: ZéR) charges

allow for a right-handed neutrino Majorana mass. All constraints for the absence of
D = 3, 4 operators are met. The second choice is discarded due to the presence of
unwanted D = 3,4 operators. The allowed cases are listed in Tabfd.3]

N = 8,12, 24. The condition g, + q», = 4 mod(N) allows again only even
charges and can in principle be satisfied for various sets of Higgs charges. Among them
two distinct general solutions, with D = 3,4 operators absent, are listed in Tab[4.4]
where, of course, these charges can always be modulo-shifted to lie in the first modulo
of the given symmetry. The charge ¢y = 1 of the second row allows always for a

right-handed neutrino Majorana mass term.

A “non-unified” case (ZéR)). The above found set of allowed Zy does not ex-
clude other “non-unified” possibilities. The anomaly coefficients for non-unified charges

are

1 1
A3:3(qQ+§qu+§qnc—2) + 3

3 1

N
Ay = 3(§QQ+§CM—Q) + §(th+qh“ —2) +2

9 /1 1 4 1 10 3N
= — — — c —{yc —_— ec — T —_— . _2 443
Ay 5(6qcz+3qd + g + 54+ 3) + 1O(th+Qhu ) (4.43)

where N is the number of Higgs isodoublets. A particularly interesting case is that
of a Z5 discrete R-symmetry, motivated by the solution to the u-problem in terms of
a minimal singlet extension of MSSM. The assigned charges |73| are given in Tab..
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For these charges the anomaly coefficients are

p=As = 2 mod(5)

Ay = N mod(5)
24 3N,
A = 5 + T(qa + g5 — 2) mod(5) (4.44)

where we have introduced tentatively IV, pairs of hypercharge +1 singlets. Finally, the
condition on Ay = 70 + Ny(¢o + ¢z —2) + > .(¢s — 1) reads 2 + N,(¢o + ¢z —2) +
>-.(gs —1) = 0 mod(5). The anomaly conditions corresponding to (4.44) can be met
for N =2, N, = 1 and the shifted charge 4> = gz = 7. The gravitational anomaly
condition can also be met if, apart from the charge-3 singlet S, we introduce also an
additional neutral singlet. Note that for these charges all possible dangerous terms
are disallowed (0@, €0, (Ghy, hqadyo, h,h,o). Note also that a term 07 .S is allowed.
Apart from being anomaly-free, this model allows for all standard terms, including
neutrino Majorana masses, and forbids all unwanted D < 5 terms. The extra charged
singlets introduced here for the sake of anomaly cancellation can obtain a mass through

the vev of the singlet S.

4.2.3 Unification

Can these discrete symmetries be incorporated in a 4D grand unified theory? There are
convincing arguments that, for a simple gauge group and MSSM particle content at
low energies, this is not possible [81]. We shall depart from both of these assumptions
and allow on the one hand, additional matter at low energies, beyond MSSM, and
on the other hand go beyond simple unifying groups. Specifically, we shall consider
SU(5) x U(1) and use “flipped” Zy-charge assignments commuting with it. One of
the motivations for this model is that it is accompanied by an elegant mechanism for
triplet-doublet splitting. Note that this is one of the main problems that one has to face

in promoting MSSM to a GUT endowed with the discussed discrete R-symmetries.
Minimal Case. The standard matter content of SU(5) x U(1) comes in three
copies of F(10, 1), f¢(5, —3), ¢¢(1, 5) with corresponding Zx charges qio, ¢s, ¢:. The
standard Higgs content is h(5, —2; qu), h*(5, 2; qne), H(10, 1; 0), H(10, —1; 0). The
last pair, through its non-zero vev will achieve the breaking down to M.SSM. Obvi-

ously, it has to be neutral under the discrete symmetry. The standard matter couplings

" Another working choice is N, = 2 and ¢, = ¢z = 4.
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are

FFh+ Ffohe+ forne. (4.45)

Nevertheless, in order to realize triplet-doublet splitting, the couplings H H h + H H h¢

are necessary. These couplings force the Higgs charges
qdn = (Qpe = 2 mod(N) . (446)

