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Abstract: Substituted cyclohexa-2,4-dienones, generated in situ by
pyrolysis of the appropriate dimer, participated in Diels–Alder reac-
tions with various dienophiles to afford bicyclo[2.2.2]octenone and
bicyclo[2.2.2]octadienone derivatives in high yields.
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The structural complexity of natural products demands
the development of new and efficient strategies to con-
struct complex polycyclic frameworks from simple start-
ing materials with high selectivities.2 Occasionally,
tandem,3 cascade,4 or multicomponent reactions5 are de-
veloped to achieve this objective.

Substituted cyclohexa-2,4-dienones,6 i.e. 2, constitute a
synthetically useful class of compounds. These com-
pounds can be generated by in situ oxidation of the readily
available o-alkoxy phenols using hypervalent iodine
reagents7 in the presence of an alcohol or a salicyl alcohol
using the Adler–Baker oxidation (NaIO4).

8 Alternatively,
when the substituted cyclohexa-2,4-dienones dimerized
faster than trapped, thermolysis9 of dimer 3 is a conve-
nient source of 2 (Scheme 1).

Substituted cyclohexa-2,4-dienones have been shown to
be efficient 4p-components in Diels–Alder reactions un-
dergoing regio- and stereoselective cycloaddition pro-
cesses with electron-poor as well as electron-rich
dienophiles.10 Other 2p-components used in these reac-
tions have been heteroaromatic compounds such as fu-
ran,11 pyrrole,12 and thiophene13 derivatives. The resulting
bicyclo[2.2.2]octenone derivatives have been used as
starting materials for the synthesis of different targets, in-
cluding polysubstituted cyclohexenes,14 cis-decalins,15 bi-
cyclo[2.2.2]derivatives,16 and triquinanes,17 as key steps
in several complex total syntheses of natural products.18

We report herein our results of utilizing dimers 3, as a
source of substituted cyclohexa-2,4-dienones 2, to synthe-
size various bicyclo[2.2.2]octenone and bicyclo[2.2.2]oc-
tadienone derivatives. The required dimer 3a was
obtained in 50–62% yield by the oxidation of o-eugenol19

with (diacetoxy)iodobenzene in MeOH at room tempera-
ture, while, dimer 3b was obtained in 65–70% yield when

salicyl alcohol 1b was subjected8 to sodium meta-perio-
date oxidation in aqueous acetonitrile.

The substituted cyclohexa-2,4-dienones 2 generated in
situ by the pyrolysis of dimer 3 in o-xylene in a sealed
tube at 230 °C (sand bath), furnished Diels–Alder cy-
cloadducts in the presence of appropriate dienophile as
shown in Table 1. Cycloadduct 4a,20 as a single isomer,
was obtained in 95% yield, when styrene was allowed (at
230 °C in a sealed tube) to undergo reaction with masked
o-benzoquinone (2a), generated in o-xylene by thermoly-
sis of dimer 3a (Scheme 2). The oxidation of o-eugenol
with (diacetoxy)iodobenzene in the presence of styrene at
room temperature was found to be sluggish, it produced
substantial amounts of dimer 3a and some desired product
4a. Similarly, cycloadduct 4b, as a single isomer, was pro-
duced in 52% yield when styrene was allowed (at 230 °C
in sealed tube) to react with spiroepoxycyclohexa-2,4-di-
enone (2b), generated by thermolysis of dimer 3b
(Scheme 3). In the past, it has been reported6a that pyroly-
sis of dimer 3b in the presence of dienes/olefins failed to
yield Diels–Alder adducts due to thermal rearrangement
of the oxirane ring followed by a retro Diels–Alder reac-
tion and aromatization.

The reaction with an electron-rich dienophile, such as
phenylthioethylene, was also considered. The substituted
cyclohexa-2,4-dienones 2, generated by pyrolysis of
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dimers 3, reacts with phenylthioethylene to give the cor-
responding cycloadducts 4c,d as single diastereomers and
in acceptable yields (Table 1). Even if acetylenic dieno-
philes are expected to be less reactive, bicyclo[2.2.2]octa-
dienones 5 and 6 were isolated in good yields when
substituted cyclohexa-2,4-dienones 2 were generated in

the presence of an acetylenic dienophile. Methyl propi-
olate gave two regioisomers 5a and 6a (75:25) upon reac-
tion with masked o-benzoquinone (2a) and 5b, 6b (83:17)
upon reaction with spiroepoxycyclohexa-2,4-dienone
(2b), whereas dimethyl acetylenedicarboxylate afforded
cycloadducts 5c and 5d as single isomers. It may be noted
that the dimer 2b and dicyclopentadiene provided the
cycloadduct 7, used as starting material in the total
synthesis21 of (±)-hirsutene, via the Diels–Alder reaction
of their in situ generated monomers.

The Diels–Alder cycloadducts thus obtained, could be
easily isolated after column chromatography on silica gel.
Their structures were deduced by spectral studies. By
comparison of the yields of these cycloadditions, it is clear
that the Diels–Alder reactivity of masked o-benzoquinone
(2a) is better than the corresponding spiroepoxycyclo-
hexa-2,4-dienone (2b).

In summary, we have demonstrated that a tandem retro-
Diels–Alder sequence employing dimers 3 provides an ef-
fective route to bicyclo[2.2.2]octenone and bicyc-
lo[2.2.2]octadienone derivatives, which are valuable
starting materials for the total synthesis of various natural
products. We are currently examining the optimization
and applications of this useful synthetic sequence.
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Table 1 Synthesisa of Bicyclo[2.2.2]octenone and Bicyclo[2.2.2]octadienone Derivatives 4–7

Entry Dienophile Dimer Time (h) Product Yield (%)b

1 3a 43
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2 3b 25
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(3 mL) for the given time.
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