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The worldwide loss of natural habitats leads not only to the loss of
habitat-endemic species but also to further and protracted extinc-
tions in the reduced areas that remain. How rapid is this process?
We use the neutral theory of biodiversity to answer this question,
andwe compare the results taken with observed rates of avifaunal
extinctions. In the neutral model, we derive an exact solution for
the rate of species loss in a closed community. The simple, closed-
form solution exhibits hyperbolic decay of species richness with
time, which implies a potentially rapid initial decline followed by
much slower rates long term. Our empirical estimates of extinction
times are based on published studies for avifaunal extinctions
either on oceanic islands or in forest fragments, which span a total
of six orders of magnitude in area. These estimates show that the
time to extinction strongly depends on the area. The neutral-theory
predictions agree well with observed rates over three orders of mag-
nitude of area (between 100 and 100,000 ha) both for islands and
forest fragments. Regarding the species abundance distribution,
extinction times based on a broken-stick model led to better agree-
ment with observation than if a log-series model was used. The pre-
dictionsbreakdown for very small orvery largeareas. Thus, neutrality
may be an affordable assumption for some applications in ecology
and conservation, particularly for areas of intermediate size.
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The primary driver of extinction in terrestrial environments
today is habitat loss (1, 2). In particular, the loss of large

portions of tropical rainforest through land conversion was es-
timated to lead to rates of species extinction hundreds of times
higher than the background rate (3). However, the ensuing
extinctions will not be realized immediately, because most of the
species found in the destroyed habitat are also found in the
remaining area. Instead, extinctions occur in the course of the
following decades, centuries, or even millennia after the initial
habitat contraction. This process has been called faunal re-
laxation (4). Another term used is extinction debt, which refers
to the degree to which the species richness exceeds the species-
carrying capacity of the diminished area (5, 6). A good un-
derstanding of this phenomenon is required to explain why the
extinctions forecasts are not immediately observed.
Empirically, extinction is difficult to observe, because we must

establish the absence of an organism simultaneously everywhere
before we can be sure that it is extinct. As a result, organisms
thought extinct frequently pop up again in subsequent surveys
(7). Despite this, a large body of empirical work related to ex-
tinction debt has been assembled (review by Kuussaari et al.) (6),
including various workarounds using natural experiments (4, 8,
9), microcosms (10), and historical data (11, 12). An important
and still unresolved part of the picture is to find the dynamic
model of extinction in the community context that can provide
a background estimate for how fast extinctions occur after hab-
itat loss and how the parameters of this relaxation depend on the
size and isolation of the remaining habitat.
The first person to deal with the phenomenon of extinction debt

was Diamond (4), who introduced the term faunal relaxation to
equilibrium to describe the gradual loss of species after a re-

duction in the size of islands because of sea-level rise. Diamond
(4) introduced a model for species richness motivated by island
biogeography. In this model, species were effectively independent
and had constant rates of extinction and colonization, leading to
an exponential pattern of relaxation as a function of time. By
fitting the model to observed patterns of species richness, Di-
amond (4) was able to estimate relaxation times for various is-
lands. The term extinction debt first appeared in 1994 in a paper
by Tilman et al. (5) thatmodeled themultispecies metapopulation
dynamics in a grid of habitat patches. These authors (5) pointed
out that extinction may happen many generations after habitat
loss, although the more discussed (and controversial) result of
their paper was that species that were better competitors would
suffer earlier extinction. Their results regarding extinction debt
were mainly qualitative (5). A metapopulation approach was also
used by Hanski and Ovaskainen (13), who derived a dynamic
theory for the metapopulation response of a multispecies com-
munity to environmental changes through the metapopulation
capacity approach. Their theory is applicable to species that in-
habit an archipelago of small islands separated by a large sea of
nonhabitat area and requires some structural assumptions about
rates of colonization and local extinction.
The neutral theory of biodiversity by Hubbell (14) has

