Geometric study for the transformation of two-dimensional structures into three-dimensional shells (Master thesis)

Δαχής, Ιωάννης


4D printing is the process of producing objects in which time, i.e the fourth dimension, is a basic construction parameter together with the three dimensions (x,y,z) of space. In other words, we have materials which, besides their initial form at time t0, have the ability to transform at time t’ into their final form. So we are talking about programmable matter,that is, materials with the ability to program their physical properties. This change from one state to another with the imposition of an external stimulus (heat, voltage, force, etc.) can be likened to phase transition. The aim of the thesis is to create a system that can perform this transition, and a mathematical model that will describe the physical process by giving us all the essential data. The diploma thesis is divided into two parts. The first part includes the essential theoretical background, and the second part the application, that is, an algorithm for an isometry from a flat surface to a double curvature surface using an auxetic structure. The first chapter consists of the basic elements of differential geometry which are the mathematical tools used to describe curvature on curves and surfaces. The main element is the isometry where we perceive the transformation of the surface and Gauss’s theorema egregium that demonstrates that Gauss curvature is associated with isometries. The second chapter describes the polytopes of two and three dimensions, i.e. polygons and polyhedra, which will help the transition from the continuous to the discrete form. The third chapter describes elements of discrete differential geometry in order to use concepts of differential geometry on discrete surfaces such as polyhedra. The fourth chapter analyzes graph theory which is used in the thesis for the analysis of the unfolding, as well as in which place the cuts will be created. The fifth chapter contains some elements of computational geometry that are necessary for the design of curves and surfaces, and a small part of the theory developed for the unfolding of surfaces. The sixth chapter describes the auxetic materials, that is, the structures with negative Poisson ratio and their properties. The seventh chapter consists of some elements of the mechanics of meta-materials that are applied to the thesis, such as shape memory. The eighth chapter presents statics with the use of graphstatic. The goal is to be able to create a form that the load exerted on it can be analyzed with the thurst line so that it can make the system change phase and return to its flat shape. From the ninth chapter begins the second part where the linking of the auxetic structure is initially analyzed using the nodes of the system. In the tenth chapter, the unit cell of the auxetic structure is constructed geometrically and the formula of its deformation is produced. The eleventh chapter presents the phase transition system which consists of the auxetic structure in combination with three springs, and describes the phase transition and the system memory using the system’s dynamic energy. The twelfth chapter describes geometrically the transformation of the system from a flat surface of zero curvature into a vaulted structure with positive Gauss curvature. Given the initial principal distinct curvature, the algorithm calculates the different sizes in all the elements and the distinct curvatures at all the nodes of the system. All the rotation axes of the auxetic structure, the angles and the unknown variables are calculated geometrically. The thirteenth chapter uses graph theory to create the tree of the unfolding. The appendix consists of diagrams and drawings illustrating the results of the algorithm. The final result of the work is: The construction of geometric models that make possible the isometry of a plane on a surface of positive distinct curvature. Creating a system that has the ability to change phase in pre-designed final forms. The property of the auxetic structures to produce positive Gauss curvature surfaces is known and is produced by bending the structures. In the present work, tensile strength is used to produce synclastic surfaces. Also a further analysis of the rotating triangular auxetic structures is made. All the above are used to create an algorithm that, given the size of the original Lo element and the original discrete curvature, has all the necessary geometric dimensions for creating the system. The basic applications of such a construction start from the creation of programmable materials that produce specific final results and the incorporation of the fourth dimension of time into 3D prints. The main feature that transforms the system is geometry, which can be maintained regardless of scale. As a result, the system can find applications from the microscale and the science of materials to the macroscale and structures. Further future research can be carried out to make a more strict mathematical solution and to extend it to a more general framework for more complex forms. Also, the static construction of the algorithm could be developed and combined with the stiffness of the springs, which could analyze the stress required for phase transition of the system.
