Direct Epoxidation of (E)-2'-Hydroxychalcones by Dimethyldioxirane

Waldemar Adam,** Joachim Bialas,* Lazaros Hadjiarapoglou,* Támas Patonayb

^a Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-8700 Würzburg, Germany

^b Department of Organic Chemistry, Lajos Kossuth University, H-4010 Debrecen, Hungary

Received 19 July 1991

The synthesis of α,β -epoxy-2'-hydroxychalcones (3-aryl-2,3-epoxy-1-(2-hydroxyaryl)propanones) **2** by direct epoxidation of (E)-2'-hydroxychalcones [(E)-3-aryl-1-(2-hydroxyaryl)propenone] **1** with dimethyldioxirane at subambient temperatures is reported. These acid- and base-sensitive epoxides, which have been hitherto difficult to prepare, were isolated in excellent yields and were completely characterized by spectral and microanalytical data. The now readily available 2'-hydroxy substituted chalcone oxides may serve as convenient precursors to flavonoid-type natural products.

2-Hydroxychalcones constitute a class of naturally occurring substances of great biological interest. They are regarded² as precursors in the biosynthesis of all flavonoid-type natural products. Some derivatives have been used in clinical applications³ for the treatment of ulcers and inflammations, and others have been employed as intermediates in the production of neumatic liquid crystals⁴ (telecommunication technology and integrated optics) or photosensitive polymers.⁵

Chalcone oxides are commonly synthesized in plants⁶ and are biologically important compounds since they are presumed to act as potent selective inhibitors of the cytosolic epoxide hydrolase; however, little is known about the related 2'-hydroxychalcone oxides, because due to their labile nature towards acids and bases, they have been difficult to prepare. It has been reported that a 2'hydroxychalone epoxide could be obtained in only 20 % yield by peracid epoxidation of the corresponding 2'hydroxychalcone in boiling chloroform, but its persistence even in neutral aqueous media (pH ca 7) was only a few seconds.8 On the other hand, the well-known alkaline hydrogen peroxide method, Weitz-Scheffer reaction or its modified form,9 yielded the corresponding flavonols as a result of base-catalyzed opening of the epoxide ring. A more cumbersome and elaborate approach¹⁰ involved the protection of the 2'-hydroxy functionality by the acid-labile methoxymethyl group, epoxidation with alkaline hydrogen peroxide, and deprotection by acid hydrolysis, but the epoxy ring suffered hydrolysis under these conditions. Furthermore, oxidative cyclization of 2'-hydroxychalcones with the usual oxidants such as SeO₂¹¹, Tl(NO₃)₂¹², Pb(OAc)₄¹³, Hg(OAc)₂¹⁴ afforded complex product mixtures and proved of little synthetic utility.

Dimethyldioxirane, an efficient oxygen-transfer agent, which operates under mild and strictly neutral conditions, was shown¹⁵ to epoxidize electron-poor alkenes such as α,β -unsaturated acids, esters and ketones,¹⁶ β -oxo enol ethers,¹⁷ and flavones.¹⁸ Presently, we describe our results on the epoxidation of various 2'-hydroxychalcones by means of isolated dimethyldioxirane (as acetone solution), which underscores once again the advantages of this novel oxidant for the preparation of labile epoxides.¹⁵

1,2	R¹	R²	R³	R ⁴	R ⁵	1, 2	R ¹	R ²	R³	R ⁴	R ⁵
b c	H H	H H	H H MeO H	H H	Cl H	f	H	Cl	H	H	MeO

Scheme

The 2'-hydroxychalcones 1a-g were transformed by dimethyldioxirane into the corresponding epoxides 2a-g (Scheme) in excellent yields. The results are given in Table 1. The long reaction times (30-62 hours), the subambient temperatures (-5° C to ca. 20° C), the large excess of dimethyldioxirane (up to tenfold), and its addition in portions (12 h intervals) are necessary for achieving the conversion of the 2'-hydroxychalcones 1 into their epoxides 2 in optimal yields. It is important to note that when the epoxidation of 1f was carried out at ca. 20° C, the epoxide 2f was contaminated with the corresponding flavonol (E/Z ratio ca. 2:1). The same mixture of diastereomeric flavonols was also obtained when a chloroform-d solution of 2f was left to stand at room temperature for 24 hours.