prompted a resurgence of interest in community modeling of
biodiversity. Its radical simplification of ecological reality has
enabled progress in mathematical models of community struc-
ture (15, 16) but has also generated intense controversy (17–19).
In the neutral theory, species are equivalent, and the community
dynamics are driven by demographic stochasticity, dispersal
limitation, and speciation. Empirically, the neutral theory by
Hubbell (14) seems to work quite well for species abundance
distributions (16, 20) but poorly for the fluctuations of pop-
ulation size (21) and species–area relations (22). However, with
the adoption of spatially explicit models, it is likely that neutral
theory will be in a better position to describe species–area
relationships (23, 24); in fact, some progress has been reported in
this area recently (25). Further concerns about neutral theory
have been raised on specifically theoretical grounds. For exam-
ple, Clark (19) argues that ecological uncertainty is intrinsically
high-dimensional and cannot be described by “stochastic ele-
ments, perceived as neutral forces” (19). Despite its many limi-
tations, the major attraction of neutral theory is that it may be
used as a baseline from which explicitly ecological hypotheses can
then be elaborated. Unlike many community theories, neutral
theory is based on a dynamic process and hence, can generate
time-explicit hypotheses as well as patterns. A number of studies
have explored time-dependent aspects of neutral theory, such as
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species lifetimes (17), community turnover (26), and delayed
changes of species composition (27). Overall, however, the neu-
tral theory literature has tended to neglect the time axis (22).
There have been few attempts to explore neutral predictions

for species relaxation. There are two studies of tree diversity, one
on and around Barro Colorado Island, Panama (28) and another
in Manaus, Brazil (27), that deal with at most three generations.
Also, on a relatively short timescale, Hubbell et al. (29) used
neutral theory to forecast extinction rates of tree species in the
Amazon using simulations over a variety of scenarios. At the
other extreme, on geological timescales, Ricklefs (17) concluded
that neutral theory could not explain the relative brevity of
species lifetimes for birds. The goal of this paper is to fill in some
of the gaps. The predictions of neutral theory are worth ex-
ploring, because it is a dynamic, relatively tractable theory of the
community that is explicit at the population level and can,
therefore, provide important insights. However, the neutral
theory used here differs from that by Hubbell (14) in that there is
no metacommunity: each community on an island or a fragment
is assumed to be closed with neither immigration nor speciation.
We here focus on a very simple situation in which immigration
and speciation can be neglected. This simplification is important
for two reasons. First, it allows us to derive a clear and simple
formula, and second, it allows us to use the data from published
studies of species relaxation, most of which do not provide
estimates of immigration rates. In this paper, we use the neutral
theory to obtain formulas for the dynamics of species relaxation
on isolated habitat fragments or islands as a function of time,
fragment size, and initial community structure.

Problem of Extinction Debt After Habitat Loss
Fig. 1 shows the essential problem in which we are interested.
Initially, the habitat has an area A0, which is reduced to a smaller
size A.
Habitat loss, at time t = 0, is assumed to be instantaneous;

subsequently, there is no regrowth, and it stays lost. We also
assume that the area is contiguous and simple, and therefore,
there are no special edge effects. Such a reduction of habitat
area will necessarily lead to a reduction in the total number of
individuals that can be supported by the habitat. Thus, the
number of individuals in the community falls from N0 to N and
remains there. Typically, N0 − N will be proportional to the area
lost. This reduction in the number of individuals also implies
a reduction of the species richness that can be supported by the
habitat: this falls from S0 to S. However, the loss of species does
not happen all at one time; it occurs in two phases: (i) S0 → S0′
(some species are lost immediately, because all of their members
are found inside the lost area) and (ii) S0′ → S(t) → S1 (some
species are lost gradually, because populations drift to low
numbers and then to extinction). The difference S(t) − S1 is the
extinction debt, which is paid off as the community approaches
its sustainable level of diversity by shedding excess species.
During this final phase, because species whose populations have

fallen to lower levels will die off, more space is left for those
species that remain. Therefore, with the collapse of the species-
rich community S0, there is consolidation to a few common
species in the new community. Unless there is immigration or
speciation, the eventual state of the community is fixation to
a single species (S1 = 1). Because of this, our theory is useful in
situations where the focal habitat is isolated fairly well, and
therefore, immigration can be neglected as a first-order ap-
proximation. As explained in SI Text, this is satisfied if the
number of immigrants per generation is much smaller than the
ratio S(t)2/N, which means that it is less likely to hold at larger
values of time. In this paper, we will not consider dispersal
limitation or any other explicit aggregation of populations in
space: all species are potentially present everywhere. This means
that we do not consider the issue of endemicity (30). As a result,
the initial loss of species is negligible: S′0 ≃ S0.

