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Karl F. Freed and Marios K. Kosmas
The Jafnes Franck Institute, The University of Chicago, Chicago, Illinois 60637

(Received 21 February 1978)

The neglect of cutoff dependences enables the derivation of scaling relations by pure dimen-

sional analysis. Scaling relations for systems in confined volumes are utilized to provide the

Imry et al. interdimensional relations for static and dynamic critical exponents. Illustrations are

given for v, P, and z. For n = 0, the Flory value for v is obtained, while tor n =1 the errors in

the three-dimensional values of v and P are 5 and 10%, respectively, from our simple algebraic

recursion relation. Our approach is based upon asymptotic dimensional arguments for systems

governed by Landau-Ginzburg-type free-energy functionals, and this formulation also enables

the separation of relevant and irrelevant variables near the critical point. The utility ot the scal-

ing theory is illustrated by application to the problem of the description of the electronic struc-

ture of disordered materials where traditional renormalization-group methods yields runaway

solutions. The present methods (neglecting cutoffs) yield hontrivial information concerning

conductivity and density-of-states exponents near the mobility edge.

I. INTRODUCTION

The scaling hypothesis of critical phenomena" as-
sumes that near -the critical point there is only one
relevant length scale. Thus, all the thermodynamic
properties and correlation functions have their "criti-
cal behavior" dependent on this fundamental correla-
tion length. This assumption gives rise to various
scaling relations for thermodynamic functions and to
interrelationships between critical exponents for dif-
ferent properties. 3

The renormalization-group (RG) method ' goes
beyond scaling theories in two general aspects. First-
ly, the RG theory proves that only certain parameters
of the energy functional are relevant in the neighbor-
hood of the critical point, thereby explaining the
universal character of classes of critical phenomena.
The RG method then drives scaling relations for ex-
perirnental quantities in terms of this small set of
relevant parameters. Scaling then emerges from the

symmetries of the energy functional under RG
transformations. The second general characteristic of
the RG theory is its ability to produce computational
algorithms for the evaluation of critical exponents.
Scaling theories only provide interrelationships
between different exponents. "

Imry et u/. have shown how approximate relation-
ships may be obtained which described the dimen-
sionality dependence of critical exponents. Their
derivation invokes a host of known properties of crit-
ical phenomenon. Here-we show how these interdi-
mensional scaling relationships can be derived direct-
ly and extremely simply from "naive" scaling. The
derivation is of interest in itself because it explicitly

focuses on the inherent approximations involved. In
particular, it is shown that the interdimensional laws
emerge by neglecting the cutoff dependences of the
general scaling relations. If the cutoffs were absent,
the naive scaling' would be exact, so the errors in-
curred are measures of the importance of the cutoffs.

While an analysis of the approximations inherent
in the interdimensional laws and a simplified deriva-
tion are of considerable interest, of greater impor. -

tance is the fact that the same methods can be util-
ized to generate scaling relations and interdimension-
al scaling laws for situations in which the traditional
RG method fails because of the production of runa-
way solutions, etc. An example of the latter occurs
for the case of the motion of electrons in random po-
tentials' where the analog of a critical point is the
mobility edge, the demarcation energy between con-
ductive and nonconductive states. Our method
differs from that of Imry et al. in the use of a single
matching between d and d-I dimensional ncritical" re-
gions, while theirs involves matching between four
regions (the above two and their corresponding
mean-field regions). We are able to utilize a single
matching because the dimensionality dependences on
the coupling strength are utilized in our approach.
Here we show the new interdimensional scaling rela-
tions for electrical conductivity and density of states
can be derived. Elsewhere we provide a discussion of
the implications of these new results.