The structure assignment of the epoxides 2a-g rests on the carbonyl band at v = 1640-1685 cm⁻¹ in the IR spectra. The epoxide proton signals occur at $\delta = 4.1-4.4$ in the ¹H NMR spectra and the ¹³C NMR resonances of the C- α and C- β epoxide atoms at $\delta = 56-60$.

In summary, we have described a much superior epoxidation procedure of 2'-hydroxychalcones by using isolated dimethyldioxirane (as acetone solution). Epoxides 2 are now available in excellent yields, and their propensity as useful building blocks for the synthesis of flavonoid-type natural products can now be explored.

All reagents were of commercial quality. Potassium monoper-oxosulfate, the triple salt $2\,\mathrm{KHSO_5} \cdot \mathrm{KHSO_4} \cdot \mathrm{K_2SO_4}$, was received as a generous gift from Degussa AG (Hanau, Germany) or Peroxid-Chemie GmbH (Munich, Germany). The solvents were purified by following standard literature methods; acetone and $\mathrm{H_2O}$ used in the preparation of dimethyldioxirane were doubly distilled over EDTA. Analytical TLC plates were purchased from Macherey-Nagel. Melting points were taken on a Reichert Thermovar hot-stage apparatus. Microanalyses were performed on a Carlo Erba 1106 CHN Analyser. Mass spectra were run on a Varian 8200 Finnigan MAT spectrometer with EI ionization. IR

Table 1. Dimethyldioxirane (DMD) Epoxidation of (E)-2'-Hydroxychalcones 1

Prod- uct	Reaction Conditions			Yield (%) ^b	mp (°C) (solvent)	Molecular Formula ^c	IR (CCl ₄) v (cm ⁻¹)	MS (70 eV) m/z (%)		
	Time (h) ^a	Temp.	Ratio 1/DMD	` '	(sorvent)	Tormula	v (cm)	<i>m</i> ₁ 2 (70)		
2a	59	~ 20	1:6	100	111-113 (CCl ₄ /PE ^d)	C ₁₅ H ₁₁ ClO ₃ (274.7)	1650, 1550, 1505, 1310, 1285, 1210, 1165, 1140, 1060	274 (M ⁺ , 179), 245 (31), 181 (22), 155 (86), 121 (33), 119 (100), 117 (97), 105 (33), 91 (44), 77 (39)		
2 b	57	~ 20	1:5	100	118-120 (CHCl ₃ /PE ^d)		1675, 1605, 1520, 1510, 1310, 1265, 1230, 1175, 1110, 1030	(), (),		
2c	62	0	1:8	100	112-114 (CCl ₄ /PE ^d)	$C_{16}H_{14}O_4$ (270.3)	2950, 1640, 1605, 1480, 1280, 1200, 1150, 1045, 690			
2d	56	0	1:7	100	93-94 (CCl ₄ /PE ^d)	$C_{16}H_{14}O_4$ (270.3)	1680, 1610, 1525, 1510, 1460, 1305, 1270, 1225, 1175, 1040	270 (M ⁺ , 13), 241 (35), 213 (9), 150 (15), 121 (100), 107 (38), 105 (8), 93 (13), 91 (20), 77 (16)		
2e	30	~ 20	1:3	100	58-60 (CCl ₄ /PE ^d)	C ₁₆ H ₁₄ O ₃ (254.3)	1665, 1600, 1510, 1460, 1305, 1260, 1220, 1170, 1040, 910	254 (M ⁺ , 21), 225 (40), 134 (32), 133 (62), 121 (100), 119 (13), 105 (36), 91 (18), 77 (17)		
2f	50	-5	1:7	100	97-98 (CCl ₄ /PE ^d)	C ₁₆ H ₁₃ ClO ₄ (304.7)	1685, 1650, 1550, 1500, 1305, 1275, 1210, 1200, 1190, 1055	304 (M ⁺ , 7), 275 (2), 167 (3), 155 (14), 150 (47), 122 (11), 121 (100), 108 (9), 91 (6), 77 (15)		
2g	37	0	1:5	99	107-108 (CCl ₄ /PE ^d)	C ₁₇ H ₁₆ O ₄ (284.3)	1660, 1630, 1535, 1500, 1420, 1300, 1275, 1265, 1190, 1050	284 (M ⁺ , 11), 255 (4), 150 (21), 136 (14), 135 (100), 121 (72), 119 (6), 107 (11), 91 (10), 77 (20)		

a Total reaction time of the several batches.