Results
Mathematical Solutions. The distribution of S species in the com-
munity can be approximated by a diffusion process where species
are found in proportions x1 . . . xS, with X ¼ ðx1; x2; ::; xS− 1; xSÞ.
More details can be found in SI Text. The relative proportion xj
for each species j drifts in a randomwalk between absorbing states
of 0 (extinction) and 1 (total dominance). This is based on the
birth–death process for each species. At each step, each species
may increase or decrease its share of the total community by 1/N,
where N is the total number of individuals in the community.
Provided that the time interval Δt is short relative to the gener-
ation time τ, we can confine ourselves to changes of ±1. If
a change does occur, then the probability that it is a transition
from species j to species i is (Eq. 1)

Pr
�
X→

�
. . . ; xi −

1
N
; . . . ; xj þ 1

N
. . . ; xS

��

¼ Nxixj
τ

Δt; i; j∈1; 2; . . . ; S; i≠ j: [1]

In this transition, the probability given by Eq. 1 is proportional to
xi, because it is the number of offspring available for colonization
by species i. It must also be proportional to xj, because that is the
population of species j, one of which must die to make room for
the extra member of species i. As discussed in detail in SI Text,
this process leads to the following diffusion equation in the
continuum limit (Eq. 2):
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Here, p(x1, x2, . . . xS − 1) is the distribution for the relative
abundances in the different species x1, x2, . . . xS − 1. For the last
species, the abundance is given by xS = 1 − x1 − x2 − . . . − xS − 1.
Eq. 2 can be solved explicitly for the uniform distribution, p(x) =
constant. This can be verified by substituting the function,
p ¼ 1·exp½− μt� into Eq. 2, which yields μ ¼ SðS− 1Þ=Nτ. In this
case, the different species compositions of the community are
equally probable, which corresponds to the broken-stick model
by MacArthur (31, 32). Because this solution is everywhere, real
and positive, then by the Perrin–Frobenius theorem, it is the
eigenfunction corresponding to the dominant eigenvalue of the
operator in Eq. 2, and hence, all solutions will converge to this
form (more details in SI Text). From this, we can conclude that
the waiting times follow a negative exponential distribution with
mean Nτ=½SðS− 1Þ�. The waiting time for one of the S0 species
to go extinct has a mean Nτ=½S0ðS0 − 1Þ�. The waiting time for
the next extinction is then Nτ=½ðS0 − 1ÞðS0 − 2Þ� on average and
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Fig. 1. The number of individuals in the community is proportional to the
habitat area, which suffers the loss at t = 0 (A). This is gradually reflected in
a loss in the total number of species in the community (B).
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so on. Thus, the time required for the number of species to de-
crease from S0 to S(t) has a mean equal to (Eq. 3):

t ¼ Nτ

S0ðS0 − 1Þ þ
Nτ

ðS0 − 1ÞðS0 − 2Þ þ . . .þ Nτ

½SðtÞ þ 1�SðtÞ: [3]

This series can be summed by partial fractions to arrive at a
simple result for S(t).
We define the half-life t50 as the time until the number of

species falls to one-half of its initial value, that is, Sðt50Þ ¼ S0=2,
where we have (Eq. 4)

t50 ¼ τN
S0

: [4]

Here, τ is the number of years per generation, S0 is the initial
number of species, and N is the number of individuals. Eq. 4 is
exact if it is interpreted as the arithmetic mean of half-life. We
may adopt an approximation of this stochastic process by the
deterministic model if the species number is large.
The result for the species number S(t) can now be written (Eq. 5)

SðtÞ ¼ S0
1þ t=t50

: [5]

Here, t is time in years as in Eq. 4, and S0 is the initial number
of species.
Thus, for much of the loss, species richness decays as 1/t. The

hyperbolic relaxation formula Eq. 5, derived independently by
Terborgh (8) but without explicit parameters, was used by Ter-
borgh (8) to describe the process of competition between species
in isolated fragments. In this hyperbolic decay of biodiversity, the
eventual decline is slow, although the initial rate of loss may be
very rapid. From Eq. 5, the rate of decrease in the species
number ð− 1ÞdS=dt is equal to S2=τN, which is proportional to
the square of the number of existing species. Hence, the decay
rate per species is S=τN per year, indicating that each species
experiences a rate of extinction proportional to the number of
existing species. Thus, the more species there are initially, the
faster will be the relative decline, because there are fewer indi-
viduals per species. Eq. 5 also states that the mean time for
fraction δ of the initial set of species to go extinct is equal to
tδ ¼ t50ðδ=ð1− δÞÞ.
The neutral model described in this paper can be simulated