Institution and School/Department of submitter: Πανεπιστήμιο Ιωαννίνων. Πολυτεχνική Σχολή. Τμήμα Μηχανικών Επιστήμης Υλικών
Subject classification: Mechanics
Keywords: Μηχανική,Μετά-υλικά,4-d εκτύπωση,Mechanics,Meta-matelials,4-D printing
URI: http://olympias.lib.uoi.gr/jspui/handle/123456789/29506
Item type: masterThesis
Subject classification: Mechanics
Submission Date: 2019-09-09T09:47:44Z
Item language: el
Item access scheme: free
Institution and School/Department of submitter: Πανεπιστήμιο Ιωαννίνων. Πολυτεχνική Σχολή. Τμήμα Μηχανικών Επιστήμης Υλικών
Publication date: 2019
Bibliographic citation: Βιβλιογραφία: σ. 68-70
Abstract: Η 4D εκτύπωση είναι η διαδικασία παραγωγής αντικειμένων όπου πέρα από τις τρεις διαστάσεις (x,y,z) του χώρου, κύρια παράμετρος κατασκευής είναι και η τέταρτη διάσταση (t) του χρόνου. Δηλαδή έχουμε υλικά τα οποία πέρα από την αρχική τους μορφοποίηση σε χρόνο t0 έχουν τη δυνατότητα μεταβολής, δηλαδή σε χρόνο t’, να οδηγηθούν στην τελική τους μορφή. Οπότε η συζήτηση αφορά πλέον υλικά με τη δυνατότητα προγραμματισμού της μεταβολής των φυσικών ιδιοτήτων τους (programmable matter). Αυτή η μεταβολή από μία σταθερή κατάσταση σε μία άλλη σταθερή κατάσταση με την επιβολή εξωτερικού ερεθίσματος (θερμότητα, τάση, δύναμη, κ.ά.) μπορεί να παρομοιαστεί με την αλλαγή φάσης των υλικών. Σκοπός της διπλωματικής είναι η δημιουργία ενός συστήματος που θα πραγματοποιεί αυτή την αλλαγή και ενός μαθηματικού μοντέλου που θα περιγράφει τη φυσική διαδικασία, δίνοντάς μας όλες τις απαραίτητες πληροφορίες. Η διπλωματική εργασία χωρίζεται σε δύο μέρη. Το πρώτο μέρος περιλαμβάνει το απαραίτητο θεωρητικό υπόβαθρο για την κατανόηση του θέματος της εργασίας και το δεύτερο την εφαρμογή - επίλυση ενός συγκεκριμένου προβληματισμού. Το πρώτο κεφάλαιο αποτελείται από τα βασικά στοιχεία της διαφορικής γεωμετρίας. τα μαθηματικά εργαλεία που χρησιμοποιούνται για την περιγραφή της καμπυλότητας σε καμπύλες και επιφάνειες. Κύριο στοιχείο είναι οι ισομετρίες όπου αντιλαμβανόμαστε τη μεταβολή μιας επιφάνειας και το theorema egregium του Gauss που αποδεικνύει πως η καμπυλότητα Gauss σχετίζεται με τις ισομετρίες. Το δεύτερο κεφάλαιο περιγράφει τα πολύτοπα των δύο και τριών διαστάσεων, δηλαδή τα πολύγωνα και τα πολύεδρα που θα βοηθήσουν για να μεταβούμε από τη συνεχή στη διακριτή μορφή. Στο τρίτο κεφάλαιο περιγράφονται ορισμένα στοιχεία της διακριτής διαφορικής γεωμετρίας και έτσι μπορούμε να χρησιμοποιήσουμε έννοιες της διαφορικής γεωμετρίας σε διακριτές επιφάνειες όπως τα πολύεδρα. Το τέταρτο κεφάλαιο αναλύει τα στοιχεία της θεωρίας γραφών που χρησιμοποιούνται στην εργασία για την ανάλυση του αναπτύγματος, καθώς και σε ποια κομμάτια δημιουργούνται τομές. Το πέμπτο κεφάλαιο περιλαμβάνει ορισμένα στοιχεία από την υπολογιστική γεωμετρία που είναι απαραίτητα για τον σχεδιασμό καμπυλών και επιφανειών, όπως και μικρό τμήμα από τη θεωρία που έχει δημιουργηθεί για την ανάλυση των αναπτυγμάτων. Το έκτο κεφάλαιο περιγράφει τα αυξητικά υλικά, τις δομές που οδηγούν σε αρνητικό λόγο Poisson και τις ιδιότητές τους. Το έβδομο κεφάλαιο αποτελείται από ορισμένα στοιχεία της μηχανικής των μετα-υλικών που εφαρμόζονται στην εργασία, όπως η μνήμη σχήματος. Το όγδοο κεφάλαιο παρουσιάζει τη μηχανική του απαραμόρφωτου σώματος με τη χρήση της γραφοστατικής. Ο σκοπός είναι να μπορεί