In Sec. II scaling is obtained directly by the applica-
tion of simple dimensional analysis to the Landau-
Ginzburg functional representation ' for the thermo-
dynamic and dynamic properties of the system or
from the analogous classical field theoretical
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representation for the random electronic problem. In
Sec. III we derive recursion relations between critical
exponents for d and d —1. The particular examples
given are v, P, and z where the recursion relations
are '

pressions for the free-energy functional

F[M) = Jt d K M( K) [r —cVz]M(K)

+u J M'(R) d R, (2.1)

I (d —4) 1—=2+ 2
vg (d 5) vg —

&

2vy Pg
P =p +I (1.2)

z =2+zq lvq 1
——+—— . (1.3)2 1 2(d —4)

d —5 vg d —5

After submission of this manuscript we were made
aware of derivations of. Eqs. (1.1) and (1.2) by Imry
et al. Our. method of derivation differs from theirs
in a number of important respects. First, it demon-
strates how the errors are associated with the neglect
of cutoffs, and second, it enables the extension to
treatments of problems where traditional critical
phenomena theories are inadequate. Using the two
dimensional (d =2) exact Ising (n = I) values in Eqs.
(1.1) and (1.2), the d =3 ones are found to be too
high by 5 and 10%, respectively, from the currently
accepted "best" values. For the polymer problem
(n =0), the use of the exact v for d =1 generates al-
most the exact values for all higher dimensions. This
supports the predictions for the electronically disor-
dered problem (in Sec. IV) where previous informa-
tion on many exponents are unavailable. (The expli-
citly quantum predictions for electrical conductivity
differ markedly from those which are generated util-
izing results from percolation theory. ") A considera-
tion of scaling theories of polymer solutions" is
presented elsewhere. "

Jt M(R) M(0) exp( —F [M])SM
x(K r, c, u) =

Jt exp( —F [M])BM

= (M(R)M(0)) (2.2)

and other properties are defined in the usual
manner. Consider the simple change in variables
for the 5M and d R integrations.

M'(R') =—bM(R), (2.3a)

where M(R) is the scalar order parameter (or "mag-
netization") and integrations are over a d-dimensional
volume d R. The analysis is left, for simplicity, in R
space, but care must be exercized in the analysis of
four-point correlation functions where the use of
Fourier space is more convenient (see Sec. IV). The
parameter r is defined by r ~ (T —T,)/T„where T is
the temperature and T, is the critical temperature.
The most general F[M) would contain V4, etc. ,
terms in the M' part, V', etc. , terms in the M part,
and M, Ms, etc. , contributions. Below we review
how the condition r 0 suffices to indicate the ir-
relevancy of all of these variables above certain criti-
cal dimensions. The convergence of certain integrals
requires the presence of a minimum length cutoff l.
The derivation in this section provides results which
are necessary in Secs. III and IV,

The correlation function is defined by

R'=a R, V'= Va~ (2.3b)
II. SCALING RELATIONS

We consider the traditional Landau-Ginzburg ex-
and V is the volume of the system. Equation (2.3)
converts Eq. (2.1) to

F[M] —= a b J,M'(R') [r —a'c(V')~]M'(R')d R'+ua ~b 4JI dK'[M'(R')]4. (2.4)

Because Eq. (2.3) is just a change in variables of in-
tegration, a and b may be chosen totally arbitrarily,
and the equality between Eqs. (2.1) and (2.4)
remains a pure identity. The choice

a2a ~b 2c =—1 (2.5)

converts the coefficient of (V')' to unity. Then Eq.
(2.4) yields the scaled form

F[Mir, u, c, Vl) =F[M'lire 'a, ua~~c 1 a Val],

(2.6)

which is valid for arbitrary a. The convenient choice

a = (r/c)'l' (2.7)

converts Eq. (2.6) to

F[M] =F[M'll, ur c ~ 2, 1, (r/c)" V, (r/c)' l] .

(2.8)

We define u' = ur ~ ~ c as the relevant dimen-
sionless coupling constant. For r 0 and d )4,
u' 0, the quartic part of Eq. (2.1) or Eq. (2.4) is ir-
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relevant; mean-field theory ensures.
%ere it not for the presence of the cutoff in Eq.