using the Moran process (22, 33) (SI Text). This allowed us to
test Eq. 5 for two different types of initial community structure:
the broken-stick model by MacArthur (31) and the log-series
model. The results are shown in Fig. 2.
The best agreement between the formula and simulations is

when the initial community conforms to the broken-stick model
by MacArthur (31), for which all configurations of species
abundance have equal probability. This is expected, because the
formula is derived under the assumption of p = constant, which
is exactly the assumption underlying the broken-stick model by
MacArthur (31). Eq. 5 does a poor job of predicting species loss
in communities with other structures, at least initially. This is
especially true for highly skewed communities (a few species at
high numbers and many species at low numbers) as described by
a log-series model. At large values of time, the formula always
agrees with the simulations. This is because the solution of Eq. 2
under the assumption of p = constant is also the dominant ei-
genvalue of the operator, which has the slowest rate of decay.
Disagreements are mainly because of initial structure, and these
die off with the passing of time.

Comparison with Published Works. Observing and analyzing the
avifaunas of Southwest Pacific islands, covering a size range from
0.36 to 3,000 mi2, Diamond (4) noticed that large islands, which

had either suffered significant area contraction or separation
from the mainland at the end of the Pleistocene, were still su-
persaturated (more species-rich) compared with equivalent is-
lands that had been isolated for much longer. He interpreted this
difference as a delay because of the slowness of faunal re-
laxation; even after 10,000 y, the process had not reached its
equilibrium. Using the framework of island biogeography, Di-
amond (4) fitted an exponential model that yielded estimates of
relaxation time up to 17,600 y for the larger islands.
Terborgh (8) carried out a similar analysis on the avifauna of

the West Indies, where similar patterns can be seen, and applied
it in addition to the avifauna of Barro Colorado Island (BCI;
data from Willis in ref. 34). The large islands of Trinidad,
Margarita, Coiba, Tobago, and Rey, ranging in size from 249 to
4,828 km2, all show signs of not having reached their equilibrium.
In contrast to Diamond (4), Terborgh (8) used a model for
species relaxation that “acknowledges interspecific competition”
and for which survival rates of the “remaining populations in-
crease as their competitors drop out” (8). The relaxation formula
by Terborgh (8) has exactly the same form as the neutral result
(Eq. 5). Thus, neutral theory recovers a formula specifically in-
troduced to include competition. Neutral theory goes further by
providing an explicit value for the phenomenological rate con-
stant introduced by Terborgh (8).
Extinction debt for forest fragments has been studied in

Kenya’s Kakamega rainforest (35) and Manaus, Brazil (36).
Brooks et al. (35) considered four (smaller) forest fragments that
had been isolated by the encroachment of agriculture. These
fragments, ranging from 100 to 1,500 ha in size, had been iso-
lated for 10–66 y. For these smaller patches, Brooks et al. (35)
found relaxation times between 23 and 55 y, again using an ex-
ponential relaxation model. Ferraz et al. (36) analyzed even
smaller forest fragments (1–100 ha) from the Biological Dy-
namics of Forest Fragments Project (BDFFP) system in Manaus,
Brazil. Using various inferential techniques, they arrived at re-
laxation times between 1 and 16 y for fragments ranging in size
from 1 to 100 ha.
Newmark (37) studied local extinctions of understory birds in

the intermediate moist forests of the Eastern Usambara Moun-
tains in Tanzania in a network of 10 habitat islands ranging in
size from 0.1 to 521 ha and containing from 4 to 26 of 31 known
species in the area. MacHunter et al. (38) studied avifauna loss
for Australian birds, again in very small patches. Like Newmark
(37), they did not express their results in terms of relaxation
times. MacHunter et al. (38) present comparisons of species
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Fig. 2. The dynamics of species richness as a function of time (generations)
after habitat loss as predicted by the neutral theory (Eq. 5) and 10 simu-
lations of the Moran (33) process. (A) Initial community composition is given
by the broken-stick model by MacArthur (31). (B) Initial community com-
position is given by log-series model (α = 15.6). In A and B, the black line
denotes the predictions of Eq. 5, whereas simulation results are shown in
gray. The heavy gray line is the average of the simulations, whereas the thin
lines denote their minimum and maximum values. The parameters are S0 =
100 and n = 10,000.
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richness between two separate sampling events, 22 y apart, in
a network of 20 habitat relict patches ranging in size from 2.3 to
47.4 ha. By the time of the first sampling period, these had al-
ready been isolated for some time, and therefore, the surveys
represent two snapshots at different moments in the relaxation
process. Their data showed that average species richness de-
clined by nine species per patch in the 22 y between the two
sampling periods.
Fig. 3 assimilates the reported results of avifaunal relaxation

