Specializations of Multigradings and the Arithmetical Rank of Lattice Ideals (Journal article)

Katsabekis, A./ Thoma, A.

In this article, we study specializations of multigradings and apply them to the problem of the computation of the arithmetical rank of a lattice ideal ILG< subset of>K[x1,..., xn]. The arithmetical rank of ILG equals the F-homogeneous arithmetical rank of ILG, for an appropriate specialization F of G. To the lattice ideal ILG and every specialization F of G, we associate a simplicial complex. We prove that combinatorial invariants of the simplicial complex provide lower bounds for the F-homogeneous arithmetical rank of ILG.
Institution and School/Department of submitter: Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών
Keywords: arithmetical rank,lattice ideals,multigradings,simplicial complex,toric varieties,rings
URI: http://olympias.lib.uoi.gr/jspui/handle/123456789/13518
ISSN: 0092-7872
Link: <Go to ISI>://000277737500023
Publisher: Taylor & Francis
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά)

Files in This Item:
File Description SizeFormat 
Katsabekis-2010-Specializations of M.pdf179.73 kBAdobe PDFView/Open    Request a copy

 Please use this identifier to cite or link to this item:
  This item is a favorite for 0 people.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.