Table 2. NMR Data of Epoxides 2

Prod- uct	¹ H NMR (CDCl ₃ /TMS) ^a δ , J (Hz)	¹³ C NMR (CDCl ₃ /TMS) ^a δ
2a	4.14 (d, 1 H, J = 1.7), 4.26 (d, 1 H, J = 1.7), 7.01 (d, 1 H, J = 9.0),	59.8 (d), 60.1 (d), 119.3 (s), 120.4 (d), 124.2 (s), 125.8 (d), 128.5
	7.36-7.50 (m, 6H), 7.80 (d, 1H, J=2.5), 11.84 (s, 1H)	(d), 128.9 (d), 129.4 (d), 134.8 (s), 137.3 (d), 161.2 (s), 196.8 (s)
2b	4.11 (d, 1 H, $J = 1.8$), 4.29 (d, 1 H, $J = 1.8$), 6.89–6.95 (m, 1 H),	59.1 (d), 59.9 (d), 118.8 (d), 119.5 (d), 127.1 (d), 129.1 (d), 129.3
	$7.05 (dd, 1 H, J_1 = 8.5, J_2 = 0.9), 7.31, 7.39 (AA'BB', 4H), 7.51$	(d), 133.7 (s), 135.2 (s), 137.5 (d), 162.7 (s), 196.9 (s)
	7.58 (m, 1 H), 7.80 (dd, 1 H, $J_1 = 8.1$, $J_2 = 1.6$), 11.85 (s, 1 H)	
2c	3.82 (s, 3H), 4.09 (d, 1H, $J = 1.7$), 4.34 (d, 1H, $J = 1.7$), 6.87–	55.1 (q), 59.5 (d), 59.6 (d), 110.8 (d), 114.6, 118.0 (d), 118.4 (d),
	7.04 (m, 5H), 7.29–7.35 (m, 1H), 7.49–7.56 (m, 1H), 7.81 (dd,	118.6 (s), 119.3 (d), 129.3 (d), 129.7 (d), 136.5 (s), 137.2 (d), 159.8
	1 H, $J_1 = 8.1$, $J_2 = 1.5$), 11.85 (s, 1 H)	(s), 162.3 (s), 197.2 (s)
2d	3.81 (s, 3H), 4.23 (d, 1H, $J = 1.9$), 4.41 (d, 1H, $J = 1.9$), 6.88–	55.3 (q), 56.2 (d), 59.3 (d), 110.3 (d), 118.5 (d), 118.8 (s), 119.3 (d),
	7.03 (m, 4H), 7.27–7.37 (m, 2H), 7.48–7.55 (m, 1H), 7.88 (dd,	120.8 (d), 123.8 (s), 125.5 (d), 129.7 (d), 129.9 (d), 137.2 (d), 158.1
	1 H, $J_1 = 8.1$, $J_2 = 1.6$), 11.92 (s, 1 H)	(s), 162.5 (s), 197.9 (s)
2e	2.37 (s, 3H), 4.07 (d, 1H, $J = 1.8$), 4.32 (d, 1H, $J = 1.8$), 6.85–	21.3 (q), 59.8 (d), 59.9 (d), 118.7 (d), 118.8 (s), 119.4 (d), 125.8 (d),
	6.92 (m, 1 H), 7.02 (dd, 1 H, $J_1 = 8.5$, $J_2 = 0.9$), 7.23 (d, 2 H, $J = 0.9$)	129.4 (d), 129.5 (d), 132.1 (s), 137.3 (d), 139.2 (s), 162.6 (s), 197.5
	8.3), 7.26 (d, 2 H, $J = 8.3$), 7.47–7.54 (m, 1 H), 7.80 (dd, 1 H, $J_1 =$	(s)
	$8.1, J_2 = 1.6, 11.90 (s, 1H)$	
2f	3.82 (s, 3H), 4.07 (d, 1H, J = 1.7), 4.26 (d, 1H, J = 1.7), 6.93, 7.28	55.2 (q), 59.7 (d), 60.0 (d), 114.2 (d), 119.2 (s), 120.2 (d), 124.0 (s),
	(AA'BB', 4H), 6.97 (d, 1H, J = 9.0), 7.45 (dd, 1H, J1 = 9.0, J2 =	126.5 (s), 127.1 (d), 128.4 (d), 137.0 (d), 160.4 (s), 161.0 (s), 196.9
	2.5), 7.80 (d, 1 H, $J = 2.5$), 11.82 (s, 1 H)	(s)
2g	2.25 (s, 3 H), 3.80 (s, 3 H), 4.05 (d, 1 H, $J = 1.8$), 4.33 (d, 1 H, $J = 1.8$)	20.4 (q), 55.3 (q), 59.7 (d), 59.8 (d), 114.2 (d), 118.4 (d), 118.5 (d),
	1.8), $6.89-6.95$ (m, 3H), $7.27-7.34$ (m, 3H), 7.58 (d, 1H, $J=$	127.1 (s), 127.2 (d), 128.6 (s), 129.0 (d), 138.4 (d), 160.4 (s), 160.5
	1.3), 11.77 (s, 1 H)	(s), 197.4 (s)