Note that these charges do not allow a p-term. Nevertheless, enforcing the mass

conditions
2q10+ gn = Qo+ G5 + Ge = s + ¢ + @ = 2 mod(N), (4.47)

we are led to the SO(10)-invariant assignments

N

Note that, since the charges have to be integers, only even values of NV are allowed. Note
also that the case N = 4, in which all matter fields have charge 2 mod(4), is excluded
since it allows the operator FH. The anomaly coefficient conditions for general even
N > 4 are

As = 3N —3 = p mod(N/2)

Ax =3N -3 —g = p mod(N/2) (4.49)

and anomaly cancellation cannot be met without introducing extra matter. It can also

be checked that anomaly cancellation cannot be saved by shifted charges.

Extra Fields. In what follows we shall introduce extra matter and at the same time
avoid the SO(10)-symmetric assignment enforced by in order to realize the split
assignments found in the previous section. In order to avoid , we introduce an
extra pair of Higgs fields H'(10,1; qy/), F/(I_O, —1; g57/). Assuming that the only non-
Zero vevs are thos of (H) = (H) and assuming that the couplings H H' h, H H h* are
present, after symmetry breaking, the pairs dy (3, 1, —1/3; q1), d5%.(3, 1, 1/3; qg) and
dse(3, 1, 1/3; qne), dg/(3, 1, —1/3; g+) will obtain a large mass and will be removed
from the spectrum. In addition, the fields Qu, %, Nj — N will be “higgsed away”.

The surviving fields, apart from the standard matter and a neutral Higgs singlet, will

. R) . .
8Thus, assuming a ZI(V )invariant vacuum.
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be a “hybrid” pair 10/ + 10" composed out of the H'(H') with their d; (dg+) replaced
by d$;(dg). The conditions on the charges resulting from the existence of the standard
couplings

FFh+ Ffh+ f¢nr+HHh+ HH K (4.50)

are given by (4.47) and
g + @ = 4’ + qre = 2 mod(N). (4.51)

Nevertheless, a number of unwanted terms are still allowed by gauge symmetry, namely,

the terms
hh'+HH+HH+HH +FH+ FH
+ Hh+ Hh + FHh+ FH'h + Hf°h* + H fh°, (4.52)
which are expected to be removed by the discrete symmetry.

Next let’s consider the anomaly coefficients. The gauge anomaly coefficients are

3 1 3 1
A5:5+3(§q10+§q5—2) + §(QH’+QF’ —4) + §(Qh+9h° —2)

3 1 1
Ax = 15 (1010 + 4545 + 2501 = 80) + - (qm + 4 —4) + (o + que —2)  (4.53)

or, applying the conditions (4.47)), (4.51)),

5
As = 4 — =(qn + qne) = p mod(n)

2
Ax =1 = 2aut aie) = p mod(n) (4.54)
Taking the familiar condition
qn + qre = 4 mod(N), (4.55)
we obtain
As; = Ax = —6 (4.56)

which satisfies the anomaly condition for any N.

The gravitational coefficient if’] Ay = —7 — 17(gn + qne) + > ,(gs — 1) and the

9The contribution of a dilatino/axino is also considered.
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corresponding condition becomes

Ay — 2445 = 69 + ) (g — 1) = 0 mod(n) (4.57)

and can be satisfied, among other choices, for any N with a single neutral singlet of
shifted charge ¢; = —68. For all symmetries which are divisors of 138 this extra singlet

is not required.

Note that the D = 3, 4 Baryon/Lepton violating operators of the standard field
content £ h,, Q0d°, u¢d°d, although not directly present due to the gauge symmetry,
may appear through higher dimensional operatorﬂ Thus, their absence will be even-
tually determined by their respective Zy charges. On the other hand, the analogous
D = 5 operators FEF f¢, f¢f¢F{° are always absent since they have charges 3¢190 + ¢z
and 2¢s + q10 + ¢1, both equal to 4 — gye — g, = 0 mod(N), due to (4.55).