(2.6) or Eq. (2.8), these relationships could be util-
ized to provide all the exact scaling laws. However,
scaling relations must be established for two systems
having the same cutoff, while Eqs. (2.6) and (2.8)
contain different cutoffs on left- and right-hand sides.
It is this difference which introduces the necessity for
the decimation portion of the RG transformation as
this decimation effectively reduces the transformed
cutoff back to its original value so the resultant scal-
ing relation compares systems with constant cutoffs.
Here we invoke the sole approximation of ignoring
the cutoff dependences of scaling relations like Eqs.
(2.6) and (2.8). These may at first sight appear to be
irrelevant in Eq. (2.8) for r 0, but otherwise diver-
gent integrals make them relevant. Given this ap-
proximation, it is possible to proceed by pure dimen-
sional analysis. However, the transformation (2.3)
simply systematizes this process and is useful below
when additional terms are appended to Eq. (2.4) or
the electron problem is considered.

The transformation (2.3) and Eq. (2.5) converts
Eq. (2.2) to

X(K ~r, u, c, V) =ad ~c [X(aR ~rc (a 2,

uad 'c ' 1 adV) (29)

The average magnetization M is defined as

d K (M), so Eqs. (2.3) and (2.5) show it to scale
I

as

M =a +' 'c ' 'M(rc 'a ', ua" c ', a V) . (2.14)

Because M is extensive, an overall factor of a V must
appear, whereupon use of Eq. (2.7) produces the
scaling relation

M = V(r)" e /g(u[r( e ) (215)

Again g(0) =constant yields the mean-field exponent
(8 as —(d —2). Large u' implies the power-law form

P [2P —(d —2)/2]/(d —4) [d/(d —4)) [((/2) —P )
Md = Vcd'~r du c d

(2..16)

The establishment of other scaling relations, like
Eqs. (2.10) and (2.15), is straightforward, as the
above is just dimensional analysis. The important
feature of scaling is the "proof" that other length
scales do not enter when the cutoff is neglected.
This is readily established in the limit r 0 as follows:
Terms in F [M] of the form

„I d R M(R)'72"M(K) u2„

Because X is an intensive variable the volume depen-
dence in Eq. (2.9) may be dropped. Using Eq. (2.7)
in Eq. (2.9) and dropping the arguments of unity
gives

X(K) &(d 2)/2c d/2X R (r/c)'
u~(d —4)/2c —d/2

(2.10)

The correlation length is defined by

d Rx(R) R2
4=-

) dRx(K)
(2.11)

Using the scaling form (2.1) the integration (2.11)
implies

g2 (r/c) (f (ur(d —4)/2c —d/2)—, (2.12)

-2vd 2(1-2vd /(dW) -1+d(2vd 1)/(dW)
gd2 = cdr 'u ' c ', (2.13)

defining vd, where cd is a pure number.
I

with f an unknown function. For r 0 and d )4,
u' becomes irrelevant, so the correlation length ex-
ponent vd becomes the mean-field value

2
for d & 4.1

For r 0 and d (4, u' is large, and the dominant
behavior of f is assumed to be of the power-law
variety giving

scale under Eq. (2.3) with a factor of b ~a "+2"which
behaves as r" ' when we have Eqs. (2.5) and (2.7).
Thus, these terms are irrelevant for n & 1 as I. 0.
Likewise, the range of the spin-spin interaction adds
terms like

u2„dR M(R) p' M(R)

to F[M]. These scale under Eq. (2.3) with a new
scaled coupling constant u2' = u2a +'b . u2' is con-
verted by the choices (2.5) and (2.7) to being dimen

sionless [c.f. Eq. (2.6)] and proportional to —[r(d —2)].
Hence, the range of the pair interaction is irrelevant
for d' &2, and it is marginal for d =2. Similarly,
three spin interactions contribute to the free-energy

functional in the leading form of
&

d K M6(R).
From Eqs. (2.3), (2.5), and (2.7) this scales as rd 3,

being irrelevant for d & 3. Consequently, by neglect- .

ing the cutoff scaling emerges as a simple conse-
quence of asymptotic dimensional analysis. The im-
portant feature is that, as r 0, we have a small
parameter. Despite the fact that u' ~ in this limit
(for d (4) and perturbation theory cannot be em-
ployed, the remaining other parameters in F[M],
which are absent in Eq. (2.1) are either irrelevant or
marginal for d =3.