να δημιουργηθεί μια μορφή τέτοια ώστε το φορτίο που ασκείται πάνω της να μπορεί να αναλυθεί με τη γραμμή ωθήσεων και να μεταφερθεί θλιπτικά στο έδαφος ώστε να μπορεί να κάνει το σύστημα να ξανά αλλάξει φάση και να επιστρέψει στην επίπεδη μορφή του. Από το ένατο κεφάλαιο ξεκινάει το Β’ μέρος όπου αρχικά αναλύεται με τη χρήση κόμβων η συνδεσμολογία της αυξητικής δομής. Στο δέκατο κεφάλαιο κατασκευάζεται γεωμετρικά η μοναδιαία κυψελίδα της αυξητικής δομής και παράγονται οι τύποι της παραμόρφωσής της. Το ενδέκατο κεφάλαιο παρουσιάζει το σύστημα αλλαγής φάσης, το οποίο αποτελείται από την αυξητική δομή σε συνδυασμό με τρία ελατήρια έλξεως και περιγράφει με τη χρήση της δυναμικής ενέργειας του συστήματος την αλλαγή φάσης και τη μνήμη του συστήματος. Το δωδέκατο κεφάλαιο περιγράφει γεωμετρικά το μετασχηματισμό του συστήματος από μία επίπεδη επιφάνεια μηδενικής καμπυλότητας σε μία θολωτή κατασκευή με θετική καμπυλότητα Gauss. Δίνοντας την αρχική διακριτή καμπυλότητα, ο αλγόριθμος υπολογίζει τα διαφορετικά μεγέθη σε όλα τα στοιχεία και τις υπόλοιπες διακριτές καμπυλότητες σε όλους τους κόμβους του συστήματος. Επίσης υπολογίζονται όλοι οι άξονες περιστροφής της αυξητικής δομής, οι γωνίες και παρουσιάζονται γεωμετρικές επιλύσεις για όλους τους αγνώστους. Το δέκατο τρίτο κεφάλαιο χρησιμοποιεί τη θεωρία γραφών για τη δημιουργία του γενετικού δέντρου του αναπτύγματος. Το παράρτημα αποτελείται από διαγράμματα και σχέδια που επεξηγούν τα αποτελέσματα του αλγορίθμου. Το τελικό αποτέλεσμα της εργασίας είναι: Η κατασκευή γεωμετρικών μοντέλων που κάνουν εφικτή την ισομετρία ενός επιπέδου σε μία επιφάνεια θετικής διακριτής καμπυλότητας. Η δημιουργία ενός συστήματος που έχει τη δυνατότητα αλλαγής φάσης σε προσχεδιασμένες τελικές καταστάσεις. Η ιδιότητα των αυξητικών δομών να παράγουν επιφάνειες θετικής καμπυλότητας Gauss είναι γνωστή και παράγεται με την κάμψη των δομών. Στην παρούσα εργασία χρησιμοποιείται εφελκυσμός για την παραγωγή συνκλαστικών επιφανειών το οποίο είναι κάτι που δεν έχει εντοπισθεί στη βιβλιογραφία. Επίσης γίνεται μια περαιτέρω ανάλυση των περιστρεφόμενων τριγωνικών αυξητικών δομών. Όλα τα παραπάνω χρησιμοποιούνται για τη δημιουργία ενός αλγόριθμου που μπορεί, δοθέντος το μεγέθος του αρχικού στοιχείου Lo και της αρχικής διακριτής καμπυλότητας, να παράγει όλα τα απαραίτητα γεωμετρικά μεγέθη για τη δημιουργία του συστήματος. Οι βασικές εφαρμογές μιας τέτοιας κατασκευής ξεκινούν από τη δημιουργία προγραμματισμένων υλικών που παράγουν συγκεκριμένα τελικά αποτελέσματα και την ενσωμάτωση της τέταρτης διάστασης του χρόνου στις 3D εκτυπώσεις. Το κύριο χαρακτηριστικό που επιφέρει το μετασχηματισμό στο σύστημα είναι η γεωμετρία, που μπορεί να διατηρηθεί ανεξαρτήτως κλίμακας. Σαν αποτέλεσμα το σύστημα μπορεί να βρει εφαρμογές από τη μικροκλίμακα και την επιστήμη των υλικών μέχρι τη μακροκλίμακα και τις κατασκευές. Περαιτέρω μελλοντική έρευνα μπορεί να πραγματοποιηθεί προκειμένου να γίνει πιο αυστηρά μαθηματική η επίλυση του προβλήματος και να δημιουργήσει ένα πιο γενικό πλαίσιο για περισσότερο πολύπλοκες μορφές. Επίσης θα μπορούσε να αναπτυχθεί και να συνδυαστεί η στατική της κατασκευής στον αλγόριθμο για μεγαλύτερη εποπτεία που θα μπορούσε να αναλύσει την τάση που χρειάζεται σύμφωνα με τις σταθερές κάθε ελατηρίου για την αλλαγή φάσης του συστήματος.
