Assessment and prediction of exposure to benzene of filling station employees (Journal article)

Karakitsios, S. P./ Papaloukas, C. L./ Kassomenos, P. A./ Pilidis, G. A.


In the present study, the exposure to benzene of employees working in two filling stations (one urban and one rural) was estimated, through the method of passive sampling. Additional data (30' measurements of benzene exposure through active sampling to employees dealing with different activities, meteorological and traffic data) were collected. The measurements campaign was performed in both summer and wintertime to determine the seasonal variation of the exposure pattern. In addition, a set of artificial neural networks (ANNs) was developed to predict benzene exposure pattern for the filling station employees based on active sampling data and the parameters related to the employees' exposure. The quantification of the contribution of each parameter to the overall exposure pattern was also attempted. The results showed that although vapour recovery technologies are installed in the refuelling systems and benzene emissions are significantly reduced compared to the past, filling station employees are still highly exposed to benzene (52-15 mu g m(-3)). Benzene exposure is strongly correlated to car refuelling (exposure levels up to 85 mu g m(-3)), while activities like car washing or working in cash machine inside an office contribute to lower exposure levels (up to 44 and 24 mu g m(-3) respectively). In rural filling station, exposure levels were in general lower compared to the urban ones, due to the smaller amount of gasoline that was traded and the absence of any significant traffic effect or urban background concentration. The developed ANN seemed to be a promising technique in the prediction of the exposure pattern giving very good results, and the quantification of the parameters affirmed the importance of the refueling procedure to the exposure levels. (C) 2007 Elsevier Ltd. All rights reserved.
Institution and School/Department of submitter: Πανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών και Τεχνολογιών. Τμήμα Βιολογικών Εφαρμογών και Τεχνολογιών
Keywords: benzene,filling stations,ann,human exposure,artificial neural-networks,occupational-exposure,service stations,air-quality,gasoline,models,health,algorithm,emissions,systems
URI: http://olympias.lib.uoi.gr/jspui/handle/123456789/7718
ISSN: 1352-2310
Link: <Go to ISI>://000252355700024
http://ac.els-cdn.com/S1352231007007583/1-s2.0-S1352231007007583-main.pdf?_tid=1c52f7cba915197b8300f321716bad74&acdnat=1335439631_a48a1186d2c3973b00e03eb3a3ea5392
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά)

Files in This Item:
File Description SizeFormat 
Karakitsios-2007-Assessment and predi.pdf857.61 kBAdobe PDFView/Open    Request a copy



 Please use this identifier to cite or link to this item:
http://olympias.lib.uoi.gr/jspui/handle/123456789/7718
  This item is a favorite for 0 people.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.