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ABSTRACT

The interaction of the diastereomeric complexes A- and A-[Ru(bpy)2(m-GHK)]CI2, (GHK glycine-

histidine-lysine) to the deoxynucleotide duplex d(5’-CGCGAATTCGCG-3’)2 was studied by means of IH
NMR spectroscopy. The diastereomers interact with the oligonucleotide duplex differently. The A-

[Ru(bpy)2(m-GHK)]Cl2 is characterized by major groove binding close to the central part of the

oligonucleotide, with both the peptide and the bipyridine ligand of the complex involved in the binding. The

A-[Ru(bpy)2(m-bpy-GHK)]Cl2 binds loosely, approaching the helix from the minor groove. The NMR

analysis shows that the peptide (GHK) binding has a determinative role in the interactions of both

diastereomers with the oligonucleotide.

1. INTRODUCTION

Over the last decades, DNA-binding low molecular weight compounds have found considerable

application as chemotherapeutic agents. On a molecular basis, their cytotoxic effect originates from their

interaction with the DNA double helix, often in a non-covalent way. This type of.reversible interaction takes

place in three primary ways/1/: (i) surface binding which is generally non-specific and primarily electrostatic

in origin e.g. in the case of multiple charged simple cations such as magnesium and cations of simple organic

amines/1/, (ii) groove binding interactions e.g. netropsin/2/, distamycin/3/, Hoechst 33258/4/and SN 6999

/5/, and (iii) intercalation of a planar or approximately planar aromatic ring system between base pairs as in

the case of ethidium/6/, adriamycin /7/ and daunomycin/8/.

There is increasing interest in the chemical design of small molecular mimics of DNA-binding proteins
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playing an important regulatory role in controlling replication and transcription of genomic material. The

sequence-specific binding of such molecules to DNA might affect replication, transcription or other

physiological functions of the cell. The extremely high specificity upon recognition and binding to DNA

target sites, of protein molecules such as restriction endonucleases, provides a very good basis for the design

of sequence-specific DNA binders. The recognition process of the cognate DNA fragment by these proteins

often involves base-specific interactions between the DNA bases and a recognition loop of amino acid

residues, comprising mainly of hydrogen bonding schemes and Van der Waals interactions/9-11/.

DesPite their substantial contribution to sequence specificity, individual recognition peptide sequences

lack the ability to bind tightly to DNA, a property sufficiently provided by the non-specific contacts made by

the protein backbone/12-14/. On the other hand, positively-charged metal complexes can associate within the

grooves of polyanionic DNA, with the binding being further stabilized by a variety of intermolecular forces

such as Van der Waals, hydrophobic interactions and hydrogen bonding. Footprinting studies have shown

that site-specific recognition by conjugation of small peptides to metal complexes can be successful/15-16/.

Therefore, on the basis of the known high affinity of ruthenium polypyridine complexes towards DNA

binding/17-19/, [Ru(bpy)3]2+ was chosen for conjugation with the recognition peptide sequence.

As a starting peptide sequence, Gly-His-Lys (GHK), the growth modulating factor was chosen. Its water

solubility as well as its capacity to facilitate transportation within the cell comprise essential characteristics

for a DNA-targeted molecule. Moreover, its Cu(II) complex is known to adopt a specific orientation when

interacting with the minor groove of DNA, thus introducing specificity in DNA binding/20/.

The DNA binding propertie; of our designed complex were tested on the spectroscopically and

crystallographically well-characterized Dickerson-Drew dodecamer, d(CGCGAATTCGCG)2 which forms a

self-complementary duplex whose structure is understood in detail/21/.

2. EXPERIMENTAL

The measurements were made on a Varian Unity-500 MHz instrument. 1D-JHNMR spectra were

recorded at 303 K into 4096 data points, with a 6024 Hz spectral width after 128 transients. 1H NOESY
spectra were recorded in phase sensitive mode with a total 2048 X 256 points for mixing time 200 to 400 ms,

while IH ROESY spectra at mixing times (rm) 60-120 ms. 1H DQF COSY spectra were collected using

TPPI method, in a spectral width of 3125 Hz with total 2048 X 256 points and a relaxation delay of 1.5 s.

The amounts of the oligonucleotide were estimated by weighing and the concentration of the sample was

determined using its absorption at 260 nm. In all NMR experiments carried out, a 100 mM

Na2HPOnfNaHPO4 (pH 7.00) buffer was used. The lyophilized samples were dissolved in DO (99.96) and

lyophilized again to dryness.