using Eq. 8 (see Methods) and compares them with the pre-
dictions of neutral theory’s Eq. 4 (Table S1). The island sizes
range over six orders of magnitude from forest fragments less
than 1 ha to large islands like Trinidad (4,828 km2).
Fig. 3A compares the relaxation times inferred from real data,

T50, with the predictions of neutral theory t50. Points on the left
tend to correspond to small areas, and points on the right tend to
correspond to large areas (Fig. 3). For medium to large islands,
the times forecast by the neutral model through Eq. 4 compare
favorably with relaxation times estimated from the observed
losses: the deviation from theory is no greater than the natural
scatter, and there is no systematic deviation upward or down-
ward (Fig. S1). Note the correlation in this panel is not an arti-
fact of any mathematical similarity between Eq. 4 for t50 and Eq.
8, the extrapolation model for T50, because the burden of the
large changes in magnitude is borne by A (Fig. 3B). However, at
very small sizes, the neutral pattern of scaling seems to break
down. This is clearly visible in Fig. 3A for t50 ≤ 100 (corre-
sponding to small fragments), where most points lie well above
the line T50 = t50. Here, relaxation times of 2–10 y are observed
for fragments ranging in size 1–10 ha, whereas neutral theory
predictions range from 3 to 0.2 y. This difference is unlikely to be

related to our assumption of broken-stick community structure.
Log-series or lognormal distributions, because of their strong
asymmetry, would result in even shorter predicted values for t50,
which is evident from Fig. 2B. Thus, for very small areas, the
relaxation time predicted by neutral theory seems to be too
short. At very large sizes, the neutral pattern of scaling also
breaks down. Here, the prediction of neutral theory seems to be
too long compared with relaxation times inferred from real data.
Fig. 3B shows that the predicted scaling pattern of relaxation

time with island (or fragment) area A also agrees well with ob-
servation. This figure shows the inferred relaxation times as
a function of area along with a power-law fit to the data. In this
model, we assume that the ratio τ/S0 either does not matter or is
constant. Thus, on a doubly logarithmic scale, relaxation time T50
is a straight-line fit against area. The relation has the approximate
form T50 = 4.34 × A0.65. This empirical power law shows a very
clear pattern of increase of relaxation time with area (R2 = 0.90),
which is slower than neutral theory predicts (T50 ∝ A) but faster
than the proposed rough-scaling relation of T50 ∝ A1/3 proposed
by Ferraz et al. (36) for a range of scales 1–10,000 ha. The dis-
agreement with their results is because of the larger range of
timescales and the contribution from other datasets, especially
those of Newmark (37). It is also worth noting that the results for
actual islands (West Indies, southwest Pacific, and BCI) are
broadly consistent with those for habitat fragments isolated by
deforestation.
The above analysis assumes a broken-stick species abundance

distribution. For many tropical bird communities, it is likely to be
appropriate (39, 40). However, for other types of organisms, it
will be unsuitable, and a more skewed distribution, such as the
log series (27) or canonical lognormal (32), might be appropri-
ate. For the log-series distribution, Gilbert et al. (27) developed
a formula that can be adapted (SI Text) to provide an analog of 4.
As can be observed in Table S2, in contrast to the observations of
Gilbert et al. (27) for trees, the log series-based formula is not
a good one to use for relaxation times of avifauna, because it is
always forecasting more rapid species relaxation than what is
observed by a factor, on average, of 28.3.

