Alkaline earth metal effect on the size and color transition of citrate-capped gold nanoparticles and analytical implications in periodate-luminol chemiluminescence (Journal article)

Koutsoulis, N. P./ Giokas, D. L./ Vlessidis, A. G./ Tsogas, G. Z.

Citrate-modified gold nanoparticles were found to undergo size and color transition upon interaction with alkaline earth metals. At low concentrations, metal ions coordinate with AuNPs via citrate boding inducing aggregation which results in size increase as evidenced by the decrease in their plasmon bandwidth. As the concentration increases further, color transition from red to blue is observed which is no longer attributed to aggregation but to specific ion adsorption phenomena. The response of gold nanoparticles to these changes linearly depends on cation concentration in both the UV and Vis regions, a feature that was exploited for the assessment of alkaline earth metal concentrations in water samples. Based on these findings, the modification of the surface properties of metal-coated AuNPs were investigated with regard to their potential influence on the catalytic oxidation of luminol by periodate. Interestingly, a significant amplification of the CL emission signal was recorded when metal ions were associated with AuNPs, even for chemiluminescence "inert" cations like calcium and magnesium. The analytical implications of these findings for the improvement of CL sensitivity and its potential analytical applications are also discussed. (C) 2010 Elsevier B.V. All rights reserved.
Institution and School/Department of submitter: Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Χημείας
Keywords: alkaline earth metals,chemiluminescence,gold nanoparticles,luminol,uv-vis spectra,ions
ISSN: 0003-2670
Link: <Go to ISI>://000279218200006
Publisher: Elsevier Masson
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά)

Files in This Item:
File Description SizeFormat 
Koutsoulis-2010-Alkaline earth metal.pdf814.75 kBAdobe PDFView/Open    Request a copy

 Please use this identifier to cite or link to this item:
  This item is a favorite for 0 people.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.