Stanley-Reisner rings and the radicals of lattice ideals (Journal article)

Katsabekis, A./ Morales, M./ Thoma, A.

In this article we associate to every lattice ideal I(L,p) subset of K[x(1),..., x(m)] a cone a and a simplicial complex Delta(sigma) with vertices the minimal generators of the Stanley-Reisner ideal of a. We assign a simplicial subcomplex A(sigma)(F) of A(sigma) to every polynomial F. If F(1)..., F(s) generate I(L,p) or they generate rad(I(L,p)) up to radical, then boolean OR(s)(i=l) Delta(sigma)(F(i)) is a spanning subcomplex of A. This result provides a lower bound for the minimal number of generators of I(L,p) which improves the generalized Krull's principal ideal theorem for lattice ideals. But mainly it provides lower bounds for the binomial arithmetical rank and the A-homogeneous arithmetical rank of a lattice ideal. Finally, we show by a family of examples that the given bounds are sharp. (c) 2005 Elsevier B.V. All rights reserved.
Institution and School/Department of submitter: Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών
Keywords: theoretic complete-intersections,arithmetical rank,toric varieties,set
ISSN: 0022-4049
Link: <Go to ISI>://000234164300008
Publisher: Elsevier
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά)

Files in This Item:
File Description SizeFormat 
Katsabekis-2006-Stanley-Reisner ring.pdf221.89 kBAdobe PDFView/Open    Request a copy

 Please use this identifier to cite or link to this item:
  This item is a favorite for 0 people.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.