Discussion
For large islands, the times t50 forecast by the neutral model
through Eq. 4 compare well with observed losses, and therefore,
neutrality would seem to be a reasonable assumption on scales
between 100 and 100,000 ha.
For smaller fragment sizes, Eq. 4 is a poor predictor of species

loss rate, consistently underestimating the relaxation time. Why
is this? One reason is that immigration, ignored in our model, is
playing a more dominant role at this scale. In most empirical
studies of extinction debt, immigration is neglected, and often,
distances from the mainland are not provided. However, these
distances range from less than 100 m to hundreds of kilometers,
and therefore, this factor will have a serious effect. This is es-
pecially a concern for the data from Manaus (36). For example,
for several of the fragments, the number of species is far in ex-
cess of a plausible equilibrium value. If we assume that the forest
in Manaus can support ∼10 pairs/ha, then Manaus/2107/Dimona,
with an area of 1.8 ha, should support 18 pairs. However, the
initial number of species is 86. A direct calculation of Eq. 4 with
these data leads to a decay time t50 less than one generation. If
the forest fragments were truly isolated, we would expect the
species number to fall rapidly to something consistent with n =
18. However, even after isolation, the species numbers remain
well above this value. Clearly, birds caught in such an area are
not only those actually supported by that area but also visitors
from adjoining areas. Thus, the most probable cause of the de-
parture from neutrality for small fragments is that these are af-
fected or even dominated by immigration. It is well-established
that the isolation of these fragments is imperfect (discussed in

1

10

100

1,000

10,000

100,000

t 50, Neutral prediction (years)

T
50

 (
ye

ar
s)

1

10

100

1,000

10,000

100,000

 0
 

 1
 

 1
0 

 1
00

 

 1
,0

00
 

 1
0,

00
0 

 1
00

,0
00

 
 1

,0
00

,0
00

 

Area (ha)

T
50

 (
ye

ar
s)

SW Pacific
West Indies
Kenya

Tanzania
Brazil
Australia
Fitted

B

A

0.
1

Fig. 3. Relaxation times inferred from empirical data (T50) for avifaunal
extinctions in various parts of the world. (A) T50 plotted against the re-
laxation time predicted by the neutral model (t50) using Eq. 4. The straight
line denotes equality: T50 = t50. (B) The same data for T50 plotted against
area. The straight line denotes the empirical power law fit (T50 = 4.35 ×
A0.652). In A and B, the shaded + symbol denotes the relaxation time for
Barro Colorado Island.

Halley and Iwasa PNAS | February 8, 2011 | vol. 108 | no. 6 | 2319

EC
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1011217108/-/DCSupplemental/pnas.201011217SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1011217108/-/DCSupplemental/pnas.201011217SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1011217108/-/DCSupplemental/pnas.201011217SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1011217108/-/DCSupplemental/pnas.201011217SI.pdf?targetid=nameddest=ST2


ref. 36), because a variety of species from different guilds are
capable of dispersing over relatively long distances (41).
Another explanation is that, in smaller islands, stochastic

effects play a greater role, causing the neutral assumptions to fail.
Stochastic factors other than basic demographic stochasticity of
population size are not considered in the neutral model. However,
factors such as environmental stochasticity (climatic variability,
changes in abundance of predator or prey species, etc.) are likely
to play a greater role in survival probability for small fragments.
Behavioral shifts are also likely to play a more important role in
the breakdown of neutrality in small fragments. In Manaus, some
species that remained in small fragments stopped foraging in
mixed species groups entirely, a hugely different foraging strategy
and obviously, very significant to survival (42).
The neutral formula also yields poor predictions of extinction

time for very large areas. Some bigger islands such as Aru (4)
seem to have relaxed much more rapidly than predicted. This
was the conclusion of Ricklefs (17), who compared phylogenetic
estimates of the global bird-species time to extinction with the
predictions of neutral theory. He found that the observed waiting
times to extinction (ca. 2 Myr) were much less than those pre-
dicted by neutral theory (typically 40–86 Myr). Thus, he inferred,
drift is too slow to account for turnover in regional avifaunas.
Thus, for large scales, our concern is the same as that of Ricklefs
(17): neutral theory predicts excessively long relaxation times.
However, for the southwest Pacific islands, there are other pos-
sibilities that might explain this divergence. First, S0 might be
significantly lower than the total lowland fauna S0 = 325 as-
sumed by Diamond (4) and adopted here. For example, for
continental fragments, we might alternatively apply the species–
area relation with a low exponent of γ = 0.16 (35) to estimate S0.
This leads to lower values of S0 and hence, larger values of T50.
Also, for these larger islands with very large population sizes and
slow relaxation stretching into evolutionary timescales, the
closed-community assumption breaks down because of specia-
tion as well as immigration. Finally, the spatially implicit treat-
ment will cause problems on larger spatial scales and in
situations where the geometry of habitat loss plays a major role.
For very large areas, the assumption of perfect mixing will be
more problematic, and localization of species and endemicity
will become more important. So, our theory may be unsuitable
for predicting species loss rates not only in large continental
areas but also for the larger islands. Thus, the disagreements on
larger scales may be because of this paper’s specific assumptions
rather than the assumption of neutrality itself.
A number of further assumptions had to be made in this pa-