^a Obtained on a Bruker AC 250 (250 MHz) spectrometer, except 2g which was run on a Bruker AC 200 (200 MHz).

spectra were measured on a Perkin-Elmer 1420 spectrometer. ¹H-and ¹³C NMR spectra were acquired on a Bruker AC 200 (200 MHz) or AC 250 (250 MHz) spectrometer. (*E*)-2'-Hydroxy-chalcones 1a-g were prepared in moderate yields from the NaOH-catalyzed condensation of the appropriate benzaldehydes

and substituted 2-hydroxyacetophenones in EtOH by following literature procedures. Dimethyldioxirane (as acetone solution) was isolated as described^{16b} and the peroxide content was determined by oxidation of methyl phenyl sulfide to its sulfoxide; the latter was quanitated by ¹H NMR.

b Yield of isolated product 2.

Satisfactory microanalyses were obtained (C ± 0.34 , H ± 0.13) except **2b** (C + 0.58, H + 0.10).

^d PE = petroleum ether (bp 50° - 70° C).

Epoxidation of (E)-2'-Hydroxychalcones 1a-g by Dimethyldioxirane; General Procedure:

The required amount of the dimethyldioxirane solution in acetone (0.057-0.107 M), which was stored over molecular sieves (4 Å) at $-20\,^{\circ}\text{C}$, was added rapidly under a N_2 atmosphere to a cooled (cf. Table 1 for specific conditions), stirred solution of the appropriate (E)-2'-hydroxychalcone 1 (0.66-1.00 mmol) in absolute CH_2Cl_2 (5 mL). The stirring was continued for 12 h and a new quantity of the dimethyldioxirane solution (0.057-0.107 M) was rapidly added. Every 12 h fresh batches of dimethyldioxirane solution were added until complete consumption of the (E)-2'-hydroxychalcone 1 (monitored by TLC), the solvent removed at reduced pressure $(0^{\circ}$ to ca $20\,^{\circ}\text{C}$ at 15 Torr) and the pure epoxides $2\mathbf{a}$ -g were isolated in excellent yields. The final purification of the epoxide was accomplished by recrystallization from the appropriate solvent. The experimental details are given in Table 1 and the NMR spectroscopic data in Table 2.

The generous gift of potassium monoperoxysulfate [Caroate® or Curox®] from Degussa AG (Hanau, Germany) and Peroxid-Chemie GmbH (Munich, Germany) and the financial support by the Deutsche Forschungsgemeinschaft (SFB 347 "Selektive Reaktionen Metall-aktivierter Moleküle) and the Fonds der Chemischen Industrie is gratefully appreciated.