Taking (4.55) as our starting point, we proceed to consider phenomenologically
allowed charge assignments. For even IV, a general assignment that satisfies (4.55)) and

is compatible with (4.47)), (4.51)) of shifted charges is

qn = _27 Ghe = 6, q' = 4a A’ = —4
Go=2+N/2, ¢s = —6+N/2, ¢ = 10 + N/2 (4.58)

The anomaly constraints are readily satisfied| A5 = Ax = 3N —6. Next, we demand
that the dangerous terms (4.52)) are absent. Their charges are

hhe =4, HH — 4, HH — —4, H H — 0
FH -2+ N/2, FH — -2+ N/2, H*h — —2, H'h* — 6
FHh — N/2, FH'h — 4+ N/2, Hfh¢ — N/2, H'fh° — 4+ N/2  (4.59)

and they should be # 2 mod(N). The first two rows lead to the constraints N #
4, 6, 8, while the third does not give any additional constraint. Therefore, the allowed

even values of NV are
N = 2k > 10. (4.60)

Note that, since F? has charge 4 + N, no right-handed neutrino Majorana mass is

10 fepe FFf¢ are not gauge singlets but H f¢h®, HFF f¢ are.
1Note that the anomaly coefficients for the low energy spectrum with the new extra matter satisfy
alsoA3 = AQ = .Al = 3N —6.
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!

N lqo|ag|q|an | an|qm | 95
101 7 1915 6 8 4 6
128046 [10] 4] 8

Table 4.6: Allowed ZfOR), 2B charges for SUB) x U(1)x.

allowed. Furthermore the dangerous D = 3, 4 operators are absent since
th, — N/2, Qd°, d°d“u®* — N/2 -2+ N (4.61)

which are # 2 mod(N) for the allowed symmetries. The corresponding charges for the
cases N = 10, 12 are shown in Tabf4.0]

Next, starting again from (4.55]), we proceed to investigate possible odd values of

N and consider a general assignment of shifted charges compatible with (4.47)), (4.51)

Qh = 17 th == 3, qH/ = 1, qﬁ/ = _1
(4.62)
o= (N4+1)/2,¢s = (N=3)/2, q1 = (N +5)/2

The anomaly constraints are readily satisfied’ A; = Ax = 3N — 6. Again, we
demand that the dangerous terms (4.52) are absent. Their charges are

hhe =4, HH -1, HH — -1, HH — 0

FH — (N+1)/2, FH — (N —1)/2, H*h — 1, H h* = 3

FHh — (N +3)/2, FH'h — (N +5)/2, Hf°h® = (N +3)/2,

H'f°h = (N +5)/2 (4.63)

and they should be # 2 mod(N). The first two rows lead to the constraints N # 3, 5,
while the rest do not supply us with any additional restriction. Thus, the allowed odd
values of N are

N =2k+12>T7. (4.64)

Again, since F? has charge N + 1, no right-handed neutrino Majorana mass is allowed.
The D = 3,4 operators are also absent. In Tab/4.7] we show the corresponding charges
for the cases N =7, 9.

It can also be checked that for any other Higgs charge assignments in the range

12 Again, the anomaly coefficients for the low energy spectrum with the new extra matter satisfy
alsoAg = .A2 = Al = 3N —6.
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Nilqo |G| al|ae|an| qr | qg
7 4 216 3 1 1 6
ol 5 371311 8

Table 4.7: Allowed 2! Z{® Charges for SU(5) x U(1)x.

(0,7) satisfying g, + goe = 4 mod(N), the corresponding phenomenologically viable
models also forbid the symmetries Z3, Z4, Z5, Z¢, Zs. This fact is sufficient to forbid
these symmetries for all possible models with g, + gne = 4 mod(N) although departing
from this relation may in principle allow some of them.

Before closing this section it is interesting to note that the above list of symmetries
does not exhaust all possible symmetries for the given gauge group. As an example,
consider the model of ref. [82] that is characterized by a radiative breaking of the
SU(5) x U(1) symmetry. This model, having the same set of fields as the model
considered above plus gauge singlets, possesses the discrete symmetry Z?ER) X Z9, which
can readily promoted to be anomaly-free at the expense of introducing a massive pair

of hypercharge +1 singlets of ZéR)— charge equal to 2.