per. Throughout, we assumed a generation time of 5 y, following
the work of Ricklefs (17). We also assumed that the density of
pairs in the region was 8.29 pairs/ha (39), a value which is close
to that reported by Terborgh et al. (40) for Cocha Cashu, Brazil
(ρ = 9.55 pairs/ha) and Hubbard Brook, New Hampshire (ρ =
10.0 pairs/ha). Ricklefs (17) used a value of 6 pairs/ha, but this
was for passerines only. Both of these are likely to be subject to
considerable variability, especially the density of individuals, ρ.
Overestimation of either of these factors leads to an over-
estimation of relaxation time.
Acknowledging the limitations of neutral theory, the sheer

simplicity of Eqs. 4 and 5, and the fact that predictions agree
rather well with observed extinction rates suggests that it can be
a useful tool in conservation. It also shows the surprising rele-
vance of the neutral model to ecological observation and species
conservation, in particular, in contrast to the rather pessimistic
view expressed by Clark (19). The results of this paper raise

a number of interesting recommendations for further field
studies in extinction debt. One is that the degrees of isolation
and levels of immigration should be carefully recorded and
reported, because these data lead to major changes in the faunal
relaxation rates. With properly quantified patterns of immigra-
tion, it might also be possible to test some of the spatial versions
of neutral theory. Another factor that should be observed is the
species abundance distribution, because this strongly affects the
initial rates of relaxation. A third and related direction for work
is the extension of these tests to other taxonomic groups.

Methods
In comparing neutral predictions with published results, we note that the
variousauthorshaveuseddifferentmethodologiesandsystemsofunits,which
must be harmonized. The predictions of neutral theory are twofold. First,
through Eq. 5, neutral theory predicts a hyperbolic rather than exponential
decay. Second, given hyperbolic decay, the relaxation time is given by Eq. 4,
which can be written in terms of population density ρ and area A (Eq. 6):

t50 ¼ τρA
S0

: [6]

Most of the studies of relaxation only have available two points in time, and
therefore, it is difficult to test hyperbolic vs. exponential decay given such
data. However, if we assume a hyperbolic model (following Terborgh) (8),
then Eq. 5 should hold if this is because of neutral relaxation rather than to
other processes. This is the approach that we use.

The most common currency for quantifying relaxation rates has been the
half-life, the time to lose one-half of the species present at isolation (4, 35,
36). This is the denomination that is used in this paper, where T50 denotes
the half-life inferred from observations and t50 denotes the half-life pre-
dicted by theory.

In all calculations, we used years for the units of time. The units of pop-
ulation were breeding pairs. Following the work of Brooks et al. (35), we
converted all area units to hectares.

Because authors did not observe T50 directly, this quantity must be inferred
from the species richness at different times. Some authors used an expo-
nential model of faunal relaxation (4, 35), for which the equation is (Eq. 7)

T50 ¼ t

− ln
h
SðtÞ− Seq
S0 − Seq

i: [7]

Here, t is the time elapsed since isolation, and S(t) is the currently observed
species richness. Seq is the number of species expected at equilibrium (using
species area relations relationships). The above equation is different from
the formula used by Terborgh (8) assuming hyperbolic dynamics, which is
(Eq. 8)

T50 ¼
�

SðtÞ
S0 − SðtÞ

�
·t: [8]

For consistency, we use the latter equation throughout. Note that there is no
equilibrium implicit in this equation. This follows from our assuming that
both speciation and immigration are absent. Using Eq. 8, T50 can be calcu-
lated on the basis of the number of species at two points in time and the
length of time t between the two time points. If the neutral model is a good
approximation for the mechanisms causing hyperbolic relaxation, then we
expect that T50 ≃ t50.

For two of the cited studies (37, 38), it was necessary to make some extra
assumptions to compare their results with neutral predictions, because these
studies did not estimate relaxation times, although the data do allow such
a calculation. More information about the methods can be found in SI Text,
where we derive an equivalence for their system.
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