The treatment of dynamical scaling proceeds simi-
larly. In this case it is convenient to apply the scale
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transformation directly to the time-dependent
Landau-Ginzburg equation,

(R h) =I p( 2c—V'+2r)M(R, t)
9t

+4I' uM3(R, t) + I'/ f(R,t), (2.17)

with the particular choices Eqs. (2.5) and (2.7) and
A. = r I 0 yields the scaled equation

= [-2( V')'+2]M'(K', h')
6t

+4uc 'r [M'(R, t')]

where I'p is the bare transport coefficient and f is

Gaussian random, (f) =0,
+f'(K', t'), (2.19)

(f( R, t)f( Rptp) ) = 5(R —8p) 8(t —tp) .

Introducing the change in variables

M'(R ', h') = bM(R, h), R' = a K, (2.18)

where

(f'(R ', t') f'(Rp', tp') = 8(K' r()') —8(t' —t()') .

The dynamic correlation function emerges as

(M(R t)M((l (j)) =c d/2r (d 2)/2f- [R (r/c) /2, rl'pt uc d/ r( )/] (2.20)

The static susceptibility (2.10) emerges from the t =0 limit of Eq. (2.20), while the correlation frequency is de-
fined by

-1—
OO,

dh t (M(0, t)M(0, 0))
(r I )

—lf (uC d/2r(d —4)/2) ——r —zvu2(1 —zv)/(dM)C —d(1 zv)/(dM)—
C 0 ol

J dh (M(0, t)M(0, 0))
(2.21)

providing the definition of the dynamical exponent z.
Because u' ~ ~here r 0 for d (4, the evalua-

tion of exponents like vd, pd, and zd in Eqs. (2.13),
(2.16), and (2.21), respectively, is generally a diffi-
cult task. Renormalization-group methods provide
asymptotic series expansions of these exponents in
powers of ~ =4 —d. Now we demonstrate how the
Irnry et al. 6 nonclassical approximations may be ob-
tained directly from scaling theory, in a very elemen-
tary fashion. The results are almost exact in the limit
of zero spin dimensionality (n =0), but are only ap-
proximate for the Ising case (n = I) of Eq. (2.1).
Perhaps, methods can be developed for evaluating
the corrections.

III. CRITICAL EXPONENTS FROM SCALING

Consider a system in d dimensions which is con-
fined between a pair of hyperplanes which are
separated by a spacing D. Under the transformation
(2.3) the separation D scales to Da. Hence, pursuing
the analysis from Eq. (2.12) to Eq. (2.13) gives the
scaling relation,

When D/(. d «(I, we enter the "critical" region
where gD is taken to have a power. -law form

gd2D = (d2(D/gd)~(const), D/(d && I . (3.3)

However, D/gd 0 implies that the system is now a
(d —I) one-dimensional, so Eq. (3.3) gives

(zd 1= (const)(zd(D/gd) (3.4)

) d=3/(d+2) 4~d~l (n =0),

Introducing Eq. (2.13) into Eq. (3.4) and comparing
powers of v and u on both sides of the equation
yields (D;„~c '), the simple algebraic recursion re-
lation (1.1) between )d and )zd 1. Note that this re-
cursion relation is obtained independent of the
number of spin components.

The polymer problem' ' corresponds to n =0
where the chain length L is the inverse Laplace vari-
able of r. The case of d =1 trivially gives the exactly
soluble rod limit of v~ =1. Use of this boundary con-
dition in Eq. (1.1) gives

gd2D (r/c) 1fp(ur(d 4)/2c d/2 D (r/c)
—1/2) (—3 I)—

d ~4 (n =0), (3.5)

4D = 4gD(D/4) ~ gp(~) = I . 0.2)

Physically, it is clear that the relevant dependence on
D must arise in the combination'2'2 (D/gd) because,
when (D/g, ) ~, the confinement is irrelevant and

This behavior is summarized in the scaling
form (homogeneity assumption)

which is almost the exact result for d & 4."
For the Ising (n = I) model, the exact solution for

d =2 produces v2=1. '-Substitution of this value in
Eq. (1.1) yields 1 2

= —, (for n = I), 5'/p higher than
the best renormalization-group" value of 0.63. For
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= Ir)r l « »/« d/4--
x gD'((4)r~( / c /, D(r/c) /) (3.6)