4D printing is the process of producing objects in which time, i.e the fourth dimension, is a basic construction parameter together with the three dimensions (x,y,z) of space. In other words, we have materials which, besides their initial form at time t0, have the ability to transform at time t’ into their final form. So we are talking about programmable matter,that is, materials with the ability to program their physical properties. This change from one state to another with the imposition of an external stimulus (heat, voltage, force, etc.) can be likened to phase transition. The aim of the thesis is to create a system that can perform this transition, and a mathematical model that will describe the physical process by giving us all the essential data. The diploma thesis is divided into two parts. The first part includes the essential theoretical background, and the second part the application, that is, an algorithm for an isometry from a flat surface to a double curvature surface using an auxetic structure. The first chapter consists of the basic elements of differential geometry which are the mathematical tools used to describe curvature on curves and surfaces. The main element is the isometry where we perceive the transformation of the surface and Gauss’s theorema egregium that demonstrates that Gauss curvature is associated with isometries. The second chapter describes the polytopes of two and three dimensions, i.e. polygons and polyhedra, which will help the transition from the continuous to the discrete form. The third chapter describes elements of discrete differential geometry in order to use concepts of differential geometry on discrete surfaces such as polyhedra. The fourth chapter analyzes graph theory which is used in the thesis for the analysis of the unfolding, as well as in which place the cuts will be created. The fifth chapter contains some elements of computational geometry that are necessary for the design of curves and surfaces, and a small part of the theory developed for the unfolding of surfaces. The sixth chapter describes the auxetic materials, that is, the structures with negative Poisson ratio and their properties. The seventh chapter consists of some elements of the mechanics of meta-materials that are applied to the thesis, such as shape memory. The eighth chapter presents statics with the use of graphstatic. The goal is to be able to create a form that the load exerted on it can be analyzed with the thurst line so that it can make the system change phase and return to its flat shape. From the ninth chapter begins the second part where the linking of the auxetic structure is initially analyzed using the nodes of the system. In the tenth chapter, the unit cell of the auxetic structure is constructed geometrically and the formula of its deformation is produced. The eleventh chapter presents the phase transition system which consists of the auxetic structure in combination with three springs, and describes the phase transition and the system memory using the system’s dynamic energy. The twelfth chapter describes geometrically the transformation of the system from a flat surface of zero curvature into a vaulted structure with positive Gauss curvature. Given the initial principal distinct curvature, the algorithm calculates the different sizes in all the elements and the distinct curvatures at all the nodes of the system. All the rotation axes of the auxetic structure, the angles and the unknown variables are calculated geometrically. The thirteenth chapter uses graph theory to create the tree of the unfolding. The appendix consists of diagrams and drawings illustrating the results of the algorithm. The final result of the work is: The construction of geometric models that make possible the isometry of a plane on a surface of positive distinct curvature. Creating a system that has the ability to change phase in pre-designed final forms. The property of the auxetic structures to produce positive Gauss curvature surfaces is known and is produced by bending the structures. In the present work, tensile strength is used to produce synclastic surfaces. Also a further analysis of the rotating triangular auxetic structures is made. All the above are used to create an algorithm that, given the size of the original Lo element and the original discrete curvature, has all the necessary geometric dimensions for creating the system. The basic applications of such a construction start from the creation of programmable materials that produce specific final results and the incorporation of the fourth dimension of time into 3D prints. The main feature that transforms the system is geometry, which can be maintained regardless of scale. As a result, the system can find applications from the microscale and the science of materials to the macroscale and structures. Further future research can be carried out to make a more strict mathematical solution and to extend it to a more general framework for more complex forms. Also, the static construction of the algorithm could be developed and combined with the stiffness of the springs, which could analyze the stress required for phase transition of the system.
Advisor name: Χατζηγεωργίου, Ευάγγελος
Examining committee: Χατζηγεωργίου, Ευάγγελος
Καλπακίδης, Βασίλειος
Μπέλτσιος, Κωνσταντίνος
Publishing department/division: Πανεπιστήμιο Ιωαννίνων. Πολυτεχνική Σχολή. Τμήμα Μηχανικών Επιστήμης Υλικών
Publishing institution: uoi
Number of pages: 77 σ.
Appears in Collections:Διατριβές Μεταπτυχιακής Έρευνας (Masters)

Files in This Item:
File Description SizeFormat 
Μ.Ε. ΔΑΧΗΣ ΙΩΑΝΝΗΣ 2019.pdf4.1 MBAdobe PDFView/Open



 Please use this identifier to cite or link to this item:
http://olympias.lib.uoi.gr/jspui/handle/123456789/29506
  This item is a favorite for 0 people.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.