Overview.

In our previous analysis we have reconsidered the issue of possible anomaly-free discrete
R-symmetries ZJ(VR) that avoid the p-problem and the dangerous D < 5 operators within
MSSM and extensions of it. Freedom from anomalies was considered either through
strictly vanishing anomaly coefficients for the (gauge)?Zy anomalies or through the
operations of the Green-Schwarz mechanism for the former as well as the (grav)?Zy
anomalies. We have extended known investigations by considering charge assignments,
that do not commute with the standard SU(5) or SO(10) gauge groups but are, instead,
compatible with a so-called flipped-SU(5) symmetry. Staying within the framework
of MSSM, we have found that, in the anomaly-free case, the symmetries Zg(,R), ZéR)
with flipped assignments are possible. We have also investigated the possibility of
multidoublet extensions of MSSM in this case. Phenomenologically acceptable charge
assignments have been listed. In the same framework, in the case of GS-anomaly

cancellation, we have arrived at phenomenologically allowed Z](VR)

symmetries with
flipped assignments for N = 3, 4, 6, 8, 12, 24. Phenomenologically acceptable charges
for these cases have been listed. As an example of discrete symmetries non-commuting
with any of the above unifying symmetries, we have also considered a ZéR) symmetry
with non-unified charges in the framework of a singlet extension of MSSM.

We have also considered the question of finding such symmetries for traditional 4D
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grand unified models. Having excluded simple gauge groups such as SU(5) or SO(10)
or non-simple groups like SU(5) x U(1)x with MSSM-low energy content, we arrived
at an extended flipped SU(5) x U(1)x model. For this model, Z](VR) symmetries were
shown to be anomaly free (through GS) and phenomenologically viable for N = 2k+7
and N = 2k 4 10.
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Chapter 5
General overview

In our previous analysis we have focused on several open issues that necessarily arise
within the Standard Model of particle physics and its standard extensions, namely
supersymmetry and Grand Unified Theories. These issues, among others are crucial
for our understanding on the fundamental laws of nature.

In what preceded we have followed a twofold approach. In the first two chapters we
have reviewed the main frameworks of our study and illustrated certain aspects and
selected topics therein. Specifically, in Chapl[I] we have introduced the fundamental
concepts of gauge symmetries and renormalizability. These concepts further allow to
establish the general and concrete framework of Quantum Gauge Field Theories. Then,
within this context, we are led to the Standard Model of particle physics. We describe
its general structure as well as its phenomenological implications on the particle spec-
trum. We eventually conclude this chapter by presenting several inadequacies of this
model, among which the ”fermion masses and mixing puzzle”, strongly suggesting in
favour of a high energy completion. Thus, in Chap|2| we review the rather standard ex-
tensions of the SM, namely SUSY and SUSY-GUTS which seem to evade at least some
of its technical problems while offering new possibilities for theoretical constructions.
There, after introducing fundamental aspects and properties of global supersymmetry
in its minimal version (N = 1) we arrive at the Minimal Supersymmetric Standard
Model. Among the virtues of this model, interesting also on its own, is its possible
embedding within the framework of Grand Unified Theories. SUSY-GUTSs, also dis-
cussed in Chap[2]offer many interesting and attractive theoretical realizations that may
potentially answer some of the open questions the SM leaves behind.