- (1) Recipient of the 1991 Interox Junior Award.
- (2) Hepworth, J. D. In Katritzky and Rees Comprehensive Heterocyclic Chemistry; Boulton, A.J., McKillop, A., Eds.; Pergamon Press: Oxford, 1984; Vol. 3, p 874.
- (3) Vanstone, A.E.; Maile, G.K., German Patent (DOS) 2810253; Chem. Abstr. 1979, 90, 22628.
- (4) Hanemann, K.; Schubert, H.; Demus, D. French Patent 2133788; Chem. Abstr. 1973, 78, 159226.
- (5) Kato, M.; Hasegawa, M.; Ichijo, T. US Patent 3873 500; Chem. Abstr. 1975, 83, 29065.
- (6) Wong, E. In Chemistry and Biochemistry of Plant Pigments; Goodwin, T.W., Ed.; Academic Press: New York, 1976; p 464-526.

- (7) Ramakrishnan, V.T.; Kagan, J. J. Org. Chem. 1970, 35, 2898.
- (8) Main, L.; Old, K.B. Tetrahedron Lett. 1977, 2809.
- (9) Donnelly, J. A.; Farrell, D. F. J. Org. Chem. 1990, 55, 1757. Arringa-Giner, F.J.; Iunuma, M.; Tanaka, T.; Mizuno, M.; Scheele, C.; Wollenweber, E. Z. Naturforsch. 1987, 42c, 1063. Takahashi, H.; Kubota, Y.; Fank, L.; Onda, M. Heterocycles 1986, 24, 1099.
- Saxena, S.; Makrand, J. K.; Grover, S. K. Synthesis 1985, 110. (10) Augustiyn, J. A. N.; Bezuidenhoudt, B. C. B.; Ferreira, D. Tetrahedron 1990, 46, 2651.

 Takahashi, H.; Kubota, Y.; Miyazaki, H.; Onda, M. Chem. Pharm. Bull. 1984, 32, 4852.
- (11) Srivastava, S.D.; Srivastava, S.K. Indian J. Chem. 1987, 26B, 57.
- (12) Bezuidenhoudt, B. C. B.; Brandt, E. V.; Feweiva, D. J. Chem. Soc., Perkin Trans 1 1987, 1081.
- (13) Kurosawa, K. Bull. Chem. Soc. Jpn. 1969, 42, 1456. Kurosawa, K.; Higuchi, J. Bull. Chem. Soc. Jpn. 1972, 45, 1132
- (14) Sekizaki, H. Bull. Chem. Soc. Jpn. 1988, 61, 1407.
- (15) Adam, W.; Curci, R.; Edwards, J.O. Acc. Chem. Res. 1989, 22, 205.
 Murray, R.W. Chem. Rev. 1989, 89, 1187.
 Curci, R. In Advances in Oxygenated Processes; Baumstark, A. L., (Ed.); JAI Press: Greenwich, 1990; Vol. 2, p1.
 Murray, R.W. In Molecular Structure and Energetics. Unconventional Chemical Bonding; Liebman, J.F., Greenberg, I., Eds.; VCH Publishers: New York, 1988; Vol. 6, p311.
 Adam, W.; Curci, R.; Hadjiarapoglou, L.; Mello, R. In Organic Peroxides; Ando, W., Ed.; John Wiley Interscience, in press.
- (16) Adam, W.; Hadjiarapoglou, L.; Nestler, B. Tetrahedron Lett. 1989, 30, 331.
 Adam, W.; Hadjiarapoglou, L.; Smerz, A. Chem. Ber. 1991, 124, 227.
 Amstrong, A.; Ley, S.V. Synlett 1990, 323.
- (17) Adam, W.; Hadjiarapoglou, L. Chem. Ber. 1990, 123, 2077.
- (18) Adam, W.; Golsch, D.; Hadjiarapoglou, L.; Patonay, T. Tetrahedron Lett. 1991, 32, 1041.
 Adam, W.; Golsch, D.; Hadjiarapoglou, L.; Patonay, T.
 J. Org. Chem., submitted.
- (19) Smith, M.A.; Neumann, R.N.; Webb, R.A. J. Heterocycl. Chem. 1968, 5, 425.