Diagnosis of sensorineural hearing loss with neural networks versus logistic regression modeling of distortion product otoacoustic emissions (Journal article)

Ziavra, N./ Kastanioudakis, I./ Trikalinos, T. A./ Skevas, A./ Ioannidis, J. P.

We investigated whether modeling with artificial neural networks or logistic regression of distortion product otoacoustic emissions (DPOAE), across diverse frequencies, may achieve an accurate diagnosis of sensorineural hearing loss (SNHL) of cochlear origin. 256 ears (90 with SNHL and 166 with normal hearing) were evaluated with pure-tone audiometry, impedance audiometry, speech audiometry and DPOAE. Ears were split into training (n = 176) and validation (n = 80) sets. Input variables included gender, age, examination time, DPOAE intensity at F(2) frequencies 593, 937, 1906, 3812 and 6031 Hz, and respective values corrected for noise levels. In the validation data set, an average network had an area under the receiver operating characteristic curve (AUC) of 0.86 (accuracy 84%). Logistic regressions including all these variables or those selected by backward elimination had AUC values of 0.91 and 0.92, respectively (accuracy 85% both). Eleven of 12 trained networks had better specificity than the backward elimination logistic regression, and the backward elimination logistic regression had a better sensitivity than 11 of the 12 networks. Both modeling approaches correctly identified all ears with sudden hearing loss, congenital hearing loss, head trauma, nuclear jaundice and ototoxicity, and 2-3 of 5 ears with acoustic trauma, but missed 1-3 of 3 ears with Meniere's disease and 4-6 of 8 ears with abnormal pure-tone thresholds on audiometry which had no accompanying findings. For SNHL exceeding 45 dB HL on a pure-tone threshold, sensitivity was 83% (15/18) by neural networks and 84 or 94% (16/18 or 17/18) by logistic regression. Both neural-network-based analysis and logistic regression modeling of the DPOAE pattern across a range of frequencies offer promising approaches for the objective diagnosis of moderate and severe SNHL.
Institution and School/Department of submitter: Πανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών Υγείας. Τμήμα Ιατρικής
Keywords: Adult,*Auditory Threshold,Discriminant Analysis,Female,Hearing Loss, Sensorineural/*diagnosis,Humans,Logistic Models,Male,*Neural Networks (Computer),*Otoacoustic Emissions, Spontaneous,ROC Curve,Sensitivity and Specificity
URI: http://olympias.lib.uoi.gr/jspui/handle/123456789/22525
ISSN: 1420-3030
Link: http://www.ncbi.nlm.nih.gov/pubmed/14981356
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά)

Files in This Item:
There are no files associated with this item.

 Please use this identifier to cite or link to this item:
  This item is a favorite for 0 people.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.