Again taking the D dependence to occur through

d ~4 mean-field values ensue from Eq. (1.1) as is

already obvious from the irrelevancy of u' for d & 4.
At d =4 Eq. (1.1) contains the 0/0-type ratio

(2vd —I)/(d —4). Hence in order to utilize calcula-
tions in a=4 —d dimensions, we require the limiting

0+ ratio of this quantity, or equivalently
2(()yd/Bd) . The Ising renormalization-group

1 1
result4 5 for ) 4, = —, +—„d produces the results (after

setting o 0) from Eq. (1.1) of v3= —, and

v2 =
4 (n = I). In the polymer case (n =0) the ex-3

1 1 2
pansion v4, =

2
+ —8e generates v3= —,, v2=1, . and

v1=2 which is clearly incorrect.
The calculation for pd proceeds similarly. For the

confined case scaling produces

D/gd gives the result that

Md )
= /(/ld(D/(d), D/(d ((I, (3.7)

whereupon a comparison of powers yields Eq. (1.2).
Use of the exact (n = I) Ising 82 = —and our calcu-1

8
2 9

lated ) ) =
3

gives P3 24
=0.38, about 10% higher

than the best renormalization-group" value of 0.32.
Use of ) 3 =0.63 would improve matters to )8) =0.36,
while the ~-expansion renormalization-group value

1 1 3p4, = —,
——d yields p3= —„.

As the exponents generated by our methods obvi-
ously obey "scaling, " the scaling relations between ex-
ponents apply. Thus, v3=

3 implies o3=0, and a

direct calculation of o.3 from o.2 by recursion relations
for a yields the same results. Likewise q and y can
be evaluated from P and v.

The treatment of dynamical exponents proceeds
just as in the static case. Equating the results of the
confined problem, eo, dD, in d dimensions
(D/gd (( I) to that in (d —I) dimensions yields

zdyd 2( zdyd—+))/(d 4—) (d zdvd+—))/(d—4)v,— ~y) (3.8)

zd 1 vd 1
2(—zd 1 vd 1+1)/(d —5) (d —1)(—zd 1 vd 1+1)/(d —5)'=

Cd 1I' c (3,9)

Equating coefficients of r and u yields Eq. (1.3).
Values of z2 of sufficient accuracy to test Eq. (1.3) do

not appear to be available. Perhaps, the use of exact
values for vd and )zd ( in Eq. (1.3) can incorporate
some of the important effects of the omitted
anomalous dimensions.

Given the accuracy of present renormalization-

group calculations, the accuracy of Eqs. (1.1) and

(1.2) may not be impressive. The utter simplicity of
their derivation is, however, a virtue. Also the fact
that their errors are associated with neglect of cutoffs
is an important one.

However, the scaling theory of Sec. II and the ex-
ponent recursion relation of this section can be ap-

plied in situations, e.g. , electrons in disordered ma-

terials, where the traditional renormalization-group

method' fails to give useful results.

IV. ELECTRONIC STRUCTURE IN

RANDOM SYSTEMS

Consider the motion of an electron in a Gaussian
random, white noise, potential, '4 (o $(R). The one
electron Green's function for a particular $( R ) is

the solution to
1 )

E+ '7~a —@(R) G(R, R', E~[$])=g(R —R'),
2m

(4.1)

while the ensemble averaged Green's function and
"two-electron" Green's function are obtained from
the averaging,

G(R —R';E) = (G(R, R';E~ [@]))o,

Gz(R —Ro, R' —Ro, R "—Ko'E E') = (G(R, Ko'El [4])G(K', K";E'I [4]))d, ,

(4.2a)

(4.2b)

respectively, over the random $. An alternative formulation considers a path integral representation for G and

G2. The derivation of scaling relations within this representation is discussed elsewhere along with the physical

interpretation of the results.
We could proceed to apply asymptotic dimensional analysis directly to Eqs. (4.1) and (4.2). Instead, we

choose to recast the averages in Eq. (4.2) into the form of a zero-. component field theory in order to illustrate

how our methods can be applied to field theories for which the standard renormalization-group methods fail.
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G([@])may be expressed in terms of a classical real field X(R) by

