Structure tailoring of fluorine-doped TiO(2) nanostructured powders (Journal article)

Todorova, N./ Giannakopoulou, T./ Vaimakis, T./ Trapalis, C.

Fluorine-doped nanocrystalline TiO(2) powders with controlled anatase-rutile phase content are synthesized by a sol-gel route using NH(4)F and CF(3)COOH as fluorine sources. The X-ray diffraction (XRD) study reveals that fluorine-doping through NH(4)F leads to the formation of anatase crystalline phase, whereas F-doping through CF(3)COOH favors the formation of rutile along with anatase phase. These results are connected to the influence of the fluorine precursor on the pH of the starting solutions. The presence of the fluorine in the powders is confirmed using X-ray photoelectron spectroscopy (XPS). The dopant in concentrations between 11 and 16 at.% is found mainly in the form of metal fluoride. The measured UV-vis diffuse reflectance spectra and the calculated band gap widths using Kubelka-Munk phenomenological theory are in good agreement with the crystallographic results. The calculations reveal no change in the band gap values due to fluorine doping. The enhanced absorbance in the vis region and the red shift of the absorption edge are attributed to the presence of fluorine and the anatase/rutile phase composition of the TiO(2) powders. (C) 2008 Elsevier B.V. All rights reserved.
Institution and School/Department of submitter: Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Χημείας
Keywords: fluorine-doped,tio(2),sol-gel,anatase,rutile,nanoparticles,light-driven photocatalysis,visible-light,titanium-dioxide,thin-films,microstructures,rutile,particles,anatase
ISSN: 0921-5107
Link: <Go to ISI>://000261480600011
Publisher: Elsevier
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά)

Files in This Item:
File Description SizeFormat 
Todorova-2008-Structure tailoring.pdf702.19 kBAdobe PDFView/Open    Request a copy

 Please use this identifier to cite or link to this item:
  This item is a favorite for 0 people.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.