Molecular Dynamics Simulations of BcZBP, A Deacetylase from Bacillus cereus: Active Site Loops Determine Substrate Accessibility and Specificity (Journal article)

Fadouloglou, V. E./ Stavrakoudis, A./ Bouriotis, V./ Kokkinidis, M./ Glykos, N. M.

BcZBP is an LmbE-like, homohexameric, zinc-dependent deacetylase from the opportunistic pathogen Bacillus cereus with three, thus far uncharacterized, homologues in B. anthracis, Although its specific substrate is still unknown, the enzyme has been shown to preferentially deacetylate N-acetylglucosamine and diacetylchitobiose via an active site based on a zinc-binding motif of the type HXDDX(n)H. In the crystal structure, the active site is located at a deep and partially blocked cleft formed at the interface between monomers related by the molecular 3-fold axis, although the major, in structural terms, building block of the enzyme is not the trimer, but the intertwined dimer. Here, we report results from a 50 ns molecular dynamics simulation of BcZBP in explicit solvent with full electrostatics and show that (i) the view of the intertwined dimer as the major structural and functional building block of this class of hexameric enzymes is possibly an oversimplification of the rather complex dynamics observed in the simulation, (ii) the most mobile (with respect to their atomic fluctuations) parts of the structure coincide with three surface loops surrounding the active site, and (iii) these mobile loops define the active site's accessibility, and may be implicated in the determination of the enzyme's specificity.
Institution and School/Department of submitter: Πανεπιστήμιο Ιωαννίνων. Σχολή Οικονομικών και Κοινωνικών Επιστημών. Τμήμα Οικονομικών Επιστημών
Keywords: genome sequence,zinc-binding,proteins,anthracis,alignment
ISSN: 1549-9618
Link: <Go to ISI>://000272395200013
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά)

Files in This Item:
There are no files associated with this item.

 Please use this identifier to cite or link to this item:
  This item is a favorite for 0 people.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.