The 1D H NMR spectra were recorded on sample concentration ~100 OD260 units while the 2D NOE

experiments in more concentrated samples (~ 300 OD260). JH NMR spectra of the labile oligonucleotide

protons were recorded in 90% HzO 10% D20 (field-frequency lock). No internal chemical shift reference was

added to the samples.
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3. RESULTS AND DISCUSSION

2.1. Synthesis and characterization of A- and A-[Ru(bpy)z(m-GHK)]Clz enantiomers,

(bpy=2,2’-bipyridine, m-GHK--4-methyl-4’-glycyl-histidyl-lysyi-2,2’-bipyridine).

The synthesis of the diastereomers A- and A-[Ru(bpy)2(m-bpy-GHK)]C12 was based on the

enantiomerically pure complexes A- and A-cis-[Ru(bpy)2(py)2]2/ as building blocks. Details of the synthesis

will be described elsewhere/22/. The structures of A- and A-[Ru(bpy)2(m-bpy-GHK)]2/ are shown in figure

1. Both complexes were characterized by elemental analysis, ESI-MS and H-NMR spectroscopy. The

enantiomeric purity of the ruthenium complexes was checked by CD spectroscopy/22/.

H

H4’T..I]. "‘% ’" H.]j..CH3

0 0 0

H4

N H:5.

NH2

A-[Ru(bpy).,(m-GHK)]

Fig. 1: Structure and atom numbering of A-[Ru(bpy)2(m-GHK)]2/

2.2. Interactions of the [Ru(bpy)(m-GHK)]Ciz enantiomers with the DNA dodecalner duplex
d(5’-CGCGAATTCGCG-3’)z.

The binding of the two diastereomeric complexes A- and A [Ru(bpy)2(m-GHK)]2/ to the DNA dodecamer

duplex d(5’-CGCGAATTCGCG-3’)2 has been studied by the DQF COSY techniques and two dimensional

NOE spectroscopy. The 2D NMR studies reveal different binding modes for the two diastereomers.

As seen from the 1D ]H NMR spectra of the samples containing A- or A-diastereomer oligonucleotide
1:1 (0.1 M phosphate buffer, pH=7.0, T=298 K), only one set of resonances was observed indicating that the

complex is in fast exchange binding kinetics (Figure 2).
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H NMR spectra of the aromatic region (a) of the free A-[Ru(bpy)2(m-bpy)-GHK)]2+ (b) with the

added dodecanucleotide at ratio 1" 1, (c) the free dodecanucleotide.

Upfield shifts of the bpy proton signals of both enantiomers were observed, ranging from 0.039-0.192

ppm for the A-isomer and 0.026-0.066 for the A-isomer. Moreover, the aromatic protons of m-GHK ligand

show small upfield shifts (less than 0.1 ppm) for both enantiomers. These values are not indicative of ligand

binding to the oligonucleotide by intercalation. In general, intercalation causes large upfield changes in the

resonances of the ligand protons (0.3-1.0 ppm) and significant broadening of the signals due to intermediate

exchange/23/. The observed electron shielding of H3 (0.192 ppm for A-isomer) and H4 (0.168 ppm for A-

isomer) bipyridyl protons due to the interaction with the DNA bases is close to the lower limit for
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intercalation, implying that the vertical distance between these protons and the base planes is not very high

/24,25/. On the other hand, the upfield shifts of bpy protons observed for the A-isomer (less than 0.1 ppm)

suggest very weak association with the oligonucleotide.

The participation of the side chain amino group of lysine in DNA binding is evidenced for both isomers

by the upfield shift of the H protons (0.09 ppm for A- and 0.074 ppm for A-isomer). The binding of the

positive charge amino group of lysine has also been observed in the case of Lys-Tyr-Lys /26/ and Lys-Trp-

Lys /27/ where the binding to DNA takes places via electrostatic interactions between the lysine residues and

the polyanionic DNA backbone. Significant interaction of the imidazole H2 protons of histidine is observed

for the A-is0mer (0.118 ppm downfieldshift). Furthermore upfield shift (0.13 ppm) of the exchangeable NH

protons of His was observed for both enantiomers suggesting the participation of the peptide bond in DNA

binding.