G ( K —R ';E
~
[@])= n Jt 5X X ( R ) X( K ') exp (

—F[X, P] j )/ Jf 5X exp [—F [X, @1j,

F[X, $] = nJI d KX(R) E+ V —@(K) X(R),
2m

(4.3a)

(4.31 )

with n any complex number such that the integrals in Eq. (4.3a) exist (see below). The averaging over @ is hin-

dered by the t 5Xexp[ F[X,—@]j factor in the denominator, so Eqs. (4.3) and (4.2a) are re'written as the limits (3

( 'n —1

G(R —R', E) =alim Jt5XX(R)X(R')exp[ F[X,—@lj J 5Xexp[ F[X—Q]jn~ t
(4.4)

Relabeling the dummy X-variables X(,X2, . . . , X„ in the individual functional integrals, the g averaging proceeds
by completion of the square ' to yield

n n 2

G(K —R', E) =n lim J fJ 5XpX((R)X((R') exp nJ d R X—Xp(R) E+ '7 Xp(R)
g~OO

p p ) 2m

1

n

+a
2

d R $ Xp (R), (4.5)

a standard looking zero-component field theory for any Ren' (0. Introducing the Fourier representation ( V the
volume)

Xp(R) = V ' QXp(K) exp(i K R),
K

converts the free-energy functional in Eq. (4.5) to

(4.6)

1 1 't

2

F„[X,E] = n V ' X }Xp(K)
~

E — K — — n V X X Xp(K()Xp(K2)X~(K3) X~(—K) —K2 —K3),
,K, P. K), K2, K3

(4.7)

G(R —R';E) =a lim V X g J dXp(K') ~X)(K)
~

exp[iK (R —R')] exp[ —F„(X)] .
K pK'

Standard renormalization-group treatments on Eqs. (4.7) and (4.8) or G2, yield runaway solutions. '
Consider the scale transformation (a change in variables)

Xp'(K') =BXp(K), K'=3 'K, V'=A "V,

which converts Eq. (4.7) identically into
1

hF„[X,E] = u(V') '3 "B 2 X iXp'(K')
i

E — (K') A
2m

p, K'

(4.8)

(4.9)

r

—u
2 ( V') 3 B $ $ Xp'(K)') Xp'(K2') Xv'(K)') Xv'( —K(' —K2' —K3 ) ~ (4.10)

g2
P. 'V K)', K2', K3'

We consider here the choice of

"(4-d)-'
v m

whereupon G ( R —K ', E) is found to scale as

d(4-d) ' (d-2)(4-d) '
G(K —K';El', m) =

h h

x f A (K —R'), , (4.12)'E,
.
' (1+2)/2(4 —Ij) ' ' 3d/2(4 —d)

8= d &4, (4.11)
2 d (4 d)

—1

v m

h
(4.13)
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where C is a constant and the Jacobian B "disap-
pears in the n 0 limit. (For the system in a
volume V, W is finite, so the order of the limits
n 0 then V ~ is implied. ) The infinitesimal part
of E can be manipulated as in the unscaled case; con-
sequently the density of states is obtained from
—I /4r Im 6 ( OE), as9

d(4 d) 1I (d 2)(4 d)

n (E) = (const)
h2 f2

which scales Eq. (4.7) into a problem with

m' = m v' = 1)(E —F ) '

, V'= V(E —E,)'".
The density of states then scales as

n(E) =(const)(E —E,)" ' '

1

x g„E,v(E E,)(d-4)/2 .
-

(4.16)

(4.17)

1 1

E —E,
E,

(4.14)

A (d+2)/2 A (E E ) 1/2 (4.15)

At the mobility edge, E =E„f„(0) is a constant, and
Eq. (4.14) provides the m and v dependence of
n (E,).