In the second part of this thesis, and having established our general framework, we
proceeded in ChapfJ[] to demonstrate the main aspects of our research. In Chap[3]

we have revisited the puzzle of fermion masses and mixing in more detail. This arises
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within the context of the SM but also propagates to the MSSM due to the unconstrained
Yukawa structure in both models. Then, in [48] we mainly focused on the issue of
neutrino masses and mixing from the viewpoint of a non-minimal SUSY-SU(5) model.
As mentioned there a non-minimal approach is always required when one considers
realizations of the SU(5) group, even in its supersymmetric version, since current
proton stability constraints have practically ruled out the minimal version. In this
model, proton decay is evaded due to the extended field representation content which
allows for unification at a higher scale, namely Mg ~ 10'7GeV. Admittedly, a certain
amount of fine tuning is required to keep tree level masses below Mg and subsequently
achieve successful unification. However, this situation is rather typical in various GUT
models. Moreover, renormalization group analysis necessarily constrains one of the
heavy neutrino masses to lie within 10'® ~ 104GeV, a phenomenologically preferred
region for acquiring light seesaw neutrinos at the sub-eV scale. Another interesting
aspect of this realization is a prediction for a zero tree level mass for the lightest
neutrino. This, as it turns out, is not a special property of this particular model
but a rather more general feature of GUTs where two neutrinos belong to the same
irreducible representation of the unified group. Current data cannot yet either support
or exclude such a possibility for the neutrino mass spectrum. If a much lighter neutrino
is eventually observed then this type of GUTs would offer a rather elegant explanation
for such a much smaller neutrino mass.

Next, in the remaining sections of Chap/3] we have investigated the possibility of
an alternative approach on the lopsided (asymmetric) idea for the Yukawa matrices of
fermions [62]. In this approach we have imposed a lopsided structure in the neutrino
sector to account for the large mixing-large hierarchy observed there. We have found
that such a possibility, in practice orthogonal to the standard approach, shares not
only the attractive properties of lopsided models but also displays many unique features
which render this framework even more attractive for model building. It turns out that
this lopsided structure has a natural embedding in the type-I (or -I1I) seesaw mechanism
since this seesaw formula offers the possibility of a hidden lopsided structure underlying
the symmetric light neutrino matrix. What is remarkable in this approach is that it
is meaningful even outside the framework of GUTs. In fact what is only required is
an analogous lopsided structure shared by all Yukawa couplings of fermiond!] Then
without any other assumption the observed pattern for fermion masses and mixing
straightforwardly appears. Thus, in this way one obtains hierarchical fermion masses,

small and hierarchical CKM mixing, and large PMNS angles if a standard seesaw

!Besides of course the right handed neutrino mass matrix which is by default symmetric.
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mechanism is also present. Within this context one may fit all current lepton masses
and mixing data. Large mixing angles may originate from both charged lepton and
neutrino mass matrix or only the neutrino mass matrix with the latter option most
appreciated by theoretical considerations. In this perspective, we considered an SO(10)
realization where the desired global lopsided Yukawa structure was obtained through
an interplay of renormalizable and non-renormalizable operators. Within this model
we were able to fit adequately all current fermion masses and mixing data. However as
already mentioned such an alternative lopsided approach may apply beyond this GUT
model and even beyond GUT considerations in general.

Finally, in Chap[4] we examined the phenomenological implications of a discrete R-
symmetries, which appear only within the framework of SUSY. Such symmetries have
been long considered as a possible way to avoid the phenomenological difficulties of the
MSSM and various SUSY-GUTSs in practice forbidding the presence of certain danger-
ous operators. Actually the famous ad hoc matter-parity of the MSSM also present
in many of its extensions may be regarded as originating from such a symmetry. In
this viewpoint we examined those discrete R-symmetries [67] that, besides satisfying
obvious phenomenological constraimsﬂ7 they can also exhibit a dynamical origin. In
other words we further required that these Z& symmetries should be embeddable in
abelian gauge groups. Therefore they should further satisfy non-trivial constraints for
their possible charges, as these arise from the gauge anomaly cancellation conditions of
their parent gauge symmetries. With our analysis we have extended previous investiga-
tions of anomaly free, discrete, R-symmetries to the case of R-charges commuting with
the flipped-SU(5) gauge group. We have also examined the possibilities of multidou-
blet and singlet extensions of the MSSM. Finally we have constructed a non-minimal

flipped-SU(5) with an extended but phenomenologically viable low energy spectrum.

2These are the existence of the MSSM renormalizable couplings, the absence of the u-term and
the absence of potentially dangerous baryon- and lepton- number violating operators
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