A number of NOESY cross-peaks between protons of the metal complex and protons of the

oligonucleotide were observed indicating interproton distances less than 5 A (Figures 3 and 4). In the case of

A-[Ru(bpy)2(m-GHK)]C12, distances of less than 5/ were observed between the aromatic protons of m-bpy

ligand and the H2" protons of the A5, A6 and C9 bases (in the complementary strand) all facing the major

groove of the helix. The NH protons of the peptide backbone show cross-peaks with protons that are also

accessible from the major groove, lntermolecular NOE’s between the lysine aliphatic side chain and the

oligonucleotide protons indicate that this part of the peptide is located close to the helix.

G12C’: 1G10CgT8

2+Fig. 3: Model of observed intermolecular NOEs between the A-[Ru(bpy)2(m-bpy)-GHK)] and the

dodecanucleotide.
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Fig. 4: Model of observed intermolecular NOEs between the

dodecanucleotide.

A [Ru(bpy)2(m-GHK)]2+ and the

On the other hand, the intermolecular NOE contacts between the A-[Ru(bpy)2(m-GHK)]C12 and the

oligonucleotide are significantly less compared to the A- enantiomer suggesting a looser binding of the

former. A few of these take place between the ligand m-bpy protons H3’, H5’ and the A6HI ’and C9HI’ and

between the peptide backbone Gly-NH and the sugar proton HI’ of T8, all located in the helix minor groove.

In contrast to the A- isomer, no cross-peak was observed between the other two bpy ligand protons of the

complex and the oligonucleotide indicating that only the m-bpy-GHK moiety of the complex binds to the

d(5 ’-CGCGAATTCGCG-3 ")2.

Major and minor grooves differ significantly in electrostatic potential, hydrogen bond characteristics,

steric effects and hydration. Therefore, many proteins exhibit binding specificity primarily through major

groove interactions while small groove binding molecules like netropsin and distamycin generally prefer the

minor groove of DNA /1/. Unlike the other non-intercalative molecules, A-[Ru(bpy)z(m-GHK)]2+ forms

specific contacts with the walls of the major groove of DNA. This can be partially interpreted by the

tendency of the bpy ligand to align itself close to the basepairs /28/, a fact already seen in the significant

shifts of the aromatic bpy protons. This alignment is probably hindered in the case of the A-isomer where the

bpy ligands do not participate in DNA binding, whereas the enantiomer binds from the minor groove.

In order to investigate the site-specificity of [Ru(bpy)/(m-GHK)]2/ in DNA binding, its interaction with

d(CGCGATCGCG)z, also a [3-type DNA, is under study. Preliminary results indicate weaker interaction

between both isomers and the decanucleotide duplex compared to the dodecanucleotide. The binding of the

A-isomer takes place from the major groove in the region of A5/T8, A6/T7 base extended until the ends of

the dodecanucleotide. The A-enantiomer interacts very weakly with the double helix (shifts less than 0.05

ppm), probably through electrostatic interactions between the metal complex and the oligonucleotide
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backbone. Complementary molecular modeling studies are currently underway.

3.3. Conclusion

In conclusion, the NMR experiments presented show that the [Ru(bpy)2(m-GHK)]2+ complex binds

differently to oligonucleotides. Major groove binding to d(CGCGAATTCGCG)2 was observed for A-

[Ru(bpy)z(m-GHK)]C12 with the histidyl-lysyl part of the peptide ligand recognising the adjacent C9G10Cll

of the oligonucleotide sequence, thus placing the bpy ligands close to the central part. The A-isomer

approaches the double helix from the minor groove, with the aromatic protons of ligand m-GHK interacting

weakly (Figure 5).

(a)

GI2C11 G10@TS__,TTA6 ____A5G4 C3 G2 ____C1

.H:.N
C1 G2--C3 ?G4--A5---0--.--.T8 ___:9__G1.0 .C:: G1.2

A-[Ru(bpy):(m-bpy-GHK)]Cl: (b)

G10 _.__CI I____G 12

Fig. 5: A qualitative binding model of (a) A [Ru(bpy)2(m-bpy-GHK)]2/ and the dodecanucleotide and (b) A

[Ru(bpy)2(m-bpy-GHK)]2+ and the dodecanucleotide.
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The site-specificity in DNA binding of the enantiomeric ruthenium complexes is indicated by preliminary

results of their interactiofi with the nucleotide duplex d(CGCGATCGCG)2, where the change of the central

part of the oligonucleotide sequence affects dramatically the ability of the complex to recognise and associate

to its binding site.
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