Another choice of transformation (4.9) is given by

For E —E, =0, Eq. (4.17).corresponds to a strong
coup)ing problem, and indications of irrelevancy of
other parameters, absent in Eq. (4.7), follow as in

Sec. II. For E » E„g„may be treated by perturba-
tion theory, and Eq. (4.17) then reduces to the well-

known free-particle limit.
In order to evaluate 62 it is necessary to introduce

two sets of zero-component interacting fields, '

G2(R Ro R Ro R 'Ro'EE') = lim V.'u2 g J g dXP(K')dY&(K')
~-0
Nf 0 Ki, K2, K3 P, K'

3

x exp i XK (R/ —Ro) X)(K))X)(K2) Y)(K3) Y)(—K( K2 K3)
g=1

(

x exp —F„[XE]—F„[YE']+2n (v/g ) V X $ X/3(K))Xp(K2) Y~(K3) Y~(—K) —K2 —K3)
P &Ki, K2, K3

1

(4.18)

The conductivity is obtained from dropping overall
factors of h,

e2m 2(Tr("7lmG(E, [@]) VImG(E, [@])])&, (4.19)

where the trace is over spatial variables. Represent-
ing Eq. (4.19) in terms of (4.18) and then performing
the transformation (4.9) and Eq. (4.11) provides the
scaling relationship for o(E) as9. .

(

(E) e2m2(d —2)(4—d) (d —2)(4—d)
CT

(4.20)

For E —E, & 0 and small, a power-law form for g is

expected to apply [g (x) =0, x (0] giving

„dRR2(l«R;E[d]) I'),4="
Ji d R ((G(R;E[1tl)l')4,

and the use of lG(R;E) l as a measure would pro-

duce the same scaling relation. The choice Eq. (4.11)
yields

(4.22)

E —E, , E —E,
(d =Ad gt

'
A

g

and Eq. (4.21) provide the first nonpercolation theory
information about density of states and conductivity
exponents for E —E, =0+.

The evaluation of recursion relations for vq and o.q
(the value of o in d dimensions) proceeds just as in

Sec. III. gd may be defined from

—1

~(E) e2m d (d —2 —2o)(4—d) (E E ) a

(4.21)

(E —E,)/E, 0,
while the methods in Sec. III imply

(4.23)

which provides a relationship between m, v, and
(E —E,) exponents. The physical condition, that m

and v have nonpositive values, provided nontrivial
bounds9 on (r Equation (4. .14) with f„(0)=const

4d 14d(D/4d)" . —D/4 « I (4.24)

vd 1=vd(4 —d)/(5 —d —2vd) . (4.25)

Comparing powers of E —E, and )) (or m) yields
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Likewise, the conductivity recursion relation is

rr~, = [2v„—o.d(5 —d)]/[2v„—(5 —d)] . (4.26)

Again Eqs. (4.25) and (4.26) are nontrivial results
whose implications are discussed elsewhere.

V. DISCUSSION

%hen cutoff dependences are ignored, scaling a-

rises as a consequence of asymptotic dimensional
analysis. The presence of a small parameter,
(T —T,)/T, or (E —E,)/E„ then enables the
demonstration of the irrelevance of parameters in the
free-energy functional. Applications are provided
here to standard Landau-Ginzburg-type field theories
for static and dynamic critical phenomena and to
problems of electrons in random media. In the latter
case the application of standard renormalization-
group methods produces runaway solutions. '
Nevertheless, scaling is directly established by the
present methods, producing new information con-
cerning conductivity and density-of-states exponents

near the mobility edge. Applications to scaling
theories of polymer solutions' are given elsewhere. '

In the latter application there are n zero-component
interacting quartic fields with the mean concentration
n/V of these fields being finite. ' " (An equivalent
path integral representation is convenient to fix the
chain lengths. ")

The cutoff free scaling relations are shown to en-
able the derivation of the Imry et a/. recursion rela-
tions between exponents for dimensionalities d and
d —1. The results are illustrated for v, p, and z. For
the n =0 limit the boundary condition v~ =1 pro-
duces almost exact values of vd for d ) 1. On the
other hand, exact Ising values for u2 and p2 yield
nonclassical values of v3 and p3 (to 5 and 10% accu-
racy, respectively).
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