Please use this identifier to cite or link to this item: https://olympias.lib.uoi.gr/jspui/handle/123456789/10940
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLukic, A. S.en
dc.contributor.authorWernick, M. N.en
dc.contributor.authorTzikas, D. G.en
dc.contributor.authorChen, X.en
dc.contributor.authorLikas, A.en
dc.contributor.authorGalatsanos, N. P.en
dc.contributor.authorYang, Y. Y.en
dc.contributor.authorZhao, F.en
dc.contributor.authorStrother, S. C.en
dc.date.accessioned2015-11-24T17:01:32Z-
dc.date.available2015-11-24T17:01:32Z-
dc.identifier.issn0278-0062-
dc.identifier.urihttps://olympias.lib.uoi.gr/jspui/handle/123456789/10940-
dc.rightsDefault Licence-
dc.subjectfunctional neuroimagingen
dc.subjectkernel methodsen
dc.subjectrelevance vector machine (rvm)en
dc.subjectreversible-jump markov-chain monte-carlo (rjmcmc)en
dc.subjectmagnetic-resonance imagesen
dc.subjectchain monte-carloen
dc.subjectfmri dataen
dc.subjectstatistical-analysisen
dc.subjectbrainen
dc.subjectactivationen
dc.subjectmapsen
dc.subjectmodelen
dc.subjectresolutionen
dc.subjectmachineen
dc.titleBayesian kernel methods for analysis of functional neuroimagesen
heal.typejournalArticle-
heal.type.enJournal articleen
heal.type.elΆρθρο Περιοδικούel
heal.identifier.primaryDoi 10.1109/Tmi.2007.896934-
heal.languageen-
heal.accesscampus-
heal.recordProviderΠανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικήςel
heal.publicationDate2007-
heal.abstractWe propose an approach to analyzing functional neuroimages in which 1) regions of neuronal activation are described by a superposition of spatial kernel functions, the parameters of which are estimated from the data and 2) the presence of activation is detected by means of a generalized likelihood ratio test (GLRT). Kernel methods have become a staple of modern machine learning. Herein, we show that these techniques show promise for neuroimage analysis. In an on-off design, we model the spatial activation pattern as a sum of an unknown number of kernel functions of unknown location, amplitude, and/or size. We employ two Bayesian methods of estimating the kernel functions. The first is a maximum a posteriori (MAP) estimation method based on a Reversible-Jump Markov-chain Monte-Carlo (RJMCMC) algorithm that searches for both the appropriate model complexity and parameter values. The second is a relevance vector machine (RVM), a kernel machine that is known to be effective in controlling model complexity (and thus discouraging overfitting). In each method, after estimating the activation pattern, we test for local activation using a GLRT. We evaluate the results using receiver operating characteristic (ROC) curves for simulated neuroimaging data and example results for real fMRI data. We find that, while RVM and RJMCMC both produce good results, RVM requires far less computation time, and thus appears to be the more promising of the two approaches.en
heal.journalNameIEEE Trans Med Imagingen
heal.journalTypepeer reviewed-
heal.fullTextAvailabilityTRUE-
Appears in Collections:Άρθρα σε επιστημονικά περιοδικά ( Ανοικτά)



This item is licensed under a Creative Commons License Creative Commons